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Abstract
Availability of large-scale experimental data for cell biology is enabling computational methods to systematically
model the behaviour of cellular networks. This review surveys the recent advances in the field of graph-driven
methods for analysing complex cellular networks.The methods are outlined on three levels of increasing complexity,
ranging from methods that can characterize global or local structural properties of networks to methods that can
detect groups of interconnected nodes, called motifs or clusters, potentially involved in common elementary
biological functions. We also briefly summarize recent approaches to data integration and network inference
through graph-based formalisms. Finally, we highlight some challenges in the field and offer our personal view
of the key future trends and developments in graph-based analysis of large-scale datasets.

Keywords: graph algorithms; data integration; cellular networks; protein^protein interactions; transcriptional regulatory
networks; network modularity

INTRODUCTION
Recent advances in large-scale experimental

technologies have resulted in an accumulation of

experimental data that reflect the interplay between

biomolecules on a global scale. Due to the

complexity of the control mechanisms involved,

and the large number of possible interactions, there is

a great need for computer-assisted tools to manage,

query and interpret the experimental observations

with formal network models. In their most

basic abstraction level, cellular networks can be

represented as mathematical graphs, using nodes

to represent cellular components, and edges to

represent their various types of interactions [1].

For instance, protein–protein interaction (PPI)

networks are conveniently modelled by undirected

graphs, where the nodes are proteins and two nodes

are connected by an undirected edge if the

corresponding proteins physically bind. In contrast,

transcriptional regulatory networks can be modelled

as directed weighted graphs, where the weights of

directed edges capture the degree of the regulatory

effect of the transcription factors (source nodes)

to their regulated genes (sink nodes). Metabolic

networks generally require more complex represen-

tations, such as hypergraphs, as reactions in metabolic

networks generally convert multiple reaction

inputs into multiple outputs with the help of other

components. An alternative, reduced representation

for a metabolic network, is a weighted bipartite

graph, where two types of nodes are used to

represent reactions and compounds, respectively,

and the edges connect nodes of different types,

representing either substrate or product relationships.

The representation of complex cellular networks

as graphs has made it possible to systematically

investigate the topology and function of these

networks using well-understood graph-theoretical

concepts that can be used to predict the structural

and dynamical properties of the underlying network.

Such predictions can suggest new biological

hypotheses regarding, for instance, unexplored new

interactions of the global network or the function

of individual cellular components that are testable
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with subsequent experimentation. Even a simplistic

dynamical system originating from small Boolean

network models, where nodes represent discrete

biological entities (i.e. mRNA or protein), that

can be thought to be either on or off and edges

their Boolean relationships (‘genotypes’), can give

rise to a multitude of designable dynamical outputs

(‘phenotypes’) [2]. Mathematical modelling

also enables an iterative process of network

reconstruction, where model simulations and pre-

dictions are closely coupled with new experiments

chosen systematically to maximize their information

content for subsequent model adjustments, providing

increasingly more accurate descriptions of the

network properties [3]. The topological relations

underlying graph-based methods can also convey

structure to putative pathways. This helps avoiding

approaches that test many known sets of molecules

without causal interactions [4]. Furthermore, graph

formalisms may provide powerful tools for ‘omics’

data integration to address fundamental biological

questions at the systems level [5*].

This review describes network analysis approaches

in which the concept of a graph is a key component,

together with a large collection of recently intro-

duced methods and available tools. This excludes

some related problems, such as hierarchical clustering

or phylogenetic footprinting, where typically only

the result of the computational analysis is represented

in the form of a specific graph, such as a dendrogram

[6] or a phylogenetic tree [7]. As substantial efforts

have recently been devoted to develop graph-based

methods for a wide range of computational and

biological tasks, only representative examples of

different approaches can be surveyed here, with an

emphasis on methods related to concrete biological

questions, rather than computational issues.

The selected methods are presented in the broader

context of network analysis, summarizing some of

the basic concepts and themes such as scale-free

networks, pathways and modules (Table 1). The

order of sections roughly reflects the increasing

demands placed for the type and amount of data the

methods require and their applicability to address

more targeted problems in cell biology. Accordingly,

the methods reviewed range from very elementary

measures that characterize the global topological

structure and require only general assumptions about

the underlying network model to recent software

systems available for integrating multiple types of

cellular data within a graph-based framework that

can be applied to solve concrete biological problems.

CHARACTERIZATIONOF
NETWORK TOPOLOGY
Perhaps the most general level of network analysis

comes from global network measures that allow us

to characterize and compare the given network

topologies (i.e. the configuration of the nodes and

their connecting edges). Global measures such as

the degree distribution (the degree of a node is the

number of edges it participates in) and the clustering

coefficient (the number of edges connecting the

neighbours of the node divided by the maximum

number of such edges) have recently been thor-

oughly reviewed in the context of cellular networks

[8**] and in proteomics [9]. It has been proposed

that these quantitative graph concepts can efficiently

capture the cellular network organization, providing

insights into their evolution, function, stability and

dynamic responses [10**]. For instance, several types

of surveyed biological networks, such as PPI, gene

regulation and metabolic networks, are thought

Table 1: Graph-based approaches to cellular network analysis covered in this article

Section header Network topology Interaction patterns Network decomposition

Description level Global structural properties Local structural connectivity Hierarchical functional organization
Basic concepts Scale-free topology Subgraphs Modules

Degree distribution Centrality Motifs
Clustering coefficient Pathways Clusters

Specific aim Characterization of large-scale
attributes of cellular networks

Analysis of elementary interaction
patterns of cellular mechanisms

Classification into groups of
functionally related biomolecules

Themethods arepresentedon three levels of increasing complexity, alongwith their basic concepts and specific aims in the cellular network analysis.
Global structural attributes try to characterize the behaviour of the cell as a whole, whereas local network analyses aim at discovering such indi-
vidual interaction patterns that may carry significant information about their roles in cellular mechanisms. Dissection of hierarchical organization
of the cell through motif searches or network clustering seeks to partition the complex networks into functionally organized hierarchy of inter-
connected groups that are involved in common cellular functions.
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to display scale-free topologies (i.e. most nodes have

only a few connections whereas some nodes are

highly connected), characterized by a power-law

degree distribution that decays slower than expo-

nential. This particular type of network topology is

also frequently observed in numerous non-biological

networks and it can be generated by simple and

elegant evolutionary models, where new nodes

attach preferentially to sites that are already highly

connected. Numerous improvements to this generic

model include, for instance, iterative network

duplication and integration to its original core,

leading to hierarchical network topologies, which

are characterized by non-constant clustering

coefficient distribution [8, 10].

It should be noticed, however, that, in practice,

the architecture of large-scale biological networks

is determined with sampling methods, resulting in

subnets of the true network, and only these partial

networks can be applied to characterize the topology

of the underlying, hidden network [11]. It has

recently been recognized that it is possible to

extrapolate from subnets to the properties of the

whole network only if the degree distributions of the

whole network and randomly sampled subnets share

the same family of probability distributions [12].

While this is the case in specific classes of network

graph models, including classical Erdös–Rényi

and exponential random graphs, the condition is

not satisfied for scale-free degree distributions.

Accordingly, recent studies in interactome networks

have revealed that the commonly accepted scale-free

model for PPI networks may fail to fit the data [13].

Moreover, limited sampling alone may as well give

rise to apparent scale-free topologies, irrespective of

the original network topology [14]. These results

suggest that interpretation of the global properties

of the complete network structure based on the

current—still limited—accuracy and coverage of the

observed networks should be made with caution.

Moreover, while the scale-free and hierarchical

graph properties can efficiently characterize some

large-scale attributes of networks, the local

modularity and network clustering is likely to be

the key concept in understanding most cellular

mechanisms and functions.

GRAPH ANALYSIS OF
INTERACTION PATTERNS
As an alternative to the study of global graph

characteristics, elementary graph algorithms have

been used to characterize local interconnectivity

and more detailed relationships between nodes. Such

graph methods can facilitate addressing fundamental

biological concepts, such as essentiality and pathways,

especially when additional biological information

is incorporated into the analysis in addition to the

primary data. For instance, while gene expression

clustering traditionally makes the assumption that

genes with similar expression profiles have similar

functions in cells, a more targeted approach could

aim at identifying the genes participating in a

particular cellular pathway where not every

components has a similar transcriptional profile

[15*]. Once the network of interest has been

represented as a graph, the conventional graph-

driven analysis work-flow involves the following

two steps: (i) applying suitable graph algorithms

to compute the local graph properties, such as the

number and complexity of given subgraphs, the

shortest path length of indirectly connected nodes or

the presence of central nodes of the network

and (ii) evaluating the sensitivity and specificity of

the model predictions using curated databases of

known positive examples or random models of

synthetic negative examples, respectively. We start

by surveying the basic graph concepts used in

network analysis together with corresponding

recent work.

Subgraphs and centrality statistics
A subgraph represents a subset of nodes with a

specific set of edges connecting them. As the number

of distinct subgraphs grows exponentially with the

number of nodes, efficient and scalable heuristics

have been developed and applied for detecting the

given subgraphs and their frequencies in large

networks. In contrast to network motif searches,

Przulj et al. [13] argued that it is equally important to

understand the organization of infrequently observed

subgraphs as the frequently observed ones. Graphlets

are defined as small induced subgraphs, consisting

of all edges of the original graph that connect a

given group of nodes, regardless of whether or not

they appear at significantly higher frequencies than

expected in randomized networks. Since exhaustive

searches become computationally infeasible even

when applied to rather small networks, Przulj et al.
[16] designed sampling heuristics for finding

graphlets in high-confidence PPI networks that

concentrate on specific parts of the graph, depending

on the particular model (either geometric random

graph model or more general sampling strategy).
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Under the random graph model, it is also possible

to calculate analytically the estimated distribution

of different subgraphs with given number of nodes,

edges and their specific global properties like

degree distribution and clustering coefficient [17].

Such approximate analytical expressions will save

substantial amounts of computing time when

analysing e.g. lists of proteins with large undirected

graphs representing their known functional

relationships [18].

Centrality is a local quantitative measure of the

position of a node relative to the other nodes, and

can be used to estimate its relative importance or role

in global network organization. Different flavors

of centrality are based on the node’s connectivity

(degree centrality), its shortest paths to other nodes

(closeness centrality) or the number of shortest paths

going through the node (betweenness centrality).

Estrada [19] recently showed that centrality measures

based on graph spectral properties can distinguish

essential proteins in PPI network of yeast

Saccharomyces cerevisiae (essential genes are those

upon which the cell depends for viability). In

particular, the best performance in identifying

essential proteins was obtained with a novel measure

introduced to account for the participation of a given

node in all subgraphs of the network (subgraph

centrality), which gives more weight to smaller

subgraphs. It was proposed that ranking proteins

according to their centrality measures could offer a

means to selecting possible targets for drug discovery

[19]. A similar approach to characterize the

importance of individual nodes, based on trees of

shortest paths and concepts of ‘bottleneck’ nodes,

demonstrated that 70% of the top 10 most frequent

‘bottleneck’ proteins were inviable and structural

proteins that do not participate in cellular signaling

[20*]. With degree centrality analyses in the

metabolic networks of Escherichia coli, S. cerevisiae
and Staphylococcus aureus, it was also demonstrated

that most reactions identified as essential turned

out to be those involving the production or

consumption of low-degree metabolites [21].

Paths and pathways
In the theory of directed graphs, a path is a chain

of distinct nodes, connected by directed edges,

without branches or cycles. Such pathways in

cellular network graphs can represent, for instance,

a transformation path from a nutrient to an end

product in a metabolic network, or a chain of

post-translational modifications from the sensing

of a signal to its intended target in a signal

transduction network [10**]. Pathway redundancy

(the presence of multiple paths between the same

pair of nodes) is an important local property that

is thought to be one of the reasons for the robustness

of many cellular networks. Betweenness centrality

can be used to measure the effect of node

perturbations on pathway redundancy, whereas

path lengths characterize the response times under

perturbations. With shortest paths and centrality-

based predictions in the S. cerevisiae PPI and

metabolic networks, respectively, the existence of

alternate paths that bypass viable proteins can be

demonstrated, whereas lethality corresponds to the

lack of alternative pathways in the perturbed

network [20*, 22]. Besides the various commercial

software packages for pathway analysis there exist

also freely available tools for some specific graph

queries, such as finding shortest paths between two

specified seed nodes on degree-weighted metabolic

networks [23] or searching for linear paths that

are similar to query pathways in terms of their

composition and interaction patterns on a given

PPI network [24].

The relatively high degree of noise inherent in the

interactions data in current PPI databases can make

pathway modelling very challenging. Integration of

prior biological knowledge, such as Gene Ontology

(GO), can be used to make the process of inferring

models more robust by providing complementary

information on protein function. GO terms and their

relationships are encoded in the form of directed

acyclic graph (DAG). Guo et al. [25] recently assessed
the capability of both GO graph structure-based

and information content-based similarity measures

on DAG to evaluate the PPIs involved in human

regulatory pathways. They also showed how the

functional similarity of proteins within known

pathways decays rapidly as their path length

increases. While most of the analysis methods

designed for PPI networks consider unweighted

graphs, where each pairwise interaction is considered

equally important, Scott et al. [26] recently presented

linear-time algorithms for finding paths and more

general graph structures such as trees that can also

consider different reliability scores for PPIs. By

exploiting a powerful randomized graph algorithm,

called color coding, they efficiently recovered several

known S. cerevisiae signaling pathways such as

MAPK, and showed that in general the pathways
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they detected score higher than those found in

randomized networks. In addition to known path-

ways, they also predicted (by unsupervised learning)

novel putative pathways in the PPI network that are

functionally enriched (i.e. share significant number

of common GO annotations) [26].

NETWORKDECOMPOSITION
INTO FUNCTIONALMODULES
The decomposition of large networks into distinct

components, or modules, has come to be regarded

as a major approach to deal with the complexity

of large cellular networks [27–29]. This topic

has witnessed great progress lately, and only

representative examples of different approaches are

presented here. In cellular networks, a module refers

to a group of physically or functionally connected

biomolecules (nodes in graphs) that work together

to achieve the desired cellular function [8**]. To

investigate the modularity of interaction networks,

tools and measures have been developed that can

not only identify whether a given network is

modular or not, but also detect the modules and

their relationships in the network. By subsequently

contrasting the found interaction patterns with other

large-scale functional genomics data, it is possible

to generate concrete hypotheses for the underlying

mechanisms governing e.g. the signaling and

regulatory pathways in a systematic and integrative

fashion. For instance, interaction data together with

mRNA expression data can be used to identify active

subgraphs, that is, connected regions of the network

that show significant changes in expression over

particular subsets of experimental conditions [30].

Motifs
Motifs are subgraphs of complex networks that occur

significantly more frequently in the given network

than expected by chance alone [29]. Consequently,

the basic steps of motif analyses are (i) estimating

the frequencies of each subgraph in the observed

network, (ii) grouping them into subgraph classes

consisting of isomorphic subgraphs (topologically

equivalent motifs) and (iii) determining which

subgraph classes are displayed at much higher

frequencies than in their random counterparts

(under a specified random graph model). While

analytical calculations from random models can assist

in the last step, exhaustive enumeration of all

subgraphs with a given number of nodes in the

observed network is impossible in practice.

Kashtan et al. [31] therefore developed a probabilistic

algorithm that allows estimation of subgraph

densities, and thereby detection of network motifs,

at a time complexity that is asymptotically inde-

pendent of the network size. The algorithm is based

on a subgraph importance sampling strategy, instead

of standard Monte Carlo sampling. They noticed

that, network motifs could be detected already

with a small number of samples in a wide variety

of biological networks, such as the transcriptional

regulatory network of E. coli [31]. Recently, efficient

alternatives together with graphical user interfaces

have also been implemented to facilitate fast network

motif detection and visualization in large network

graphs [32, 33].

Many of the methodologies recently introduced

in network analysis are inspired by established

approaches from sequence analysis. The concepts

utilized in both fields include approximate similarity,

motifs and alignments. As network motifs represent

a higher-order biological structure than protein

sequences, graph-based methods can be used to

improve the homology detection of standard

sequence-based algorithms, such as PSI-BLAST, by

exploiting relationships between proteins and their

sequence motif-based features in a bipartite graph

representing protein-motif network [34]. The

definition of network motifs can be enriched by

concepts from probability theory. The motivation is

that if the network evolution involves elements of

randomness and the currently available interaction

data is imperfect, then functionally related subgraphs

do not need to be exactly identical. Accordingly,

Berg and Lässig [35] devised a local graph alignment

algorithm, which is conceptually similar to sequence

alignment methodologies. The algorithm is based

on a scoring function measuring the statistical

significance for families of mutually similar, but

not necessarily identical, subgraphs. They applied

the algorithm to the gene regulatory network of

E. coli [35].
Motifs have increasingly been found in a number

of complex biological and non-biological networks,

and the observed over-representation have been

interpreted as manifestations of functional constraints

and design principles that have shaped network

architecture at the local level. Significance of motifs

is typically assessed statistically by comparing the

distribution of subgraphs in an observed network

with that found in a particular computer-generated
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sample of randomized networks that destroy the

structure of the network while preserving the

number of nodes, edges and their degree distribu-

tion. It can be argued what kind of random model

provides the most appropriate randomization, and

especially whether it is realistic to assume that the

edges in the randomized network are connected

between the nodes globally at random and without

any preference [36]. However, the principal applica-

tion of network motif discovery should not originate

from a rigorous statistical testing of a suitable null

hypothesis, but from the possibility to reduce the

complexity of large networks to smaller number of

more homogeneous components. Analogously with

gene expression cluster analysis, where statistical

testing is also difficult because of the lack of an

established null model, network decomposition may

be used as a tool to identify biologically significant

modules, irrespective of their statistical significance.

Clusters
An alternative approach to the identification of

functional modules in complex networks is discover-

ing similarly or densely connected subgraphs of

nodes (clusters), which are potentially involved in

common cellular functions or protein complexes

[37]. As in expression clustering, the application of

graph clustering is based on the assumption that a

group of functionally related nodes are likely to

highly interact with each other while being more

separate from the rest of the network. The challenges

of clustering network graphs are similar to those in

the cluster analysis of gene expression data [6]. In

particular, the results of most methods are highly

sensitive to their parameters and to data quality, and

the predicted clusters can vary from one method to

another, especially when the boundaries and con-

nections between the modules are not clear-cut. This

seems to be the case at least in the PPI network of

S. cerevisiae [38]. Moreover, it should be noted that

modules are generally not isolated components of

the networks, but they share nodes, links and even

functions with other modules as well [8**]. Such

hierarchical organization of modules into smaller,

perhaps overlapping and functionally more coherent

modules should be considered when designing

network clustering algorithms. The functional

homogeneity of the nodes in a cluster with known

annotations can be assessed against the cumulative

hypergeometric distribution that represents the null

model of random function label assignments [20*].

Highly connected clusters
Most algorithms for determining highly connected

clusters in PPI networks yield disjoint modules [39].

For instance, King et al. [40] partitioned the nodes

of a given graph into distinct clusters, depending

on their neighbouring interactions, with a cost-based

local search algorithm that resembles the tabu-search

heuristic (i.e. it updates a list of already explored

clusters that are forbidden in later iteration steps).

Clusters with either low functional homogeneity,

cluster size or edge density were filtered out. After

optimizing the filtering cut-off values according to

the cluster properties of known S. cerevisiae protein
complexes from MIPS database, their methods

could accurately detect the known and predict new

protein complexes [40]. Other local properties such

as centrality measures can be used for clustering

purposes as well. A recent algorithm by Dunn et al.
[41], for example, divides the network into clusters

by removing the edges with the highest betweenness

centralities, then recalculating the betweenness and

repeating until a fixed number of edges have been

removed. They applied the clustering method

to a set of human and S. cerevisiae PPIs, and

found out that the protein clusters with significant

enrichment for GO functional annotations included

groups of proteins known to cooperate in cell

metabolism [41].

Overlapping clusters
Corresponding to the fact that proteins frequently

have multiple functions, some clustering approaches,

such as the local search strategy by Farutin et al. [42],
also allow overlapping clusters. Like in motif analysis,

the score for an individual cluster in the PPI network

graph is assessed against a null model of random

graph that preserves the expected node degrees.

They also derived analytical expressions that allow

for efficient statistical testing [18]. It was observed

that many of the clusters on human PPI network

are enriched for groups of proteins without

clear orthologues in lower organisms, suggesting

functionally coherent modules [42]. Pereira-Leal

et al. [43] used the line graph of the network graph

(where nodes represent an interaction between two

proteins and edges represent shared interactors

between interactions) to produce an overlapping

graph partitioning of the original PPI network of

S. cerevisiae. Recently, Adamcsek et al. [44] provided
a program for locating and visualizing overlapping,

densely interconnected groups of nodes in a given
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undirected graph. The program interprets as motifs

all the k-clique percolation clusters in the network

(all nodes that can be reached via chains of adjacent

k-cliques). Larger values of k provide smaller groups

resulting in higher edge densities. Edge weights can

additionally be used to filter out low-confidence

connections in the graphs [44].

Distance-based clusters
Another approach to decompose biological networks

into modules applies standard clustering algorithms

on vectors of nodes’ attributes, such as their shortest

path distances to other nodes [45]. As the output

then typically consists of groups of similarly linked

nodes, the approach can be seen as complementary

to the above clustering strategies that aim at

detecting highly connected subgraphs. To discover

hierarchical relationships between modules of differ-

ent sizes in PPI graphs, Arnau et al. [46] explored the

use of hierarchical clustering of proteins in conjunc-

tion with the pairwise path distances between the

nodes. They considered the problem of lacking

resolution caused by the ‘small world’ property

(relatively short—and frequently identical—path

length between any two nodes) by defining a new

similarity measure on the basis of the stability of

node pair assignments among alternative clustering

solutions from resampled node sets. As ties in such

bootstrapped distances are rare, standard hierarchical

clustering algorithms yield clusters with a higher

resolution. The clusters obtained in S. cerevisiae PPI
data were validated using GO annotations and

compared with those refined from gene expression

microarray data [46]. A similar approach was

also applied to decompose metabolic network of

E. coli into functional modules, based on the global

connectivity structure of the corresponding reaction

graph [47].

Supervised clustering
Provided that the eventual aim of module analysis is

function prediction, it can be argued that supervised

clustering (or classification), rather than unsupervised

clustering methods, should be employed. In the

context of cellular networks, classification aims at

constructing a discriminant rule (classifier) that can

accurately predict the functional class of an unknown

node based on the annotation of neighbouring nodes

and connections between them. To this end, Tsuda

and Noble [48] considered a binary classification

problem, and calculated pairwise distances on

undirected graphs with a locally constrained diffusion

kernel. They demonstrated a good protein function

prediction with a support vector machine (SVM)

classifier from S. cerevisiae PPI and metabolic

networks. Supervised clustering methods in function

prediction are challenged by their notorious depen-

dence on the quality of the training examples [49].

As fully curated databases are rarely available,

especially for less-studied organisms, the applicability

of such methods is still limited. Therefore, an

intermediate method between the two extremes

of supervised and unsupervised clustering may be

preferable. The protein function prediction algorithm

by Nabieva et al. [50] suggests such an approach

that exploits both global and local properties of the

network graphs. They demonstrated better predic-

tions than previous methods in cross-validation testing

on the unweighted S. cerevisiae PPI graph. More

importantly, they showed that the performance could

be substantially improved further by weighting the

edges of the interaction network according to infor-

mation from multiple data sources and types [50].

CURRENTCHALLENGESAND
FUTURETRENDS

Functional modules across multiple
data sources
As the high-throughput assays are inherently noisy

and biased in their nature, and each single data source

or type can describe only a limited scope of a system,

it is evident that integrative analysis of data from

such measurements will be essential in order to fully

understand the system’s behaviour on a global scale

[51*]. In many biological applications, it is beneficial

to perform the network analysis in a truly integrated

manner, simultaneously rather than sequentially,

like when validating the results against external

data sources. Graph-based frameworks can also be

used in such an integrative analysis of data from

different sources. The composition of data sources

required depends naturally on the specific biological

goals of the study. In the analysis of transcriptional

regulatory networks, for instance, clustering becomes

a problem of dissecting genes into regulatory

modules (sets of coexpressed genes regulated by

common transcription factors). It has been shown

that the identification of regulatory modules can be

improved by combining gene expression data

(inferred e.g. from microarrays) with the knowledge
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of transcription factor binding to the DNA motifs

(extracted e.g. from chromatin immunoprecipitation

ChIPs) [52–54]. Recently, Tanay et al. [55] identified
modules across diverse genome-wide data

sources and types, including gene expression,

protein interactions, growth phenotype data and

transcription factor binding. By modelling

genomic information as properties of a weighted

bipartite graph in the yeast system, they defined

clusters of genes with a common behaviour across

a set of the experiments. This provides a general

data processing and integration framework for

revealing a detailed view of both the global and

local organization of a molecular network even

in higher organisms [55].

In interaction networks, the detection of

modules, motifs or clusters has also been performed

on multiple graphs simultaneously using efficient

algorithms for exact or approximate pattern mining

across a set of graphs constructed from same data

type [56, 57]. Towards integrated graph analysis

of heterogeneous genome-wide data sources, Yeger-

Lotem et al. [58] developed algorithms for detecting

composite network motifs with two or more types of

interactions and applied them to a combined data set

of PPIs and transcription-regulation interactions in

S. cerevisiae. Similarly, Moon et al. [59] built a unified
network model for both protein–protein and

domain–domain interactions to detect network

motifs between proteins and their domains by

applying a colored vertex graph model. The

module searches can also be extended

to incorporate more than one species in order to

elucidate the evolution of cellular machinery or to

predict more reliably the protein functions. Sharan

and Ideker [60**] recently reviewed the computa-

tional approaches available to comparative biological

network analysis, that is, contrasting two or more

interaction networks representing different species,

conditions, interaction types or time points. In

particular, network integration can assist in predict-

ing protein interactions or uncovering protein

modules that are supported by interactions of

different types. Besides interaction data sets, Chen

and Xu [61] encoded into their functional linkage

graph also other genome-scale data types, including

microarray gene expression profiles, and used them

simultaneously when annotating S. cerevisiae proteins
into multiple GO categories. Future studies

involving a blend of multiple experimental and

computational approaches will hopefully provide

added insights into the biological roles of network

motifs and clusters [62–64].

Software tools for graph-based
network analysis
The availability of genome-scale data sets has

increased the need for software tools that can

integrate, construct, analyze and visualize the high-

dimensional data effectively. Several such software

packages developed for these challenging tasks along

with their specific functionalities were recently listed

by Joyce and Palsson [5*]. Publicly available software

systems that use graph-based data integrating visual

frameworks for networks include e.g. Cytoscape

together with its recent plug-ins [65–67], Osprey

[68], GiGA [69], megNet [70], VisANT [71],

BioPIXIE [72], Pointillist [73, 74], PIANA [75]

and PathSys [76]. An important component of such

systems is the possibility to visualize the graphs under

analysis. This can be regarded as a fundamental tool

in explorative network analysis; even if one wants to

address only a very specific question within the

given network graph, it may be helpful to visualize

the result to discern possible flaws or follow-up

questions. Recently introduced graph drawing tools

include e.g. WebInterViewer [77], CADLIVE [78]

and PATIKAweb [79]. By meeting the challenges

of automated construction and simultaneous

visualization of multiple pathways, such software

tools can be of great help in relating the selected

node sets and their interconnections to the under-

lying biological significance.

Bioconductor project incorporates also

open source tools to support computational

analysis of graphical data structures (http://

www.bioconductor.org/). The available packages

implement not only algorithms for efficient graph

visualization (AT&T Graphviz), but also the Cþþ

Boost Graph Library for basic graph algorithms

(RBGL package). At present, procedures that can be

interfaced in the R environment include minimum

spanning tree construction, shortest path finding,

depth-first search, topological sorting, edge-

connectivity measurement and connected compo-

nent decomposition [80]. The number of packages

available within Bioconductor grows rapidly as many

authors make their R source codes freely available

for academic use [81–83]. These advanced graph

algorithms and post-processing tools can be used

also in conjunction with more specific, freely

available software packages such as GenePattern
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(http://www.broad.mit.edu/genepattern). One

major challenge of computational network analysis

deals with the selection of model types appropriate

for analysing data from different experimental

approaches [84**]. In particular, accurate modelling

and integration of protein interactions measured

with yeast two-hybrid and affinity purification/mass

spectrometry can be very critical e.g. for under-

standing the physical properties and functional

operation of local protein complexes [82].

Network graph reconstruction by
reverse engineering
A number of computational approaches have been

tried to reconstruct the underlying global network

structure or even the causal regulatory relationships

between the nodes from the experimental data sets.

This challenging problem is often referred to as

network inference or reverse engineering [85, 86].

For instance, several works have dealt with gene

regulatory networks inference from gene expression

microarray data alone. In such a hypothetical

network, the nodes conventionally correspond to

both the particular gene and the protein it encodes,

and the edges to the statistical relations between

the genes. Bayesian network offers a convenient

probabilistic model, where nodes represent gene

expression levels as random variables, edges represent

their conditional dependence relations and the

corresponding DAG the joint probability distribu-

tions of the observed expression patterns. However,

it has been recognized that these data are sufficient

for reconstruction of only relatively small networks

and that even in idealized situations the estimated

models contain many false edges because the

expression data alone cannot unambiguously distin-

guish the underlying target network [87]. Further

challenges are faced when applying the inference

algorithms to limited quantities of experimentally

collected noisy data from real biological systems [88].

Suggested solutions to tackle these problems include

the usage of gene network motifs [87], network

pruning methods [88] or reduced network models

[89]. One way to further refine these hypothetical

models is to conduct an automated design of new

experiments, enabling both iterative model building

and candidate model discrimination [90, 91]. Such

reverse-engineered gene networks could be of great

medical significance, for instance, in identification

of drug targets [92].

Computational methods have also been used in

assisting the completion of the existing PPI networks

by prioritizing the interactions, either observed or

missing, that warrant further experimental confirma-

tion. For instance, Yu et al. [93] first searched for

defective cliques in the incomplete network graphs

(nearly complete groups of pairwise interacting

nodes), and then they predicted new interaction

that can complete these cliques. Albert and Albert

[94] showed that machine-learning algorithms

can achieve success rates between 20 and 40% for

predicting the correct interaction partner of a protein

based solely on the presence of conserved interaction

motifs within the given network. Ultimately,

however, integrated usage of multiple large-scale

data types together with local and global topological

properties will likely be essential for effective

prediction of networks and their functions [51*,

84**]. Towards such integrative approaches, several

groups have recently combined multiple hetero-

geneous data sources to construct global models of

gene regulatory networks or PPIs [95–97]. Qi et al.
[98*] showed that in supervised protein interaction

prediction, some of the most important features are

actually derived from indirect information sources,

such as gene expression measurements. Both indirect

statistical relations and direct physical interactions can

also be used when predicting or interpreting genetic

interactions, observed by comparing phenotypic

variations, which are involved in many complex

human diseases [99, 100]. However, while most

studies have concentrated on snapshots of interactions

under particular conditions, it is likely that only by

coupling interactions from several functional and

temporal states we can reveal truly significant dynamic

reconstructions of cellular networks in the future.

CONCLUSION
The large-scale data on biomolecular interactions

that is becoming available at an increasing rate

enables a glimpse into complex cellular networks.

Mathematical graphs are a straightforward way to

represent this information, and graph-based models

can exploit global and local characteristics of these

networks relevant to cell biology. Most current

research activities concern the dissection of networks

into functional modules, a principal approach

attempting to bridge the gap between our very

detailed understanding of network components in

isolation and the ‘emergent’ behaviour of the
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network as a whole, which is frequently the

phenotype of interest on a cellular level.

Approaches developed for DNA and protein

sequence analysis, such as multiple alignment and

statistical over-representation of parts, are being

carried over to address these problems. Network

graphs have the advantage that they are very simple

to reason about, and correspond by and large to the

information that is globally available today on the

network level. However, while binary relation

information does represent a critical aspect

of interaction networks, many biological processes

appear to require more detailed models. Therefore,

we expect that one of the main directions in the

development of graph-based methods will be their

extension to other types of large-scale data from

existing and new experimental technologies.

This may eventually prove mathematical models of

large-scale data sets valuable in medical problems,

such as identifying the key players and their

relationships responsible for multifactorial behaviour

in human disease networks.
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4. Curtisa RK, Orešič M, Vidal-Puiga A. Pathways to
the analysis of microarray data. Trends Biotechnol 2005;23:
429–35.

5. *Joyce AR, Palsson BO. The model organism as a system:
integrating ‘omics’ data sets. Nat Rev Mol Cell Biol 2006;7:
198–210.
This review presents recent work with regards to studying
biology at the systems level.The authors summarize several laboratory
technologies that can be used to produce genome-scale data for varying
types of cellular components and therecently developed data integration
techniques to address important biological questions.

6. D’haeseleer P. How does gene expression clustering work?
Nat Biotechnol 2005;23:1499–501.

7. Kunin V, Goldovsky L, Darzentas N, et al. The net of life:
Reconstructing the microbial phylogenetic network.
Genome Res 2005;15:954–9.

8. **Barabási1 AL, Oltvai ZN. Network biology:
Understanding the cell’s functional organization. Nat Rev
Genet 2004;5:101–13.
This review provides an excellent overview of the current network
tools that can be used to understand the cell’s functional organization
and evolution, ranging from large-scale attributes, such as degree
distribution and clustering coefficient, through specific network
models to motifs and motif clusters. The authors also discuss the
impact of network robustness and temporal aspects of interactions on
the network behaviour.

9. Grindrod P, Kibble M. Review of uses of network and
graph theory concepts within proteomics. Expert Rev
Proteomics 2004;1:229–38.

10. **Albert R. Scale-free networks in cell biology. J Cell Sci
2005;118:4947–57.
The author describes how graph representation and graph concepts
can be used to analyze the structure of cellular networks and how
these attributes can provide insights into their biological function
and dynamic responses. Several models and properties of specific
cellular networks are overviewed together with their biological
interpretation.

11. Lappe M, Holm L. Unraveling protein interaction networks
with near-optimal efficiency. Nat Biotechnol 2004;22:
98–103.

12. Stumpf MP, Wiuf C, May RM. Subnets of scale-free
networks are not scale-free: sampling properties of net-
works. Proc Natl Acad Sci USA 2005;102:4221–4.

13. Przulj N, Corneil DG, Jurisica I. Modeling interactome:
scale-free or geometric? Bioinformatics 2004;20:3508–15.

14. Han J-DJ, Dupuy D, Bertin N, et al. Effect of sampling on
topology predictions of protein-protein interaction net-
works. Nat Biotechnol 2005;23:839–44.

15. *Zhou X, Kao MC, Wong WH. Transitive functional
annotation by shortest-path analysis of gene expression data.
Proc Natl Acad Sci USA 2002;99:12783–8.
The authors carried out a novel pathwayanalysis to identify ‘transitive
genes’ between two given genes from the same biological process of
the Gene Ontology. They first constructed a correlation-weighted
undirected graph from large-scale yeast microarray expression data,
and then showed that the function of unknown genes can be predicted
from known genes lying on the same shortest path, perhaps without
correlated expression profiles, in a more precise manner than with the
conventional hierarchical clustering algorithm.

16. Przulj N, Corneil DG, Jurisica I. Efficient estimation of
graphlet frequency distributions in protein-protein interac-
tion networks. Bioinformatics 2006;22:974–80.

17. Vazquez A, Dobrin R, Sergi D, et al. The topological
relationship between the large-scale attributes and local
interaction patterns of complex networks. ProcNatl Acad Sci
USA 2004;101:17940–5.

Key Points
� Regardlesswhethermotif searches or networkclustering is used

for network decomposition, the resulting modules should not
be considered as isolated components, but they can interact
and frequently overlapwith each other.

� Supervised methods that can be adjusted to the needs of the
specific biological problem and data sources, without requiring
large sets of curated training examples, appear suitable for
analysing large-scale networkdata.

� Several recent works underscore the benefits gained from fully
integrated analysis, where the local and global structural and
functional properties of the network extracted from different
data sources aremodelled together.

252 Aittokallio and Schwikowski



18. Pradines JR, Farutin V, Rowley S, et al. Analyzing protein
lists with large networks: edge-count probabilities in
random graphs with given expected degrees. J Comput Biol
2005;12:113–28.

19. Estrada E. Virtual identification of essential proteins within
the protein interaction network of yeast. Proteomics 2006;6:
35–40.

20. *Przulj N, Wigle DA, Jurisica I. Functional topology in a
network of protein interactions. Bioinformatics 2004;20:
340–8.
This study presents a systematic graph-theory-based analysis of
the PPI network of S. cerevisiae to construct computational models
for describing and predicting the properties of lethal mutations and
proteins participating in genetic interactions, functional groups, protein
complexes and signaling pathways.These results are based on several
graph-based methods, such as network clusters, hubs and shortest path
analyses.

21. Samal A, Singh S, Giri V, et al. Low degree
metabolites explain essential reactions and enhance
modularity in biological networks. BMC Bioinformatics
2006;7:118.

22. Palumbo MC, Colosimo A, Giuliani A, et al.
Functional essentiality from topology features in metabolic
networks: A case study in yeast. FEBS Letters 2005;579:
4642–6.

23. Croes D, Couche F, Wodak SJ, et al. Metabolic
PathFinding: inferring relevant pathways in biochemical
networks. Nucleic Acids Res 2005;33:W326–30.

24. Shlomi T, Segal D, Ruppin E, et al. QPath: a method
for querying pathways in a protein–protein interaction
network. BMCBioinformatics 2006;7:199.

25. Guo X, Liu R, Shriver CD, et al. Assessing
semantic similarity measures for the characterization
of human regulatory pathways. Bioinformatics 2006;22:
967–73.

26. Scott J, Ideker T, Karp RM, et al. Efficient algorithms
for detecting signaling pathways in protein interaction
networks. J Comput Biol 2006;13:133–44.

27. Hartwell LH, Hopfiled JJ, Leibler S, et al. From molecular
to modular cell biology. Nature 1999;402(6761 Suppl):
C47–52.

28. Lee TI, Rinaldi NJ, Robert F, et al. Transcriptional
regulatory networks in Saccharomyces cerevisiae. Science
2002;298:799–804.

29. Milo R, Shen-Orr S, Itzkovitz S, et al. Network motifs:
simple building blocks of complex networks. Science 2002;
298:824–7.

30. Ideker T, Ozier O, Schwikowski B, et al. Discovering
regulatory and signalling circuits in molecular interaction
networks. Bioinformatics 2002;18(Suppl 1):S233–40.

31. Kashtan N, Itzkovitz S, Milo R. Efficient sampling
algorithm for estimating subgraph concentrations
and detecting network motifs. Bioinformatics 2004;20:
1746–58.

32. Wernicke S, Rasche F. FANMOD: a tool for fast network
motif detection. Bioinformatics 2006;22:1152–3.

33. Schreiber F, Schwobbermeyer H. MAVisto: a tool for the
exploration of network motifs. Bioinformatics 2005;21:
3572–4.

34. Kuang R, Weston J, Noble WS, Leslie C. Motif-based
protein ranking by network propagation. Bioinformatics
2005;21:3711–8.
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