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ABSTRACT

This paper addresses the problem of motion estimation in 3D point

cloud sequences that are characterized by moving 3D positions and

color attributes. Motion estimation is key to effective compression

of these sequences, but it remains a challenging problem as the tem-

porally successive frames have varying sizes without explicit corre-

spondence information. We represent the time-varying geometry of

these sequences with a set of graphs, and consider 3D positions and

color attributes of the points clouds as signals on the vertices of the

graph. We then cast motion estimation as a feature matching prob-

lem between successive graphs. The motion is estimated on a sparse

set of representative vertices using new spectral graph wavelet de-

scriptors. A dense motion field is eventually interpolated by solving

a graph-based regularization problem. The estimated motion is fi-

nally used for color compensation in the compression of 3D point

cloud sequences. Experimental results demonstrate that our method

is able to accurately estimate the motion and to bring significant im-

provement in terms of color compression performance.

Index Terms— 3D sequences, voxels, spectral graph wavelets,

motion compensation

1. INTRODUCTION

Dynamic 3D scenes such as humans in motion are increasingly be-

ing captured by arrays of color plus depth video cameras [1]. The

resulting captured geometry, unlike computer-generated geometry,

has little explicit spatio-temporal structure, and is often represented

by sequence of point clouds, where there may be different numbers

of points in each frame, and no explicit association between points

over time. Performing motion estimation, motion compensation, and

compression of such data is a challenging task.

Unfortunately, the compression of 3D point cloud sequences has

been largely overlooked so far in the literature. A few works have

been proposed to compress static 3D point clouds. Some examples

include the 2D wavelet transform based scheme of [2], and the oc-

tree based geometry compression algorithms of [3], [4], which focus

on the compression of the 3D geometry positions. More recently, the

authors in [5] have proposed to use a graph transform to remove the

spatial redundancy for compression of the 3D point cloud attributes,

with significant improvement over traditional methods. However,

all the above methods consider each frame of the sequence inde-

pendently, without exploiting the temporal redundancy that exists

in geometry sequences. There does exist literature for compressing

dynamic 3D meshes with either fixed connectivity and known cor-

respondences (e.g., [6–10] ) or varying connectivity (e.g., [11, 12]).

However, there is only one work to our knowledge that exploits tem-

poral and spatial redundancy of point cloud sequences [13]. The au-

thors compress the geometry by comparing the octree data structure

of consecutive point clouds and encoding their structural difference.

Since their coding scheme is based on the set difference between oc-

tree stuctures and not the motion of the voxels, reducing the temporal

correlation for coding the color attributes is not straightforward.

In this paper, we focus on the compression of the 3D color

attributes and propose a novel motion estimation and compensa-

tion scheme that exploits temporal correlation in sequences of point

clouds. We consider points as vertices in a graph G, with edges

between nearby vertices. Unlike a traditional polygonal mesh, this

graph need not represent a surface. Attributes of each point n,

including 3D position p(n) = [x, y, z](n) and color components

c(n) = [r, g, b](n), are treated as signals residing on the vertices of

the graph. As frames in the 3D point cloud sequences are correlated,

the graph signals at consecutive time instants are also correlated.

The estimation of the correlation is however a challenging task as

the frames usually appear in different sizes and no explicit corre-

spondence information is available in the sequence.

We propose a novel algorithm for motion estimation and com-

pensation in 3D point cloud sequences. We cast motion estimation

as a feature matching problem on dynamic graphs. In particular, we

compute new local features at different scales with spectral graph

wavelets (SGW) [14] for each node of the graph. Spectral features

are stable to small perturbations of the edges or nodes of the graphs,

and different instances of such features have been used successfully

in graph matching problems [15] or in mesh segmentation and sur-

face alignment problems [16]. We then match our SGW features in

different graphs with a criteria that is based on the Mahalanobis dis-

tance and trained from the data. We first compute the motion on a

sparse set of matching nodes, and we interpolate the motion of the

other nodes of the graph by solving a new graph-based quadratic

regularization problem, which promotes smoothness of the motion

vectors on the graph in order to build a consistent motion field. We fi-

nally exploit the estimated motion information in the predictive cod-

ing of the color information, where we take benefit of the temporal

redundancy by coding only the difference between the actual color

information and the results of the motion compensation. We show by

experimental results that the integration of our new motion compen-

sation scheme in a state-of-the-art encoder [5] results in significant

improvement in terms of rate-distortion compression performance of

the color information in 3D point cloud sequences.

The rest of the paper is organized as follows. Section 2 first

describes the representation of 3D point clouds using graphs, and in-

troduces spectral graph wavelet descriptors. The motion estimation

and composition scheme is presented in Section 3. Experimental

results and conclusions are given in Section 4 and 5, respectively.

3235978-1-4799-8339-1/15/$31.00 ©2015 IEEE ICIP 2015



2. GRAPH-BASED REPRESENTATION OF 3D POINT

CLOUDS

We represent the set of points in each frame using a weighted and

undirected graph G = (V, E ,W ), where V and E represent the ver-

tex and edge sets of G. Graph-based representations are flexible and

well adapted to data that lives on an irregular domain [17]. Each

node in V corresponds to a point in the point cloud, while each edge

in E connects neighbouring points. In our datasets, the point clouds

are voxelized, that is, their 3D positions are quantized to a regular,

axis-aligned, 3D grid having a given stepsize. Each quantization

cell is called a voxel, a voxel containing a point is said to be occu-

pied, and an occupied voxel is identified as a vertex in the graph.

Two vertices are connected by an edge if they are 26-neighbors in

the voxel grid, that is, if the distance between them is a maximum

of one step along any axis. Thus the distance between connected

pixels is either 1, 1/
√
2 or 1/

√
3 times the stepsize. The matrix

W is a matrix of positive edge weights, with W (i, j) denoting the

weight of an edge connecting vertices i and j. This weight captures

the connectivity pattern of nearby occupied voxels and are chosen

to be inversely proportional to the distances between voxels, follow-

ing the definition proposed in [5]. Finally, we compute the graph

Laplacian operator defined as L = D−W , whereD is the diagonal

degree matrix whose ith diagonal element is equal to the sum of the

weights of all the edges incident to vertex i [18]. It is a real sym-

metric matrix that has a complete set of orthonormal eigenvectors

with corresponding nonnegative eigenvalues. We denote its eigen-

vectors by χ = [χ1, χ2, ..., χN ], and the spectrum of eigenvalues by

Λ :=
{
0 = λ0 < λ1 ≤ λ2 ≤ ... ≤ λ(N−1)

}
.

We consider the components of the 3D coordinates p =
[x, y, z]T ∈ R

3×N and respectively the color attributes c =
[r, g, b]T ∈ R

3×N , as signals that reside on the vertices of the

graph G. These signals are used to define features on each node of

the graph in the motion estimation process. A meaningful definition

of a feature on a node of a graph requires a multi-resolution analysis

of the graph signals with respect to that particular node. Due to the

irregular graph domain, classical wavelet descriptors are however

not applicable in these irregular settings. The analysis of signals

defined on the vertices of an arbitrary weighted graph should rather

be performed with specific tools such as the spectral graph wavelets

(SGW) [14]. We therefore propose to construct SGW-based descrip-

tors built on SGW-features Wf (s, n) for each node in the graph.

Such features are computed by taking the inner product between a

given signal f and the graph wavelet ψs,n of scale s placed at that

particular node n, i.e.,

Wf (s, n) =< f, ψs,n >, (1)

where the spectral graph wavelets are operator-valued functions of

the graph Laplacian defined as

ψs,n = T s
g δn =

N−1∑

ℓ=0

g(sλℓ)χ
∗
ℓ (n)χℓ. (2)

The graph wavelets are determined by the choice of a generating

kernel g, which acts as a band-pass filter in the spectral domain, and

a scaling kernel h that acts as a lowpass filter. The scaling is defined

in the spectral domain, i.e., the wavelet operator at scale s is given

by T s
g = g(sL). Spectral graph wavelets are finally realized through

localizing these operators via the impulse δ on a single vertex n.

3. MOTION ESTIMATION AND COMPENSATION IN 3D

POINT CLOUD SEQUENCES

We use the spectral graph wavelets described in Sec. 2 to define

spectral features at different resolutions and compute point-to-point

correspondences between graphs of different frames by matching lo-

cal invariant descriptors. We select a subset of matching nodes to

define a sparse set of motion vectors that describe the temporal cor-

relation in the sequence. A dense motion field is then interpolated

from the sparse set of motion vectors in order to enable motion com-

pensated color prediction.

3.1. Feature extraction and matching on graphs

For each node i of a graph G, we define the following octant indicator

function

o1,i(j) = 1{x(j)≥x(i),y(j)≥y(i),z(j)≥z(i)}(j),

where 1{·}(j) is the indicator function on node j ∈ G, evaluated in

the set {·} that depends on the 3D coordinates of the voxels. We

consider all possible combinations of inequalities that results in a

total of 23 indicator functions, i.e., ok,i(j), k = [1, 2, ..., 8]. These

functions provide a notion of orientation of j with respect to i, which

is clearly provided by the voxel grid.

We compute features based on both geometry and color infor-

mation in each orientation. In particular, for each node i and each

geometry and color component f ∈ {x, y, z, r, g, b} in a specific

orientation k, we compute the spectral graph wavelet coefficients

φi,s,ok,i,f =< f · ok,i, ψs,i >, (3)

where k = 1, 2, ..., 8, s = s1, ..., smax and · denotes the pairwise

product. The feature vector is the concatenation of these wavelet co-

efficients, including the features obtained from the scaling function,

i.e., φi = {φi,s,ok,i,f} ∈ R
8×6×(smax+1).

Given two graphs Gt, Gt+1, each representing a frame in the 3D

sequence, we use the above definition of features to find correspon-

dences between vertices. We compute the matching score between

two nodes m ∈ Gt, n ∈ Gt+1 as the Mahalanobis distance of the

corresponding feature vectors, i.e.,

σ(m,n) = (φm − φn)
TP (φm − φn), (4)

where P−1 is a covariance matrix estimated from training features

that are known to be in correspondence. We define as the best match

for n ∈ Gt+1, the node n∗ ∈ Gt with the minimum Mahalanobis

distance, i.e.,

n∗ = argmin
m∈Gt

σ(m,n).

The choice of this distance metric is motivated by the combination

of both geometry and color features, which are measured in different

units. Hence, by learning the covariance matrix, we discover the

relation between different feature components in each sequence.

We now compute motion vectors only on a sparse set of match-

ing points, i.e., we take into consideration only accurate matches and

ignore the rest. The selection of the sparse set of matching nodes is

based on the intuition that a sampling of the nodes that covers all

the 3D space can help later in interpolating the motion across all the

nodes of the graph. We thus cluster the vertices of Gt+1 in different

regions and we keep only a representative vertex per region. Clus-

tering is performed by applying K-means in the 3D coordinates of

the nodes. K is usually set equal to the desirable sparse number of

nodes. In order to avoid inaccurate matches, a representative vertex
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is included in the sparse set only if its best score is smaller than a

predefined threshold. Therefore, our sparse set of matching points

tend to be accurate and well distributed spatially.

3.2. Computation of the motion vectors

Next, we study the interpolation of the dense motion field from the

sparse set of matching nodes. Interpolation is basically done by

treating the motion vector in each direction as a signal that varies

smoothly on the graph. We estimate the entries of these signals for

each matching pair (n∗, n), as v(n) = pt+1(n) − pt(n∗), with pt

and pt+1 the 3D coordinate signals on Gt and Gt+1, respectively.

To allow some signal smoothing on these known entries, we model

the matching score in their local neighborhood, with respect to node

n ∈ Gt+1. In particular, for each node m ∈ Gt that belongs to the

two-hop neighborhood of n∗ i.e., m ∈ N 2
n∗ , we express σ(m,n) in

terms of the best match score σ(n∗, n), and the geometric distance

of m from n∗ using the second-order Taylor series expansion

σ(m,n) ≈ σ(n∗, n)+ (pt(m)−pt(n∗))TM−1
n (pt(m)−pt(n∗)).

We estimate Mn as the normalized covariance matrix of the 3D off-

sets,

Mn =
1

|N 2
n∗ |

∑

m∈N2

n∗

(pt(m)− pt(n∗))(pt(m)− pt(n∗))T

σ(m,n)− σ(n∗, n)
.

We define Q =




M−1
1 · · · 03×3

...
. . .

...

03×3 · · · M−1
Nt


 , where M−1

l = 03×3 if

node l does not belong to the sparse set of motion vectors.

Finally, we interpolate the dense set of motion vectors v̂∗ by

smoothing the sparse set of motion vectors on the graph

v̂∗ = argmin
v∈R3Nt

(v − v∗)TQ(v − v∗) + µ

3∑

i=1

(Siv)
TLt(Siv), (5)

where {Si}i=1,2,3 is a selection matrix for each of the 3D compo-

nents respectively, and v∗ = [v∗(1), v∗(2), · · · , v∗(Nt)]
T ∈ R

3Nt ,

is the concatenation of the motion vectors, with v∗(l) = 03×1, if l
does not belong to the sparse set. We note that the optimization prob-

lem consists of two terms: a fitting term that penalizes the excess

matching score on the sparse set of matching nodes, and a regular-

ization term that imposes smoothness of the motion vectors in each

of the position components independently. Similar regularization

techniques, that are based on the notion of smoothness of the graph

Laplacian, have been widely using in the semi-supervised learning

literature [19, 20]. The optimization problem is convex and it has a

closed form solution given by

v̂∗ =
(
Q+ µ

3∑

i=1

ST
i LtSi

)−1
Qv∗, (6)

which can be solved iteratively using MINRES-QLP [21] for effi-

ciency on large systems.

3.3. Motion compensation for color prediction

We use the estimated motion vectors to warp the graph Gt to Gt+1.

In particular, the position of node m on the warped graph G̃t is esti-

mated by using the corresponding position in Gt and the motion

p̃t(m) = pt(m) + v̂∗(m).

(a) (b) (c) (d)

Fig. 1. Superimposition of the reference and target frame in two

datasets ((a), (c)), and target frame and motion estimated reference

frame ((b), (d)). Each small cube corresponds to a voxel in the mo-

tion compensated frame.

The color is transferred directly from Gt to G̃t i.e., c̃t(m) = ct(m).
These values can then be used to predict the color values at the nodes

of Gt+1. For each n ∈ Gt+1, we predict ĉt+1(n) by finding the

nearest neighbors NNn of pt+1(n) in terms of the 3D positions p̃t,
and attributing to n their average color i.e.,

ĉt+1(n) =
∑

m∈NNn

1

|NNn|
c̃t(m),

where |NNn| is the cardinality of NNn, that is usually set to 3.

4. EXPERIMENTAL RESULTS

We illustrate the performance of our motion estimation and compen-

sation scheme on two different datasets, i.e., the man sequence and

the yellow dress, which were both constructed by a real-time high

resolution sparse voxalization algorithm [1].

We first provide some illustrative results of the motion esti-

mation performance. For each dataset, we select two consecutive

frames, namely the reference and the target frame. For each frame,

we voxelize the point cloud in the frame to a voxel stepsize that

generates a set of approximately 8500 occupied voxels out of a total

of 75000 initial 3D points with color attributes. The exact voxel

number depends on the size of the actual frames. The graph for each

frame is constructed as described in Section 2. We define spectral

graph wavelets of 4 scales on these graphs, and for computational

efficiency, we approximate them with Chebyshev polynomials of

degree 30 [14]. We select the number of representative feature

points to be around 500, which corresponds to fewer than 10% of

the total occupied voxels, and we compute the sparse motion vectors

on the corresponding nodes. We estimate the motion on the rest of

the nodes by smoothing the motion vectors on the graph based on

Eq.(5). In Fig. 1(a), we superimpose the reference and the target

frame for the man sequence and in Fig. 1(c), the corresponding

frames for the yellow dress sequence. Accordingly, in Figs. 1(b),

1(d) we superimpose the target frame and the voxel representation

of the motion compensated reference frame. We observe that our

algorithm is able to compensate quite accurately the motion. In

particular, in both datasets the motion compensated reference frame,

which is represented in a voxelized form, is close to the target frame.

In the next set of experiments, we use motion compensation

for color prediction, as described in Section 3.3. That is, using the
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Fig. 2. Comparison of the color prediction performance obtained

from the (i) motion compensated reference frame, (ii) reference

frame, and (iii) average of the reference frame.

smoothed motion field, we warp the reference graph Gt to the target

graph Gt+1, and predict the color of each node in Gt+1 as the aver-

age of the nearest nodes in Gt. In Fig. (2), we illustrate the signal-

to-noise ratio (SNR) of the color prediction for different voxel step-

sizes defined as SNR = 20 log10
‖target color‖

‖prediction error‖
. In particular,

we compute the SNR by predicting the color of the target frame from

the 3D positions of (i) the motion compensated reference frame, and

(ii) the reference frame. For the sake of completeness, we show as

well the SNR that is obtained by having as prediction the average

of the color of the reference frame. The results are indicative of the

dependency of the motion estimation on the voxel stepsize and the

graph construction. When the stepsize is small, many nodes of the

graph are isolated, which reduces the efficiency of the smoothing

step that computes the dense motion field. As a result the color pre-

diction error is similar to that obtained by predicting simply based

on the reference frame. A more efficient construction of the graph

could however improve the performance. On the other hand, when

the motion is correctly estimated, motion compensation can signifi-

cantly reduce the prediction error.

We finally use the prediction obtained from our motion estima-

tion and compensation scheme to compress the color attributes of the

target frame, for a voxel stepsize of 20. An overview of the predic-

tive color coding structure is shown in Fig. 3. We assume that the set

of occupied voxels (i.e., the geometry information) has already been

coded according to the method described in [13], with the difference

that coding is based on the set difference of the target frame and the

motion compensated reference frame. We exploit the smoothness of

the motion vectors on the graph, by coding them in the graph Fourier

domain, which has been shown to be efficient in compressing smooth

signals [22]. The graph Fourier coefficients are uniformly quantized,

entropy coded with the RLGR entropy coder [23] and sent to the de-

coder. The set of occupied voxels of the target frame and the motion

vectors can therefore be reconstructed at the decoder. The cost of the

motion vectors is included in the geometry coding (to be described

more fully elsewhere), which depending on the sequence results in

either a small gain or a small penalty in the range of 0.01-0.3 bits per

vertex over the coding rate of state-of-the-art geometry coding [13].

This essentially means that the coding of the motion vectors is basi-

cally transparent, and that almost no overhead has to be included for

predictive coding of the color.

Compression of color attributes is thus obtained by coding the

residual of the target frame with respect to the color prediction ob-

tained with the scheme described in Section 3. Quantization and

entropy coding of the residuals are performed using the recently in-

troduced graph-based compression scheme of [5]. This algorithm

Fig. 3. Schematic overview of predictive color coding
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Fig. 4. Compression performance (dB) vr. bits per vertex for inde-

pendent and differential coding of the target frame on both datasets.

removes the spatial redundancy of the voxels by applying the graph

transform on small blocks of voxels. This step, combined with the

differential coding step, exploits both temporal and spatial correla-

tion for color coding. In our experiments, we choose small blocks of

16 × 16 × 16 voxels. We measure the PSNR obtained for different

coding rates of the color information, for both independent and dif-

ferential coding. The results are shown in Fig. 4 for both datasets.

We observe that differential coding provides a gain of approximately

10 dB at low bit rate, for the same number of bits per vertex, with

respect to independent coding. Given the very small potential over-

head introduced by the coding of the motion vectors, these results

clearly confirm the benefit of motion compensation for color com-

pression in 3D point cloud sequences.

5. CONCLUSIONS

In this paper, we have proposed a novel algorithm for motion es-

timation on 3D point cloud sequences. Our algorithm is based on

the assumption that 3D models are representable by a sequence of

weighted and undirected graphs and the geometry and the color of

each model can be considered as graph signals residing on the ver-

tices of the corresponding graphs. Correspondence between a sparse

set of nodes in each graph is first determined by matching descriptors

based on spectral features that are localized on the graph. The mo-

tion on the rest of the nodes is interpolated by exploiting the smooth-

ness of the motion vectors on the graph. Motion compensation is

finally used to perform color prediction. Experimental results have

shown that the proposed method is efficient in estimating the motion

and it eventually provides significant gain in compressing the color

information with respect to independent coding of frame sequences.
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their help with the color compression experiments.

3238



7. REFERENCES

[1] C. Loop, C. Zhang, and Z. Zhang, “Real-time high-resolution

sparse voxelization with application to image-based model-

ing,” in Proc. of the 5th High-Performance Graphics Confer-

ence, New York, NY, USA, 2013, pp. 73–79.

[2] T. Ochotta and D. Saupe, “Compression of Point-Based 3D

Models by Shape-Adaptive Wavelet Coding of Multi-Height

Fields,” in Proc. of the First Eurographics Conference on

Point-Based Graphics, 2004, pp. 103–112.

[3] R. Schnabel and R. Klein, “Octree-based point-cloud compres-

sion,” in Symposium on Point-Based Graphics, July 2006.

[4] Y. Huang, J. Peng, C. C. J. Kuo, and M. Gopi, “A generic

scheme for progressive point cloud coding.,” IEEE Trans. Vis.

Comput. Graph., vol. 14, no. 2, pp. 440–453, 2008.

[5] C. Zhang, D. Florêncio, and C. Loops, “Point cloud attribute

compression with graph transform”,” in Proc. IEEE Int. Con-

ference on Image Processing, Paris, France, Sept 2014.

[6] J. Peng, Chang-Su Kim, and C. C. Jay Kuo, “Technologies for

3d mesh compression: A survey,” Journal of Vis. Comun. and

Image Represent., vol. 16, no. 6, pp. 688–733, December 2005.

[7] J. Rossignac, “Edgebreaker: Connectivity compression for tri-

angle meshes,” IEEE Trans. on Visualization and Computer

Graphics, vol. 5, no. 1, pp. 47–61, Jan. 1999.

[8] M. Alexa and W. Müller, “Representing animations by princi-

pal components,” Comput. Graph. Forum, vol. 19, no. 3, pp.

411–418, Sept. 2000.
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