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Abstract

We propose a neural multi-document sum-

marization (MDS) system that incorpo-

rates sentence relation graphs. We employ

a Graph Convolutional Network (GCN)

on the relation graphs, with sentence em-

beddings obtained from Recurrent Neural

Networks as input node features. Through

multiple layer-wise propagation, the GCN

generates high-level hidden sentence fea-

tures for salience estimation. We then use

a greedy heuristic to extract salient sen-

tences while avoiding redundancy. In our

experiments on DUC 2004, we consider

three types of sentence relation graphs

and demonstrate the advantage of combin-

ing sentence relations in graphs with the

representation power of deep neural net-

works. Our model improves upon tradi-

tional graph-based extractive approaches

and the vanilla GRU sequence model with

no graph, and it achieves competitive re-

sults against other state-of-the-art multi-

document summarization systems.

1 Introduction

Document summarization aims to produce fluent

and coherent summaries covering salient informa-

tion in the documents. Many previous summa-

rization systems employ an extractive approach by

identifying and concatenating the most salient text

units (often whole sentences) in the document.

Traditional extractive summarizers produce the

summary in two steps: sentence ranking and

sentence selection. First, they utilize human-

engineered features such as sentence position and

length (Radev et al., 2004a), word frequency

and importance (Nenkova et al., 2006; Hong and

Nenkova, 2014), among others, to rank sentence

salience. Then, they select summary-worthy sen-

tences using a range of algorithms, such as graph

centrality (Erkan and Radev, 2004), constraint op-

timization via Integer Linear Programming (Mc-

Donald, 2007; Gillick and Favre, 2009; Li et al.,

2013), or Support Vector Regression (Li et al.,

2007) algorithms. Optionally, sentence reordering

(Lapata, 2003; Barzilay et al., 2001) can follow to

improve coherence of the summary.

Recently, thanks to their strong representation

power, neural approaches have become popular in

text summarization, especially in sentence com-

pression (Rush et al., 2015) and single-document

summarization (Cheng and Lapata, 2016). Despite

their popularity, neural networks still have issues

when dealing with multi-document summarization

(MDS). In previous neural multi-document sum-

marizers (Cao et al., 2015, 2017), all the sentences

in the same document cluster are processed inde-

pendently. Hence, the relationships between sen-

tences and thus the relationships between differ-

ent documents are ignored. However, Christensen

et al. (2013) demonstrates the importance of con-

sidering discourse relations among sentences in

multi-document summarization.

This work proposes a multi-document summa-

rization system that exploits the representational

power of deep neural networks and the sentence

relation information encoded in graph representa-

tions of document clusters. Specifically, we apply

Graph Convolutional Networks (Kipf and Welling,

2017) on sentence relation graphs. First, we dis-

cuss three different techniques to produce sentence

relation graphs, where nodes represent sentences

in a cluster and edges capture the connections be-

tween sentences. Given a relation graph, our sum-

marization model apples a Graph Convolutional

Network (GCN), which takes in sentence embed-

dings from Recurrent Neural Networks as input

node features. Through multiple layer-wise prop-
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agation, the GCN generates high-level hidden fea-

tures for the sentences. We then obtain sentence

salience estimations through a regression on top,

and extract salient sentences in a greedy manner

while avoiding redundancy.

We evaluate our model on the DUC 2004 multi-

document summarization (MDS) task. Our model

shows a clear advantage over traditional graph-

based extractive summarizers, as well as a base-

line GRU model that does not use any graph, and

achieves competitive results with other state-of-

the-art MDS systems. This work provides a new

gateway to incorporating graph-based techniques

into neural summarization.

2 Related Work

2.1 Graph-based MDS

Graph-based MDS models have traditionally em-

ployed surface level (Erkan and Radev, 2004; Mi-

halcea and Tarau, 2005; Wan and Yang, 2006) or

deep level (Pardo et al., 2006; Antiqueira et al.,

2009) approaches based on topological features

and the number of nodes (Albert and Barabási,

2002). Efforts have been made to improve de-

cision making of these systems by using dis-

course relationships between sentences (Radev,

2000; Radev et al., 2001). Erkan and Radev (2004)

introduce LexRank to compute sentence impor-

tance based on the eigenvector centrality in the

connectivity graph of inter-sentence cosine simi-

larity. Mei et al. (2010) propose DivRank to bal-

ance the prestige and diversity of the top ranked

vertices in information networks and achieve im-

proved results on MDS. Christensen et al. (2013)

build multi-document graphs to identify pairwise

ordering constraints over the sentences by ac-

counting for discourse relationships between sen-

tences (Mann and Thompson, 1988). In our work,

we build on the Approximate Discourse Graph

(ADG) model (Christensen et al., 2013) and ac-

count for macro level features in sentences to im-

prove sentence salience prediction.

2.2 Summarization Using Neural Networks

Neural networks have recently been popular for

text summarization (Kågebäck et al., 2014; Rush

et al., 2015; Yin and Pei, 2015; Cao et al., 2016;

Wang and Ling, 2016; Cheng and Lapata, 2016;

Nallapati et al., 2016, 2017; See et al., 2017). For

example, Rush et al. (2015) introduce a neural

attention feed-forward network-based model for

sentence compression. Wang and Ling (2016)

employ encoder-decoder RNNs to effectively pro-

duce short abstractive summaries for opinions.

Cao et al. (2016) develop a query-focused sum-

marization system called AttSum which deals

with saliency ranking and relevance ranking using

query-attention-weighted CNNs.

Very recently, thanks to the large scale news

article datasets (Hermann et al., 2015), Cheng

and Lapata (2016) train an extractive summariza-

tion system with attention-based encoder-decoder

RNNs to sequentially label summary-worth sen-

tences in single documents. See et al. (2017),

adopting an abstractive approach, augment the

standard attention-based encoder-decoder RNNs

with the ability to copy words from the source text

via pointing and to keep track of what has been

summarized. These models (Cheng and Lapata,

2016; See et al., 2017) achieve state-of-the-art per-

formance on the DUC 2002 single-document sum-

marization task. However, scaling up these RNN

sequence-to-sequence approaches to the multi-

document summarization task has not been suc-

cessful, 1) due to the lack of large multi-document

summarization datasets needed to train the compu-

tationally expensive sequence-to-sequence model,

and 2) because of the inadequacy of RNNs to cap-

ture the complex discourse relations across multi-

ple documents. Our multi-document summariza-

tion model resolves these issues 1) by breaking

down the summarization task into salience estima-

tion and sentence selection that do not require an

expensive decoder architecture, and 2) by utilizing

sentence relation graphs.

3 Method

Given a document cluster, our method extracts

sentences as a summary in two steps: sentence

salience estimation and sentence selection. Figure

1 illustrates our architecture for sentence salience

estimation. Given a document cluster, we first

build a sentence relation graph, where interact-

ing sentence nodes are connected by edges. For

each sentence, we apply an RNN with Gated Re-

current Units (GRUsent) (Cho et al., 2014; Chung

et al., 2014) and extract the last hidden state as the

sentence embedding. We then apply Graph Con-

volutional Networks (Kipf and Welling, 2017) on

the sentence relation graph with the sentence em-

beddings as the input node features, to produce

final sentence embeddings that reflect the graph

representation. Thereafter, a second level GRU

(GRUdoc) produces the entire cluster embedding
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Figure 1: Illustration of our architecture for sentence salience estimation. In this example, there are two

documents in the cluster and each document has two sentences. Sentences are processed by the GRUsent

to get input sentence embeddings. The GCN takes the input sentence embeddings and the sentence

relation graph, and outputs high-level hidden features for individual sentences. GRUdoc produces the

cluster embedding from the output sentence embeddings. The salience is estimated from the output

sentence embeddings and the cluster embedding. wi: the word embedding for i-th word. hi: the hidden

state of GRU at i-th step.

by sequentially connecting the final sentence em-

beddings. We estimate the salience of each sen-

tence from the final sentence embeddings and the

cluster embedding. Finally, based on the estimated

salience scores, we select sentences in a greedy

way until reaching the length limit.

3.1 Graph Representation of Clusters

To best evaluate the architecture, we consider

three graph representation methods to model sen-

tence relationships within clusters. First, as prior

methods in representing document clusters often

adhere to the standard of cosine similarity (Erkan

and Radev, 2004), our initial baseline approach

naturally used this representation. Specifically, we

add an edge between two sentences if the tf-idf co-

sine similarity measure between them, using the

bag-of-words model, is above a threshold of 0.2.

Secondly, the G-Flow system (Christensen

et al., 2013) utilizes discourse relationships be-

tween sentences to create its graph representa-

tions, known as Approximate Discourse Graph

(ADG). The ADG constructs edges between sen-

tences by counting discourse relation indicators

such as deverbal noun references, event and entity

continuations, discourse markers, and co-referent

mentions. These features allow characterization

of sentence relationships, rather than simply their

similarity.

While G-Flow’s ADG provides many improve-

ments from baseline graph representations, it suf-

fers several disadvantages that diminish its ability

Personalization Features

• Position in Document

• From 1st 3 Sentences?

• No. of Proper Nouns

• > 20 Tokens in Sentence?

• Sentence Length

• No. of Co-referent Verb Mentions

• No. of Co-referent Common Noun Mentions

• No. of Co-referent Proper Noun Mentions

Table 1: List of features that were input to the re-

gression function in obtaining sentence personal-

ization scores.

to aid salience prediction when given to the neu-

ral network. Specifically, the ADG lacks much di-

versity in its assigned edge weights. Because the

weights are discretely incremented, they are multi-

ples of 0.5; many edge weights are 1.0. While the

presence of an edge provides a remarkable amount

of underlying knowledge on the discourse rela-

tionships, edge weights can further include infor-

mation about the strength — and, similarly, im-

portance — of these relationships. We hope to

improve the edge weights by making them more

diverse, while infusing more information in the

weights themselves. In doing so, we contribute

our Personalized Discourse Graph (PDG). To ad-

vance the ADG’s performance in providing pre-

dictors for sentence salience, we apply a multi-

plicative effect to the ADG’s edge weights via sen-

tence personalization.
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A baseline sentence personalization score s(v),
which can be viewed as weighting of sentences,

is calculated for every sentence v to account for

surface features in each sentence. These features,

listed in Table 1, are used as input for linear re-

gression, as per Christensen et al. (2013). The re-

gression is applied to each sentence to obtain the

personalization score, s(v). Each edge weight in

the original ADG is then transformed by this sen-

tence personalization score and normalized over

the total outgoing scores. That is, for directed edge

(u, v) ∈ E, the weight is

wPDG(u, v) =
wADG(u, v)s(v)

∑

u′∈V wADG(u′, v)s(u′)
(1)

The inclusion of the sentence personalization

scores allows the PDG to account for macro-level

features in each sentence, augmenting information

for salience estimation. To provide more clarity,

we include a figure of the PDG in later sections.

Although it may be possible to incorporate the

sentence personalization features later into the

salience estimation network, we chose to encode

them in the PDG to improve the edge weight dis-

tribution of sentence relation graphs and to make

our salience estimation architecture methodically

consistent. Additionally, in order to maintain con-

sistency between graph representations, follow-

ing two modifications are made to the discourse

graphs. First, the directed edges of both the ADG

and PDG are made undirected by averaging the

edges weights in both directions. Second, edge

weights are rescaled to a maximum edge weight

of 1 prior to being fed to the GCN.

3.2 Graph Convolutional Networks

We apply Graph Convolutional Networks (GCN)

from Kipf and Welling (2017) on top of the sen-

tence relation graph. In this subsection, we ex-

plain in detail the formulation of GCN, and how

GCN produces the final sentence embeddings.

The goal of GCN is to learn a function f(X, A)
that takes as input:

• A ∈ R
N×N , the adjacency matrix of graph G,

where N is the number of nodes in G.

• X ∈ R
N×D, the input node feature matrix,

where D is the dimension of input node feature

vectors.

and outputs high-level hidden features for each

node, Z ∈ R
N×F , that encapsulate the graph

structure. F is the dimension of output feature

vectors. The function f(X,A) takes a form of

layer-wise propagation based on neural networks.

We compute the activation matrix in the (l + 1)th

layer as H(l+1), starting from H0 = X . The out-

put of L-layer GCN is Z = f(X, A) = H(L).

To introduce the formulation, consider a simple

form of layer-wise propagation:

H(l+1) = σ
(

AH(l)W (l)
)

(2)

where σ is an activation function such as ReLU(·)
= max(0, ·). W (l) is the parameter to learn in the

lth layer. Eq 2 has two limitations. First, mul-

tiplying by A means that for each node, we sum

up the feature vectors of all neighboring nodes but

not the node itself. We fix this by adding self-loops

in the graph. Second, since A is not normalized,

multiplying by A will change the scale of feature

vectors. To overcome this, we apply a symmet-

ric normalization by using D− 1

2 AD− 1

2 where D

is the node degree matrix. These two renormaliza-

tion tricks result in the following propagation rule:

H(l+1) = σ
(

D̃− 1

2 ÃD̃− 1

2 H(l)W (l)
)

(3)

where Ã = A + IN is the adjacency matrix of

the graph G with added self-loops (IN is the iden-

tity matrix). D̃ is the degree matrix with D̃ii =
∑

j Ãij . Kipf and Welling (2017) also provide a

theoretical justification of Eq 3 as a first-order ap-

proximation of spectral graph convolution (Ham-

mond et al., 2011; Defferrard et al., 2016).

As an example, if we have a two-layer GCN,

we first calculate Â = D̃− 1

2 ÃD̃− 1

2 in a pre-

processing step, and then produce

Z = f(X,A) = σ
(

Â σ
(

ÂXW (0)
)

W (1)
)

3.3 Sentence Embeddings

As the input node features X of GCN, we use sen-

tence embeddings calculated by GRUsent.

Given a document cluster C with N sentences

(s1, s2, ..., sN ) in total, for each sentence si of L

words (w1, w2, ..., wL), GRUsent recurrently up-

dates hidden states at each time step t:

h
sent
t = GRUsent(hsent

t−1 ,wt) (4)

where wt is the word embedding for wt, h
sent
t is

the hidden state of GRUsent. h0 is initialized as a

zero vector, and the input sentence embedding xi

is the last hidden state:

xi = h
sent
L (5)
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All sentence embeddings from the given document

cluster are grouped as the node feature matrix X:

X =















x
T
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x
T
2
...

x
T
N















(6)

X is fed into GCN subsequently to obtain the final

sentence embeddings si that incorporate the graph

representation of sentence relationships:

Z = f(X, A) =















s
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s
T
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s
T
N















(7)

3.4 Cluster Embedding

Additionally, in order to have a global view of

the entire document cluster, we apply a second-

level RNN, GRUdoc, to encode the entire docu-

ment cluster. Given a document cluster C with M

documents (d1, d2, ..., dM ), for document di with

|di| sentences, GRUdoc first builds the document

embedding di on top of sentence embeddings:

h
doc
t = GRUdoc(hdoc

t−1, st) (8)

di = h
doc
|di|

(9)

where st is the sentence embedding in the docu-

ment di. In Eq 9, we extract the last hidden state

as the document embedding for di. In Eq 10, we

average over document embeddings to produce the

cluster embedding C:

C =
1

M

M
∑

i=1

di (10)

All the GRUs we used are forward. We also exper-

imented with backward GRUs and bi-directional

GRUs, but neither of them meaningfully improved

upon forward GRUs.

3.5 Salience Estimation

For the sentence si in the cluster C, we calculate

the salience of si as the following, similarly to the

attention mechanism in neural machine translation

(Bahdanau et al., 2015):

f(si) = v
T tanh(W1C + W2si) (11)

salience(si) =
f(si)

∑

sj∈C f(sj)
(12)

where v,W1,W2 are learnable parameters. In

Eq 11, we first calculate the score f(si) by con-

sidering the sentence embedding itself, si, and the

cluster embedding C for the global context of the

multi-document. The score is then normalized as

salience(si) via softmax in Eq 12.

3.6 Training

The model parameters include the parameters

in GRUsent and GRUdoc, the weights in GCN

layers, and the parameters for salience estima-

tion (v,W1,W2). Parameters in GRUsent and

GRUdoc are not shared. The model is trained end-

to-end to minimize the following cross-entropy

loss between the salience prediction and the nor-

malized ROUGE score of each sentence:

L = −
∑

C

∑

si∈C

R(si) log(salience(si)) (13)

R(si) is calculated by R(si) = softmax(α r(si)),
where r(si) is the average of ROUGE-1 and

ROUGE-2 Recall scores of sentence si by mea-

suring with the ground-truth human-written sum-

maries. α is a constant rescaling factor to make the

distribution sharper. The value of α is determined

from the validation data set. αr(si) is then nor-

malized across the cluster via softmax, similarly

to Eq 12.

3.7 Sentence Selection

Given the salience score estimation, we apply a

simple greedy procedure to select sentences. Sen-

tences with higher salience scores have higher pri-

orities. First, we sort sentences in descending or-

der of the salience scores. Then, we select one

sentence from the top of the list and append to the

summary if the sentence is of reasonable length (8-

55 words, as in (Erkan and Radev, 2004)) and is

not redundant. The sentence is redundant if the tf-

idf cosine similarity between the sentence and the

current summary is above 0.5 (Hong and Nenkova,

2014). We select sentences this way until we reach

the length limit.

4 Experiments

In this section, we evaluate our model on bench-

mark MDS data sets, and compare with other

state-of-the-art systems. We aim to show that our

model, by combining sentence relations in graphs

with the representation power of deep neural net-

works, can improve upon other traditional graph-

based extractive approaches and the vanilla GRU

model which does not use any graph. In addition,
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DUC’01 DUC’02 DUC’03 DUC’04

# of Clusters 30 59 30 50

# of Documents 309 567 298 500

# of Sentences 24498 16090 7721 13270

Vocabulary Size 28188 22174 13248 18036

Summary Length 100
words

100
words

100
words

665
Bytes

Table 2: Statistics for DUC Multi-Document Sum-

marization Data Sets.

we further study the effect of graph and different

graph representations on the summarization per-

formance and investigate the correlation of graph

structure and sentence salience estimation.

4.1 Data Set and Evaluation

We use the benchmark data sets from the Docu-

ment Understanding Conferences (DUC) contain-

ing clusters of English news articles and human

reference summaries. Table 2 shows the statistics

of the data sets. We use DUC 2001, 2002, 2003

and 2004 containing 30, 59, 30 and 50 clusters of

nearly 10 documents each respectively. Our model

is trained on DUC 2001 and 2002, validated on

2003, and tested on 2004. For evaluation, we use

the ROUGE-1,2 metric, with stemming and stop

words not removed as suggested by Owczarzak

et al. (2012).

4.2 Experimental Setup

We conduct four experiments on our model: three

using each of the three types of graphs discussed

earlier, and one without using any graph. In the

experiments with graphs, for each document clus-

ter, we tokenize all the documents into sentences

and generate a graph representation of their re-

lations by the three methods: Cosine Similar-

ity Graph, Approximate Discourse Graph (ADG)

from G-Flow, and our Personalized Discourse

Graph (PDG). Note that for the Cosine Similar-

ity Graph, we compute the tf-idf cosine similarity

for every pair of sentences using the bag-of-word

model and add an edge for similarity above 0.2.

The weight of the edge is the value of similarity.

We apply GCNs with the graphs in the final step

of sentence encoding. For the experiment without

any graph, we omit the GCN part and simply use

the GRU sentence and cluster encoders.

We use 300-dimensional pre-trained word2vec

embeddings (Mikolov et al., 2013) as input to

GRUsent in Eq 4. The word embeddings are fine-

tuned during training. We use three GCN hidden

R-1 R-2

SVR (Li et al., 2007) 36.18 9.34

CLASSY11 (Conroy et al., 2011) 37.22 9.20

CLASSY04 (Conroy et al., 2004) 37.62 8.96

GreedyKL (Haghighi and Vanderwende, 2009) 37.98 8.53

TsSum (Conroy et al., 2006) 35.88 8.15

G-Flow (Christensen et al., 2013) 35.30 8.27

FreqSum (Nenkova et al., 2006) 35.30 8.11

Centroid (Radev et al., 2004b) 36.41 7.97

Cont. LexRank (Erkan and Radev, 2004) 35.95 7.47

RegSum (Hong and Nenkova, 2014) 38.57 9.75

GRU 36.64±0.11 8.47

GRU+GCN: Cosine Similarity Graph 37.33±0.23 8.78

GRU+GCN: ADG from G-Flow 37.41±0.32 8.97

GRU+GCN: Personalized Discourse Graph 38.23±0.22 9.48

Table 3: ROUGE Recalls on DUC 2004. We show

mean (and standard deviation for R-1) over 10 re-

peated trials for each of our experiments.

layers (L = 3). The hidden states in GRUsent,

GCN hidden layers, and GRUdoc are all 300-

dimensional vectors (D = F = 300).

The rescaling factor α in the objective func-

tion (Eq 13) is chosen as 40 from {10, 20, 30,

40, 50, 100} based on the validation performance.

The objective function is optimized using Adam

(Kingma and Ba, 2015) stochastic gradient de-

scent with a learning rate of 0.001 and a batch size

of 1. We use gradient clipping with a maximum

gradient norm of 1.0. The model is validated ev-

ery 10 iterations, and the training is stopped early

if the validation performance does not improve for

10 consecutive steps. We trained using a single

Tesla K80 GPU. For all the experiments, the train-

ing took approximately 30 minutes until a stop.

4.3 Results

Table 3 summarizes our results. First we take our

simple GRU model as the baseline of the RNN-

based regression approach. As seen from the table,

the addition of Cosine Similarity Graph on top of

the GRU clearly boosts the performance. Further-

more, the addition of ADG from G-Flow gives a

slighly better performance. Our Personalized Dis-

course Graph (PDG) enhances the R-1 score by

more than 1.50. The improvement indicates that

the combination of graphs and GCNs processes

sentence relations across documents better than

the vanilla RNN sequence models.

To gain a global view of our performance,

we also compare our result with other baseline

multi-document summarizers and the state-of-the-
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PDG ADG
Cosine

Similarity
No

Graph

Num of Iterations 200 280 310 250

Train Cost 4.286 5.460 5.458 5.310

Validation Cost 4.559 5.077 5.099 5.214

Table 4: Training statistics for the four experi-

ments. The first row shows the number of itera-

tions the model took to reach the best validation

result before an early stop. The train cost and val-

idation cost at that time step are shown in the sec-

ond row and third row, respectively. All the values

are the average over 10 repeated trials.

art systems related to our regression method. We

compute ROUGE scores from the actual output

summary of each system. We run the G-Flow

code released by Christensen et al. (2013) to get

the output summary of the G-Flow system. The

output summary of other systems are compiled in

Hong et al. (2014). To ensure fair comparison, we

use ROUGE-1.5.5 with the same parameters as in

Hong et al. (2014) across all methods: -n 2 -m -l

100 -x -c 95 -r 1000 -f A -p 0.5 -t 0.

From Table 3, we observe that our GCN sys-

tem significantly outperforms the commonly used

baselines and traditional graph approaches such

as Centroid, LexRank, and G-Flow. This indi-

cates the advantage of the representation power

of neural networks used in our model. Our sys-

tem also exceeds CLASSY04, the best peer sys-

tem in DUC 2004, and Support Vector Regres-

sion (SVR), a widely used regression-based sum-

marizer. We remain at a comparable level to Reg-

Sum, the state-of-the-art multi-document summa-

rizer using regression. The major difference is

that RegSum performs regression on word level

and estimates the salience of each word through a

rich set of word features, such as frequency, gram-

mar, context, and hand-crafted dictionaries. Reg-

Sum then computes sentence salience based on the

word scores. On the other hand, our model simply

works on sentence level, spotlighting sentence re-

lations encoded as a graph. Incorporating more

word-level features into our discourse graphs may

be an interesting future direction to explore.

4.4 Discussion

As shown in Table 3, our graph-based models

outperform the vanilla GRU model, which has

no graph. Additionally, for the three graphs we

consider, PDG improves R-1 score by 0.82 over

ADG, and ADG outperforms the Cosine Similar-
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Figure 2: Visualization of the learning curves for

the four experiments. The vertical axis displays

the validation costs in the interval 4.0 - 7.0.

PDG ADG
Cosine

Similarity

Number of nodes 265 265 265

Number of edges 1023 1050 884

Average edge weight 0.075 0.295 0.359

Average node degree 0.171 5.136 2.260

ρ of degree and salience 0.136 0.113 0.093

Table 5: Characteristics of the three graph repre-

sentations, averaged over the clusters (i.e. graphs)

in DUC 2004. Note that max edge weight in all

three representations is 1.0 due to rescaling for

consistency. The degree of each node is calculated

as the sum of edge weights.

ity Graph by 0.08 on the R-1 score. While the Co-

sine Similarity Graph encodes general word-level

connections between sentences, discourse graphs,

especially our personalized version, specialize in

representing the narrative and logical relations be-

tween sentences. Therefore, we hypothesize that

the PDG provides a more informative guide to es-

timating the importance of each sentence. In an at-

tempt to better understand the results and validate

the effect of sentence relation graphs (especially

of the PDG), we have conducted the analysis that

follows.

Training Statistics. We compare the learning

curves of the four different settings: GRU without

any graph, GRU+GCN with the Cosine Similarity

Graph, GRU+GCN with ADG, and GRU+GCN

with PDG (see Table 4 & Figure 2). Without a

graph, the model converges faster and achieves

lower training cost than the Cosine Similarity

Graph and ADG. This is most likely due to the

simplicity of the architecture, but it is also less

generalizable, yielding a higher validation cost
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Figure 3: Visualization of the relationship between salience score and node degree for the three graph

representation methods. Cluster d30011t from DUC 2004 is chosen as an example.

than the models with graphs. For the three graph

methods, ADG converges faster and has better

validation performance than the Cosine Similar-

ity Graph. PDG converges even faster than “No

Graph” and achieves the lowest training cost and

validation cost amongst all methods. This shows

that the PDG has particularly strong representation

power and generalizability.

Graph Statistics. We also analyze the charac-

teristics of the three graph representation methods

on DUC 2004 document clusters. Table 5 summa-

rizes the following basic statistics: the number of

nodes (i.e. sentences), the number of edges, av-

erage edge weight, and average node degree per

graph. We include the correlation between node

degree and salience, as well.

As seen from the table, PDG and ADG have ap-

proximately the same number of edges. This is

expected since the PDG is built by transforming

the edge weights in ADG. The Cosine Similarity

Graph has slightly fewer edges, simply due to the

implemented threshold.

Moreover, note that the ADG has significantly

higher average edge weight and node degree as

compared to the PDG. These values reflect the

discrete nature of the ADG’s edge assignment —

further evidence of this can be seen in Figure 3.

Because the ADG’s raw edge weight assignment

is done by increments of 0.5, the average node

degree tends to be significantly large. This mo-

tivated the construction of our PDG, which cor-

rects for this by coercing the average edge weight

and node degree to be more diverse and, conse-

quently, smaller (after rescaling). The process of

including sentence personalization scores in edge

weight assignments of the PDG leads to a select

number of edges gaining markedly large distinc-

tion. This aids the GCN in identifying the most

important edge connections along with the affili-

ated sentences.

Node Degree and Salience. In Table 5, we also

calculate the correlation coefficient ρ, per graph,

between the degree of each sentence node and its

salience score. We observe that all the graph rep-

resentations show positive correlation between the

node degree and the salience score. Moreover, the

order of correlation strength is PDG > ADG > Co-

sine Similarity Graph. Though node degree is a

simple measure of these graphs, this observation

supports our hypothesis on the efficacy of sentence

relation graphs, particularly of PDGs, to provide a

guide to salience estimation. 1

As a case study to illustrate our observation, we

chose one cluster (d30011t) from DUC 2004. Fig-

ure 3 shows the scatter plots of the node degree

and salience score of each sentence.

Visualization of the PDG. Finally, to demon-

strate the functionality of the PDG and comple-

ment our discussion from Section 3.1, we visual-

ize the PDG on cluster d30011t with the salience

score on each node in Figure 4 (also see Figure 5

for the actual sentences).

From the visualization, it can be observed that

the nodes representing salient sentences (such as

(d6, s8), (d6, s7), and (d2, s4)) tend to have higher

degrees in the PDG. We can also observe that

the PDG represents edges which connect nodes

of sentences from different documents, in contrast

with the traditional sequence model.

From Figure 5, we note that the most salient

sentence (d6, s8) actually describes much of the

reference summary. As an example of discourse

relation, (d6, s7) and (d2, s4), the two nodes con-

nected to (d6, s8), provide the background for

1 However, we shall add that simply selecting sentences
of highest node degrees in PDGs did not itself produce good
summaries, compared to our GCN model. Hence, we utilize
the graph representations specifically as inputs to the GCN.
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Figure 4: Visualization of the PDG on cluster d30011t. Each node is a sentence, with label (DocumentID,

SentenceID). The node color represents the salience score (see the color bar). For simplicity, we only

display edges of weight above 0.03. Best viewed in color.

Reference Summary (truncated): Malaysian 
Prime Minister Mahathir Mohamad ruled adroitly 
for 17 years until September 1998 when he 
suddenly reversed his economic policy and fired 
his popular deputy and heir apparent, Anwar 
Ibrahim. Anwar organized a political opposition, 
leading Mahathir to arrest him. (...) Anwar 
remained in custody as lawyers appealed. (...)
Sent-label (6,8): Anwar was ... after two weeks 
of nationwide rallies at which he called for 
government reform and Mahathir's resignation, 
he was arrested ....
Sent-label (6,7): The two had differed over 
economic policy and Anwar has said Mahathir 
feared he was a threat to his 17-year rule.
Sent-label (2,4): Mahathir and Anwar had 
differed over economic policy and Anwar says 
Mahathir feared him as an alternative leader.
Sent-label (0,22): Before his arrest, Anwar 
designated his wife,  Azizah Ismail, as the leader 
of his new ``reform'' movement.

Figure 5: Reference summary and illustrative sen-

tences from cluster d30011t.

(d6, s8), even though they do not share many

words in common with it. On the other hand,

(d0, s22), which is only connected with (d2, s4), is

not salient as it does not provide a central message

for the summary.

5 Conclusion

In this paper, we presented a novel multi-document

summarization system that exploits the represen-

tational power of neural networks and graph rep-

resentations of sentence relationships. On top of

a simple GRU model as an RNN-based regression

baseline, we build a Graph Convolutional Network

(GCN) architecture applied on a Personalized Dis-

course Graph. Our model, unlike traditional RNN

models, can capture sentence relations across doc-

uments and demonstrates improved salience pre-

diction and summarization, achieving competitive

performance with current state-of-the-art systems.

Furthermore, through multiple analyses, we have

validated the efficacy of sentence relation graphs,

particularly of PDG, to help to learn the salience

of sentences. This work shows the promise of the

GCN models and of discourse graphs applied to

processing multi-document inputs.
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