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Abstract—In model-based diagnostic algorithms, it is 
assumed that the model is correct. If the model is incorrect, 
the diagnostic algorithm may diagnose the wrong fault, 
which can be costly and time consuming. Using past 
maintenance events, one should be able to make corrections 
to the model in order for diagnostic algorithm to correctly 
diagnosis faults. In this paper, a maturation approach is 
proposed which uses the graph-theoretic representations of 
Timed Failure Propagation Graph (TFPG) models and 
diagnostic sessions based on recently standardized 
diagnostic ontologies to determine statistical discrepancies 
between that which is expected by the models and that 
which has been encountered in practice. These discrepancies 
are then analyzed to generate recommendations for maturing 
the diagnostic models. Maturation recommendations include 
identifying new dependencies and erroneous or tenuous 
dependencies. 1 2 
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1. INTRODUCTION 

Timed failure propagation graphs (TFPG) were first 
introduced in 1994 to provide improved robustness in fault 
diagnosis by analyzing temporal relationships in alarm 
events [1], [2]. Several diagnostic algorithms have been 
developed to utilize these TFPG models by determining the 
most likely fault occurrence given a set of alarms that have 
been triggered [3], [4]. TFPG models have also been 
extended to include model dependency constraints on the 
propagation links by Abdelwahed in 2004 [5]. These 
extended models, referred to as a Hybrid Failure 
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Propagation Graphs (HFPG), allow the model to operate in 
in various operational modes. The different operational 
modes allow alarms to be either enabled or disabled. In [6 ], 
the authors proposed a hierarchical diagnosis approach for 
complex causal systems. In their approach, the system is 
partioned into a set of local subsystems, each of which 
represent a sub-graph of the entire system. All of the local 
subsystems are then contained within a global system that 
obtains a globally consistent diagnosis of the entire TFPG 
system. Figure 1 gives an example TFPG model. In the 
example, the nodes labeled with F1, F2, F3, and F4 
represent faults in the TFPG model. The labels D1 through 
D11 denote nodes that represent discrepancies. Monitored 
discrepancies, or alarms, are represented by nodes labeled 
by M2, M3, M9, M10, and M11. Monitors allow the 
reasoner to detect if a discrepancy has been triggered or 
turned ON. By looking at which alarms are ON and OFF, 
the reasoner will diagnosis the most likely fault that was 
triggered.  

 

Figure 1. A sample TFPG mode. Nodes that are labeled 
F1, F2, F3, and F4 are faults. Nodes labeled D1 through 
D11 are discrepancies, and nodes labeled M2, M3, M9, 
M10 and M11 are monitors of discrepancies. 
Discrepancies with monitors are often referred to as 
alarms.  

One of the difficulties with using TFPG models for fault 
diagnostics is that diagnosis performance is dependent on 
how accurate the TFPG model is. A bad TFPG model will 
result in poor diagnosis from the reasoner. The problem is 
increased when a hierarchical diagnosis approach is used 
because it is difficult to know what relations should exist 
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between the different subsystems or how the dynamical 
system will behave in different environmental conditions 
[7]. If there is an error in the model, then the reasoner's 
likelihood of diagnosing the correct fault in the system will 
decrease. This will cause an increase in time, money, parts, 
and labor in the maintenance of the modeled system since 
the corrective action will not be known [7]. For example, 
the TFPG model in Figure 2 has had the edge from D7 to 
D9 deleted. In this faulty model, the reasoner will not be 
able to accurately diagnosis fault F4 should have occurred. 
The reasoner will find that alarms M9, M10, and M11 were 
all triggered. However, fault F4 will not be diagnosed as the 
fault since the model does not have a relationship between 
fault F4 and alarms M9, M10, and M11, increasing the 
maintenance time since the true fault has to be located by 
alternative means [9].  

 

Figure 2. A faulty TFPG model. The link from 
discrepancy D7 to discrepancy D9 has been removed. 

To determine whether the reasoner diagnosed the correct 
fault, one must compare the reasoner’s diagnosis with the 
actual fault found by alternative means. By storing past 
reasoner history and maintenance history, the later of which 
contains the correct fault diagnosis, one can compare the 
two history sessions and look for any discrepancies between 
the reasoner’s history and the maintenance history. If there 
is a discrepancy between the two histories, then we know 
that the reasoner misdiagnosed a fault. If the reasoner is 
misdiagnosing a particular fault a large number of times, 
then there could an error in the TFPG model. The 
discrepancies between the reasoner and maintenance history 
can then be used to modify the TFPG model such that the 
reasoner will output the fault that has been occurring [7]. 
Therefore, we propose a maturation process that is able to 
look at prior maintenance events and use that information to 
make changes to the TFPG model in order to improve the 
accuracy of the model. In the example in Figure 2, we 
observed that fault F4 is not diagnosed as the fault when 
alarms M9, M10, and M11 are triggered. Using this 
information, a change should be made to the model so that 
given those alarm sequences, fault F4 is diagnosed as the 
true fault. In this scenario, a link between either the fault F4 
node or discrepancy nodes D5 or D7 should be connected to 
alarm M9.  

TFPG maturation is a difficult problem [8]. First, all of the 
reasoner diagnosis history and maintenance history is 
needed to be able to locate where the reasoner is 
misdiagnosing a fault. These data sources are often stored in 
heterogeneous systems and therefore makes retrieval and 
analysis of the data difficult. For example, maintenance data 
is usually stored, but many times the most important aspect 
of the data is human entered text fields, which are difficult 
to interpret automatically. Reasoner and maintenance data 
could also be stored among many repositories, which makes 
pulling them all together difficult [9]. 

One possible way to overcome these difficulties is to use a 
domain ontology to join the different data sources together 
in a meaningful way. In prior work, Wilmering and 
Sheppard suggested an approach to utilizing domain 
ontologies as a means to focus and filter data analysis in 
knowledge discovery [10]. The specific focus of that work 
was utilizing the ontologies to guide the process by which 
diagnostic models could be matured over time. That paper 
proposed using a method such as the Apriori Algorithm to 
discover new relationships within historical maintenance 
data that could be used to determine diagnostic 
relationships, improved probability estimates, or better 
specification of test processes.  

In this paper, we describe an extension of this work in 
which diagnostic models and historical diagnostic session 
data are mapped to two ontologies derived from IEEE Std 
1232 Standard for Artificial Intelligence Exchange and 
Service Tie to All Test Environments (AI-ESTATE) and Std 
1632.2 Software Interface for Maintenance Information 
Collection and Analysis (SIMICA): Maintenance Action 
Information (MAI) [11], [12]. Specifically, the AI-ESTATE 
D-Matrix Inference Model provides a semantic definition of 
information used to define diagnostic models based on 
diagnostic dependencies while the AI-ESTATE Dynamic 
Context Model provides a semantic definition of the 
information typically used by diagnostic reasoners during 
online reasoning to track test results, record inferences, and 
recommend hypotheses. The SIMICA MAI model defines 
information elements associated with maintenance history. 
These two models, defined by the IEEE using the 
EXPRESS language, have been redefined using the web 
ontology language (OWL) [13], [14]. D-matrix models and 
diagnostic sessions are then mapped to the ontologies and 
represented using OWL-based instance formats. 

The maturation approach uses the graph-theoretic 
representations of the models and sessions to determine 
statistical discrepancies between that which is expected by 
the models and that which has been encountered in practice. 
These discrepancies between actual maintenance events and 
what the TFPG reasoner reported are then stored and used 
by our TFPG maturation approach. From this, we are able to 
recommend changes, such as adding or removing links 
between discrepancies. We are also able to track and 
estimate false alarms and non-detect rates. Once the changes 
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have been made the reasoner should be able to correctly 
diagnosis the fault.  

In developing our TFPG maturation approach, we looked at 
two different scenarios. First, we looked at how to mature 
which alarms are monitoring which faults. This scenario is 
very similar to the example previously described.  The 
second maturation scenario we studied was how different 
alarms causally depend on each other. For example, one 
could be given an alarm sequence in the order of A1, A2 
and A3. In a different case, we observe the same alarms, but 
in a different order, such as A1, A3 and A2. If the reasoner 
is diagnosing the wrong fault in these cases, then there is 
some erroneous relationship in our model. In our work, we 
focused mostly on the first scenario. However, we have 
developed and are currently testing an algorithm for the 
second scenario. 

2. TIMED FAILURE PROPAGATION GRAPHS  

A timed failure propagation graph (TFPG) model is a 
directed graph in which each vertex represents a failure 
node or discrepancy [1], [2]. Failure nodes represent faults 
in the target system and discrepancies are causal nodes that 
are affected by failure nodes. Discrepancies can be 
monitored or unmonitored. Monitored discrepancies are 
often referred to as alarms. The edges between the nodes 
represent the effect of failure propagation over time in the 
underlying system that is being modeled. Formally, this is 
represented as TFPG = (F, D, E, M, ET, EM, DC, DS) 
where:  

• F is a set of failure nodes 
• D is a set of discrepancy nodes 
• E  = V × V is a set of edges, where V = F U D 
• M is a nonempty set of system modes 
• ET: ET(E) → Int, Mapping for each edge in E 

where Int denotes finite time intervals on each 
edge.  

• EM: Map that associates every edge in E with a set 
of modes in M  

• DC: DC(D) →{AND, OR}, Map which defines the 
type of each discrepancy as either an AND or an 
OR discrepancy 

• DS: DS(D) → {A, I}, Map defining the monitoring 
status of the discrepancy as either active (A) for 
discrepancies attached to monitored alarms or 
inactive (I) otherwise 
 

The set of discrepancies that are monitored are defined by 
the map DS. The map ET associates with each edge e in E a 
minimum and maximum time for the failure to propagate 
along the edge. EM associates each edge with a subset of the 
system modes at which the failure can propagate along the 
edge. DC defines if each discrepancy is an AND or an OR 
node. The goal of a diagnostic algorithm is to find a 
hypothetical state that tries to explain the physical system 
based on the observed system [3]. In our TFPG maturation 

approach, we only deal with TFPG models that contain only 
OR discrepancies and operate in only one mode.  

The D-matrix is a matrix representation that relates the 
faults and the discrepancies that monitor or observe those 
faults. We can also formally represent it as the following. 
Let F represent a set of faults. Let D represent the  set of 
discrepancies. Assume each fi ∈ F is a Boolean variable 
such that eval(fi) ∈ {0,1} and each dj ∈ D is also a Boolean 
variable such that eval(aj) ∈ {0,1}. Then a diagnostic 
signature is defined to be the vector  

)](),...,([ ||1 Ti devaldevalf =         (1) 

Where 
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

=
        otherwise.     0
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j

fd
deval             (2) 

and fi[j] is the jth element in vector fi. A D-matrix is then 
defined to be the set of diagnostic signatures di for all di ∈ D 
[15]. Rows represent faults and columns represent 
discrepancies. The ith column corresponds to discrepancy i 
in the TFPG model. The matrix corresponding to D-matrix 
for Figure 1 would then be as follows:  
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100001010003

111001001002

111101001111

1110987654321

F

F

F

F
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However, in most situations, the only discrepancies that are 
included or shown in the D-matrix are the monitored ones. 
The D-matrix for Figure 1 would be represented as the 
following where the columns are the alarms in numerical 
order would be defined as follows:  
 

111004

100003

111102

111111

1110932

F

F

F

F

DDDDD

 

 
D-matrices do not fully represent TFPG models because 
they do not capture the temporal relationships. Nevertheless, 
the  representation of the model is easy to manipulate. Given 
a D-matrix which relates the faults and alarms, we can 
actually find the logical relationship between the alarms by 
computing the logical closure of the matrix [16]. This is 
done by determining which attributes have a parent set that 
is a subset of another attribute’s parent set. Let ai be an 
alarm that monitors faults fi and let aj be an alarm that 
monitors faults fj. We can represent this as fi → ai and fj → 
aj. If fi is a subset of fj, then fj contains fi and fj → ai. If aj is 
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true, fj must also be true. This means ai must be true and 
therefore ai → aj [16], [17]. Take for example the TFPG 
model and the corresponding D-matrix which shows the 
relationship of faults and alarms in Figure 3. The faults that 
are observed by M1 are a subset of the faults that are 
observed by alarm M2. Similarly, the faults that are 
observed by M2 are a subset of the faults that are observed 
by alarm M3. The TFPG model that would result can be 
seen in Figure 4.  
 

 
 

 M1 M2 M3 
A 1 1 1 
B 0 1 1 
C 0 0 1 

Figure 3. A simple TFPG model and the corresponding 
D-Matrix. A, B, and C are faults while M1, M2, and M3 
are alarms.  

Using the original D-matrix one can easily find the logical 
closure matrix of the discrepancies. This matrix relates 
discrepancies to other discrepancies. Again, similar to the 
first D-matrix, a 1 in the ith row and jth column means that 
the jth discrepancy observers the ith discrepancy. The D-
matrix in Figure 4 is the result of taking the closure of the 
original D-matrix.  
 
In addition, [16] showed that using the logical closure 
matrix, the transitive links between discrepancies can be 
removed by using logical relationships. This process is 
called taking the logical unclosure.   
 
After finding the logical unclosure of the matrix, the logical 
NOT is taken over the subset and performing an AND 
between the subset of parents for an alarm and the set of 
alarms. In doing so, the transitive edges in the TFPG model 
and the corresponding D-matrices are removed. The TFPG 
model in Figure 5 and the corresponding D-matrix is the 
model that results after taking the logical unclosure of the 
TFPG model in Figure 4. 
 
This unclosed D-matrix is then able to show the first order 
dependencies between the discrepancies. In our 
experiments, we will assume that we only have access to the 
D-matrix models as they are a universal data representation 
of TFPG models. 

3. RELATED WORK 

The idea behind diagnostic maturation has been discussed in 
several papers, but no formal process or algorithm has been 
proposed for large amounts of corrective actions in which 
faulty or false alarms could be occurring. In [7], the author 
points out there are unexpected and unplanned system 
interactions that can degrade the performance of the 
diagnostic design. In order to increase performance of the 
diagnostic model, historical maintenance actions will be 
used to help mature the model. However, [7] points out that 

 
 

 M1 M2 M3 
M1 0 1 1 
M2 0 0 1 
M3 0 0 0 

Figure 4. The TFPG model and corresponding D-Matrix 
after the logical closure has been taken of the TFPG 
model in Figure 3.  

 

 
 M1 M2 M3 

A 1 0 0 
B 0 1 0 
C 0 0 1 

 
 M1 M2 M3 

M1 0 1 0 
M2 0 0 1 
M3 0 0 0 

Figure 5. The resulting TFPG model and D-Matrices 
once the logical unclosure has been taken of the TFPG 
model in Figure 4. The bottom matrix shows the first 
order relations between the alarms and faults while the 
bottom matrix shows the relations between alarms.  
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the process requires ready access to the model, maintenance 
events, and any other information that could aid in the 
maturation process. In order to utilize all of these resources, 
the author proposes using an ontology design to gather all 
the required data together in a meaningful way. 
 
In [17], [18], the authors discuss using explanation-based 
learning for the diagnostic model. If misdiagnosis occurs, 
then additional testing is done until a correct diagnosis has 
been made. This information can then be used to modify the 
structure of the model so that the correct diagnosis is 
consistent with testing. The authors also give a proof that 
given a single misdiagnoses, the model can be modified so 
that the misdiagnoses never occurs again. However, this was 
only valid for a single training example and did not include 
how to deal with faulty or false alarms. 
 
In [20], the authors also use explanation based learning to 
aid rule-based diagnostics. The authors use fault diagnostic 
cases to help create heuristic domain knowledge that would 
then assist the reasoner. This heuristic domain knowledge 
was then used to create additional rules which would then 
be used in conjunction with the original rule based reasoner.  

The authors in [9] also discuss the need for diagnostic 
maturation. In the paper, the authors discuss the need for 
recording flight information and maintenance data. They 
present an at-wing modular application for portable 
maintenance aids which can assist maintenance events by 
giving information to maintenance workers. 

4. ONTOLOGY-GUIDED DATA MINING 

In previous work, Wilmering and Sheppard suggested using 
domain ontologies as a means to focus and filter data 
analysis in data mining [10]. The specific focus of that work 
was utilizing the ontologies to guide the process by which 
diagnostic models could be matured over time. In this paper, 
we used domain ontologies as a way to join together 
different data sources and to find discrepancies between 
those different data sources. 

The approach taken in developing ontologies to support the 
knowledge discovery process is based on a set of 
standardized semantic models developed in the EXPRESS 
modeling language [11], [12]. EXPRESS is an information 
modeling language defined by the International 
Organization for Standardization (ISO) to support 
communication of product data between engineering 
applications. The purpose of the language is to define the 
semantics of information that will be generated by a system 
and is not meant to define database formats, file formats, or 
exchange formats. In EXPRESS, models are defined using a 
hierarchy partitioned along schemata, entities, and attributes 
[19]. EXPRESS is often described as being object oriented 
in flavor because it incorporates a number of object-oriented 
features, such as encapsulation, abstraction, and inheritance. 
Values for attributes can be constrained through logical 
constraints on those attributes. These constraints, which 

often define relationships in non-trivial ways, give 
EXPRESS the ability to define computer-processable 
semantics. These constraints allow applications to discern if 
the information being received satisfies the intended 
meaning when it was generated and transmitted [19]. 
 
In this application, we used ontologies derived from the 
IEEE Std 1232 Artificial Intelligence Exchange and Service 
Tie to All Test Environments (AI-ESTATE) and IEEE Std 
1636 Software Interface for Maintenance Information 
Collection and Analysis (SIMICA) [11]. [12]. Specifically, 
we used the IEEE Std 1232 (AI-ESTATE), and IEEE Std 
1636.2 (Maintenance Action Information or MAI). AI-
ESTATE is a set of specifications for exchanging data and 
defining software services for diagnostic systems. Its 
purpose is to standardize the interfaces between elements of 
an intelligent diagnostic reasoner as well as the 
representation of diagnostic knowledge and data for use by 
such diagnostic reasoners. The information models defined 
for AI-ESTATE are designed to form the basis for 
facilitating exchange of persistent diagnostic information 
between two reasoners, and also to provide a formal typing 
system for diagnostic services. The principal information 
model used out of AI-ESTATE for this work is the D-
Matrix Inference Model (DIM) since it can be mapped to 
the structure of Timed Failure Propagation Graphs. An 
additional key information model—the Dynamic Context 
Model—also provides the semantics for historical 
information captured by a reasoner during a diagnostic 
session. Finally, both of these models make use of a 
“common” information model (called the Common Element 
Model) [11]. The SIMICA MAI was designed to capture 
records of actual maintenance actions performed on a 
particular system or subsystem [12]. 
 
Recent work in ontology-guided data mining has made use 
of standard ontology languages (e.g., OWL, DAML+OIL, 
and RDF) [14], [21], [22]. EXPRESS was not designed to 
support ontology-based analysis; however, the semantics 
defined by EXPRESS models are very rich. Therefore, we 
used the EXPRESS models as the foundation for defining 
ontologies using one of the most widely used ontology 
languages. We decided to use the Web Ontology Language 
(OWL) due to its prevalence in ontology-based systems. 
 
The Web Ontology Language, or OWL, is a language for 
defining and instantiating ontologies [14]. An OWL 
ontology may have descriptions of classes, properties, and 
their instances. The formal OWL semantics then specify 
how to find logical consequences from the defined entities.  
 
To convert EXPRESS to OWL, we first had to define a 
mapping of EXPRESS concepts to OWL concepts. Once the 
mapping of concepts was defined, we then created all of the 
OWL ontologies based on the EXPRESS standards. Finally, 
we converted all of the data into the OWL format and used 
our ontology guided data mining algorithm to locate the 
discrepancies.  
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The following code is part of the EXPRESS definition of 
the AI-ESTATE DIM and the EXPRESS diagram can be 
seen Figure 6 [11].  Part of the corresponding OWL 
definition for the AI-ESTATE DIM can be seen in Figure 7.  
 

 
 

 

Figure 6. The EXPRESS code and diagram for the AI 
ESTATE D-Matrix Inference Model (DIM). The lines 
with circles and labels denote attributes while the lines 
with circles and no label denote subclass relationships. 

For our mining algorithm, we located any discrepancies in 
our ontology where the reasoner’s diagnosis and that of the 
maintenance event differed. Once those discrepancies were 
located, we pulled in and stored all of the alarm sequences 
corresponding to the easoner’s wrong diagnosis. Those 
alarm sequences and the corresponding fault which was 
determined to be the true cause through the maintenance 
event are then used in the following section for the rest of 
the maturation algorithm. 

5. MATURATION OF ALARM DEPENDENCIES 

In TFPG models, alarms monitor or observe faults. If a 
certain alarm is monitoring a fault for a real world 
application, but maintenance events are finding that the 
alarm never occurs when that fault occurs, then that alarm 
probably should not be monitoring that particular fault. 
Additionally, if another alarm is not monitoring a fault but 
the alarm always occurs when the fault occurs, then that 
alarm should probably monitor that fault. In addition, there 
will also be alarms that do not fire when they should (non-
detects) and alarms that fire when they should not (false 

alarms). These alarms need to be analyzed in order to gain 
an accurate picture of the alarms that should be occurring 
based on the maintenance events. Such analysis can also 
assist incorporating uncertainty measures into the diagnostic 
process.  
 
In the maturation of alarm dependencies, we have a 
collection of alarm sequences from whenever maintenance 
find a certain fault. The maturation process will search for 
any differences between the alarm sequences and signatures 
in the D-matrix. However, care needs to be taken when 
considering false alarms and non-detects since adjusting the 
dependencies based on those alarms will likely have a 
negative effect on the performance of the reasoner.  
 

 

 

Figure 7. Part of the OWL code and diagram for the AI 
ESTATE DIM model. The large arrows without labels 
denote parent and child relationships while the smaller 
arrows denote relationships.  

 
The maturation algorithm we developed works as follows. 
First, we retrieve the alarm sequences corresponding to the 
AI-ESTATE based and SIMICA MAI based logs of a 
repaired fault (whether the diagnosis was correct or not). An 
alarm sequence is represented as a bit string where each 
position in the bit string corresponds to a different 
observable alarm in the TFPG model. For example, a one at 
index i means that the ith alarm fired in the fault sequence, 
and a zero means that the ith alarm did not fire for that fault 
sequence. We then sum and normalize each bit yielding a 
probability of firing given the fault was diagnosed as the 
true fault. Finally, we compare the resulting vector of 
probabilities to the fault signature in the AI-ESTATE DIM-
based D-matrix that corresponds to the repaired fault. Where 

<owl:Class rdf:ID="OutcomeInference"> 
     <rdfs:subClassOf rdf:about="#DMATRIX_MODEL"/> 
</owl:Class> 
<owl:Class rdf:ID="CEM_ConfidenceValue"> 
     <rdfs:subClassOf rdf:about="#DMATRIX_MODEL"/> 
</owl:Class> 
<owl:ObjectProperty rdf:ID="confidence"> 
     <owl:maxCardinality  rdf:datatype= 
          "http://…/XMLSchema#nonNegativeInteger">1 
     </owl:maxCardinality> 
     <owl:minCardinality rdf:datatype= 
          "http://.../XMLSchema#nonNegativeInteger" >0 
     </owl:minCardinality> 
     <rdfs:domain rdf:resource="#OutcomeInference"/> 
     <rdfs:range rdf:resource="#CEM_ConfidenceValue"/> 
</owl:ObjectProperty> 

  ENTITY OutcomeInference; 
      andOrRows                        : SET [1:?] OF Inference; 
      preconditionTestOutcome : TestOutcome; 
      confidence                          : OPTIONAL ConfidenceValue; 
      andOrRelation                    : BOOLEAN; 
    UNIQUE 
      one_outcome                      : preconditionTestOutcome; 
    WHERE 
      conjunctOrDisjunct : ((SELF.preconditionTestOutcome.valueDomain = Pass) AND 
                            (SELF.and_Or = TRUE)) XOR           
                                          ((SELF.preconditionTestOutcome.valueDomain = Fail) AND 
                            (SELF.and_Or = FALSE)); 
      noUserDefined      : reconditionTestOutcome.valueDomain[1] <> UserDefined; 
  END_ENTITY; 
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there is a wide disparity between the bit positions in the D-
matrix and the probabilities in the probability vector, we 
flag that as a relationship to be examined. The following are 
the steps for the process:  
 

1. Find all discrepancies between the maintenance 
diagnosis and the reasoner diagnosis. 

2. From those discrepancies, pull in all of the alarm 
sequences for a particular maintenance diagnosis 
(or fault).  

3. Calculate the probability of each alarm occurring 
given the maintenance diagnosis.  

4. Compare each alarm probability with the D-matrix.  
a. If the alarm is occurring with a high 

probability, but the D-matrix does not 
have the alarm observing the fault, then 
flag that alarm to be looked at in relation 
to that fault.  

b. If the alarm is occurring with a low 
probability, but the D-matrix shows a 
relationship between the fault and alarm, 
then flag the alarm to be looked at in 
relation to the fault.  

 
If an alarm occurs with a high probability and the D-matrix 
shows that the alarm is observing the fault or if the alarm 
occurs with a low probability and the D-matrix shows that 
the alarm is not observing the fault, then there appears to be 
no problems with that alarm with respect to the fault. 
However, in certain cases, it may still be beneficial to look 
at those alarms. For example, if an alarm is occurring with a 
probability of .35 and the D-matrix shows no relationship 
between that fault and alarm, then that could suggest that the 
alarm is faulty and needs to be analyzed more carefully.  

6. MATURATION OF ALARM SEQUENCES 

This basic TFPG maturation described in the previous 
section is very simple and does not make use of the 
ontologies. In this section, we use the casual semantics of 
the TFPG and D-matrix to define an algorithm for maturing 
causal temporal relationships.  
 
Similar to the maturation process of alarm dependencies, we 
will have a set of alarm sequences from whenever 
maintenance found a particular fault. The difference is that 
instead of just looking at which alarms were triggered, we 
also look at the order in which the alarms were triggered. 
We will still have false and non-detect alarms and special 
steps must be taken in dealing with these alarms.  
 
Given a set of alarm sequences, we calculate a post-
occurrence probability matrix which gives the probability of 
an alarm occurring after another alarm. For alarms i and j, 
[i,j] represents the probability that alarm i occurred before 
alarm j with respect to the total number of alarm sequences 
that have occurred. This matrix represents the temporal 
occurrences of the alarms that are being observed.  
 

Next, we trace the expected alarm sequences for the TFPG 
model. In the simple case, one walks the unclosed D-Matrix 
which will give a straight sequence of alarms. However, in 
many cases there will be a split in the propagation link in 
the TFPG model. For example if fault 1 in Figure 1 were to 
fail, the signal would split and propagate to alarms M2 and 
M3. Because the propagation signal is split, alarms M2 and 
M3 could occur in either order and still result in the correct 
diagnosis. This makes trying to calculate the ideal alarm 
sequence difficult. One possible way would be to find all of 
the possible different valid alarm sequences for a given fault 
and then calculate a transition probability matrix for those 
expected alarms. The expected matrix could then be 
compared to the actual post-occurrence probability matrix to 
discover discrepancies. However, generating all of the valid 
alarm sequences is a combinatorial problem and therefore 
has an exponential run time. Therefore, we simply find for 
each alarm, which alarms we could expect to see following 
that alarm for a given fault. To do so, we start tracing an 
alarm sequence in the unclosed D-Matrix. If we find a split 
in the model, we follow both of those sequences and find 
the straight sequence of those alarms. Then we compare 
each alarm sequence. For each alarm in the alarm sequences 
that occurred after the split, we compare each alarm in one 
alarm sequence against all other alarms in the other alarm 
sequences such that those alarms are marked to follow the 
given alarm. For straight alarm sequences, we specially 
mark those alarms and the following alarms so that it is 
known which alarm has to occur first. For example, given 
the simple TFPG model in Figure 8, we see that the signal is 
split at the discrepancy D2.  
 

 

Figure 8. A simple TFPG model. The signal is split at the 
discrepancy D2 and makes predicting the expected 
alarm sequences a difficult problem.  

We first start walking down the alarms starting at the fault 
and we generate the alarm sequence M1, M2. We then find 
a split occurring after alarm M2, generate all of the alarm 
sequences that occur after the split, which would give us the 
sequences M3, M5 and M4, M6. We first mark which 
alarms must occur before the other alarms, such as M1 must 
occur before all other alarms. Similarly, M4 must occur 
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before M6. Next, we compare the two alarm sequences that 
occurred after the split. In this case, M3 may occur before 
M4 and M6. Similarly, M4 may occur before M3 and M5. 
After these sequences of ordering notes have been made, we 
then compare them to the post-occurrence probability matrix 
and note any discrepancies we are seeing between the two 
for inspection. For the TFPG model in Figure 8, we would 
see the post-occurrence matrix.  
 

 M1 M2 M3 M4 M5 M6 
M1  X X X X X 
M2   X X X X 
M3    O X O 
M4   O  O X 
M5    O  O 
M6   O  O  

 
The squares with X’s denote observations that should 
always occur (that is, the probabilities should be close to 
100 percent) while the squares with O’s denote observations 
that may occur with high probability. The following steps 
summarize the algorithm: 
 

1. Find all discrepancies between the maintenance 
diagnosis and the reasoned diagnosis. 

2. From those discrepancies, pull in all of the alarm 
sequences for a particular maintenance diagnosis 
(or fault). 

3. For each alarm sequence, calculate the transition 
probability matrix where [i,j] gives the probability 
of alarm j occurring after alarm i.  

4. For the particular fault, mark the alarms that are 
expected to have high probability values.  

5. Compare the marked matrix with the transition 
probability matrix and look for any discrepancies.  

6. If there are any discrepancies between the two, flag 
the two alarms to be looked at.  

 
Similarly to the alarm-fault maturation process, some 
probability values may not fall into a gray area. Those 
alarms may not be require the TFPG model to be modified, 
but may have other problems, such as being a bad alarm.   

In addition to trying to predict alarm sequences, we also 
propose comparing these temporal matrices to the logical 
unclosed D-matrix and the adjacency matrix of the TFPG 
model. This allows us to see the relationship between the 
temporal, logical, and actual relationships of the alarms with 
one another in the TFPG model. In comparing these three 
matrices, we propose taking a specific corrective action if 
there are discrepancies between these three matrices which 
will correct any errors that may be present in the TFPG 
model. This aspect of the algorithm is still being developed. 

7. EXPERIMENTS 

To test our fault dependency maturation algorithm, we used 
a Pump and Valve TFPG Model developed by Boeing and 
used the Vanderbilt FACT diagnostic reasoner to diagnosis 
faults given a firing of alarms. The Pump and Valve model 
provided was used as “ground truth,” and two erroneous 
models were created by deleting a link and removing a 
relationship in the TFPG and adding a link and thus creating 
a relationship between a fault and an alarm in the TFPG 
model that should not exist. Three sets of alarm sequences 
were used, one of which properly identified the P01_burst 
fault in the ground truth TFPG. The other two, while not 
capable of fully isolating P01_burst still yields hypotheses 
consistent with this fault. The four alarms correctly identify 
P01_burst as the fault are the following: 

• IVHM09 – In flight operating pressure command 
Low output Lo 

• IVHM11– In flight operating pressure command 
Medium, output Lo 

• IVHM13– In flight operating pressure command 
High, output Lo 

• IVHM15– Fuel Containment 
 
In our first modified model, we deleted the relationship 
between P01_burst and IVHM15 through deleting the link 
from P01_burst to the discrepancy 
Contain_Fuel_in_Plumbing Failed. The good model can be 
seen in Figure 9 and the bad or modified model can be seen 
in Figure 10.  

Figure 9. Part of the good Pump and Valve TFPG model. The model was used to diagnosis the ground truth and to
simulate maintenance events that would discover the true fault in the bad model. 
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First, we fired alarms IVHM09, IVHM11, and IVHM13. 
Next we only fired IVHM15. Finally, we fired the alarms 
IVHM09, IVHM11, IVHM13 and IVHM15. In addition, we 
added false alarms IVHM01, IVHM04, and IVHM05 where 
each individual false alarm was fired somewhere in the 
alarm sequence of IVHM09, IVHM11, IVHM13 and 
IVHM15. From these seven alarm sequences, we then 
repeated the sequences multiple times to simulate 
reoccurrence of an alarm sequence in a real world 
application. The alarm sequences that contained false alarms 
were repeated fewer times than the alarm sequences that did 
not contain any false alarms.  

As stated above, the alarms IVHM09, IVHM11, IVHM13 
and IVHM15 properly diagnoses the P01_burst fault in the 
ground truth model. However, since we deleted the causal 
link from P01_burst to IVHM09 in the modified model, the 
reasoner diagnosed different faults. Specifically, the 
reasoner found that there were 50 different possible faults 
that could have occurred when the alarms were IVHM09, 
IVHM11, IVHM13 and IVHM15 fired, none of which 
included P01_burst. To finish the test case, we assumed that 
maintenance would eventually determine that P01_burst 
was the actual fault so that the system could be repaired. 
This information would be provided by the maintenance 
action data.  
 
Using these alarm sequences, we applied the algorithm 
described above to see if we could determine where the 
correct dependency in the model should be. In using the 
TFPG maturation algorithm, we created the following table 
as output, which can be seen in Figure 11. The table gives 
the corresponding fault for which we are investigating in the 
first row. The “Index” column gives the index of the alarms 
while the “Alarms” column lists every alarm in the TFPG 
model. The “DMatrix” column shows if the alarm observes 
the particular fault. A 1 means the alarm does observe the 
fault while a 0 means the alarm does not observe the fault. 
The “FaultSequence” column gives the probability of the 
alarm occurring given that the fault was diagnosed as the 
fault through the maintenance event. 

After analyzing the output, we found that the algorithm 
identified that the TFPG model did not have the alarms 
IVHM15 monitoring the fault P01_burst but noticed that the 

alarm IVHM15 occurred with a high probability if the fault 
P01_burst was diagnosed as the true fault in the 
maintenance event and thus suggests that some relationship 
exists between P01_bust and IVHM15. In our table, we 
have flagged that alarm to be analyzed to see if there is an 
error in the model.  After examining the TFPG model, we 
found that links from the fault P01_burst to alarms IVHM15 
should be added. In our case, the simplest explanation was 
to add a link from P01_burst to the discrepancy 
Contain_Fuel_in_Plumbing Failed. As indicated above, this 
was indeed the link that was deleted from the original 
model.  

 

Figure 11. Part of the output generated by our 
algorithm. The alarm IVHM15 is not observing the fault 
P01_bust, but is occurring with a large number of times 
whenever the fault P01_bust is being diagnosed as the 
true fault, leading to suggest that the alarm IVHM15 
should observe the fault P01_burst.  

We also tested a scenario in which we added an extra link 
into the TFPG model. This was done by adding a 
relationship between P01_burst and IVHM05 through 
adding a link between the discrepancy 
PV_1C_Transfer_Fuel_to_Engine Failed and IVHM05. 
Similar to the previous demo, we used the same set of 

Figure 10. Part of the bad Pump and Valve TFPG model. Note that a link has been removed from P01_bust to the 
discrepancy Contain_Fuel_in_Plumbing Failed. 
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alarms on our bad model and we assumed that maintenance 
would eventually determine that P01_burst was the actual 
fault. The sample output for the scenario can be seen in 
Figure 12. 

 

Figure 8. Part of the output generated by our TFPG 
maturation algorithm. The alarm IVHM05 is set to 
observe the fault P01_bust, but is occurs a low number 
of times whenever the fault P01_bust is being diagnosed 
as the true fault. This suggests that IVHM05 should not 
be observing the fault P01_burst.  

8. CONCLUSION 

We hypothesized that the alarm dependency maturation 
algorithm would be able to find the missing link in the 
faulty TFPG model. In addition, the subtraction of a link 
was only for a specific test case. More experimentation is 
needed in which a large variety of links is added or deleted 
to fully test whether our algorithm can find all missing or 
added links. Once we are able to run the algorithm on a 
variety of scenarios, we will have a better picture of how 
well the algorithm performs. In addition, while we’ve 
developed an algorithm that will mature how the alarms and 
discrepancies relate to each other, we have yet to fully test 
the algorithm.  

9. FUTURE WORK 

The initial experimentation of this algorithm is promising. It 
was able to find the deleted dependencies in the TFPG 
model. However, these were simple test cases and more 
work is still needed to test if it is generally able to find the 
added or deleted dependency in the TFPG model. In 
addition, the alarm sequence maturation algorithm needs to 
be tested. As already stated above, the algorithm at the time 
of writing was developed but not fully tested.  

We would also like to further develop our maturation 
algorithms. Currently, we are dealing with just the alarm 
sequences that occurred with the reasoner misdiagnosed the 
fault. However, just because an alarm sequence resulted in a 
correct diagnosis does not mean that the model is correct. 
For example, it could be that all of the other possible faults 
are just more unlikely. Therefore, we want to compare fault 
sequences of both negative and positive diagnoses. Given 
these two groups of alarm sequences, we could then 
compare the probabilities of alarms occurring and compare 
those probabilities between the two groups. Furthermore, 
these probabilities could then be compared to the D-matrix. 
Another possible way to further develop the algorithms may 
be to use some form of hierarchical clustering algorithm.  

Other future work will also include maturating the time 
intervals used on the TFPG models. Since the diagnostic 
algorithms use the time intervals to diagnosis a fault, a 
wrong time value could greatly change how the reasoner 
diagnoses a fault. Again, using an alarm sequence from a 
maintenance event, one could be able to find those faulty 
time values and adjust them.  

Finally, we would like to include maturation of probabilistic 
values in the TFPG models that utilize probabilistic values. 
If those probabilities are faulty, then the diagnostic reasoner 
could end up diagnosing the wrong faults. Again, if we have 
the maintenance event which informs us which alarms were 
triggered and what fault was actually found during 
maintenance, we could find those faulty values in the model 
and recommend changes to them. 
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