

 1

Graph-Based Ontology-Guided Data Mining for D-Matrix
Model Maturation

Shane Strasser, John Sheppard, Michael Schuh, Rafal Angryk, Clemente Izurieta
Department of Computer Science, Montana State University

357 EPS Building
Montana State University

Bozeman, MT 59717
406-994-4780

shane.strasser@cs.montana.edu

Abstract—In model-based diagnostic algorithms, it is
assumed that the model is correct. If the model is incorrect,
the diagnostic algorithm may diagnose the wrong fault,
which can be costly and time consuming. Using past
maintenance events, one should be able to make corrections
to the model in order for diagnostic algorithm to correctly
diagnosis faults. In this paper, a maturation approach is
proposed which uses the graph-theoretic representations of
Timed Failure Propagation Graph (TFPG) models and
diagnostic sessions based on recently standardized
diagnostic ontologies to determine statistical discrepancies
between that which is expected by the models and that
which has been encountered in practice. These discrepancies
are then analyzed to generate recommendations for maturing
the diagnostic models. Maturation recommendations include
identifying new dependencies and erroneous or tenuous
dependencies. 1 2

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. TIMED FAILURE PROPAGATION GRAPHS 3
3. RELATED WORK .. 4
4. ONTOLOGY GUIDED DATA MINING 5
5. MATURATION OF ALARM DEPENDENCIES 6
6. MATURATION OF ALARM SEQUENCES 7
7. EXPERIMENTS... 8
8. CONCLUSION .. 10
9. FUTURE WORK ... 10
ACKNOWLEDGMENTS .. 10
REFERENCES .. 10
BIOGRAPHY .. 11

1. INTRODUCTION

Timed failure propagation graphs (TFPG) were first
introduced in 1994 to provide improved robustness in fault
diagnosis by analyzing temporal relationships in alarm
events [1], [2]. Several diagnostic algorithms have been
developed to utilize these TFPG models by determining the
most likely fault occurrence given a set of alarms that have
been triggered [3], [4]. TFPG models have also been
extended to include model dependency constraints on the
propagation links by Abdelwahed in 2004 [5]. These
extended models, referred to as a Hybrid Failure

1978-1-4244-7351-9/11/$26.00 ©2011 IEEE.
2 IEEEAC paper #1383, Version 12, Updated Janurary 11, 2011

Propagation Graphs (HFPG), allow the model to operate in
in various operational modes. The different operational
modes allow alarms to be either enabled or disabled. In [6],
the authors proposed a hierarchical diagnosis approach for
complex causal systems. In their approach, the system is
partioned into a set of local subsystems, each of which
represent a sub-graph of the entire system. All of the local
subsystems are then contained within a global system that
obtains a globally consistent diagnosis of the entire TFPG
system. Figure 1 gives an example TFPG model. In the
example, the nodes labeled with F1, F2, F3, and F4
represent faults in the TFPG model. The labels D1 through
D11 denote nodes that represent discrepancies. Monitored
discrepancies, or alarms, are represented by nodes labeled
by M2, M3, M9, M10, and M11. Monitors allow the
reasoner to detect if a discrepancy has been triggered or
turned ON. By looking at which alarms are ON and OFF,
the reasoner will diagnosis the most likely fault that was
triggered.

Figure 1. A sample TFPG mode. Nodes that are labeled
F1, F2, F3, and F4 are faults. Nodes labeled D1 through
D11 are discrepancies, and nodes labeled M2, M3, M9,
M10 and M11 are monitors of discrepancies.
Discrepancies with monitors are often referred to as
alarms.

One of the difficulties with using TFPG models for fault
diagnostics is that diagnosis performance is dependent on
how accurate the TFPG model is. A bad TFPG model will
result in poor diagnosis from the reasoner. The problem is
increased when a hierarchical diagnosis approach is used
because it is difficult to know what relations should exist

 2

between the different subsystems or how the dynamical
system will behave in different environmental conditions
[7]. If there is an error in the model, then the reasoner's
likelihood of diagnosing the correct fault in the system will
decrease. This will cause an increase in time, money, parts,
and labor in the maintenance of the modeled system since
the corrective action will not be known [7]. For example,
the TFPG model in Figure 2 has had the edge from D7 to
D9 deleted. In this faulty model, the reasoner will not be
able to accurately diagnosis fault F4 should have occurred.
The reasoner will find that alarms M9, M10, and M11 were
all triggered. However, fault F4 will not be diagnosed as the
fault since the model does not have a relationship between
fault F4 and alarms M9, M10, and M11, increasing the
maintenance time since the true fault has to be located by
alternative means [9].

Figure 2. A faulty TFPG model. The link from
discrepancy D7 to discrepancy D9 has been removed.

To determine whether the reasoner diagnosed the correct
fault, one must compare the reasoner’s diagnosis with the
actual fault found by alternative means. By storing past
reasoner history and maintenance history, the later of which
contains the correct fault diagnosis, one can compare the
two history sessions and look for any discrepancies between
the reasoner’s history and the maintenance history. If there
is a discrepancy between the two histories, then we know
that the reasoner misdiagnosed a fault. If the reasoner is
misdiagnosing a particular fault a large number of times,
then there could an error in the TFPG model. The
discrepancies between the reasoner and maintenance history
can then be used to modify the TFPG model such that the
reasoner will output the fault that has been occurring [7].
Therefore, we propose a maturation process that is able to
look at prior maintenance events and use that information to
make changes to the TFPG model in order to improve the
accuracy of the model. In the example in Figure 2, we
observed that fault F4 is not diagnosed as the fault when
alarms M9, M10, and M11 are triggered. Using this
information, a change should be made to the model so that
given those alarm sequences, fault F4 is diagnosed as the
true fault. In this scenario, a link between either the fault F4
node or discrepancy nodes D5 or D7 should be connected to
alarm M9.

TFPG maturation is a difficult problem [8]. First, all of the
reasoner diagnosis history and maintenance history is
needed to be able to locate where the reasoner is
misdiagnosing a fault. These data sources are often stored in
heterogeneous systems and therefore makes retrieval and
analysis of the data difficult. For example, maintenance data
is usually stored, but many times the most important aspect
of the data is human entered text fields, which are difficult
to interpret automatically. Reasoner and maintenance data
could also be stored among many repositories, which makes
pulling them all together difficult [9].

One possible way to overcome these difficulties is to use a
domain ontology to join the different data sources together
in a meaningful way. In prior work, Wilmering and
Sheppard suggested an approach to utilizing domain
ontologies as a means to focus and filter data analysis in
knowledge discovery [10]. The specific focus of that work
was utilizing the ontologies to guide the process by which
diagnostic models could be matured over time. That paper
proposed using a method such as the Apriori Algorithm to
discover new relationships within historical maintenance
data that could be used to determine diagnostic
relationships, improved probability estimates, or better
specification of test processes.

In this paper, we describe an extension of this work in
which diagnostic models and historical diagnostic session
data are mapped to two ontologies derived from IEEE Std
1232 Standard for Artificial Intelligence Exchange and
Service Tie to All Test Environments (AI-ESTATE) and Std
1632.2 Software Interface for Maintenance Information
Collection and Analysis (SIMICA): Maintenance Action
Information (MAI) [11], [12]. Specifically, the AI-ESTATE
D-Matrix Inference Model provides a semantic definition of
information used to define diagnostic models based on
diagnostic dependencies while the AI-ESTATE Dynamic
Context Model provides a semantic definition of the
information typically used by diagnostic reasoners during
online reasoning to track test results, record inferences, and
recommend hypotheses. The SIMICA MAI model defines
information elements associated with maintenance history.
These two models, defined by the IEEE using the
EXPRESS language, have been redefined using the web
ontology language (OWL) [13], [14]. D-matrix models and
diagnostic sessions are then mapped to the ontologies and
represented using OWL-based instance formats.

The maturation approach uses the graph-theoretic
representations of the models and sessions to determine
statistical discrepancies between that which is expected by
the models and that which has been encountered in practice.
These discrepancies between actual maintenance events and
what the TFPG reasoner reported are then stored and used
by our TFPG maturation approach. From this, we are able to
recommend changes, such as adding or removing links
between discrepancies. We are also able to track and
estimate false alarms and non-detect rates. Once the changes

 3

have been made the reasoner should be able to correctly
diagnosis the fault.

In developing our TFPG maturation approach, we looked at
two different scenarios. First, we looked at how to mature
which alarms are monitoring which faults. This scenario is
very similar to the example previously described. The
second maturation scenario we studied was how different
alarms causally depend on each other. For example, one
could be given an alarm sequence in the order of A1, A2
and A3. In a different case, we observe the same alarms, but
in a different order, such as A1, A3 and A2. If the reasoner
is diagnosing the wrong fault in these cases, then there is
some erroneous relationship in our model. In our work, we
focused mostly on the first scenario. However, we have
developed and are currently testing an algorithm for the
second scenario.

2. TIMED FAILURE PROPAGATION GRAPHS

A timed failure propagation graph (TFPG) model is a
directed graph in which each vertex represents a failure
node or discrepancy [1], [2]. Failure nodes represent faults
in the target system and discrepancies are causal nodes that
are affected by failure nodes. Discrepancies can be
monitored or unmonitored. Monitored discrepancies are
often referred to as alarms. The edges between the nodes
represent the effect of failure propagation over time in the
underlying system that is being modeled. Formally, this is
represented as TFPG = (F, D, E, M, ET, EM, DC, DS)
where:

• F is a set of failure nodes
• D is a set of discrepancy nodes
• E = V × V is a set of edges, where V = F U D
• M is a nonempty set of system modes
• ET: ET(E) → Int, Mapping for each edge in E

where Int denotes finite time intervals on each
edge.

• EM: Map that associates every edge in E with a set
of modes in M

• DC: DC(D) →{AND, OR}, Map which defines the
type of each discrepancy as either an AND or an
OR discrepancy

• DS: DS(D) → {A, I}, Map defining the monitoring
status of the discrepancy as either active (A) for
discrepancies attached to monitored alarms or
inactive (I) otherwise

The set of discrepancies that are monitored are defined by
the map DS. The map ET associates with each edge e in E a
minimum and maximum time for the failure to propagate
along the edge. EM associates each edge with a subset of the
system modes at which the failure can propagate along the
edge. DC defines if each discrepancy is an AND or an OR
node. The goal of a diagnostic algorithm is to find a
hypothetical state that tries to explain the physical system
based on the observed system [3]. In our TFPG maturation

approach, we only deal with TFPG models that contain only
OR discrepancies and operate in only one mode.

The D-matrix is a matrix representation that relates the
faults and the discrepancies that monitor or observe those
faults. We can also formally represent it as the following.
Let F represent a set of faults. Let D represent the set of
discrepancies. Assume each fi ∈ F is a Boolean variable
such that eval(fi) ∈ {0,1} and each dj ∈ D is also a Boolean
variable such that eval(aj) ∈ {0,1}. Then a diagnostic
signature is defined to be the vector

)](),...,([||1 Ti devaldevalf = (1)

Where





=
 otherwise. 0

 detects if 1
)(ij

j

fd
deval (2)

and fi[j] is the jth element in vector fi. A D-matrix is then
defined to be the set of diagnostic signatures di for all di ∈ D
[15]. Rows represent faults and columns represent
discrepancies. The ith column corresponds to discrepancy i
in the TFPG model. The matrix corresponding to D-matrix
for Figure 1 would then be as follows:

111010100004

100001010003

111001001002

111101001111

1110987654321

F

F

F

F

DDDDDDDDDDD

However, in most situations, the only discrepancies that are
included or shown in the D-matrix are the monitored ones.
The D-matrix for Figure 1 would be represented as the
following where the columns are the alarms in numerical
order would be defined as follows:

111004

100003

111102

111111

1110932

F

F

F

F

DDDDD

D-matrices do not fully represent TFPG models because
they do not capture the temporal relationships. Nevertheless,
the representation of the model is easy to manipulate. Given
a D-matrix which relates the faults and alarms, we can
actually find the logical relationship between the alarms by
computing the logical closure of the matrix [16]. This is
done by determining which attributes have a parent set that
is a subset of another attribute’s parent set. Let ai be an
alarm that monitors faults fi and let aj be an alarm that
monitors faults fj. We can represent this as fi → ai and fj →
aj. If fi is a subset of fj, then fj contains fi and fj → ai. If aj is

 4

true, fj must also be true. This means ai must be true and
therefore ai → aj [16], [17]. Take for example the TFPG
model and the corresponding D-matrix which shows the
relationship of faults and alarms in Figure 3. The faults that
are observed by M1 are a subset of the faults that are
observed by alarm M2. Similarly, the faults that are
observed by M2 are a subset of the faults that are observed
by alarm M3. The TFPG model that would result can be
seen in Figure 4.

 M1 M2 M3
A 1 1 1
B 0 1 1
C 0 0 1

Figure 3. A simple TFPG model and the corresponding
D-Matrix. A, B, and C are faults while M1, M2, and M3
are alarms.

Using the original D-matrix one can easily find the logical
closure matrix of the discrepancies. This matrix relates
discrepancies to other discrepancies. Again, similar to the
first D-matrix, a 1 in the ith row and jth column means that
the jth discrepancy observers the ith discrepancy. The D-
matrix in Figure 4 is the result of taking the closure of the
original D-matrix.

In addition, [16] showed that using the logical closure
matrix, the transitive links between discrepancies can be
removed by using logical relationships. This process is
called taking the logical unclosure.

After finding the logical unclosure of the matrix, the logical
NOT is taken over the subset and performing an AND
between the subset of parents for an alarm and the set of
alarms. In doing so, the transitive edges in the TFPG model
and the corresponding D-matrices are removed. The TFPG
model in Figure 5 and the corresponding D-matrix is the
model that results after taking the logical unclosure of the
TFPG model in Figure 4.

This unclosed D-matrix is then able to show the first order
dependencies between the discrepancies. In our
experiments, we will assume that we only have access to the
D-matrix models as they are a universal data representation
of TFPG models.

3. RELATED WORK

The idea behind diagnostic maturation has been discussed in
several papers, but no formal process or algorithm has been
proposed for large amounts of corrective actions in which
faulty or false alarms could be occurring. In [7], the author
points out there are unexpected and unplanned system
interactions that can degrade the performance of the
diagnostic design. In order to increase performance of the
diagnostic model, historical maintenance actions will be
used to help mature the model. However, [7] points out that

 M1 M2 M3
M1 0 1 1
M2 0 0 1
M3 0 0 0

Figure 4. The TFPG model and corresponding D-Matrix
after the logical closure has been taken of the TFPG
model in Figure 3.

 M1 M2 M3

A 1 0 0
B 0 1 0
C 0 0 1

 M1 M2 M3

M1 0 1 0
M2 0 0 1
M3 0 0 0

Figure 5. The resulting TFPG model and D-Matrices
once the logical unclosure has been taken of the TFPG
model in Figure 4. The bottom matrix shows the first
order relations between the alarms and faults while the
bottom matrix shows the relations between alarms.

 5

the process requires ready access to the model, maintenance
events, and any other information that could aid in the
maturation process. In order to utilize all of these resources,
the author proposes using an ontology design to gather all
the required data together in a meaningful way.

In [17], [18], the authors discuss using explanation-based
learning for the diagnostic model. If misdiagnosis occurs,
then additional testing is done until a correct diagnosis has
been made. This information can then be used to modify the
structure of the model so that the correct diagnosis is
consistent with testing. The authors also give a proof that
given a single misdiagnoses, the model can be modified so
that the misdiagnoses never occurs again. However, this was
only valid for a single training example and did not include
how to deal with faulty or false alarms.

In [20], the authors also use explanation based learning to
aid rule-based diagnostics. The authors use fault diagnostic
cases to help create heuristic domain knowledge that would
then assist the reasoner. This heuristic domain knowledge
was then used to create additional rules which would then
be used in conjunction with the original rule based reasoner.

The authors in [9] also discuss the need for diagnostic
maturation. In the paper, the authors discuss the need for
recording flight information and maintenance data. They
present an at-wing modular application for portable
maintenance aids which can assist maintenance events by
giving information to maintenance workers.

4. ONTOLOGY-GUIDED DATA MINING

In previous work, Wilmering and Sheppard suggested using
domain ontologies as a means to focus and filter data
analysis in data mining [10]. The specific focus of that work
was utilizing the ontologies to guide the process by which
diagnostic models could be matured over time. In this paper,
we used domain ontologies as a way to join together
different data sources and to find discrepancies between
those different data sources.

The approach taken in developing ontologies to support the
knowledge discovery process is based on a set of
standardized semantic models developed in the EXPRESS
modeling language [11], [12]. EXPRESS is an information
modeling language defined by the International
Organization for Standardization (ISO) to support
communication of product data between engineering
applications. The purpose of the language is to define the
semantics of information that will be generated by a system
and is not meant to define database formats, file formats, or
exchange formats. In EXPRESS, models are defined using a
hierarchy partitioned along schemata, entities, and attributes
[19]. EXPRESS is often described as being object oriented
in flavor because it incorporates a number of object-oriented
features, such as encapsulation, abstraction, and inheritance.
Values for attributes can be constrained through logical
constraints on those attributes. These constraints, which

often define relationships in non-trivial ways, give
EXPRESS the ability to define computer-processable
semantics. These constraints allow applications to discern if
the information being received satisfies the intended
meaning when it was generated and transmitted [19].

In this application, we used ontologies derived from the
IEEE Std 1232 Artificial Intelligence Exchange and Service
Tie to All Test Environments (AI-ESTATE) and IEEE Std
1636 Software Interface for Maintenance Information
Collection and Analysis (SIMICA) [11]. [12]. Specifically,
we used the IEEE Std 1232 (AI-ESTATE), and IEEE Std
1636.2 (Maintenance Action Information or MAI). AI-
ESTATE is a set of specifications for exchanging data and
defining software services for diagnostic systems. Its
purpose is to standardize the interfaces between elements of
an intelligent diagnostic reasoner as well as the
representation of diagnostic knowledge and data for use by
such diagnostic reasoners. The information models defined
for AI-ESTATE are designed to form the basis for
facilitating exchange of persistent diagnostic information
between two reasoners, and also to provide a formal typing
system for diagnostic services. The principal information
model used out of AI-ESTATE for this work is the D-
Matrix Inference Model (DIM) since it can be mapped to
the structure of Timed Failure Propagation Graphs. An
additional key information model—the Dynamic Context
Model—also provides the semantics for historical
information captured by a reasoner during a diagnostic
session. Finally, both of these models make use of a
“common” information model (called the Common Element
Model) [11]. The SIMICA MAI was designed to capture
records of actual maintenance actions performed on a
particular system or subsystem [12].

Recent work in ontology-guided data mining has made use
of standard ontology languages (e.g., OWL, DAML+OIL,
and RDF) [14], [21], [22]. EXPRESS was not designed to
support ontology-based analysis; however, the semantics
defined by EXPRESS models are very rich. Therefore, we
used the EXPRESS models as the foundation for defining
ontologies using one of the most widely used ontology
languages. We decided to use the Web Ontology Language
(OWL) due to its prevalence in ontology-based systems.

The Web Ontology Language, or OWL, is a language for
defining and instantiating ontologies [14]. An OWL
ontology may have descriptions of classes, properties, and
their instances. The formal OWL semantics then specify
how to find logical consequences from the defined entities.

To convert EXPRESS to OWL, we first had to define a
mapping of EXPRESS concepts to OWL concepts. Once the
mapping of concepts was defined, we then created all of the
OWL ontologies based on the EXPRESS standards. Finally,
we converted all of the data into the OWL format and used
our ontology guided data mining algorithm to locate the
discrepancies.

 6

The following code is part of the EXPRESS definition of
the AI-ESTATE DIM and the EXPRESS diagram can be
seen Figure 6 [11]. Part of the corresponding OWL
definition for the AI-ESTATE DIM can be seen in Figure 7.

Figure 6. The EXPRESS code and diagram for the AI
ESTATE D-Matrix Inference Model (DIM). The lines
with circles and labels denote attributes while the lines
with circles and no label denote subclass relationships.

For our mining algorithm, we located any discrepancies in
our ontology where the reasoner’s diagnosis and that of the
maintenance event differed. Once those discrepancies were
located, we pulled in and stored all of the alarm sequences
corresponding to the easoner’s wrong diagnosis. Those
alarm sequences and the corresponding fault which was
determined to be the true cause through the maintenance
event are then used in the following section for the rest of
the maturation algorithm.

5. MATURATION OF ALARM DEPENDENCIES

In TFPG models, alarms monitor or observe faults. If a
certain alarm is monitoring a fault for a real world
application, but maintenance events are finding that the
alarm never occurs when that fault occurs, then that alarm
probably should not be monitoring that particular fault.
Additionally, if another alarm is not monitoring a fault but
the alarm always occurs when the fault occurs, then that
alarm should probably monitor that fault. In addition, there
will also be alarms that do not fire when they should (non-
detects) and alarms that fire when they should not (false

alarms). These alarms need to be analyzed in order to gain
an accurate picture of the alarms that should be occurring
based on the maintenance events. Such analysis can also
assist incorporating uncertainty measures into the diagnostic
process.

In the maturation of alarm dependencies, we have a
collection of alarm sequences from whenever maintenance
find a certain fault. The maturation process will search for
any differences between the alarm sequences and signatures
in the D-matrix. However, care needs to be taken when
considering false alarms and non-detects since adjusting the
dependencies based on those alarms will likely have a
negative effect on the performance of the reasoner.

Figure 7. Part of the OWL code and diagram for the AI
ESTATE DIM model. The large arrows without labels
denote parent and child relationships while the smaller
arrows denote relationships.

The maturation algorithm we developed works as follows.
First, we retrieve the alarm sequences corresponding to the
AI-ESTATE based and SIMICA MAI based logs of a
repaired fault (whether the diagnosis was correct or not). An
alarm sequence is represented as a bit string where each
position in the bit string corresponds to a different
observable alarm in the TFPG model. For example, a one at
index i means that the ith alarm fired in the fault sequence,
and a zero means that the ith alarm did not fire for that fault
sequence. We then sum and normalize each bit yielding a
probability of firing given the fault was diagnosed as the
true fault. Finally, we compare the resulting vector of
probabilities to the fault signature in the AI-ESTATE DIM-
based D-matrix that corresponds to the repaired fault. Where

<owl:Class rdf:ID="OutcomeInference">
 <rdfs:subClassOf rdf:about="#DMATRIX_MODEL"/>
</owl:Class>
<owl:Class rdf:ID="CEM_ConfidenceValue">
 <rdfs:subClassOf rdf:about="#DMATRIX_MODEL"/>
</owl:Class>
<owl:ObjectProperty rdf:ID="confidence">
 <owl:maxCardinality rdf:datatype=
 "http://…/XMLSchema#nonNegativeInteger">1
 </owl:maxCardinality>
 <owl:minCardinality rdf:datatype=
 "http://.../XMLSchema#nonNegativeInteger" >0
 </owl:minCardinality>
 <rdfs:domain rdf:resource="#OutcomeInference"/>
 <rdfs:range rdf:resource="#CEM_ConfidenceValue"/>
</owl:ObjectProperty>

 ENTITY OutcomeInference;
 andOrRows : SET [1:?] OF Inference;
 preconditionTestOutcome : TestOutcome;
 confidence : OPTIONAL ConfidenceValue;
 andOrRelation : BOOLEAN;
 UNIQUE
 one_outcome : preconditionTestOutcome;
 WHERE
 conjunctOrDisjunct : ((SELF.preconditionTestOutcome.valueDomain = Pass) AND
 (SELF.and_Or = TRUE)) XOR
 ((SELF.preconditionTestOutcome.valueDomain = Fail) AND
 (SELF.and_Or = FALSE));
 noUserDefined : reconditionTestOutcome.valueDomain[1] <> UserDefined;
 END_ENTITY;

 7

there is a wide disparity between the bit positions in the D-
matrix and the probabilities in the probability vector, we
flag that as a relationship to be examined. The following are
the steps for the process:

1. Find all discrepancies between the maintenance
diagnosis and the reasoner diagnosis.

2. From those discrepancies, pull in all of the alarm
sequences for a particular maintenance diagnosis
(or fault).

3. Calculate the probability of each alarm occurring
given the maintenance diagnosis.

4. Compare each alarm probability with the D-matrix.
a. If the alarm is occurring with a high

probability, but the D-matrix does not
have the alarm observing the fault, then
flag that alarm to be looked at in relation
to that fault.

b. If the alarm is occurring with a low
probability, but the D-matrix shows a
relationship between the fault and alarm,
then flag the alarm to be looked at in
relation to the fault.

If an alarm occurs with a high probability and the D-matrix
shows that the alarm is observing the fault or if the alarm
occurs with a low probability and the D-matrix shows that
the alarm is not observing the fault, then there appears to be
no problems with that alarm with respect to the fault.
However, in certain cases, it may still be beneficial to look
at those alarms. For example, if an alarm is occurring with a
probability of .35 and the D-matrix shows no relationship
between that fault and alarm, then that could suggest that the
alarm is faulty and needs to be analyzed more carefully.

6. MATURATION OF ALARM SEQUENCES

This basic TFPG maturation described in the previous
section is very simple and does not make use of the
ontologies. In this section, we use the casual semantics of
the TFPG and D-matrix to define an algorithm for maturing
causal temporal relationships.

Similar to the maturation process of alarm dependencies, we
will have a set of alarm sequences from whenever
maintenance found a particular fault. The difference is that
instead of just looking at which alarms were triggered, we
also look at the order in which the alarms were triggered.
We will still have false and non-detect alarms and special
steps must be taken in dealing with these alarms.

Given a set of alarm sequences, we calculate a post-
occurrence probability matrix which gives the probability of
an alarm occurring after another alarm. For alarms i and j,
[i,j] represents the probability that alarm i occurred before
alarm j with respect to the total number of alarm sequences
that have occurred. This matrix represents the temporal
occurrences of the alarms that are being observed.

Next, we trace the expected alarm sequences for the TFPG
model. In the simple case, one walks the unclosed D-Matrix
which will give a straight sequence of alarms. However, in
many cases there will be a split in the propagation link in
the TFPG model. For example if fault 1 in Figure 1 were to
fail, the signal would split and propagate to alarms M2 and
M3. Because the propagation signal is split, alarms M2 and
M3 could occur in either order and still result in the correct
diagnosis. This makes trying to calculate the ideal alarm
sequence difficult. One possible way would be to find all of
the possible different valid alarm sequences for a given fault
and then calculate a transition probability matrix for those
expected alarms. The expected matrix could then be
compared to the actual post-occurrence probability matrix to
discover discrepancies. However, generating all of the valid
alarm sequences is a combinatorial problem and therefore
has an exponential run time. Therefore, we simply find for
each alarm, which alarms we could expect to see following
that alarm for a given fault. To do so, we start tracing an
alarm sequence in the unclosed D-Matrix. If we find a split
in the model, we follow both of those sequences and find
the straight sequence of those alarms. Then we compare
each alarm sequence. For each alarm in the alarm sequences
that occurred after the split, we compare each alarm in one
alarm sequence against all other alarms in the other alarm
sequences such that those alarms are marked to follow the
given alarm. For straight alarm sequences, we specially
mark those alarms and the following alarms so that it is
known which alarm has to occur first. For example, given
the simple TFPG model in Figure 8, we see that the signal is
split at the discrepancy D2.

Figure 8. A simple TFPG model. The signal is split at the
discrepancy D2 and makes predicting the expected
alarm sequences a difficult problem.

We first start walking down the alarms starting at the fault
and we generate the alarm sequence M1, M2. We then find
a split occurring after alarm M2, generate all of the alarm
sequences that occur after the split, which would give us the
sequences M3, M5 and M4, M6. We first mark which
alarms must occur before the other alarms, such as M1 must
occur before all other alarms. Similarly, M4 must occur

 8

before M6. Next, we compare the two alarm sequences that
occurred after the split. In this case, M3 may occur before
M4 and M6. Similarly, M4 may occur before M3 and M5.
After these sequences of ordering notes have been made, we
then compare them to the post-occurrence probability matrix
and note any discrepancies we are seeing between the two
for inspection. For the TFPG model in Figure 8, we would
see the post-occurrence matrix.

 M1 M2 M3 M4 M5 M6
M1 X X X X X
M2 X X X X
M3 O X O
M4 O O X
M5 O O
M6 O O

The squares with X’s denote observations that should
always occur (that is, the probabilities should be close to
100 percent) while the squares with O’s denote observations
that may occur with high probability. The following steps
summarize the algorithm:

1. Find all discrepancies between the maintenance
diagnosis and the reasoned diagnosis.

2. From those discrepancies, pull in all of the alarm
sequences for a particular maintenance diagnosis
(or fault).

3. For each alarm sequence, calculate the transition
probability matrix where [i,j] gives the probability
of alarm j occurring after alarm i.

4. For the particular fault, mark the alarms that are
expected to have high probability values.

5. Compare the marked matrix with the transition
probability matrix and look for any discrepancies.

6. If there are any discrepancies between the two, flag
the two alarms to be looked at.

Similarly to the alarm-fault maturation process, some
probability values may not fall into a gray area. Those
alarms may not be require the TFPG model to be modified,
but may have other problems, such as being a bad alarm.

In addition to trying to predict alarm sequences, we also
propose comparing these temporal matrices to the logical
unclosed D-matrix and the adjacency matrix of the TFPG
model. This allows us to see the relationship between the
temporal, logical, and actual relationships of the alarms with
one another in the TFPG model. In comparing these three
matrices, we propose taking a specific corrective action if
there are discrepancies between these three matrices which
will correct any errors that may be present in the TFPG
model. This aspect of the algorithm is still being developed.

7. EXPERIMENTS

To test our fault dependency maturation algorithm, we used
a Pump and Valve TFPG Model developed by Boeing and
used the Vanderbilt FACT diagnostic reasoner to diagnosis
faults given a firing of alarms. The Pump and Valve model
provided was used as “ground truth,” and two erroneous
models were created by deleting a link and removing a
relationship in the TFPG and adding a link and thus creating
a relationship between a fault and an alarm in the TFPG
model that should not exist. Three sets of alarm sequences
were used, one of which properly identified the P01_burst
fault in the ground truth TFPG. The other two, while not
capable of fully isolating P01_burst still yields hypotheses
consistent with this fault. The four alarms correctly identify
P01_burst as the fault are the following:

• IVHM09 – In flight operating pressure command
Low output Lo

• IVHM11– In flight operating pressure command
Medium, output Lo

• IVHM13– In flight operating pressure command
High, output Lo

• IVHM15– Fuel Containment

In our first modified model, we deleted the relationship
between P01_burst and IVHM15 through deleting the link
from P01_burst to the discrepancy
Contain_Fuel_in_Plumbing Failed. The good model can be
seen in Figure 9 and the bad or modified model can be seen
in Figure 10.

Figure 9. Part of the good Pump and Valve TFPG model. The model was used to diagnosis the ground truth and to
simulate maintenance events that would discover the true fault in the bad model.

 9

First, we fired alarms IVHM09, IVHM11, and IVHM13.
Next we only fired IVHM15. Finally, we fired the alarms
IVHM09, IVHM11, IVHM13 and IVHM15. In addition, we
added false alarms IVHM01, IVHM04, and IVHM05 where
each individual false alarm was fired somewhere in the
alarm sequence of IVHM09, IVHM11, IVHM13 and
IVHM15. From these seven alarm sequences, we then
repeated the sequences multiple times to simulate
reoccurrence of an alarm sequence in a real world
application. The alarm sequences that contained false alarms
were repeated fewer times than the alarm sequences that did
not contain any false alarms.

As stated above, the alarms IVHM09, IVHM11, IVHM13
and IVHM15 properly diagnoses the P01_burst fault in the
ground truth model. However, since we deleted the causal
link from P01_burst to IVHM09 in the modified model, the
reasoner diagnosed different faults. Specifically, the
reasoner found that there were 50 different possible faults
that could have occurred when the alarms were IVHM09,
IVHM11, IVHM13 and IVHM15 fired, none of which
included P01_burst. To finish the test case, we assumed that
maintenance would eventually determine that P01_burst
was the actual fault so that the system could be repaired.
This information would be provided by the maintenance
action data.

Using these alarm sequences, we applied the algorithm
described above to see if we could determine where the
correct dependency in the model should be. In using the
TFPG maturation algorithm, we created the following table
as output, which can be seen in Figure 11. The table gives
the corresponding fault for which we are investigating in the
first row. The “Index” column gives the index of the alarms
while the “Alarms” column lists every alarm in the TFPG
model. The “DMatrix” column shows if the alarm observes
the particular fault. A 1 means the alarm does observe the
fault while a 0 means the alarm does not observe the fault.
The “FaultSequence” column gives the probability of the
alarm occurring given that the fault was diagnosed as the
fault through the maintenance event.

After analyzing the output, we found that the algorithm
identified that the TFPG model did not have the alarms
IVHM15 monitoring the fault P01_burst but noticed that the

alarm IVHM15 occurred with a high probability if the fault
P01_burst was diagnosed as the true fault in the
maintenance event and thus suggests that some relationship
exists between P01_bust and IVHM15. In our table, we
have flagged that alarm to be analyzed to see if there is an
error in the model. After examining the TFPG model, we
found that links from the fault P01_burst to alarms IVHM15
should be added. In our case, the simplest explanation was
to add a link from P01_burst to the discrepancy
Contain_Fuel_in_Plumbing Failed. As indicated above, this
was indeed the link that was deleted from the original
model.

Figure 11. Part of the output generated by our
algorithm. The alarm IVHM15 is not observing the fault
P01_bust, but is occurring with a large number of times
whenever the fault P01_bust is being diagnosed as the
true fault, leading to suggest that the alarm IVHM15
should observe the fault P01_burst.

We also tested a scenario in which we added an extra link
into the TFPG model. This was done by adding a
relationship between P01_burst and IVHM05 through
adding a link between the discrepancy
PV_1C_Transfer_Fuel_to_Engine Failed and IVHM05.
Similar to the previous demo, we used the same set of

Figure 10. Part of the bad Pump and Valve TFPG model. Note that a link has been removed from P01_bust to the
discrepancy Contain_Fuel_in_Plumbing Failed.

 10

alarms on our bad model and we assumed that maintenance
would eventually determine that P01_burst was the actual
fault. The sample output for the scenario can be seen in
Figure 12.

Figure 8. Part of the output generated by our TFPG
maturation algorithm. The alarm IVHM05 is set to
observe the fault P01_bust, but is occurs a low number
of times whenever the fault P01_bust is being diagnosed
as the true fault. This suggests that IVHM05 should not
be observing the fault P01_burst.

8. CONCLUSION

We hypothesized that the alarm dependency maturation
algorithm would be able to find the missing link in the
faulty TFPG model. In addition, the subtraction of a link
was only for a specific test case. More experimentation is
needed in which a large variety of links is added or deleted
to fully test whether our algorithm can find all missing or
added links. Once we are able to run the algorithm on a
variety of scenarios, we will have a better picture of how
well the algorithm performs. In addition, while we’ve
developed an algorithm that will mature how the alarms and
discrepancies relate to each other, we have yet to fully test
the algorithm.

9. FUTURE WORK

The initial experimentation of this algorithm is promising. It
was able to find the deleted dependencies in the TFPG
model. However, these were simple test cases and more
work is still needed to test if it is generally able to find the
added or deleted dependency in the TFPG model. In
addition, the alarm sequence maturation algorithm needs to
be tested. As already stated above, the algorithm at the time
of writing was developed but not fully tested.

We would also like to further develop our maturation
algorithms. Currently, we are dealing with just the alarm
sequences that occurred with the reasoner misdiagnosed the
fault. However, just because an alarm sequence resulted in a
correct diagnosis does not mean that the model is correct.
For example, it could be that all of the other possible faults
are just more unlikely. Therefore, we want to compare fault
sequences of both negative and positive diagnoses. Given
these two groups of alarm sequences, we could then
compare the probabilities of alarms occurring and compare
those probabilities between the two groups. Furthermore,
these probabilities could then be compared to the D-matrix.
Another possible way to further develop the algorithms may
be to use some form of hierarchical clustering algorithm.

Other future work will also include maturating the time
intervals used on the TFPG models. Since the diagnostic
algorithms use the time intervals to diagnosis a fault, a
wrong time value could greatly change how the reasoner
diagnoses a fault. Again, using an alarm sequence from a
maintenance event, one could be able to find those faulty
time values and adjust them.

Finally, we would like to include maturation of probabilistic
values in the TFPG models that utilize probabilistic values.
If those probabilities are faulty, then the diagnostic reasoner
could end up diagnosing the wrong faults. Again, if we have
the maintenance event which informs us which alarms were
triggered and what fault was actually found during
maintenance, we could find those faulty values in the model
and recommend changes to them.

ACKNOWLEDGMENTS

We would like to thank The Boeing Company for providing
us with the Pump and Valve model and assistance in
understanding and using the model. Also, we would like to
thank Vanderbilt University for their FACT software and
GME modeling tool and helping us use the software. This
research was funded in part by a grant from NASA under
the aviation safety program.

REFERENCES

[1] A. Misra, Sensor-based diagnosis of dynamical
systems, Ph.D. dissertation, Nashville, TN, USA, 1994.

[2] A. Misra, J. Sztipanovitz, and J. R. Carnes, “Robust

diagnostic system: structural redundancy approach,” W.
Buntine and D. H. Fisher, Eds., vol. 2244, no. 1. SPIE,
1994, pp. 249–260.

[3] S. Abdelwahed, G. Karsai, and G. Biswas, “A
consistency-based robust diagnosis approach for
temporal causal systems,” Proceedings of the 16th
International Workshop on Principles of Diagnosis,
2005, pp. 73–79.

 11

[4] S. Abdelwahed, G. Karsai, N. Mahadevan, and S.
Ofsthun, “Practical implementation of diagnosis
systems using timed failure propagation graph models,”
IEEE Transactions on Instrumentation and
Measurement, vol. 58, no. 2, pp. 240 –247, February.
2009.

[5] S. Abdelwahed, G. Karsai, and G. Biswas, “System
diagnosis using hybrid failure propagation graphs,”
Proceedings of the 15th International Workshop on
Principles of Diagnosis, 2004.

[6] N. Mahadevan, S. Abdelwahed, A. Dubey, G. Karsai,
“Distributed diagnosis of complex systems using timed
failure propagation graph models,” IEEE
AUTOTESTCON 2010 Conference Record, pp. 124-
129, September 13-16, 2010.

[7] T. J. Wilmering, “Semantic requirements on
information integration for diagnostic maturation,”
IEEE AUTOTESTCON 2001 Conference Record,
pp.793-807, 2001.

[8] T.J. Wilmering, “When good diagnostics go bad - Why

maturation is still hard,” Proceedings of the IEEE 2003
Aerospace Conference, 2003. vol.7, pp. 3137- 3147,
March 8-15, 2003.

[9] C.S. Byington, P.W. Kalgren, and B.P. Donovan,
“Portable diagnostic reasoning for improved avionics
maintenance and information capture & continuity,”
IEEE AUTOTESTCON 2004 Conference Record. pp.
518- 524, September 22-23 2004.

[10] Timothy J. Wilmering and John W. Sheppard,

“Ontologies for Data Mining and Knowledge Discovery
to Support Diagnostic Maturation,” Proceedings of the
18th International Workshop on Principles of
Diagnosis (DX-07), Nashville, TN, May 2007, pp. 210-
217.

[11] IEEE Std 1232-2011, IEEE Standard for Artificial

Intelligence Exchange and Service Tie to All Test
Environments (AI-ESTATE). IEEE Standards Press,
Piscataway, New Jersey, 2011.

[12] IEEE Std 1636.2-2011, IEEE Trial-Use Standard for

Software Interface for Maintenance Information
Collection and Analysis (SIMICA): Maintenance Action
Information (MAI). IEEE Standards Associated Press,
Piscataway, New Jersey 2010.

[13] ISO 10303-11:2004, Industrial automation systems and

integration -- Product data representation and
exchange -- Part 11: Description methods: The
EXPRESS language reference manual. International
Organization for Standardization, Geneva, Switzerland.

[14] OWL 2 Web Ontology Language Document Overview.
W3C. 2009-10-27. http://www.w3.org/TR/owl2-
overview/.

[15] J. W. Sheppard and S. G. Butcher. 2007. “A Formal
Analysis of Fault Diagnosis with D-matrices”. J.
Electron. Test. 23, pp.309-322. August 2007,

[16] Scott Wahl, “Logical Closure for Diagnostic Network

Simplification,” NISL Technical Report, Department of
Computer Science, Montana State University, May
2009.

[17] W. Simpson and J. Sheppard, System test and
diagnosis. Kluwer Academic Publishers Norwell,
Massachusetts, 1994.

[18] J.W. Sheppard, “Explanation-based learning with

diagnostic models,” IEEE AUTOTESTCON 1992
Conference Record, pp.159-166, September 21-24,
1992.

[19] Mark A. Kaufman, John W. Sheppard, and Timothy J.

Wilmering, “Model-Based Standards for Diagnostic
and Maintenance Information Integration,” IEEE
AUTOTESTCON 2007 Conference Record, Baltimore,
MD, September 2007, pp. 304-310.

[20] S. Kobayashi and K. Nakamura, “Knowledge
compilation and refinement for fault diagnosis,” IEEE
Expert, vol. 6, no. 5, pp. 39 –46, October 1991.

[21] DAML+OIL. Joint US/EU ad hoc Agent Markup

Language Committee. 2001-3-27.
http://www.daml.org/2001/03/daml+oil-index.

[22] Resource Description Framework (RDF). 2004-02-10.

W3C. http://www.w3.org/RDF/.

BIOGRAPHY

Shane Strasser is currently pursuing
his Masters in route to a PhD in
computer science at Montana State
University. He previously received a BS
in computer science and mathematics
from the University of Sioux Falls in
Sioux Falls, South Dakota. His
research interests are primarily in
artificial intelligence and machine
learning with a focus on prognostic of

health management systems.

 12

John Sheppard is the RightNow
Technologies Distinguished Professor
of Computer Science at Montana State
University. He is also an Associate
Research Professor at Johns Hopkins
University. His research interests
include algorithms for diagnostic and
prognostic reasoning, machine learning
and data mining in temporal systems,
and reinforcement learning. Dr.

Sheppard holds a BS in computer science from Southern
Methodist University and an MS and PhD in computer
science from Johns Hopkins University. He is a Fellow of
the IEEE and currently serves as Co-Chair of the
Diagnostic and Maintenance Control subcommittee of IEEE
Standards Coordinating Committee 20 (SCC20) on Test and
Diagnosis for Electronic Systems.

Michael Schuh is currently pursuing
his PhD in computer science at
Montana State University. He
previously received a BS in computer
science with math and business minors
from the University of Wisconsin
Oshkosh. His primary research
interests are data mining and machine
learning with a focus on large scale
data and the Web.

 Rafal Angryk is an associate
Professor in the Computer Science
Department at Montana State
University. He received his M.S. and
Ph.D. in computer science degree from
Tulane University, New Orleans. His
current research interests lie in the
areas of Data Mining, Databases
(Spatial Databases, Fuzzy Database
Models), Distributed Systems (Mobile

Agents Technology, Distributed Databases), and Artificial
Intelligence (Fuzzy Expert Systems, Neural Networks).

Clemente Izurieta is an associate
research professor in the Computer
Science department at Montana
State University. Born in Santiago,
Chile, his research interests include
empirical software engineering, design
and architecture of software systems,
design patterns, the measurement of
software quality and ecological
modeling. Dr. Izurieta has

approximately 16 years experience working for various
R&D labs at Hewlett Packard and Intel Corporation.

