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Abstract

Background: Protein-protein interactions (PPIs) are central to many biological

processes. Considering that the experimental methods for identifying PPIs are

time-consuming and expensive, it is important to develop automated computational

methods to better predict PPIs. Various machine learning methods have been

proposed, including a deep learning technique which is sequence-based that has

achieved promising results. However, it only focuses on sequence information while

ignoring the structural information of PPI networks. Structural information of PPI

networks such as their degree, position, and neighboring nodes in a graph has been

proved to be informative in PPI prediction.

Results: Facing the challenge of representing graph information, we introduce an

improved graph representation learning method. Our model can study PPI prediction

based on both sequence information and graph structure. Moreover, our study takes

advantage of a representation learning model and employs a graph-based deep

learning method for PPI prediction, which shows superiority over existing

sequence-based methods. Statistically, Our method achieves state-of-the-art accuracy

of 99.15% on Human protein reference database (HPRD) dataset and also obtains best

results on Database of Interacting Protein (DIP) Human, Drosophila, Escherichia coli (E.

coli), and Caenorhabditis elegans (C. elegan) datasets.

Conclusion: Here, we introduce signed variational graph auto-encoder (S-VGAE), an

improved graph representation learning method, to automatically learn to encode

graph structure into low-dimensional embeddings. Experimental results demonstrate

that our method outperforms other existing sequence-based methods on several

datasets. We also prove the robustness of our model for very sparse networks and the

generalization for a new dataset that consists of four datasets: HPRD, E.coli, C.elegan,

and Drosophila.
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Background

Proteins are versatile macromolecules and perform a vast array of vital functions within

organisms, and over 80% of proteins interact with other proteins while carrying out their

functions [1]. Those interactions, known as protein-protein interactions (PPIs), are phys-

ical contacts of high specificity established between two or more protein molecules. PPI

is of great importance in many cellular biological processes, including signal transduc-

tion, immune response, cell proliferation, DNA transcription, and replication. Analysis

and elucidation of the PPIs provide valuable insights into the molecular mechanism and

the protein functions [2]. In recent years, the rapid development of high-throughput

technologies are used to detect protein interactions, such as yeast two-hybrid screens

(Y2H) [3], tandem affinity purification (TAP) [4] and mass spectrometric protein com-

plex identification (MS-PCI) [5], Tandem Affinity Purification and Mass Spectrometry

(TAP-MS) [6], affinity chromatography and Co-Immunoprecipitation (Co-IP) [7]. These

experimental methods have contributed to exponential growth of the number of PPIs

of various species, but the functional annotation of both proteins and their interactions

is updated at a slow speed. Meanwhile, these data suffer from problems including high

false positives, false negative rate and low coverage [8]. To be more specific, although

many protein-protein interaction links have been experimentally determined, the total

number is still relatively few compared to the tremendous amount of links collected by

the high-throughput technologies [9]. And these genome-scale experiments are costly,

with inherent bias and limited coverage. The limitations of device resolution and envi-

ronmental interference during operation will inevitably lead to errors and deviations in

experimental techniques [10]. Therefore, high-throughput computational methods that

are useful for the study of protein functions are required for discovering PPI with high

quality and accuracy [11].

Recently, many high-throughput computational methods have been proposed. On the

whole, they can be divided into two groups: classic machine learning algorithms and deep

learning methods. For the first group, different machine learning methods were utilized

for predicting PPIs to improve the efficiency and accuracy, such as decision trees [12],

k-Nearest Neighbor (KNN) [13], naive bayes [14], random forest [15] and support vec-

tor machine (SVM) [16–18]. These features of these methods measure physicochemical

properties of the 20 canonical amino acids, and aim at summarizing full sequence infor-

mation relevant to PPIs. Compared to classic machine learning methods, deep learning

methods are advantaged in extracting features directly from data and capture nonlinear

dependencies between abstract features. They can also fully exploit the availability of the

increasing large-scale and high-dimension raw datasets. Therefore, deep learning meth-

ods are unprecedentedly popular in recent years and have been successfully applied in

various problems [19]. For PPI prediction, Sun et al. recently proposed a stacked auto-

encoder (SAE) to study the sequence-based PPI prediction, which was the first to apply

a deep learning algorithm to sequence-based PPI prediction and achieved promising

results [20]. Du et al. proposed a method called Deep neural networks for Protein Protein

Interactions prediction (DeepPPI), which employed deep learning to extract high-level

discriminative features from common protein descriptors [21]. Lei et al. put forward a

novel computational method based on Multimodal Deep Polynomial Network (MDPN)

to encode multiple data from protein properties for PPIs prediction [22]. Hashemifar

et al. presented a convolution-based model where feature extractions are terminated by
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processing data through an original randomly initialized and untrained matrix they

named “random projection module" [23]. Next, a neural network based approach called

Ensemble Deep Neural Networks (EnsDNN) was proposed to predict PPIs based on dif-

ferent representations of amino acid sequences [24]. Particularly, EnsDNN separately

used auto covariance descriptor, local descriptor, and multi-scale continuous and dis-

continuous local descriptor, to represent and explore the pattern of interactions between

sequentially distant and spatially close amino acid residues. Finally, Richoux et al. com-

pared two carefully designed deep learning models and showed pitfalls to avoid while

predicting PPIs through deep learning methods [25].

However, the deep learning algorithm presented by Sun et al. [20] and most of the

methods we discussed above only considered sequence data, while the network data, such

as their degree, position, and neighboring nodes in the graph, has been proved to be

informative in PPI prediction. For example, Licamele and Getoor looked at the shared

neighborhood among proteins and calculated the clustering coefficient among the neigh-

borhoods for the first-order and second-order protein relations to predict the interactions

in a yeast dataset [26]. Paradesi et al. identified nine structural features for Saccharomyces

cerevisiae PPI networks and used them to learn classifiers for predicting new interac-

tions [27]. You et al. developed a robust manifold embedding technique for assessing

the reliability of interactions and predicting new interactions by utilizing the topological

information of PPI networks [28].

The biggest challenge to apply graph-based deep learning methods for PPI prediction is

the utilization way of the network information, that is, how to represent the graph struc-

ture of PPI network in low-dimensional embeddings, which should be used as feature

inputs for downstream machine learning classifier. The good news is that there has been

a surge in approaches that automatically learn to encode graph structure recently, using

techniques based on deep learning and nonlinear dimensionality reduction. These meth-

ods are representation learning on graphs, which can be used to analyze social networks,

molecular graph structures and recommender systems. The idea behind the represen-

tation learning approach is to learn a mapping that embeds nodes, or entire graphs, as

points in a low-dimensional vector space. The purpose is to optimize the mapping so

that geometric relationships in the learned space could reflect the structure of the orig-

inal graph [29]. Representation learning has been successfully applied to link prediction,

such as predicting missing friendship links in social networks [30] and inferring affinities

between users and movies [31].

In this paper, by regarding PPI network as an undirected graph, we propose signed

variational graph auto-encoder (S-VGAE), a representation learning model that could

effectively take advantage of the graph structure and naturally incorporate protein

sequence information as features. Our overall framework is composed of three parts. The

first part is designed to code raw protein sequences, and the second part is the essen-

tial S-VGAE model used to further extract vector embedding for each protein with both

graph structure and sequence information. The final part is a simple three-layer softmax

classifier. Our S-VGAE model is designed based on the variational graph auto-encoder

(VGAE) model proposed by Kipf and Welling [32], which is a framework that makes use

of latent variables and is capable of learning interpretable representations for undirected

graphs. To apply it to efficiently predict PPI, we primarily made three key improvements

on the VGAE and greatly boosted the ultimate performance. Firstly, we modified the cost
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function to only consider those interactions with high confidence, which allowed us to

learn accurate feature representation by focusing on high-confidence interaction infor-

mation and was more robust to noise. In addition, we gave different signs to different

interactions in the adjacency matrix so that the model could consider different impact

of each interaction during the training process and strengthen the negative impact of

the highly negative interactions. The last improvement was that we further train a neu-

ral network as the final classifier instead of using generative model to infer interactions.

Since the input embedded representations already contained enough information, using

the simple classifier is sufficient according to Occam’s Razor Principle [33].

Results

Our work consists of three steps: basic protein sequence coding, graph-based feature

extraction model, and the final neural network classifier. Firstly, we transform raw pro-

tein sequences into fixed-length coding using the conjoint triad (CT) method. Next, we

propose an improved weighted variational graph auto-encoder (S-VGAE) to learn embed-

dings for each protein based on their sequence features and local graph information.

Finally, we use these embeddings as inputs to train a simple feedforward neural network

as the final classifier. In this section, we firstly evaluated the performance of the proposed

method for predicting five different datasets: Human protein reference database (HPRD)

dataset, Database of Interacting Protein (DIP) Human, Drosophila, Escherichia coli (E.

coli), and Caenorhabditis elegans (C. elegan) by using different evaluation measures. We

then compared the performance of the proposedmethod with existingmethods from pre-

vious literature are presented. Finally, we discussed the robustness and the generalization

of the proposed model.

Evaluation criteria

In this paper, the performance of the proposed model was evaluated by means of the

classification accuracy, specificity, sensitivity and precision, F-score value, as defined

respectively by:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

Precision =
TP

TP + FP
(4)

F − score =
2 ∗ Precision ∗ Sensitivity

Precision + Sensitivity
(5)

where TP, TN, FP and FN represent true positive, true negative, false positive, and false

negative, respectively.
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Table 1 The performance of our model on five datasets

Dataset Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1(%)

HPRD 99.15 ±0.11 99.41 ±0.17 98.89 ±0.17 98.90 ±0.16 99.15 ±0.12

Human 98.79 ±0.07 98.00 ±0.21 99.58 ±0.17 99.57 ±0.17 98.78 ±0.24

E.coli 98.92 ±0.37 98.42 ±0.34 99.42 ±0.73 99.42 ±0.73 98.92 ±0.54

Drosophila 99.80 ±0.01 99.61 ±0.17 100 ±0.02 100 ±0.02 99.80 ±0.15

C.elegan 99.26 ±0.23 99.16 ±0.38 99.35 ±0.28 99.35 ±0.28 99.25 ±0.33

Comparison with other methods

In order to demonstrate the performance of our model, we evaluated our model on five

datasets as described in the “Datasets” section and compared our model to several pop-

ular methods. As indicated in Table 1, our method achieved above 98.5% accuracy on

all datasets. For 2007 HPRD, Drosophila and C.elegan datasets, the F-score values of

our model are more than 99%. As shown in Figs. 1 and 2, on the 2007 HPRD dataset,

our model achieved state-of-the-art F-score value of 99.15% compared to eight popular

existing methods. For example, Sun’s [20] obtained prediction F-score value of 97.16%

and prediction accuracy of 97.19%. And Pan’s [34] work obtained prediction accuracy

of 97.90% of latent dirichlet allocation-random forest (LDA-ROF) and prediction F-

score value of 90.4% of latent dirichlet allocation-support vector machine (LDA-SVM)

respectively. In summary, our model achieved the best prediction capacity.

The detailed results of ourmethod on the DIPHuman, E. coli,Drosophila andC. elegans

were listed in Table 2. Our model was compared against multiple baseline approaches,

including: SAE [20], Lasagna [35], DeepPPI [25]. The results of SAE [20] were attained

from the data provided by Guo et al. [18]. As the other methods of SVM [18], LDA-

ROF [34], compressive sampling-support vector machine (CS-SVM) [36], and extreme

learning machine (ELM) [37] were not conducted on these four datasets. Particularly,

Richoux et al. [25] proposed to compare two different neural network architectures: Deep

Fully Connected Network (DFC) and Deep Long Short Memory Network (DLSTM). Our

model was compared with these two models respectively. In addition, since the DFC and

Fig. 1 A detailed comparison of accuracy to several previous methods on the 2007 HPRD dataset
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Fig. 2 A detailed comparison of F1 score to several previous methods on the 2007 HPRD dataset

DLSTMmethods were applicable to large-scale datasets which were designed to solve the

problem of information leak and didn’t avoid the underfitting in the small datasets, we

didn’t use their results on E. coli and C. elegans datasets.

On the DIP Human dataset, our model yielded a F-score value of 98.78% which greatly

outperformed the model named Lasagna [35] being 97.25% and the model named DFC

[25] being 95.14%. For E. coli, our model achieved the F-score value of 98.92%, which was

also significantly superior to other methods. For Drosophila, our model obtained the F-

score value of 99.80% while for C.elegans the F-score value was 99.25%. It can be seen

that our model has demonstrated promising results on several datasets and has proved its

potential in PPI prediction regardless of the dataset’s size, coverage, and species.

Robustness and generalization

First, we discuss the robustness of our model for very sparse datasets since the existing

PPIs are limited [38]. We define coverage as the proportion of training samples to the

number of total samples. The training set is selected as each protein includes coverage

portion of its positive edges and highly negative edges. The less the coverage, the more

sparse the training set.

As we can see from Fig. 3, the accuracy, sensitivity, specificity, and precision are all

rising as the coverage increases. It can be observed from Fig. 3a that the accuracy is already

above 93% even when the coverage is only 0.1, which illustrates that our model is effective

Table 2 The performance comparison of F1 score between our model and four existing

sequence-based methods on four PPI datasets

Method Human E.coli C. elegan Drosophila

Ourmodel 98.78 98.92 99.25 99.80

Lasagna [35] 97.25 89.92 98.40 98.89

DFC [25] 95.14 —— —— 96.39

DLSTM [25] 89.10 —— —— 91.05

SAE [20] 94.53 96.03 97.17 97.16
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Fig. 3 Relationship between four criteria and coverage. All the simulations were trained on the HPRD dataset

for 50 iterations

even when the datasets are sparse and can be applied in real prediction of other species.

Besides, as indicated in Fig. 3b, the sensitivity is up to 99% at the coverage of only 0.4.

Figure 3c and d also demonstrate the robustness and validity of our model consistently.

To test the generalization, we combine HPRD, E.coli, C.elegan and Drosophila datasets

into one larger dataset. This new dataset consists of four different species and contains

21881 proteins with 69550 positive samples and 69283 negative samples. We randomly

split the dataset into 50% training samples and 50% test samples and this process is

repeated five times. The training data was trained for 50 iterations and the average of five

results denotes the final score. As we can see in Table 3, the accuracy, sensitivity, speci-

ficity and precision, F-score value are all more than 96%. Considering the heterogeneity

and sparsity of this dataset, the performance is reasonable and desirable.

Discussion

With a graph representation learning model, our method is demonstrated effective and

robust in PPI prediction. However, the model still has great improvement space as fol-

lows. In our model, considering different impacts of different edges, we introduce the

Table 3 The performance of our model on the combined new datasets

Test set Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 (%)

1 97.61 97.91 97.31 97.33 97.62

2 96.60 97.88 95.31 95.44 96.64

3 97.07 97.58 96.55 96.60 97.09

4 96.78 97.17 96.40 96.44 96.80

5 97.73 97.84 97.61 97.63 97.73

Average 97.16±0.50 97.68±0.31 96.64±0.90 96.69±0.86 97.18±0.41
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mechanism of confidence for each edge in the PPI network which can be reflected in

the adjacency matrix A. Currently, we divide all the edges into three groups and assign

constant value for each edge in the same group. In the future work, the quality of each

interaction should be taken into account and assigned a specific confidence value to make

the prediction model more informative.

For protein sequence coding, we used the pre-defined CT method. Other popular

coding methods such as auto covariance (AC) and local descriptor (LD), the manually

constructed or selected representation is more or less polluted or biased, which would

affect the learning ability of the deep learning method. But the CT method is based on

rules and the error will be smaller than these two method. Therefore, developing more

precise coding methods is crucial to further improve the model in our future work. As we

all known, the sequence of nucleotides that forms a gene is first translated into an amino

acid sequence, following the rules encoded in the genetic code. The corresponding linear

chain of amino acids becomes functional only when it adopts a three-dimensional shape,

the so-called tertiary, or native structure of the protein. These 3D structures of proteins

provide the opportunity for in silico prediction methods. The opportunity is that if in sil-

ico methods can predict whether two given 3D structures interact, then these methods

may be applied to predict interactions among the large amount of proteins with known or

inferred 3D structure [39]. Our future work could integrate the text description informa-

tion annotated in the database to the codings using natural language processing technique

and the 3D structures of proteins to better represent the protein.

Conclusions

In this paper, we proposed S-VGAE, an improved graph representation learning method,

to incorporate graph information in PPI networks into PPI prediction. Then the abstract

features are based on both sequence information and graph structure. Experimental

results demonstrated that our method performed significantly well and outperformed

other existing sequence-based methods on several datasets. We also proved the robust-

ness of our model for very sparse networks and the generalization for different kinds of

datasets. To the best of our knowledge, our method is one of the first models to apply

graph-based representation learning technique, thus successfully apply a deep learning

algorithm to graph-based PPI prediction. It is also anticipated that our method can be

generalized to many other related bioinformatics studies. For example, we can conduct

representation learning with graph and simplifiedmolecular input line entry specification

(SMILES) string features of drug molecules using S-VGAE to predict drug interactions.

We can construct an undirected weighted graph, where each vertex represents one drug

and each edge denotes one interaction between two drugs. After obtaining the SMILES

strings of drug molecules as the input features of each node, we can apply S-VGAE

to obtain the hidden representations of drugs and predict the interactions between

them. Particularly, Drug-drug interactions (DDIs) are from DrugComb database [40] and

DDIExtraction 2013 dataset [41] and molecular structures of drugs can be obtained freely

from DrugBank.

Methods

Our overall framework consists of three steps as shown in Fig. 4: basic protein sequence

coding, graph-based feature extraction model, and the final neural network classifier.
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Fig. 4 Our overall model architecture. The first part is CT used for protein coding. The second part is S-VGAE

used for feature extraction. The final part is a simple neural network classifier used for prediction

The first step is to transform raw protein sequences into fixed-length codings in order

for subsequent training. Next, we propose an improved weighted variational graph auto-

encoder (S-VGAE) to learn embeddings for each protein based on their sequence features

and local graph information, which is equivalent to the feature reduction and extrac-

tion. Finally, we use these embeddings as inputs to train a simple feedforward neural

network as the final classifier. In this section, we also introduce the datasets and model

settings.

Datasets

Benchmark dataset

Weused Pan’s [34] dataset from http://www.csbio.sjtu.edu.cn/bioinf/LR_PPI/Data.htm as

the benchmark dataset. The positive samples in the dataset are from the human protein

reference database (HPRD, 2007 version), with the elimination of the self-interactions and

duplicate interactions. We finally obtained 36591 positive pairs. Based on the common

assumption that two proteins in different cellular compartments do not interact, pro-

teins used in constructing negative samples are selected by following the listed criteria:

(1) Collecting human proteins annotated with “human” in the ID field only. (2) Exclud-

ing sequences annotated with ambiguous or uncertain subcellular localization terms,

such as “potential”, “probable”, “probably”, “maybe”, or “by similarity". (3) Including those

sequences marked with unique locations only. (4) Excluding sequences annotated with

“fragments”, and eliminating sequences with less than 50 amino acid residues as they may

only be fragments. (5) Proteins with unusual amino acids such as U and X were removed.

The collected proteins were randomly paired with other proteins in different subcellular

locations to generate negative samples. Finally, the total amount of the remaining negative

samples were 36324.

http://www.csbio.sjtu.edu.cn/bioinf/LR_PPI/Data.htm
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Other datasets

We also used Guo’s [18] dataset to evaluate our model including: (1) Human dataset con-

taining 9435 proteins with 37020 positive samples and 37027 negative samples. (2) E. coli

dataset containing 1834 proteins with 6954 positive samples and 6954 negative samples.

(3) Drosophila dataset containing 7059 proteins with 21975 positive samples and 21975

negative samples. (4) C. elegan dataset containing 2640 proteins with 4030 positive sam-

ples and 4030 negative samples. The negative samples used for training in each dataset

were selected according to the same criteria presented in the above Benchmark Dataset

part.

Model settings

Our model was implemented using Tensorflow in Python and took advantage of the

strong computing capacity of GPU. All the simulations were carried out on a computer

with 4.00GHz 8-core CPU and 59GB memory. The GPU we used was NVIDIA GeForce

GTX 1080 with 7GB memory. Our source code and datasets are available at https://

github.com/fangyangbit/S-VGAE.

The S-VGAEmodel has two hidden layers with 96 neurons and 48 neurons of each layer

respectively. The final softmax classifier has three hidden layers with 128, 64 and 32 neu-

rons each layer and uses dropout technique during training in order to avoid overfitting.

Dropout is a technique that randomly drops units (along with their connections) from the

neural network during training [42]. For both parts, we initialize weights as described in

[43] and train for 50 iterations using Adam algorithm with a learning rate of 0.005. We

tuned the hyperparameters of our model to optimize system performance by conducting

5-fold sentence-level cross-validation on the training set. To determine the parameter,

four-fifths of the whole dataset are randomly chosen to train the classifiers with different

number of hidden nodes, while the rest one-fifths of the dataset are used as the validation

set to compute the accuracy. For Adam optimization, we set the learning rate lr = 0.005

as suggested by Kingma et al. [44]. To alleviate the over-fitting problem, the dropout rate

was set to 0.5 in our model, as used by Hinton et al. [45].

In our experiments, each dataset was randomly split into 80% training set and 20% test

set. The model was trained and validated using 5-fold cross-validation, and the perfor-

mance of our model was evaluated by the hold-out test set. In order to test the robustness

of our method, this process of random selection was repeated five times. Therefore, five

models were generated based on different training sets and the overall performance was

the average of results on five different test sets.

Protein sequence coding

There are several existing methods for protein sequence representation such as auto AC,

CT, and LD [46]. In our model, we choose CT as our coding method. The CT method

was first proposed by Shen et al. to code single protein [47]. The information of protein

sequences can be projected into a homogeneous vector space by counting the frequencies

of each triad type. The whole process is described as follows. First of all, all amino acids are

clustered into seven categories according to their dipole and side chain volumes. The clas-

sification of amino acids is shown in Table 4 and the classification principle is described

in detail in the paper [47]. Amino acids within the same group likely involve synony-

mous mutations due to their analogous characteristics. Then, each amino acid can be

https://github.com/fangyangbit/S-VGAE
https://github.com/fangyangbit/S-VGAE
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Table 4 Classification of Amino Acids according to their Dipoles and Volumes of the Side Chains

Class Amino Acids

C1 Ala, Gly, Val

C2 Ile, Leu, Phe, Pro

C3 Tyr, Met, Thr, Ser

C4 His, Asn, Gln, Tpr

C5 Arg, Lys

C6 Asp, Glu

C7 Cys

substituted by its category label and thus each protein is a string of integers. Next, a win-

dow of size three is used to slide across the sequence one step at a time and count the

number of occurrences of each triad type. Since we regard any three continuous amino

acids as a unit and the amino acids have been catalogued into seven classes, there are

7×7×7 different combinations, that is the size of CT vector is 343. The CT representation

is defined as:

V =[ n0, n1, . . . , nq] (6)

where ni is the number of occurrences of each triad type and q equals to 343.

Our S-VGAEmodel

This is the core part of our overall framework. After initial coding of sequences by the

CT method, we further conduct representation learning with graph and sequence fea-

tures using our signed variational graph auto-encoder (S-VGAE) model. We will discuss

this model by problem formulation, and then its inference part and generative part. The

inference part is an encoder that encodes original proteins into embeddings while the

generative part is a decoder that decodes the embeddings back into original proteins. The

purpose of this model is to learn interpretable embedding for each protein by training

encoder and decoder at the same time.

Problem formulation

We are given an undirected weighted graph G = (V , E) withN = |V| nodes, thus N is the

number of proteins, and each vertex of G represents one protein while each edge is one

interaction. The adjacency matrix A of G is provided. In matrix A, Aij denotes whether

there exists an interaction between protein i and protein j. We enforce self-loops in the

graph by simply adding the identity matrix to A. The input features of each node are

included in an N × R matrix X, which are sequence representations by the CT method

and R equals to 343 in this case. The desired outputs of this model are latent variables

zi, summarized in an N × P matrix Z, which will contain the embeddings of proteins we

expect to get where P is the dimension of each embedding.

The model is basically an encoder-decoder approach. First the encoder maps each node

vi in the graph to a low-dimensional vector embedding, zi, based on the node’s posi-

tion in the graph, its local neighborhood structure, and its attributes. Next, the decoder

extracts the classification label Aij associated with vi and vj (i.e., the label of interac-

tion between protein i and j). By jointly optimizing the encoder and decoder, the model

learns to compress information about graph structure into the low-dimensional embed-

ding space. The intuition behind this encoder-decoder idea is that if we can learn to
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decode hig-dimensional graph information from encoded low-dimensional embeddings,

then, in principle, these learned low-dimensional vectors should contain all information

necessary for downstream machine learning tasks, for example, classification.

The encoder

The inference module is a graph convolutional networks (GCNs) encoder [48], which

is a function with the goal of a mapping from the original features X to embeddings Z

with the augmented information of A. In our current implementation, a simple model

parameterized by a two-layer GCN is utilized:

q(Z|X,A) =
∏N

i=1 q(zi|X,A) (7)

q(zi|X,A) = N
(

zi|μi, diag
(

σ
2

i

))

(8)

where μ = GCNμ(X,A) is the matrix of mean vectors μi and log σ = GCNσ (X,A). The

GCNmodel is defined asGCN(X,A) = AReLU(AXW0)W1, andWi are parameter matri-

ces we need to train. In our model, GCNμ(X,A) and GCNσ (X,A) share W0 in order to

reduce parameters. ReLU(·) = max(0, ·) is the activation function andN is the unit gaus-

sian distribution. The intuition of GCN using GCN(X,A) = ReLU(AXW0) is as follows.

The multiplication with adjacency matrix Ameans that, for every node, we sum up all the

feature vectors of all neighboring nodes and itself. In this way, GCN can effectively learn

embeddings through integrating neighboring graph features.

The decoder

The generative module we define here is a simple inner product decoder:

p(A|Z) =
∏N

i=1

∏N
j=1 p(Aij|zi, zj) (9)

p(Aij = 1|zi, zj) = σ(zi
⊤zj) (10)

where σ(·) is the logistic sigmoid function. We use the inner product of two embeddings

zi and zj as the probability of these two proteins existing the interaction. As indicated in

Fig. 4, the output of the decoder Â is the approximation of adjacency matrix A and we

optimize the model so as to make them as close as possible.

Trainingmethod and implementation details

In this section, we will detailedly discuss two improvements we proposed on VGAE and

explain why they work in our application.

(1) cost function

As the whole interaction network is regarded as an undirected graph and each item in the

adjacencymatrix represents whether there exists an interaction between the two proteins,

in our S-VGAE model, we define the cost function as:

L = Eq(Z|X,A)[ log p(A
⋆|Z)]−KL[ q(Z|X,A)‖p(Z)] (11)

where KL[ q(·)‖p(·)] is the Kullback-Leibler divergence between q(·) and p(·). The first

term is to minimize the reconstruction error of the adjacency matrix A. It should be

noticed that, we only consider those interactions with high confidence, which we spec-

ify as A⋆ (A⋆ ⊂ A) to be reconstructed. The second term is to minimize the difference

between q(Z|X,A) and p(Z). The cost function is the tradeoff between how accurate
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our model can be and how close the distribution of embeddings can match p(Z). In this

case, we assume p(Z) as a Gaussian prior and the reparameterization trick is used for

training [49].

As mentioned above, we only consider the cost of interactions with high confidence

while ignoring those edges of uncertain confidence. In other words, we assume that

those edges of uncertain confidence are random noises to our model and even dis-

turb the training process thus affecting the ultimate performance. Therefore, we need

to construct high-confidence sets from original datasets. For positive samples, the con-

fidence are always high since they are actually observed. As for other items in the

adjacency matrix A, they are divided into two groups: the highly negative group and

the uncertain group. The edges in the highly negative group are negative edges with

high confidence, which are selected based on the criteria described in the “Datasets”

section.

(2) signed adjacencymatrix

During the training process, the adjacency matrix A plays an important role since it not

only defines the cost function but also serves as a critical parameter in the GCN. The

common adjacency matrix consists of only 0 and 1. However, as we discussed in the

last section, different edges actually have different confidence and therefore should have

different impacts on the learning process.

In order to embody the differentiated impacts, we assign positive edges positive values

(1), the highly negative group negative values (-1) and the uncertain group 0. By set-

ting different signs and even different weights, we expect to reinforce existing observed

interactions and in the meanwhile, strengthen the negative impact of the highly negative

interactions. Detailed comparison of the model with or without signed adjacency matrix

in Table S1.

Feedforward neural network classifier

Instead of directly using generative model to infer interactions, we take out embeddings

zi contained in the matrix Z and further train a simple neural network as the final clas-

sifier. Correspondingly, the inputs to the classifier are concatenations of embeddings of

two proteins, while the output label is a binary value representing whether there exist an

interaction between the two proteins.

The performance of the classifier can be remarkably good without complex neural net-

work structures since the embeddings already contain enough information and are highly

representative in the learned low-dimensional vector space.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-03646-8.

Additional file 1: Detailed comparison of the model with or without signed adjacency matrix. Table S1. Detailed

comparison of the model with or without signed adjacency matrix.
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