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Abstract—In the past few decades, there has been an explosion
in the amount of available data produced from various sources
with different topics. The availability of this enormous data
necessitates us to adopt effective computational tools to explore
the data. This leads to an intense growing interest in the
research community to develop computational methods focused
on processing this text data. A line of study focused on condensing
the text so that we are able to get a higher level of understanding
in a shorter time. The two important tasks to do this are keyword
extraction and text summarization. In keyword extraction, we
are interested in finding the key important words from a text.
This makes us familiar with the general topic of a text. In text
summarization, we are interested in producing a short-length text
which includes important information about the document. The
TextRank algorithm, an unsupervised learning method that is an
extension of the PageRank (algorithm which is the base algorithm
of Google search engine for searching pages and ranking them)
has shown its efficacy in large-scale text mining, especially for
text summarization and keyword extraction. this algorithm can
automatically extract the important parts of a text (keywords or
sentences) and declare them as the result. However, this algorithm
neglects the semantic similarity between the different parts. In
this work, we improved the results of the TextRank algorithm
by incorporating the semantic similarity between parts of the
text. Aside from keyword extraction and text summarization, we
develop a topic clustering algorithm based on our framework
which can be used individually or as a part of generating the
summary to overcome coverage problems.

Index Terms—Keyword Extraction; n-gram Extraction; Text
summarization; Topic Clustering; Semantic Analysis.

I. INTRODUCTION

The goal of text summarization is extracting a few important
sentences from the document while preserving the main idea
of the text. A good summary keeps the main topic of the text
simultaneously, occupy less space than the original document.
This is a very complex problem because it needs to emulate the
cognitive capacity of human beings to generate summaries and
still is an open problem in natural language processing. Since it
is a difficult task most of the researches of literature focused on
the extractive aspect of summarization which returns important
sentences of documents without any change in the sentences
in contrast to the abstractive aspect which generates new
sentences that reveal the main topic of the text and it requires
more resources to be trained. A summary generated by an
automatic text summarizer should consist of the most relevant
information in a document and at the same time, it should
be condensed to take less space in comparison to the source
document. Nevertheless, automatically generating summaries
is a challenging task. An issue in extractive text summarization
is the amount of summary coverage and diversity of topics in
the input document. In an optimized summarizer, results cover
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a sufficient amount of topics especially in situations which the
document contains multiple topics.

In an attempt to solve these issues, in this work we proposed
an extractive summarization method based on the TextRank
algorithm to find important sentences in a documents and using
a word2vec model to include semantics in the summary. More-
over, we proposed a topic clustering method which can also be
used as a post-processing technique on the text summarization
results. In this topic-clustring method, we consider semantic as
well as similar keywords to measure the similarities between
sentences in a text and categorize them together. Further, we
proposed a keyword extraction method based on the textRank
algorithm which, similar to the proposed text summarization
method, considers the semantics as well as the statistics of the
words in the sentences.

To summarize our works:
• Proposing a graph-based extractive semantical text sum-

marization to summarize texts in any language
• Proposing a graph-based extractive semantical keyword

extraction (n-gram extraction)
• Proposing a semantical topic clustering method
• Validating the performance of proposed methods on real-

world English and Persian datasets.
In the following section, we provide a brief description of
the word embeddings and text summarization methods. The
proposed methods are described in Section III, followed by
experimental results in Section IV. Final remarks and a dis-
cussion about our plans are reported in Section V.

II. RELATED WORKS

A. Word Embeddings

Word embedding is a term using to describe a set of
language modeling and feature learning techniques in natu-
ral language processing (NLP) where words or phrases are
mapped to real-valued vectors. It involves a mathematical
process where words from one dimension space embed into
a higher dimensional continuous vector space, which is often
tens to hundreds. A word embedding is a trained representation
for text where words with similar semantic have a similar
representation. In the word embedding process, each individual
word is represented by a real-valued vector with dimensionally
regard to trained vector space. Since, in these techniques,
each word is demonstrated by a vector which is learned
through a neural network training process, word embedding
is often referred to as a deep learning method. The stepping
stone idea to this method is using a densely distributed
representation for each word. In these methods, each word
represents by tens or hundreds of dimensions, contrary to
sparse word representations, such as one-hot encoding which
often has thousands or millions of dimensions. In Bengio
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et al. (2003) Schwenk (2007) Mikolov et al. (2010) models
each individual word is transformed into a real-valued vector
using a pre-trained lookup table. The neural network language
model can be used to obtain word representation. Which
can further be utilized in other tasks, for example, Collobert
and Weston (2008) Turian et al. (2010) embedding used for
classification in NLP task, or using feed-forward networks
Bengio et al. (2003) Gauvain et al. (2006) and then recurrent
neural network models Mikolov et al. (2010) Mikolov et al.
(2011) to predict the probability distribution of the next word.
Many other methods have been proposed in order to create
word embeddings that are based on the Distributed Hypothesis
Harris (1954). Among these methods, word2vec Mikolov et al.
(2013) and Glove Pennington et al. (2014) are the most popular
methods with roughly the same accuracy. Word2vec consists
of two models, continuous bag-of-words (CBOW) and skip-
gram. These models learn a vector representation of each word
by using a neural network language model and can be trained
efficiently on the large size of the corpus. Word2vec allows
models to learn the complex semantic relationship between
words by using vector operations. For instance, Equation 1 rep-
resents that if we subtract the embedded vector of Italy from
Rome (Subtract the country from its capital), then add France
(another country), we get a vector approximately similar to
the vector of Paris (capital of France). This example shows
that the model learned the semantics of text and captured
that the relationship between Italy and Rome is similar to the
relationship between France and Paris.

~v(Rome)− ~v(Italy) + ~v(France) ≈ ~v(Paris) (1)

In this work, we have adopted the implementation of
Doc2vec from Gensim Python library. The goal of Doc2vec
is to create a vector representation of a document, regardless
of its length. But documents do not have logical structures
such as words, so another method has to be found. While a
word vector is trying to represent the concepts of the word,
a document vector purpose is to represent the concept of a
document. Mikolov and Le Le and Mikolov (2014) employed
an easy and inventive concept. They used Word2vec model
and added another vector (Paragraph ID) to it to overcome
the length difficulty. It has two different models, PV-DM
(Distributed Memory version of Paragraph Vector) and PV-
DBOW (Distributed Bag of Words of Paragraph Vectors), the
former is a type of extension to CBOW model in Word2vec,
but instead of just using words to predict the next word, it
uses another feature vector which is unique per document, as
well. It plays a role as a memory that remembers what is
missing from the current context. The later is more similar
to the skip-gram model in Word2vec and uses a distributed
bag of words. In Gensim implementation there is a variable
(dm) which correlates to selecting one of these models. By
default, it is 1 which is PV-DM and it is used in our proposed
algorithm.

B. Text Summarization
The first summarization method proposed by Luhn (1958),

tried to weight the sentences of a document based on the

frequency of words and omitting the very high-frequency
common words. Since then the research community has widely
addressed automatic text summarization techniques. Very good
surveys are available and have proposed by many researchers
Sehgal et al. (2018) Pal and Saha (2014) Saranyamol and
Sindhu (2014) Gambhir and Gupta (2017), but since we
have exploited a graph-based method, we describe graph-
based summarization and then explain the TextRank algorithm
specifically which is the ground algorithm of our proposed
method.

In graph-based methods, every sentence is assumed as a
node of a graph and two sentences are connected with an edge
if they possessed some words in common, or in other words,
there is an edge between two sentences if with a similarity
measure (such as cosine) their similarity were more than a
threshold. In this regard, we can conclude two things from
the generated graph. First, the isolated partitions in the graph
(sub-graphs that are isolated from the rest of the sub-graphs)
that embodies a distinct topic in the text. In query-specific
summaries, some sentences from each sub-graphs may return
as an answer to that specific question, while for common
summaries, most important and representative sentences may
be chosen from each of the sub-graphs, or they can be assumed
as different topics in the original text and the summary for
covering all the topics, should select sentences from all of the
sub-graphs. The second inference can be obtained by graph-
theoretic methods to find the most important and representative
sentences (nodes) in the graph. This can be done by assuming
more important sentences have a higher degree (more nodes
are connected to them) thus, they have a higher probability
to be included in the summary. By assuming documents as a
graph which nodes are sentences and edges are the similarity
between the nodes many different kinds of graph theory tools
and measurement have been applied to find the important
sentences for extractive summarization work Mihalcea (2005).

Now we want to explain the TextRank algorithm Mi-
halcea (2004) which is a very high-performance extractive
summarization technique and its foundation is the PageRank
algorithm. PageRank algorithm is commonly used in the
Google search engine to compute the rank of web pages. This
algorithm works with these main insights: Important pages are
linked by important pages and the PageRank value of a page is
essentially the probability of a user visiting that page. Scores
in the PageRank algorithm calculated as follow in 2:

Pr(Vi) = (1− d) + d ∗
∑

Vj∈ln(Vi)

Pr(Vj)

|Out(Vj)|
(2)

In the TextRank, sentences are considered equivalent to web
pages and apply the PageRank algorithm over sentences in the
graph. Formally, let G = (V,E) be a directed graph with the
set of vertices V and set of edges E, where E is a subset of
V ×V . For a given vertex Vi, let In(Vi) be the set of vertices
that point to it (predecessors), and let Out(Vi) be the set of
vertices that vertex Vi points to (successors). The score of a
vertex Vi is defined as Equation 3 in Page et al. (1999):



S(Vi) = (1− d) + d ∗
∑

Vj∈ln(Vi)

1

|Out(Vj)|
S(Vj) (3)

Where d is a damping factor and it is a number between
0 and 1 and has the role of compounding the probability of
going from a specific vertex to another random vertex in the
graph, into the model. In the web surfing concept, the ”random
surf model” is adopted in this graph-based ranking algorithm.
In this model, when a user clicks on links at random with a
probability of d, it goes to a new page with the probability
1 − d. By starting from an arbitrary value assigned to each
node in the graph, the computation iterates until it reaches a
convergence point below a given threshold. After running the
algorithm, each vertex is associated with a score, representing
the “importance” of the vertex within the graph Mihalcea
(2004).

III. PROPOSED METHOD

We have proposed a graph-based extractive text summa-
rization algorithm which is based on the TextRank algorithm.
The essence of the TextRank algorithm is vertex voting, where
the voting equals an edge between two vertexes. If a specific
vertex has higher dependency and similarity to the rest of
the vertexes, it would be mapped with a higher value. For
illustrating this consider G = (V,E) as a graph with V being
the vertex set and E the edge set. The importance metric of
each vertex is as shown in Equation 4:

W (Vi) = (1− d) + d ∗
∑

j∈ln(Vi)

Wji∑
Vk∈Out(vj)Wjk

W (Vj) (4)

In(Vi) is the set of indexes for vertexes (text units which
are sentences here) and have a common window with Vi in
linear order in a sentence, Out(Vj) is the set of vertexes that
have a common window with Vi, d is a damping factor, its
default value is 0.85. Commonly, a weight assigned to an
edge from Vj to Vi as wji and it is computed by calculating
the chances of occurrence of two text units in the same text
window with a fixed size, with the ordinary size of 2. In the
initialization weight of all the text units are equal to one and all
of the weights obtain consistency after some iteration through
Equation (4). The text units (sentences) which have more
weight are considered the key text units (sentences). Figure
1 demonstrates the flowchart of the algorithm.

In our work, we have used TextRank as a voting method to
vote among doc2vec scores of each sentence. In other words,
instead of using number of similar words in each sentence
as similarity measure between sentences (nodes in graph) as
it is in the TextRank, our algorithm scores the relationship
between the sentences based on the score get from doc2vec
trained model; hence, the semantics of words and sentences
are included in the similarity rather than just considering the
same words to measure the similarity. In the above flowchart,
we made some alternations in the phase of computing the
weight of the vertex. The novelty of our method is including
semantic into the TextRank summarization and just not focus

Fig. 1. TextRank Algorithm Flowchart

on a statistical analysis of similar exact words. Besides, it has a
significant advantage, unsupervised learning, of the TextRank
algorithm which makes it needless to huge corpus for training.
This gives the algorithm the facility to be very convenient to
utilize for summarizing new text, efficiently.

For implementing this algorithm we have used TextRank
from Gensim, a Python library, and altered some part of it
to become compatible with the Persian language to test on
Persian corpus. We have trained two Doc2vec models, one
on Hamshahri corpus AleAhmad et al. (2009) for Persian
language usage, and another on Text8 corpus (which is a pre-
processed a version of the first 100 million characters from
Wikipedia dump) for English language purpose. Then we have
added them to the algorithm to weigh the edges of the graph
(similarity score between sentences). We could yield the most
important sentences in the graph (nodes with a higher score)
with this implementation. By assuming that the most important
sentences contain more information about the text and have
more relations with other nodes; we could return them as
the summarization of the input text. In this implementation
which is available at Github 1, we can choose the number of
words to be included in the summarization, as well as the ratio
of input text we want to get as summarization, which is 20
percent of text as a default. To overcome the coverage problem
in multi-topic texts we proposed a clustering method and
apply the semantic text summarization described above. The
proposed clustering algorithm weighs the similarity between
paragraphs in a row based on a doc2vec model trained on
separate documents. If the score was above a threshold (mean
+ standard deviation) they would merge in the same cluster;
otherwise, they would not and we assume them as one cluster
by itself. Then we apply the text summarization algorithm on
each cluster independently. In this way, we can cover all topics
of input text in our summarization.

A. topic clustering

In some scenarios, when the size of the text which want
to summarize becomes large, the coverage issue arise. In the
coverage issue, the text summarizer returns the most frequent

1https://github.com/minasmz/Persian-Summarization



sentences as the summary. However, the text may content other
important sentences which might be neglected due to a lower
frequency. To overcome this issue, we added a topic clustering
method before applying the text summarization method on
our text data. To do so, we apply the doc2vec method on
the paragraphs of training set and obtained the representation
of paragraphs of training set. Then, the distance between
the paragraphs in training set is measured using the cosine
similarity. Further, we calculate the mean (m) and standard
deviation of distance (std) in the training set. To place two
paragraphs in a same cluster of topic, we assumed they should
have a distance less than the m+ std, otherwise they belong
to two different topics cluster. When we obtain the cluster
of topics, we apply the text summarization method described
earlier on each clusters. In this way, we resolve the coverage
problem in text summarization.

B. keyword extraction

After clustering the topics and summarizing the text, we
tried to extract the keywords in the summaries. Two different
methods are introduced to extract the n-grams as keywords
in a text. In the first methods, the semantic of the words are
not included in the algorithm and just the frequency of words
using tf-idf method is used. In this method we have adopted the
bm25 scoring function which regularly is used as a keyword
extractor. We applied some alternation to the available bm25
algorithm in Gensim library of Python and made it compatible
with Persian language. In the second method, the semantic of
the words in the text is considered as well. To include the
semantic of words, we trained a word2vec model and took a
similar method introduced in text summarization to generate
a graph of words. In this graph, each word is a node of
the graph and the weight of edges are the cosine similarity
between words representations connecting to each other. Then
by applying the TextRank algorithm on the generated graph,
we obtain the most important words. In this approach not only
frequency of words are included in the obtaining the keywords,
but also the meanings of them are included. In both methods,
we tried to return n-gram (by default 10-gram) as the keyword.
After acquiring most important and frequent words, we check
them in unigram to n-gram of the words (n = 10) if frequency
of n-gram be more than half of the frequency of the word and
its occurrence be more than 2 (in big size inputs this number
should be increased) the important word occurred in the text
would reduce to the bigger n-gram. Finally we return the most
important n-gram where the important words are in them.

IV. EXPERIMENTAL RESULTS

Although in text summarization there is no unique way to
summarize a text and it is a difficult task even for the human
to reach a concise form of a text, but researchers prepared
some gold test set for evaluating the methods on them. We
have used Zamanifar dataset for testing the algorithm on the
Persian language and a BBC News Greene and Cunningham
(2006) dataset which contains BBC news and their summaries
for evaluating the work in the English language. We have
calculated the accuracy by Rough measurement Equation 5. It

should be mentioned that doc2vec involves some randomness
because of the negative sampling that is being used in its
implementation, a different set of negative examples would
be tried in each call so the result of the inferred vector from
doc2vec model would be different in each call. To overcome
this and measure the accuracy of the algorithm precisely, we
have run the algorithm 10 times on each text and calculated
the average of these 10 results. We compare the result of each
two datasets separately in Persian and English languages to
the pure TextRank algorithm. We have also set the ratio of
summaries to 0.2, 0.5, and 0.8, respectively; and compare
the results on each language which has been illustrated in
Figure(2) and Figure(3).

Rough 2 =∑
s∈(RefSummaries)

∑
bigramsi∈S

min(count(i, x), count(i, S))∑
s∈{RefSummaries}

∑
bigramsi∈S

count(i, S)

(5)

Results from the Persian language are illustrated in Fig-
ure(2). The best result is the highest rough score obtained
from 10 times of running the algorithm on each text. And
in the table you can see the average of the best score on 59
documents in Zamanifar dataset for the Persian language, the
average score is averaged over 10 times running the algorithm,
in the table averaging over average score in 59 document is
brought and then it is compared to the result of the TextRank
algorithm on 59 documents.

Figure(3), demonstrates the results of the algorithm on the
English language, there is 417 document in the politic folder
of BBC news dataset Greene and Cunningham (2006) and
the Rough measurement calculated on them, so the results are
averaging over 417 documents.

The average of 10 runs on each document on average
has comparable and better accuracy than TextRank The best
summary among 10 times running the algorithm has the
highest average on all of the experiments. This makes us
conclude that the result of combining semantic in graph-based
text summarization, TextRank, would be helpful to increase
the performance and accuracy of the summaries in TextRank
algorithm. Moreover, we can conclude that by having a better
model of each language, higher accuracy would be obtained.

Due to the lack of gold standard set for keyword extraction
and topic clustering, we experimentally observed that our
methods genrate meaningful results.

V. FUTURE WORKS AND DISCUSSION

Text summarization is a difficult task which even humans
could not reach a unique summary from a text. For decades,
researchers in extractive text summarization tried to select the
most important sentences from the text which contain useful
information by weighing and ranking the sentences based on
some statistical assumptions and neglect the semantics of the
words in sentences. In the proposed method we can observe
from the results that including semantic in summaries can
improve the accuracy. In this work, we have employed doc2vec



Fig. 2. Evaluation on Persian Language

Fig. 3. Evaluation on English Language

models for learning semantic. For future work, we can say
that by having better preprocessed and more data relating
to the context of input texts, we can train more accurate
models which leads to better results. hence, in future works,
we can train these models on a bigger and cleaner dataset
for reaching better accuracy. Also, we can train and adopt
other word embeddings to include semantic in the statistical
algorithms. Moreover, In the current work, we have used
TextRank since it performs better among other graph-based
algorithms in text summarization. Also, we can inject the
semantic of texts into the other available graph-based statistical
text summarization algorithms, such as hit and evaluate the
results of that algorithms, too.
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