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ion batteries. The goodness of model fit is validated by comparing morphological
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1. Introduction

A stochastic 3D model for efficient simulation of complex 2-phase microstructures is

presented. The model is applied to the 3D microstructure of (uncompressed) graphite

electrodes used in Li-ion batteries. Applications of stochastic nano- and microstructure

models in the context of materials science have increased in the last years, ranging from

proton exchange membrane fuel cells (PEMFC), solid oxide fuel cells (SOFC), organic

solar cells, Li-ion batteries, Al-Si alloys, and foams [1–6]. The microstructure of these

media is strongly determining their physical properties. In particular, the microstructure

of porous media affects transport processes inside the medium, such as the maximum

size of particles that can be transported through the pore space. Considering organic

solar cells, the nanostructure strongly affects the generation and transport of charges,

i.e., their efficiency [7]. Regarding fuel cells, their properties and performance are

also strongly connected to the 3D structure of the materials applied in these devices

[8–12], where key issues are the optimization of catalyst materials and of gas diffusion

media for optimized water / gas transport. Electron tomographic investigations show

such correlations between catalysts properties and their 3D nanostructure [13, 14].

Often, however, a systematic understanding of the influence of the 3D microstructure

on functional properties is missing. Stochastic models, fitted to experimental 3D

image data, can help to elucidate this correlation between processing parameters, 3D

microstructure, and functional properties. Furthermore, stochastic simulation models

can be applied for virtual materials design, that is, to detect microstructures with

improved functional properties. Such a design of virtual materials can be obtained by

simulating a broad range of virtual microstructures according to the stochastic model

(using different values of model parameters) and analysing their functional properties

by numerical (transport) calculations.

With advancing progresses in the development and application of imaging methods

like electron tomography [15], FIB / SEM tomography [16–19], X-ray / synchroton

tomography [20,21] and neutron tomography [22], the demand for new methods, models

and algorithms for 3D analysis of advanced energy materials is strongly increasing.

Recently, tomographic studies have been applied to battery materials [23, 24].

In this paper, a stochastic 3D model for efficient simulation of complex 2-phase

microstructures is presented. The proposed 3D simulation model is used to investigate

the morphology of graphite electrodes used in Li-ion batteries, where our simulation

model has been fitted to experimental image data gained by synchrotron tomography.

The original data set has a size of 624 × 159 × 376 voxels with each single voxel

representing 215 nm3, where the white voxels represent the graphite phase and black

voxels the pore phase. Since this data set has a relatively large size, our aim is to

simulate a representative cutout of 100× 100× 100 voxels and, in order to compensate

this reduced size, implement periodic boundary conditions. The stochastic 3D model

combines two well-established stochastic approaches: Spatial stochastic graphs and

simulated annealing. First, a spatial stochastic graph model is developed which describes
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the main structural features of the simulated microstructure. Then, a realization drawn

from the graph model is discretized on a voxel grid, where voxels representing the edges

of the graph are put ‘white’ (representing the graphite phase), and the remaining ones

‘black’. Subsequently, the discretized graph is combined with simulated annealing in

a second step. Therefore, the set of white voxels is filled up with further white voxels

around the edges of the graph in order to get a suitable initial configuration for the

simulated annealing algorithm. Thus, in the initial configuration, the white voxels tend

to cluster along the edges of the graph. Note that the initial white voxels that represent

the edges of the graph are not changed by simulated annealing and, therefore, they

serve as a backbone for the simulated microstructure. Finally the simulation model is

validated by comparing relevant image characteristics of experimental and simulated

data, where a good agreement is found. Unless stated differently, all units are given in

voxel.

Standard simulated annealing is a popular tool to simulate microstructures or

analyze microstructure evolution. The basic idea is to start with a random allocation

of black and white voxels (representing the respective phases) having predefined volume

fractions. A Markov chain Monte Carlo algorithm is used to coarsen this blend by

randomly choosing a pair of neighboring voxels and probabilistically admitting a swap

based on the energy of the system, where the energy is associated with its surface area.

The advantage is that for model fitting, (mainly) two kinds of information are required:

the specific surface area and the volume fraction. On the downside, computational

times are rather large and the control on the geometric properties of the resulting

microstructure is limited. In contrast, the combination of simulated annealing with

the (fast) graph simulation leads to a stochastic simulation model with acceptable

runtimes that is flexible to describe complex, experimentally measured microstructures.

In general, simulated annealing can be used to analyze the coarsening of the morphology.

In this paper, however, we are interested in generating an instance of a microstructure

that resembles the properties of experimentally measured image data.

The simulation model presented is this paper, is applied to the 3D microstructure

of (uncompressed) graphite electrodes used in Li-ion batteries. In [4], another stochastic

simulation model for (compressed) graphite electrodes used in Li-ion batteries, is

proposed. The idea of the model considered in [4] is to describe the pore space of the

compressed graphite electrode as a union of overlapping spheres with suitable correlation

structure. The simulation model described in the present paper follows a different

approach, where stochastic graph modeling is combined with simulated annealing. The

advantage of this approach is that the volume fraction and the specific surface area

can be easily adjusted or changed. In general, the model presented in this paper is

not limited to the application of graphite electrodes. It can be used to simulate any

isotropic, stationary and smooth two-phase materials.

The paper is organized as follows. The material and the applied imaging technique

are described in Section 2. Then, in Section 3, the random graph model is explained.

Section 4 deals with graph-based simulated annealing and its application to the
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Figure 1. 3D image of experimental data (left) and cutout of 100× 100× 100 voxels

(right). The graphite phase appears yellow and the pore phase transparent.

simulation of microstructures. In particular, in Section 4.2, the implementation of

simulated annealing on the graph model is discussed. Then, in Section 4.3, the graph-

based simulation model is validated and, in Section 4.4, compared to other modifications

of standard simulated annealing along with some numerical results on runtime. The

conclusions are given in Section 5.

2. Description of material and imaging technique

As an example of application, we fitted the stochastic simulation model proposed in the

present paper to 3D image data that describe the microstructure of graphite electrodes

in Li-ion batteries. The data set had a size of 624 × 159 × 376 voxels with each voxel

representing 215 nm3. To get a visual impression of the microstructure of this material,

see Figure 1.

The considered electrode material consisted of about 95% of graphite and of about

5% of a mixture of conductive carbon and PVDF (polyvinylidendifluoride) as binder

material. The anode was located on both sides of a copper electrode with about 10±1µm

thickness. The load was about 18.6± 0, 6mg/cm2 for both sides. The overall thickness

of the measured sample was about 113µm, i.e., the anode material had a thickness of

about 50µm on both sides of the copper foil. The material was not loaded with lithium,

i.e., raw material. The copper foil was not removed for the measurement in order to

avoid any influence caused by sample preparation.

The measurements were performed at the synchrotron X-ray tomography facility at

the BAMline (Bessy, HZB, Germany). The synchrotron X-ray beam was detected with

a high resolution optical setup (Optique Peter, Optical and Mechanical Engineering

France) and a PCO4000 CMOS camera with 4008 × 2672 pixel and a pixel size of

9µm. A 20µm thick CWO scintillator screen was applied. The set-up provides a

spatial resolution of 0.6µm at a pixel size of about 0.215µm. The X-ray beam was

monchromatized with a double multilayer monochromator (WSi) that provides an energy

resolution of about ∆E
E

≈ 10−2. An X-ray energy of 30 keV was chosen (phase contrast

tomography). Overall 1800 projections were taken. The exposure time was 3 s for each

radiographic projection image.
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3. Random graph model

The basic idea of our modeling approach is to first simulate a random 3D graph which

describes the essential structural properties of the underlying image data, and then

to ‘dilate’ the graph by simulated annealing. Note that recently random 3D graphs

have been successfully used to describe the microstructure of various advanced energy

materials [2, 25, 26].

A random geometric graph G = (V,E) can be described by a random set of vertices

V = {S1, S2, . . .}, where Si is the random location of the ith vertex in R
3, and a random

set of edges E = {(Si1 , Sj1) , (Si2 , Sj2) , . . .} describing the line segments between two

connected vertices.

3.1. Extraction of 3D graph from experimental data

In order to fit the graph model to the microstructure of the tomographic image data

described in Section 2, we first extracted a 3D graph from these data and then fitted the

random graph model to the properties of the extracted graph. The graph extraction has

been performed by a skeletonization tool of Avizo Standard (version 6.3 ), see [27, 28],

using the default settings. Its idea is to change voxels representing the graphite phase

to pore phase voxels such that a thin line with thickness one remains. Furthermore, the

skeletonization is homotopic, i.e., connectivity-preserving. In a next step, the skeleton

is transformed into vector data, i.e., it it approximated by polygonal tracks, see also

Figure 2. These polygonal tracks are systems of line segments. The representation by

systems of line segments can be interpreted as a spatial graph, where the start- and

endpoints of the line segments form the set of vertices V and the line segments itself the

set of edges E. Note that for analysis purposes, an edge correction has been performed,

where only those line segments are considered whose start- and endpoints are both

contained within the image (bounding box). For more information on skeletonization,

see [29–32].

Figure 2. 3D image of experimental data (left) and extracted graph (right)

In order to find an appropriate graph model, several structural characteristics of

the extracted graph have been analysed. First, the vertex set was analysed to find

an appropriate point process which describes the set of vertices of the extracted graph
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sufficiently well. Then, the edge set of the extracted graph was investigated in the same

way.

3.2. Stochastic modeling of vertices

3.2.1. Modulated hardcore point process We interpret the vertices of the extracted

graph as a realization of a stochastic point process. To get an idea which class

of point process models might be suitable, we consider the pair-correlation function

g : (0,∞) → (0,∞) of a stationary and isotropic point process in R
3. Note that g(r)

is proportional to the relative frequency of point pairs with distance r > 0 from each

other [33]. The pair correlation function of the point pattern of vertices of the extracted

graph has been computed using a Gaussian kernel density estimator with a bandwith

of 0.04, see Figure 3. For an automatic bandwidth estimation, see [34]. The fact that

Figure 3. Estimated pair-correlation function

g(r) = 0 for small r > 0 clearly indicates a hardcore distance while g(r) > 1 for 2 < r < 7

shows a strong clustering of points with ‘medium’ distances from each other. Therefore,

a modulated hardcore point process appears suitable. This model can be described in

the following way. Let {S
(1)
n , n ≥ 1} be a stationary Poisson process in R

3 with intensity

λ(1) > 0. For any r > 0, the random set Ξ =
⋃

∞

n=1B(S
(1)
n , r) is called a Boolean

model, where B(x, r) ⊂ R
3 denotes the sphere with centre x ∈ R

3 and radius r > 0.

In this paper, the radii are uniformly distributed in some interval [r1, r2]. Furthermore,

let {S
(2)
n , n ≥ 1} be a stationary Matérn-hardcore process in R

3 with intensity λ(2)

and hardcore radius rh > 0, where λ(2) = λ(1 − exp(−λ(1) 4
3
π(r42 − r41)))

−1 for some

λ > 0; see [33] for further details regarding Matérn-hardcore processes. Assume that

the point processes {S
(1)
n } and {S

(2)
n } are independent. The stationary point process

{Sn} = {S(2)
n } ∩ Ξ is called a modulated hardcore process. Its intensity is equal to

λ > 0, where only those points of {S
(2)
n } are considered that belong to the system Ξ

of overlapping spheres. In this way, a clustering of points for ‘medium’ distances is

achieved, while a repulsion of points for ‘small’ distances is assured.
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3.2.2. Model fitting The modulated hardcore point process {Sn} can be described by

five parameters: λ, λ(1), r1, r2 and rh. Its intensity λ can be easily estimated by

λ̂ =
total number of extracted vertices

volume of sampling window
.

Since rh is the minimum distance between point pairs, we put this model parameter

equal to the smallest distance between two extracted vertices. The remaining three

parameters λ(1), r1, r2 are estimated by the minimum-contrast method with respect to

the pair-correlation function, i.e.; λ(1) and r1, r2 are chosen such that the discrepancy∫ r′′

r′
(g(u) − g(λ(1),r1,r2)(u))

2 du between the pair-correlation function g computed for the

extracted vertices and its model counterpart g(λ(1),r1,r2) is minimized, where (r′, r′′) =

(1.2, 16) is a suitably chosen interval. The values of the parameters of the fitted point

process are given by λ = 1, 34E − 4, λ(1) = 1.94E − 4, r1 = 5, r2 = 6, rh = 2.

3.2.3. Model validation To get a visual impression of the goodness-of-fit, we refer to

Figure 4, where three characteristics of the fitted modulated hardcore point process are

displayed. Besides the pair-correlation function, the distribution functions of nearest-

neighbor distances and spherical contact distances, respectively, are important (image)

characteristics which significantly influence the physical properties of the underlying

materials [35]. The nearest neighbor distribution is defined as the distribution of the

distance from a so-called ‘typical point’ of the point process to its nearest neighboring

point [33]. Similarly, the spherical contact distribution is defined as the distribution of

the distance from a random point in the observation window to the nearest point of the

point process [33]. Plots of these functions are shown in Figure 4, for both the extracted

vertex points and the fitted point process. In general, we can observe a very good

coincidence of these characteristics, although the peak of the pair-correlation function

for the fitted point process is not as high as for the original data set. But nevertheless

this (slightly lower) peak indicates strong clustering of points with medium distances

from each other. The validation of the complete graph model, given in Section 3.4 below,

shows that this little discrepancy of pair-correlation functions has no essential effect on

the quality of the graph model and can therefore be neglected. On the other hand,

the distribution functions of nearest-neighbor distances and spherical contact distances

shown in Figure 4 fit perfectly.

3.3. Stochastic modeling of edges

So far, we developed a stochastic model for the random set of vertices V = {S1, S2, ...}.

For stochastic modeling of edges we consider the distribution of the minimum angle

between neighboring edges. More precisely, for each vertex Sn, we consider all edges

{(Sn, Sn1), . . . , (Sn, Snk(n)
)} emanating from Sn, where k(n) is the number of these edges.

For all pairs of these edges, we compute their angle. Let Xn be the minimum angle,

then the distribution of these angles is displayed in Figure 5, where it can be seen that

there is a tendency towards wider minimum angles between 50◦ to 60◦.
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Figure 4. Pair-correlation function (left) and cumulative distribution function of

nearest-neighbor distances (center) and spherical contact distances (right) for the fitted

point process model (red) and extracted vertex points (black)

Figure 5. Distribution function of minimum angle between neighboring edges

3.3.1. Connecting nearest neighbors For each vertex Sn ∈ V , we consider its m nearest

neighbors {Sn,(1), ..., Sn,(m)}, where Sn,(i) denotes the ith nearest neighbor of Sn. We then

connect Sn with (some of) its m nearest neighbors according to the following rule, where

En denotes the set of accepted edges: 1) Accept the shortest edge (Sn, Sn,(1)) and put

En = {(Sn, Sn,(1))}. 2) Consider the next-nearest neighbour Sn,(2). If the angle between

(Sn, Sn,(2)) and every edge in En is larger than a certain threshold γ1, with γ ∈ (0,∞),

then (Sn, Sn,(2)) is accepted and added to En, otherwise rejected. 3) Iteratively, repeat

step 2 for Sn,(3), Sn,(4), . . . , Sn,(m).

This procedure is accomplished for every vertex Sn, which yields the set E =⋃
∞

n=1 En of edges. As we want to implement periodic boundary conditions for the

simulated annealing algorithm, this is already done for the graph model. Therefore,

instead of considering the usual Euclidian distance, a modulo distance is used for

computing the distance between two vertices. This means that edges hitting the

boundary of the image are continued on the opposite site.

3.3.2. Postprocessing of edges In addition to the connection rule described above, we

still perform a certain postprocessing of edges. The reason for this is that it can happen
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that (Si, Sj) ∈ Ei but (Sj, Si) /∈ Ej, although Si belongs to the set ofm nearest neighbors

of Sj. This situation occurs if there is a vertex Sk ∈ V with |Sk − Sj| < |Si − Sj| and

(Sj, Sk) ∈ Ej such that the angle between the edges (Sj, Si) and (Sj, Sk) is smaller than

γ1.

To solve this problem we consider the following thinning of edges. Let (Si, Sj) ∈ E

be an arbitrary (undirected) edge. Then we perform a Bernoulli experiment in order to

decide whether (Si, Sj) is added to a list D of edges that are going to be deleted. Thus,

putting D = ∅ at the beginning, we proceed as follows: 1) The angles between (Si, Sj)

and all edges of the form (Si, Sk) and (Sj, Sl) ∈ E, where k 6= i, l 6= j, are calculated. 2)

If at least one of these angles is less than a certain threshold γ2, then (Si, Sj) is added

to D with probability of p ∈ (0, 1). 3) Repeat steps 1 and 2 for each edge (Si, Sj) ∈ E.

4) Take E∗ = E \D as the final edge set.

The stochastic edge model introduced above has four parameters: m, γ1, γ2, and p,

which have been determined using the minimum-contrast method with respect to the

distributions of edge lengths, edge-angles, coordination numbers and spherical contact

distances. Note that the coordination number of a vertex is defined as the number of

edges emanating from a vertex [36]. As the result we receivedm = 10, γ1 = 90◦, γ2 = 80◦

and p = 5%.

Figure 6. Graph extracted from original data (left) and simulated graph (right)

3.4. Model validation

To get a visual impression of the goodness-of-fit, in Figure 6 a cutout of the 3D graph

extracted from experimental data is shown, together with a (simulated) realization of

the random graph model. Since the experimental graph, displayed in Figure 6 (left), is

a cutout, the simulated graph (Figure 6 (right)) is also a cutout of a larger observation

window.

Furthermore, the goodness-of-fit of the random graph is validated by comparing

structural characteristics of the graphs extracted from experimental data and simulated

from the graph model, respectively. In particular, we consider the distribution functions

of spherical contact distances, edge lengths, minimum angles between edges, and
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Figure 7. Distribution function of spherical contact distances (left) and edge lengths

(right) for the fitted graph model (red) and the graph extracted from experimental

data (black)

Figure 8. Distribution function of minimum angles between edges (left), and

coordination numbers (right) for the fitted graph model (red) and the graph extracted

from experimental data (black)

coordination numbers. For all these characteristics, a reasonably good agreement

has been obtained between results for original and simulated graphs; see Figures 7

and 8. The edge lengths, however, are slightly underestimated by the model. Also,

the minimum angles and the coordination number exhibit small deviations from the

experimental data, see Figure 8. Still, the final microstructure that arises from

combining the graph model with simulated annealing shows a good agreement with

the experimentally measured image data, see Section 4.3. Thus, these small deviations

of some structural characteristics do not lead to large deviations in the resulting

microstructure.

4. Graph-based simulated annealing

Simulated annealing is a well-established stochastic optimization algorithm with a wide

field of applications, such as the traveling-salesman problem, image segmentation, and

graph partitioning; see [37] for an introduction to this field. It is also a standard method
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to generate two-phase (or multiple-phase) morphologies on a voxel lattice that are

often used as input of physical simulations. Among many other applications, simulated

annealing is used to describe the microstructure of sandstones, metals, and organic solar

cells [7]. In this section, we briefly describe the basic idea of the simulated annealing

algorithm and its specific implementation for the generation of 3D morphologies.

4.1. Standard algorithm

The basic idea of standard simulated annealing is to start with a random distribution

of black and white voxels (representing the respective phases of the microstructure)

on a voxel lattice W , e.g. W = {1, 2, . . . , 100}3, with a specified volume fraction of

white voxels. Given this initial configuration, a Markov chain Monte Carlo algorithm

is used to coarsen the morphology such that a certain value of an image characteristic

is met. In this paper, the Markov chain Monte Carlo algorithm is used to coarsen

the morphology such that the specific surface area of the graphite phase matches the

specific surface area of the experimental image data of graphite electrodes. The image

characteristic that is used for the coarsening of the blend of black and white voxels is

called cost function throughout this paper. The Markov chain Monte Carlo algorithm

works as follows: two (normally neighboring) voxels are picked at random and exchanged

or swapped and the values of the cost function of the before and after the swap are

computed. If the cost function decreases due to the exchange, i.e., the morphology

is coarsened, the exchange is accepted, otherwise it is only accepted with a certain

acceptance probability. The acceptance probability decreases with time such that swaps

that ‘refine’ the morphology instead of coarsening it (i.e., an increase of the value of

the cost function) become less likely. This decrease of the acceptance probability is

interpreted as cooling of the material and specified by a so-called cooling schedule, which

is a triple (T,M, c) consisting of an initial temperature T , the number of steps M after

which the temperature is decreased by a factor c. The coarsening by the Markov chain

Monte Carlo algorithm leads to a structure where voxels are ordered in a special way

depending mostly on the chosen cost function but also on the cooling schedule.

In more detail, consider a set of voxels representing W the sampling window, and

I = {I(z), z ∈ W} a binary image on W , where I(z) = 0 (I(z) = 1) means that z ∈ W

is a black (white) voxel. Suppose that at the beginning, all voxels are black, i.e., we

have I(z) = 0 for each z ∈ W . Furthermore, by α0 we denote the volume fraction (of

white voxels) and by β0 the value of the cost function (e.g. specific surface area) of

the experimental reference image data. Then, the aim is to simulate an arrangement

of black and white voxels, i.e., an instance of the image I such that it matches both

the volume fraction α0 and the reference value of the cost function (e.g. specific surface

area) β0. For an arbitrary binary image I, we denote the volume fraction of white voxels

by α(I), i.e., α(I) = |{x ∈ W : I(x) = 1}|/|W |. Similarly, we denote by β(I) the value

of the cost function (specific surface area) given the image I. Finally, let Ix,y refer to

the image, where the values of the two voxels x and y have been exchanged in the image
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I. Analogue, let βx,y = β(Ix,y), i.e., βx,y is the value of the cost function of the image I

when the value of the voxels x and y have been swapped. Then, the standard simulated

annealing algorithm can be described as follows: 1) Perform Bernoulli experiments to

throw white voxels (i.e. I(z) = 1) into W according to the uniform distribution until

the volume fraction α0 is reached, i.e. α(I) = α0. 2) As long as β(I) > β0, repeat

the following steps: (a) Set q = 1 and repeat the steps (b) to (d) until q = M . (b)

Pick two (neighboring) voxels x, y ∈ W at random such that I(x) 6= I(y). (c) If

βx,y−β(I) ≤ 0, swap I(x) and I(y), otherwise swap I(x) and I(y) only with probability

exp(−(βx,y − β(I))/T ). (d) Set q = q + 1 and continue with (b). (e) After M steps, set

T = c · T . Go to (a) if β(I) > β0.

Note that especially for larger window sizes runtimes are rather large and simulated

annealing only provides a limited control of the resulting microstructure. Therefore, with

standard simulated annealing, only small cutouts of 3D microstructures can be simulated

reasonably and improvements of the algorithm are desirable. In the next section, we

propose an approach which enables us to simulate 3D microstructures for window sizes

of 100 × 100 × 100 voxels much faster than this is possible with standard simulated

annealing.

4.2. Combination of graph model and simulated annealing

Standard simulated annealing as described in Section 4.1, can be used to generate 3D

morphologies, but runtimes are rather large. Moreover, since only two parameters can

be adjusted (the values α0 and β0 of volume fraction and cost function, respectively),

this algorithm offers only limited control of the resulting morphology of white and black

voxels. In fact, it turns out that the standard simulated annealing algorithm does not

describe the microstructure of the experimental image data considered in the present

paper sufficiently well.

We therefore propose another, more efficient approach, which we call graph-based

simulated annealing, where first a random 3D graph is simulated as explained in

Section 3, which is then combined with simulated annealing. Thereby the graph

describes the essential morphological properties of the considered microstructure and

serves as a backbone for the simulated annealing algorithm.

4.2.1. Initial configuration Instead of throwing uniformly distributed white voxels into

the sampling set W , an initial configuration of white voxels is constructed with the

previously simulated graph. The idea is as follows: The simulated 3D graph is discretized

on the lattice W , i.e., we put I(x) = 1 for those voxels x ∈ W that belong to the graph,

and I(x) = 0 for those voxels that do not belong to the graph. This discretized graph

indicates voxels around which further white voxels will be located until the volume

fraction α0 is reached.

To take the most important advantage of our graph-based approach into account,

we require that each white voxel of the initial configuration is connected to the graph.
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Therefore, we first choose a voxel x ∈ W at random. Then, we choose a random

direction (parallel to the x-, y-, or z-axis) and decide at random if we want to go

forward or backward into this direction. Thus, there are six directions where each of

them can be chosen with probability 1/6. Along the selected direction, we move from

x ∈ W until we either reach a white voxel representing the graph or another (white)

voxel that has been placed there in an earlier step (and therefore is connected to the

graph). If x does not hit another white voxel, which may indeed occur, it is rejected

and the procedure is repeated with another random voxel y ∈ W . Finally, we put the

voxel at the currently reached location to ‘white’. This procedure is continued until

|{x ∈ W : I(x) = 1}|/|W | = α0.

In this way, we get an initial configuration where every white voxel is connected

to the graph. In Figure 9 we can see the difference to the initial configuration of the

standard simulated annealing algorithm, where voxels are thrown at random into the

window according to the uniform distribution.

Figure 9. Initial configuration of standard (left) and graph-based (right) simulated

annealing

Note that the value of the cost function corresponding to the initial configuration

described above is typically much closer to the value β0 of the cost function corresponding

to the experimental data set than the value of the cost function corresponding to a

purely random initial configuration. This is the main reason why graph-based simulated

annealing is much faster than the standard version of this algorithm. More details on

numerical results regarding runtime are given in Section 4.4.

4.2.2. Description of graph-based algorithm Besides the different ways to create initial

configurations, there are two further important differences between standard and graph-

based simulated annealing. First, (white) voxels representing the discretized graph may

not be swapped. Therefore, the discretized graph serves as ‘rock’ and white voxels

tend to cluster around it, where the graph forms the skeleton of the morphology to

be simulated. In this way, i.e., first simulating a random 3D graph and then applying

simulated annealing, one can nicely control the resulting morphology.
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Consider a window W of size 100 × 100 × 100, and I = {I(x), x ∈ W} a binary

image on W which displays the graph, i.e., I(x) = 1 if x belongs to the graph and

I(x) = 0 otherwise. Furthermore, let α0 be the volume fraction of the graphite phase

(white voxels) of the experimental image data, and β0 its surface area (which we use as

cost function). Analogously, let α(I) be the volume fraction of white voxels in I and

β(I) the surface area of I. As initial temperature we choose T = 0.3, which is a value

where enough changes are accepted. The number M of iterations per step is chosen

proportional to the window size (in our case M = 0.1 × |W |), and the cooling factor c

for the temperature T is put equal to c = 0.98 [38]. Finally, like in Section 4.1, we write

βx,y = β(Ix,y) where Ix,y = {Ix,y(z), z ∈ W} is a binary image where the value of the

voxels x and y are interchanged, i.e., Ix,y(x) = I(y), Ix,y(y) = I(x) and Ix,y(z) = I(z)

for any z 6= x, y. Then, the graph-based simulated annealing algorithm can be described

as follows:

(i) Fill up W with white voxels as described in Section 4.2.1, until the volume fraction

α0 is reached, i.e. α(I) = α0.

(ii) As long as β(I) > β0, repeat the following steps:

(a) Set q = 1, βold = β(I) and repeat the steps (b) to (d) until q = M .

(b) Choose two neighbouring voxels x, y ∈ W (with respect to the 26-

neighbourhood), which do not belong neither to the same phase nor to the

graph.

(c) If βx,y−β(I) ≤ 0, swap I(x) and I(y), otherwise swap I(x) and I(y) only with

probability exp(−(βx,y − β(I))/T ).

(d) Set q = q + 1 and continue with (b).

(e) After M steps, set T = c · T if (βold − β(I))/βold < 5 × 10−6. Go to (a) if

β(I) > β0.

Note that in contrast to the standard simulated annealing algorithm as described in

Section 4.1, we postulate a slightly different condition for the decrease of the temperature

T . It is not necessarily changed after M steps but only if the additional condition that

(βold − β(I))/βold < 5 × 10−6 is fulfilled [38]. As in Sections 3.3.1 and 4.2.1, periodic

boundary conditions are implemented, i.e., swaps over the boundary of the sampling

window W are possible. For the computation of surface area, an algorithm described

in [39] is used. Note that in each iteration step, the surface area has to be calculated to

evaluate if a swap of voxels is desired. Here, it is sufficient to only calculate the surface

area for a small cutout, which considerably enhances runtime.

4.2.3. Simulation result In Figure 10 an initial configuration of graph-based simulated

annealing is compared with the corresponding (final) image obtained by this algorithm.

We see that in the final simulation result there are clusters of the foreground phase at

the same locations as in the initial configuration. Furthermore, it is clearly visible in

Figure 10 that the graph-based algorithm has nicely coarsened the microstructure of the

initial configuration.
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Figure 10. Initial configuration (left) and final result (right) of graph-based simulated

annealing

4.3. Model validation

The goal of this paper is to develop a method in order to efficiently simulate the

microstructure of graphite electrodes as displayed in Figure 1. We therefore combined

the simulation of random 3D graphs with simulated annealing, where we were matching

the volume fraction α0 and the specific surface area β0 of the experimental image data.

Figure 11 gives a visual representation of the goodness-of-fit which can be achieved by

the graph-based simulated annealing described in the previous sections of this paper.

Figure 11. Experimental data (left) and 3D microstructure obtained by graph-based

simulated annealing (right)

To formally validate the result of graph-based simulated annealing with respect to

the 3D morphology of graphite electrodes, we compare several structural characteristics

for both experimental and simulated data. To begin with, we compute the distribution

functions of spherical contact distances from the pore phase to the foreground, and vice

versa. These characteristics describe the spherical elongation of the pore phase and

graphite phase, respectively. The results displayed in Figure 12 (left and center) show

an excellent agreement between experimental and simulated data. Next, we compare the

distribution functions of spherical contact distances from the graph to the boundary of

the graphite phase. More precisely, for each (white) voxel from the graph, we compute
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Figure 12. Distribution function of spherical contact distances from pore phase to

foreground (left) and vice versa (center) for simulated (red) and experimental (black)

data. Right: spherical contact distances from the edges of the graph to the pore phase

Figure 13. Distribution function of chord lengths along the x- (left), y- (center) and

z-axis (right) for simulated (red) and experimental (black) data

the distance to the nearest pore-phase (i.e., black) voxel. Thus, we describe the spatial

elongation of the microstructure, from the point of view of the graph. The results in

Figure 12 (right) show that the overall agreement is quite good, only large distances

are slightly underestimated by the model. Next, we analyze chord-length distribution

functions, see Figure 13. In general, the chord length with respect to a line L for an

object A ∈ R
3 is the length of the intersecting line segment L∩A. Considering all lines

with a fixed direction µ yields the chord length distribution (for this direction) [39].

Thus, the chord length distribution is the distribution of the elongation of an object

A in direction µ. Here, we consider chord lengths for x−, y− and z−direction. It can

be observed that the chord length distribution in z−direction slightly deviates from the

chord length distribution in x− or y− direction for the experimental image data. This

indicates that the morphology is not perfectly isotropic, yet the degree of anisotropy

is rather small which can be seen by considering the chord length distribution of the

graph-based simulated annealing: for small and large chord lengths in z−direction, the

stochastic models shows only slight deviations. Last but not least, for the application

of the stochastic simulation model developed in the present paper to the microstructure
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of graphite electrodes, it must be assured that the graph-based simulated annealing

resembles the main connectivity properties of the considered material. Note that the

graphite electrode will be completely connected. In the 3D image data, however, it

can occur that bridges between graphite particles are smaller than the resolution and

therefore, isolated clusters may appear. Also, isolated clusters at the boundary may be

connected with the electrode via bridges outside of the observation window. Therefore,

we made a cluster analysis for both, a cutout of 130 × 130 × 130 voxels of the 3D

experimental image data and for a corresponding simulation, see Figure 14. It turns out

that 95.54% of experimental 3D graphite electrode is connected, in comparison to 100%

for the stochastic model.

Figure 14. Connectivity of graphite electrode: Cutout of 1303 voxels from

experimental data (left) and corresponding simulation (right). Different clusters are

marked by different colours.

4.4. Comparison to other algorithms and numerical results

In the literature, there are many different approaches to improve the standard simulation

annealing algorithm, ranging from changing the choice of voxels that are exchanged [40],

the combination of simulated annealing with other algorithms [41], to exchanging

spheres instead of pixels/voxels [42]. Graph-based simulated annealing, as proposed

in this paper, enhances runtime compared to standard simulated annealing. To analyze

the difference in computational effort, we consider the surface area of the simulated

microstructure in dependence of the number of iterations used in the algorithm. This is

reasonable since the generation of the random graph as well as the initial configuration

take a negligible amount of time and thus, the coarsening of the morphology is the main

factor driving runtime. The results, displayed in Figure 15, show that the graph-based

simulated annealing reduces the computational effort mainly by the improved initial

configuration. Graph-based simulated annealing reduces computational effort (given

the desired surface area) to 5.89% of the effort required by the standard simulated

annealing algorithm.

In addition to the possibility to perform simulations within large windows and

respectable runtimes, our graph-based simulated annealing can adequately reproduce
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Figure 15. Surface area of simulated microstructure vs. the number of steps in

the algorithm for standard simulated annealing (black) and graph-based simulated

annealing (red). On both axes, a log-scale is applied.

the morphological properties of complex 3D microstructures like those of the electrode

material described in Section 4.3. This is due to the fact that our approach consists

of three steps: First, a stochastic point-process model is fitted which describes the

vertices of the underlying 3D graph. Then, the edge model is fitted to experimental

data and, finally, the graph-based simulated annealing is performed. After every step,

the goodness-of-fit is validated, so that the final simulation results fit very well to

experimental data.

What is also remarkable is the simplicity of the cost function considered in the

graph-based simulated annealing algorithm. In other approaches, rather sophisticated

image characteristics like correlation functions or different distribution functions are

chosen as a cost function, sometimes even the sum of more than one squared cost

function is considered [42].

In our approach, we only need to optimize the surface area. The simplicity of this

cost function allows us to compute their values merely for a local cutout of the current

image, because the surface area changes only in small surroundings of two neighboring

voxels.

5. Conclusions

In the present paper, a stochastic 3D model for efficient simulation of complex

microstructures has been proposed, which combines two well-established stochastic

approaches: graph simulation and simulated annealing. Whereas standard (global)

simulated annealing is a rather slow algorithm with limited control of the resulting

microstructure, the combination with the (fast) graph simulation leads to a stochastic

simulation model with acceptable runtimes and good fits of complex microstructures.
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Thereby, the graph nicely controls the characteristics of the simulated microstructure

as it describes the essential structural properties of the underlying material.

As an example of application, our approach has been used in order to investigate the

morphology of graphite electrodes in Li-ion batteries, where the graph-based simulation

model has been fitted to experimental image data gained by synchrotron tomography.

The original data set has a size of 624 × 159 × 376 voxels with each single voxel

representing 215 nm3. Since this data set has a relatively large size, we considered

a representative cutout of 100 × 100 × 100 voxels and, in order to compensate this

reduced size, implemented periodic boundary conditions. The simulation model has been

validated by comparing relevant image characteristics of experimental and simulated

data.
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