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Graph-based Spatio-Temporal Feature Learning for
Neuromorphic Vision Sensing

Yin Bi, Aaron Chadha, Alhabib Abbas, Eirina Bourtsoulatze and Yiannis Andreopoulos

Abstract—Neuromorphic vision sensing (NVS) devices repre-
sent visual information as sequences of asynchronous discrete
events (a.k.a., “spikes”) in response to changes in scene re-
flectance. Unlike conventional active pixel sensing (APS), NVS
allows for significantly higher event sampling rates at substan-
tially increased energy efficiency and robustness to illumination
changes. However, feature representation for NVS is far behind
its APS-based counterparts, resulting in lower performance in
high-level computer vision tasks. To fully utilize its sparse and
asynchronous nature, we propose a compact graph representation
for NVS, which allows for end-to-end learning with graph convo-
lution neural networks. We couple this with a novel end-to-end
feature learning framework that accommodates both appearance-
based and motion-based tasks. The core of our framework
comprises a spatial feature learning module, which utilizes
residual-graph convolutional neural networks (RG-CNN), for
end-to-end learning of appearance-based features directly from
graphs. We extend this with our proposed Graph2Grid block
and temporal feature learning module for efficiently modelling
temporal dependencies over multiple graphs and a long temporal
extent. We show how our framework can be configured for object
classification, action recognition and action similarity labeling.
Importantly, our approach preserves the spatial and temporal
coherence of spike events, while requiring less computation and
memory. The experimental validation shows that our proposed
framework outperforms all recent methods on standard datasets.
Finally, to address the absence of large real-world NVS datasets
for complex recognition tasks, we introduce, evaluate and make
available the American Sign Language letters (ASL-DVS), as
well as human action dataset (UCF101-DVS, HMDB51-DVS and
ASLAN-DVS).

Index Terms—Neuromorphic vision sensing, spatio-temporal
feature learning, graph convolutional neural networks, object
classification, human action recognition

I. INTRODUCTION

With the prevalence and advances of CMOS active pixel

sensing (APS) and deep learning, researchers have achieved

good performance in APS-based computer vision tasks, such

as object detection [1], [2], object recognition [3], [4] and

action recognition [5], [6] . However, APS cameras suffer from

limited frame rate, high redundancy between frames, blurriness
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due to slow shutter adjustment under varying illumination, and

high power requirements [7] which limit the effectiveness of

APS-based frameworks. To solve these problems, researchers

have devised neuromorphic vision sensing (NVS) sensors such

as the iniLabs DAVIS cameras [8] and the Pixium Vision ATIS

cameras [9], which are inspired by the photoreceptor-bipolar-

ganglion cell information flow in mammalian vision. NVS

devices output events (i.e., spikes) asynchronously in response

to a change in illumination. That is, when the transient change

of illumination intensity in a scene exceeds a certain threshold,

an event is generated. The output of the NVS camera is

represented asynchronously as a collection of tuple sequences,

referred to as an Address Event Representation (AER) [10]

that is the standard interfacing protocol for neuromorphic engi-

neering. Each tuple corresponds to one event and it comprises:

the spatial coordinates, the timestamp and the polarity (i.e., ON

or OFF) of the event. The polarity indicates an increase (ON)

or decrease (OFF) in illumination intensity, where ON/OFF

can be represented via +1/-1 values. The operation of an NVS

camera is illustrated at the top part of Fig. 1, where impulses

represent the generated events.

In contrast to APS devices (i.e., conventional cameras) that

use a fixed-sampling rate in order to record entire frames at

fixed frame rates, each CMOS array position (a.k.a., pixel) in

an NVS sensor optimizes its own sampling rate independently,

according to the change it detects in illumination. Therefore,

the events produced from the entire NVS pixel array are sparse

and asynchronous and can be represented as a space-time

volume over a given time interval. This is illustrated at the

bottom part of Fig. 1, where the neuromorphic event stream

is overlaid with the corresponding RGB frames recorded at

the video framerate; events are plotted according to their

spatio-temporal coordinates and color coded as blue (OFF) and

red (ON). Notably, there are many more intermediate events

between the RGB frames, which indicates the substantially

higher framerate achievable with an NVS camera and asyn-

chronous outputs. Furthermore, the asynchronicity removes the

data redundancy from the scene, which reduces the power

requirement to 10mW, compared to several hundreds of mW

for APS cameras. Remarkably, NVS devices achieve this

with microsecond-level latency and robustness to uncontrolled

lighting conditions, as no synchronous global shutter is used.

Beyond event sparsity and asynchronicity, neuromorphic

event streams are naturally encoding spatio-temporal motion

information [7]; as such, they are extremely adaptable to tasks

related to moving objects such as action analysis/recognition,

object tracking or high-speed moving scenes. We, therefore,

look to perform feature learning directly on the raw neuro-
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Fig. 1: (top): NVS camera operation. (bottom): Recording

of archery action captured by APS and NVS cameras. APS

cameras capture frames at a fixed rate, while NVS cameras

output a stream of events. (Red:ON, Blue:OFF)

morphic events. Unfortunately, effective methods for repre-

sentation learning on neuromorphic events to solve complex

computer vision tasks are currently limited and outperformed

by their APS-based counterparts. This is partly due to lim-

ited research in the NVS domain, as well as a lack of

NVS data with reliable annotations to train and test on [7],

[11]. Yet, more so, the sheer abundance of asynchronous

and sparse events means that feature learning directly on

events can be particularly cumbersome and unwieldy. Thus

far, most approaches have attempted to solve this issue by

either artificially grouping events into frame forms [12], [13]

or deriving complex feature descriptors [14], [15], which do

not always provide for good representations for complex tasks

like object classification. Moreover, such approaches dilute the

advantages of the asynchronicity of NVS streams by limiting

the frame-rate, and may be sensitive to the noise and change of

camera motion or viewpoint orientation. Finally, these methods

fail to model long temporal event dependencies explicitly, thus

rendering them less viable for motion-based tasks.

More recent methods on feature representation have em-

ployed end-to-end feature learning, where a convolutional neu-

ral network (CNN) [16], [17] or spiking neural network (SNN)

[18], [19] is trained to learn directly from raw observations.

While these methods show great promise, CNN-based learning

methods require event grouping into frames. Therefore, they

suffer from the same drawbacks as above. On the other hand,

the biggest challenge of SNNs is that the activation functions

of spiking neurons are asynchronous and non-differentiable in

time. Hence, SNN-based methods cannot use well-established

gradient-based learning rules. This makes SNN-based methods

complex to train, resulting in lower performance compared

to gradient-based alternatives. In addition, SNN inference

requires bespoke hardware, which is less readily available than

CPUs and GPUs. These difficulties are compounded by the

fact that, from the sensing side, neuromorphic (spike) based

sensors activate in an asynchronous manner in time, thereby

producing data streams at irregular space-time coordinates,

which depend on the scene activity. Graph-based processing

is an ideal mechanism to deal with such asynchronous space-

time data capture mechanisms. Therefore, instead of using

CNNs or SNNs, we propose to leverage on graph-based

learning, by training an end-to-end feature learning framework

directly on neuromorphic events. By representing events as

graphs, we are able to maintain event asynchronicity and

sparsity, while performing training with traditional gradient-

based backpropagation. To the best of our knowledge, this

is the first attempt to represent neuromorphic spike events

as graphs, which allows to use graph convolutional neural

networks for end-to-end feature learning directly on neuro-

morphic events. Building partly on our previous work [20], our

proposed graph based framework is able to accommodate both

appearance and motion-based tasks; in this paper, we focus on

object classification, action recognition and action similarity

labelling as representative tasks. For object classification, we

design a spatial feature learning module, comprising graph

convolutional layers and graph pooling layers for processing a

single input event graph. For action recognition and action

similarity labeling, we extend this module with temporal

feature learning, in order to learn a spatio-temporal repre-

sentation over the entire input. Specifically, we introduce a

Graph2Grid block for aggregating a sequence of graphs over

a long temporal extent. Each event graph in the sequence

is first processed by a spatial feature learning module; the

mapped graphs are then converted to grid representation by

the Graph2Grid block and the resulting frames are stacked,

for processing with any conventional 2D or 3D CNNs. This

is inspired by recent work in APS-based action recognition

[21] that processes multiple RGB frames with 2D CNNs and

aggregates the learned representations with a 3D convolution

fusion and pooling.
In order to address the lack of NVS data for evaluation,

we introduce the largest sourced NVS dataset for object

classification, which we refer to as ASL-DVS. The task is to

classify hand recordings as one of 24 letters from the American

Sign Language (ASL). For action recognition and action

similarity labeling, we leverage existing APS-based datasets

such as UCF101 [22], HMDB51 [23] and ASLAN [24], and

convert these to the NVS domain by recording a playback

of each dataset captured from a display with a DAVIS240c

NVS camera. The generated NVS datasets, UCF101-DVS,

HMDB51-DVS and ASLAN-DVS, include more content than

any previous NVS dataset in these action-based tasks.
We evaluate our framework on object classification, action

recognition and action similarity labelling, and show that our

framework achieves state-of-the-art results on both tasks com-

pared to recent work on conventional frame-based approaches.

We summarize our contributions as follows:

1) We propose a novel graph based representation for neuro-

morphic events, not only maintaining asynchronicity and

sparsity of events, but also allowing for fast end-to-end

graph based training and inference. To the best of our

knowledge, this paper and its corresponding conference
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paper [20] are the first graph representations for NVS

streams.

2) Apart from graph representation and object classification

tasks that were also discussed in our recent work [20], in

this paper, we introduce a novel Graph2Grid block and a

temporal feature learning module for efficiently modelling

coarse temporal dependencies over multiple graphs. We

evaluate performance of the learning framework on action

recognition and action similarity labeling.

3) We introduce new datasets for action recognition (UCF101-

DVS and HMDB51-DVS) and action similarity labeling

(ASLAN-DVS) to address the lack of NVS data for training

and inference, and make these available to the research

community. This extends the NVS datasets proposed in

our corresponding conference paper [20] and provides a

comprehensive set of benchmark datasets for evaluation of

spatio-temporal learning with NVS representations.

In Section II we review related work. Section III details

our method for graph-based spatio-temporal feature learning

network. Three downstream applications (object classification,

human action recognition and action similarity labeling) are

presented in Section IV, where “downstream” denotes the

dependency of the applications on the learned features.Section

V concludes the paper.

II. RELATED WORK

In the field of neuromorphic vision, recent literature focuses

on two types of feature representation: handcrafted feature

extraction and end-to-end trainable feature learning. Hand-

crafted feature descriptors are widely used by neuromorphic

vision community. Some of the most common are corner

detectors and line/edge extraction [25], [26]. While these

efforts were promising early attempts for NVS-based object

classification, their performance does not scale well when

considering complex datasets. Inspired by their frame-based

counterparts, optical flow methods have been proposed as

feature descriptors for NVS [27], [28]. For a high-accuracy

optical flow, these methods have very high computational

requirements, which diminishes their usability in real-time

applications. In addition, due to the inherent discontinuity and

irregular sampling of NVS data, deriving compact optical flow

representations with enough descriptive power for accurate

classification and tracking still remains a challenge [27].

Lagorce et al. proposed event based spatio-temporal features

called time-surfaces [29]. This is a time oriented approach

to extract spatio-temporal features that are dependent on the

direction and speed of motion of the objects. Inspired by time-

surfaces, Sironi et al. proposed a higher-order representation

for local memory time surfaces that emphasizes the importance

of using the information carried by past events to obtain a

robust representation [14].These descriptors are very sensitive

to noise and strongly depend on the type of object motion

in scene. Moreover, they fail to take temporal information

into account and maintain a representation of dynamics over

a long time. Thus, they can only be used for static object

recognition, and not for long temporal applications such as

action recognition evaluated in this work.

End-to-end feature learning for NVS-based tasks consists

of two types of approaches: frame-based and event-based.

The main idea of frame-based methods is to convert the

neuromorphic events into synchronous frames of spike events,

on which conventional computer vision techniques can be

applied for the feature learning. Zhu et al. [12] introduced

a four-channel image form with the same resolution as the

neuromorphic vision sensor. Inspired by the functioning of

spiking neural networks (SNNs) to maintain memory of past

events, leaky frame integration has been used in recent work

[13], [30], where the corresponding position of the frame is

incremented by a fixed amount when a event occurs at the

same event address. Amir et al. use a cascade of temporal

filters to process the events, which is regarded as stacking

frames, and then feed these frames into a CNN [17]. Similary,

Ghosh et al. partitioned events into a three-dimensional grid

of voxels where spatio-temporal filters are used to learn the

features, and learnt features are fed as input to CNNs for

action recognition [16]. Chadha et al. [31] generated frames by

summing the polarity of events in each address as pixel, then

fed them into a multi-modal teacher-student framework for

action recognition. While useful for early-stage attempts, these

frame-based methods are not well-suited for the neuromorphic

event’s sparse and asynchronous nature since the frame sizes

that need to be processed are substantially larger than those

of the original NVS streams. The advantages of event-based

sensors are diluted if their event streams are cast back into

synchronous frames for the benefit of conventional processors

downstream, thus not providing efficient and power-saving

learning systems.

The second type of end-to-end feature learning methods

are event-based methods. The most commonly used archi-

tecture relies on spiking neural networks (SNNs) [18], [19]

for inference. While SNNs are theoretically capable of learn-

ing complex representations, they still fail to achieve the

performance of gradient-based methods due to the lack of

suitable training algorithms. Essentially, since the activation

functions of spiking neurons are not differentiable, SNNs are

not able to leverage on popular training methods such as

backpropagation. To address this, researchers currently follow

a hybrid approach [32], [33]: a neural network is trained off-

line using continuous/rate-based neuronal models with state-

of-the-art supervised training algorithms; then, the trained

architecture is mapped to an SNN. However, until now, despite

their substantial implementation advantages at inference, the

obtained solutions are complex to train and typically achieve

lower performance than gradient-based CNNs. Thus, other

directions for event-based feature learning for neuromorphic

vision sensing have been also explored. Wang et al. interpreted

an event sequence as a 3D point cloud in space and time [34],

which is hierarchically fed into PointNet [35] to capture the

spatio-temproal structure of motion. While providing useful

insights, all these methods were tested on simple datasets (e.g.,

the DVS128 Gesture dataset [17] of gestures and postures)

with a small number of classes and clean background. It

is, therefore, unlikely that these methods can obtain such

high accuracy for real-world scenarios, as they cannot capture

long-term temporal dependencies. When applied to complex



TO APPEAR IN IEEE TRANSACTIONS ON IMAGE PROCESSING 4

 

M 
S 

M 
1 

M 
2 

M 
S 

M 
2 

M 
1 

Temporal Stacking 

...
 

... ...
 

1 

2 

S 

x 

y 

t 

Spatial Feature Learning  

Spatial Feature Learning 

Spatial Feature Learning 

G1 

G2 

GS 

...
 

Temporal Feature 
Learning Module 

Weight Sharing 

Weight Sharing 

Weight Sharing 

Fully Connected        Object  
Classification 

Fu
lly

 C
on

ne
ct

ed
 

     Action  
Recognition 

Temporal Feature Learning 

Feature 

Graph2Grid Module 

  Action Similarity  
         Labeling 

Sampling & Graph Construction  Spatial Feature Learning 

Fig. 2: Framework of graph-based spatio-temporal feature learning for neuromorphic vision sensing. Our framework is able

to accommodate both object classification and action recognition/similarity labeling tasks. We first construct S graphs from

the event stream (where S = 1 for object classification). Each graph is passed through a spatial feature learning module.

For object classification, the output of this module is mapped to object classes directly by fully connected layers. For action

recognition and action similarity labeling, we model coarse temporal dependencies over multiple graphs by converting to a

grid representation via the Graph2Grid module and perform temporal feature learning with a 3D CNN.

datasets (e.g., UCF101 DVS) for human action recognition,

the performance of these methods degrades significantly.

III. METHODOLOGY

The architecture of our graph-based spatio-temporal fea-

ture learning network is illustrated in Fig. 2 and comprises

four parts: sampling and graph construction, a spatial feature

learning module, a graph-to-frame mapping module and a

temporal feature learning module. For object classification,

a single graph is constructed, whereas for action-based tasks

with longer temporal extent, multiple graphs are extracted over

the event stream duration. Specifically, neuromorphic events

are firstly sampled and represented by a sequence of graphs.

Graphs are then individually processed by a spatial feature

learning module, which consists of multiple graph convolution

and pooling layers to map the input to a coarser graph

encoding. For object classification, we obtain a single graph

encoding that we pass to a single fully connected layer for

prediction. Conversely, for action recognition and action sim-

ilarity labeling, we obtain multiple graph encodings. As such,

we convert the graphs to a grid representation with a graph-to-

frame mapping module which we denote as Graph2Grid, and

stack the resulting frames for temporal feature learning with a

3D CNN. In this way, we are able to effectively and efficiently

learn spatio-temporal features for motion-based applications,

such as action recognition. We provide more details on each

component of the framework in the following sections.

A. Graph Construction

Given a NVS sensor with spatial address resolution of H×
W , we express a volume of events V produced by a NVS

camera as a tuple sequence:

{ei}N = {xi, yi, ti, pi}N (1)

where (xi, yi) ∈ {1, 2, . . . H} × {1, 2, . . .W} is the spatial

address at which the spike event occurred, ti is the timestamp

indicating when the event was generated and is presented

in units of microseconds (µs), pi ∈ {+1,−1} is the event

polarity (with +1/-1 signifying ON/OFF events respectively),

and N is the total number of events.

To reduce the storage and computational cost, we use

non-uniform grid sampling [36] to sample a subset of M
representative events from the N total events in the sequence:

{ei}M ⊂ {ei}N , where M ≪ N . Specifically, we group k
neighbouring events in the sequence into space-time volumes

based on their spatio-temporal distance. Then from each space-

time volume, we extract one event. In other words, if we

consider s{ei}
k
i=1 to be a space-time volume containing k

events, then only one event ei (i ∈ [1, k]) is randomly

sampled in this volume. We then define the M sampled

events {ei}{M} on a directed graph G = {ν, ε,U}, with ν
being the set of vertices, ε the set of the edges, and U the

coordinates of the nodes that locally define the spatial relations

of the nodes. The sampled events are independent and not

linked, therefore, we regard each event ei : (xi, yi, ti, pi) as

a node in the graph, such that νi : (xi, yi, ti), with νi ∈ ν.

We define the connectivity of nodes in the graph based on

the radius-neighborhood-graph strategy, which is a commonly

used term in graph theory [37]. The neighborhood construction

and connectivity steps involved in the graph construction are

illustrated in Fig.3 and are performed as follows. Nodes νi
and νj are connected with an edge only if their weighted

Euclidean distance di,j is less than radius distance R. For two

spike events ei and ej , the Euclidean distance between them

is defined as the weighted spatio-temporal distance:

di,j =
√

α(|xi − xj |2 + |yi − yj |2) + β|ti − tj |2 ≤ R (2)

where α and β are weight parameters compensating for the

difference in spatial and temporal grid resolution (timing

accuracy is significantly higher in NVS cameras than spatial

grid resolution). To limit the size of the graph, we constrain

the maximum connectivity degree for each node by param-

eter Dmax. We subsequently define u(i, j) for node i, with

connected node j, as u(i, j) = [|xi − xj | , |yi − yj |] ∈ U.

After connecting all nodes of the graph G = {ν, ε,U} via

the above process, we consider the polarity of events as a

signal that resides on the nodes of the graph G. In other words,

we define the input feature for each node i, as f (0)(i) = pi ∈
{+1,−1}.
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Fig. 3: Visualization of graph construction: (a) finding the

neighboring events within radius R; (b) connecting an event

to its neighbors within radius R; (c) a constructed graph from

raw events.

We introduce the parameter S to represent the number of

graphs constructed from one sequence of events. In other

words, S partitions are extracted from an event sequence

and a graph is constructed for each partition. Given that

object classification is appearance-based and typically only

requires a short temporal extent, we set S = 1. Specifically,

we randomly extract Tvol length events over the entire event

stream to construct a graph. Conversely, for action recognition

and action similarity labeling, we divide the event stream

into S volumes with the same time duration T/S, where

T is the time duration of entire sequence of events.We then

construct a graph for each volume in which Tvol < T/S length

events are randomly extracted to construct a graph, giving us

a set of graphs G = {Gn}
S
n=1. In this way, we efficiently

model coarse temporal dependencies over the duration of the

sample, without constructing a single large and substantially

complex graph. The graphs can thus be processed individually

by our spatial feature learning module before fusion with

our Graph2Grid module and temporal feature learning. This

is inspired by recent work on action recognition with RGB

frames [21], which fuses representations over coarse temporal

scales with 3D convolutions and pooling; indeed, our graph-

based framework is substantially more lightweight and does

not suffer from the limitations of active pixel sensing.

B. Spatial Feature Learning Module

The constructed graphs are first fed individually into a

spatial feature learning module, where our framework learns

appearance information. An illustration of the components of

the spatial feature learning module is given in Fig.4. According

to the common architectural pattern for feed-forward neural

networks, these graph convolutional neural networks are built

by interlacing graph convolution layers and graph pooling

layers, where the graph convolution layer performs a non-

linear mapping and the pooling layer reduces the size of the

graph.

Graph convolution generalizes the convolutionl operator to

the graph domain. Similar to frame-based convolution, graph

convolution can be categorized into two types: spectral and

spatial. Spectral convolution [38], [39] defines the convolution

operator by decomposing a graph in the spectral domain and

then applying a spectral filter on the spectral components.

However, this operation requires identical graph input and

handles the whole graph simultaneously, so it is not suitable

for the variable and large graphs constructed from NVS. On

the other hand, spatial convolution [40], [41] aggregates a

new feature vector for each vertex, using its neighborhood

information weighted by a trainable kernel function. Because

of this property, we consider spatial convolution operation as

a better choice when dealing with graphs from NVS.

Similar to conventional frame-based convolution, spatial

convolution operations on graphs are also a one-to-one map-

ping between kernel function and neighbors at relative posi-

tions w.r.t. the central node of the convolution. Let i denote

a node of the graph with feature f(i), N (i) denote the set

of neighbors of node i and g(u(i, j)) denote the weight

parameter constructed from the kernel function g(·). The graph

convolution operator ⊗ for this node can then be written in

the following general form:

(f ⊗ g)(i) =
1

|N (i)|

∑

j∈N (i)

f(j) · g(u(i, j)) (3)

where |N (i)| is the cardinality of N (i). We can generalize (3)

to multiple input features per node. Given the kernel function

g = (g1, ..., gl, ..., gMin
) and input node feature vector fl,

with Min feature maps indexed by l, the spatial convolution

operation ⊗ for the node i with Min feature maps is defined

as:

(f ⊗ g)(i) =
1

|N (i)|

Min
∑

l=1

∑

j∈N (i)

fl(j) · gl(u(i, j)) (4)

The kernel function g defines how to model the coordi-

nates U. The content of U is used to determine how the

features are aggregated and the content of fl(j) defines what

is aggregated. As such, several spatial convolution opera-

tions [40]–[42] on graphs were proposed by using different

choice of kernel functions. Among them, SplineCNN [40]

achieves state-of-the-art results in several applications, so in

our work we use the same kernel function as in SplineCNN.

In this way, we leverage properties of B-spline bases to

efficiently filter NVS graph inputs of arbitrary dimensional-

ity. Let ((Nm
1,i)1≤i≤k1

, ..., (Nm
d,i)1≤i≤kd

) denote d open B-

spline bases of degree m with k = (k1, ..., kd) defining d-

dimensional kernel size [43]. Let wz,l ∈ W denote a trainable

parameter for each element z from the Cartesian product

Z = (Nm
1,i)i × · · · × (Nm

d,i)i of the B-spline bases and each

of the Min input feature maps indexed by l. Then the kernel

function gl : [a1, b1]× · · · × [ad, bd] → R is defined as

gl(u) =
∑

z∈Z

wz,l ·
d
∏

s=1

Ns,zs(us) (5)

We denote a graph convolution layer as Conv(Min,Mout),
where Min is the number of input feature maps and Mout

is the number of output feature maps indexed by l
′

. Then, a

graph convolution layer with bias bl and activation function

ξ(t), can be written as:

Convl′ = ξ
( 1

|N (i)|

Min
∑

l=1

∑

j∈N (i)

fl(j) ·
∑

z∈Z

wz,l (6)

·
d
∏

s=1

Ns,zs(us) + bl′
)
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Fig. 4: Visualization of spatial feature learning module that is

stacked by graph residual block and graph pooling layer.

where l
′

= 1, ..,Mout, indicates the l
′

th output feature

map. This defines a single graph convolutional layer. For C
consecutive graph convolutional layers, (Conv(c))c∈[0,C], the

c-th layer has a corresponding input feature map f (c) over

all nodes, with the input feature for node i of the first layer

Conv(0), f (0)(i) = pi ∈ {+1,−1}.

To accelerate deep network training, we use batch normal-

ization [44] before the activation function. That is, the whole

node feature fl′ over the l
′

-th channel map is normalized

individually via

f
′

l
′ =

fl − E(fl′ )
√

Var(fl′ ) + ǫ
· γ + β l

′

= 1, ..,Mout (7)

where E(fl′ ) and Var(fl′ ) denote mean and variance of

fl′ respectively, ǫ is used to ensure normalization does not

overflow when the variance is near zero, and γ and β represent

trainable parameters.

Residual Graph CNNs: Inspired by the ResNet architec-

ture [45], we propose residual graph CNNs for our spatial

feature learning module, in order to resolve the well-known

degradation problem inherent with increasing number of layers

(depth) in graph CNNs [46]. Our residual graph CNN (RG-

CNN) is effectively composed of a series of residual blocks

and pooling layers. Considering equations (6) and (7) denote a

single graph convolutional layer with batch normalization [44]

that accelerates the convergence of the learning process, we

apply residual connections in spatial feature learning module

by summing element-wise the outputs of graph convolutions.

Our “shortcut” connection comprises a graph convolution

layer with kernel size K = 1 for mapping the feature

dimension to the correct size, and is also followed by batch

normalization. We denote the resulting graph residual block as

Resg(cin, cout), with cin input feature maps and cout output

feature maps.

A residual block is followed by max pooling over clusters

of nodes; given a graph representation, let us denote the

spatial coordinates for node i as (x′
i, y

′
i) ∈ {1, 2, . . . H ′} ×

{1, 2, . . .W ′} and resolution as H ′×W ′. We define the cluster

size as sh × sw, which corresponds to the downscaling factor

in the pooling layer of
⌈

H′

sh

⌉

×
⌈

W ′

sw

⌉

. For each cluster, we

generate a single node, with feature set to the maximum over

node features f in the cluster, and coordinates set to the

average of node coordinates (x′
i, y

′
i) in the cluster. Importantly,

if there are connected nodes between two clusters, we assume

the new generated nodes in these two clusters are connected

with an edge.

For object classification, where the entire event stream can

be modelled by a single graph, we can directly map the output

of the spatial feature learning module to the classes with a fully

connected layer. Given Min feature maps f ∈ R
I×Min from

a graph with I nodes, similar to CNNs, a fully connected

layer in a graph convolutional network is a weighted linear

combination linking all input features to outputs. Let us denote

f spatial
l (i) as the lth output feature map of the ith node of the

spatial feature learning module, then we can derive a fully

connected layer in the graph as:

fFC
q = ξ

(

I
∑

i=1

Min
∑

l=1

Fi,l,qf
spatial
l (i)

)

q = 1, ..., Q (8)

where Q is the number of output channels indexed by q,

F is an array of trainable weights with size I ×Min ×Q,

ξ(t) is the non-linear activation function, e.g. ReLU: ξ(t) =
max (0, t). For the remainder of the paper, we use FC(Q) to

indicate a fully connected layer with Q output dimensions.

C. Graph2Grid: From Graphs to Grid Snippet

For motion-based tasks, we need to model temporal depen-

dencies over the entire event stream. As discussed in Section

III-A, given a long sample duration, it is not feasible to

construct a single graph over the entire event stream, due

to the sheer number of events. It is more computationally

feasible to generate multiple graphs for time blocks of duration

Tvol. These are processed individually by the spatial feature

learning module. However, to model coarse temporal depen-

dencies over multiple graphs, we must fuse the spatial feature

representations. We propose a new Graph2Grid module that

transforms the learned graphs from our spatial feature learning

module to a grid representation and performs stacking over

temporal dimension, as illustrated in Fig. 2. In this way, we

are effectively able to create pseudo frames from the graphs,

with Min channels and timestamp (n− 1)Tvol, corresponding

to the n-th graph.

Again, denoting the output spatial feature learning map

as f spatial
l (i) for the lth output feature map of the ith

node with coordinates (x′
i, y

′
i) ∈ {1, 2, . . . , Hspatial} ×

{1, 2, . . . ,Wspatial}, we define a grid representation fgrid of

spatial size Hspatial ×Wspatial as follows:

fgrid
a,b,l =

{

f spatial
l (i), when a = x′

i, b = y′i
0, otherwise

(9)

where (a, b) ∈ {1, 2, . . . , Hspatial} × {1, 2, . . . ,Wspatial}.

The resulting grid feature representation fgrid ∈
R

Hspatial×Wspatial×Min is for a single graph; for S graphs over

the temporal sequence, we simply concatenate over a fourth

temporal dimension. We denote the resulting grid feature

over S graphs as Fgrid = fgrid,1||fgrid,2|| . . . ||fgrid,S , where

|| denotes concatenation over the temporal axis. Thus, the

dimensions of Fgrid are Hspatial ×Wspatial ×Min × S. This

grid feature matrix can therefore be fed to a conventional

3D convolutional neural network in our temporal feature

learning module, in order to learn both the coarse temporal

dependencies, but also a full spatio-temporal representation

of the input.
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Fig. 5: Visualization of 3D residual block as an example for

temporal feature learning module.

D. Temporal Feature Learning Module

The output feature matrix Fgrid contains both spatial and

temporal information over the entire sample duration, which

can be effectively encoded with a conventional 3D CNN [5]

in order to generate a final spatio-temporal representation

of the video input for action recognition. In this paper,

we consider three network architectures for the 3D CNN;

a plain architecture with interlaced 3D convolutional and

pooling layers, an I3D-based architecture comprising multiple

I3D blocks as configured in [6], and a 3D residual block

design. To illustrate temporal feature learning module, we

visualize an example of our 3D residual block design in Fig.

5; essentially for C consecutive convolutional layers, every

(c − 2)-th layer is connected to the c-th layer via a non-

linear residual connection, for all c ∈ {3, 5 . . . C − 2, C},

and every layer is followed by batch normalization. For all

architectures, we aggregate the features in the final layer of the

CNN with global average pooling and pass to a fully connected

layer for classification. We provide further experimental details

in Section IV, describing the number of input and output

channels per layer.

It is worth noting that while 3D CNNs are notorious for

being computationally heavy, typical NVS cameras like the

iniLabs DAVIS240c has spatial resolutions of the order of

240 × 180; in conjunction with the use of pooling in our

spatial feature learning module, this means that the spatial

size of Fgrid is at most 30 × 30. This is substantially lower

input resolution than APS-based counterparts ingesting RGB

frames, where the spatial resolution to the 3D CNN is typically

224× 224 or higher.

IV. EXPERIMENTAL DETAILS AND EVALUATION

In this section, we demonstrate the potential of our frame-

work as a method of representation learning for high-level

computer vision tasks with NVS inputs. In Section IV-A, we

focus on object classification as an appearance-based applica-

tion. Then in Sections IV-B and IV-C, we present results for

large-scale multi-class human action recognition and action

similarity labeling as motion-based applications. In all our

comparisons, we benchmark our results against state-of-the-art

methods that can be applied to NVS data, i.e., we do not extend

the comparison to methods that need APS data and generate

optical flow and other modalities from APS, as they go beyond

the realm of NVS-only sensing. Beyond evaluation on standard

Fig. 6: Examples of the ASL-DVS dataset (the visualizations

correspond to letters A-Y, excluding J, since letters J and Z

involve motion rather than static shape). Events are grouped

to image form for visualization (Red/Blue: ON/OFF events).

 

N-MNIST CIFAR10-DVS 

N-Caltech101 

ASL-DVS 

N-CARS 

MNIST-DVS 

Fig. 7: Comparison of NVS datasets w.r.t. the number of

classes and the total size.

datasets, we introduce our newly proposed ASL-DVS dataset

in Section IV-A, which is the largest-source dataset for object

classification. We additionally generate the largest NVS-based

action recognition and action similarity labelling datasets by

converting standard APS datasets, UCF101, HMDB51 and

ASLAN, to the NVS domain and explain the recording process

prior to evaluation in Sections IV-B and IV-C respectively.

A. Object Classification

Object classification finds numerous applications in visual

surveillance, human-machine interfaces, image retrieval and

visual content analysis systems. We first introduce the datasets

we evaluate on, including our new ASL-DVS dataset, before

discussing implementation details and presenting results. We

compare with recent state-of-the-art methods and perform

complexity analysis.

Datasets: Many neuromorphic datasets for object classi-

fication are converted from standard frame-based datasets,
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such as N-MNIST [47], N-Caltech101 [47], MNIST-DVS

[48] and CIFAR10-DVS [49]. N-MNIST and N-Caltech101

were acquired by an ATIS sensor [9] moving in front of an

LCD monitor while the monitor is displaying each sample

image. Similarly, MNIST-DVS and CIFAR10-DVS datasets

were created by displaying a moving image on a monitor and

recording with a fixed DAVIS sensor [50]. Emulator software

has also been proposed in order to generate neuromorphic

events from pixel-domain video formats using the change of

pixel intensities of successively rendered images [26], [51].

While useful for early-stage evaluation, these datasets cannot

capture the real dynamics of an NVS device due to the limited

frame rate of the utilized content, as well as the limitations

and artificial noise imposed by the recording or emulation

environment. To overcome these limitations, N-CARS dataset

[14] was created by directly recording objects in urban envi-

ronments with an ATIS sensor. Despite its size, given that

it only corresponds to a binary classification problem, N-

CARS cannot represent the behaviour of object classification

algorithms on more complex NVS-based tasks.

We present a large 24-class dataset of handshape recordings

under realistic conditions. Its 24 classes correspond to 24

letters (A-Y, excluding J) from the American Sign Language

(ASL), which we call ASL-DVS. Examples of recordings are

shown in Fig 6. The ASL-DVS was recorded with an iniLabs

DAVIS240c NVS camera set up in an office environment

with low ambient noise and constant illumination. For all

recordings, the camera was at the same position and orientation

to the persons carrying out the handshapes. Five subjects

were asked to pose the different static handshapes relative

to the camera in order to introduce natural variance into the

dataset. For each letter, we collected 4,200 samples (total of

100,800 samples) and each sample lasts for approximately

100 milliseconds. Fig. 7 shows a comparison of existing

NVS datasets w.r.t. the number of classes and the total size.

Within the landscape of existing datasets, our ASL-DVS is

a comparably complex dataset with the largest number of

labelled examples. We, therefore, hope that this will make it a

useful resource for researchers to build comprehensive models

for NVS-based object recognition, especially given the fact

that it comprises real-world recordings. ASL-DVS and related

code are available online 1.

Implementation Details: For simple datasets N-MNIST

and MNIST-DVS, our spatial feature learning module is

only comprised of two graph residual blocks. Graph residual

blocks are described in Section III-B, and we fix the kernel

size K = 5 for all convolutional layers outside of the

skip connection. We denote a graph convolutional layer as

Convg(cin, cout), fully connected layer as FC(cin, cout) and

graph residual block as Resg(cin, cout), where cin and cout
are the input and output channels respectively. Additionally,

we denote max graph pooling layers as MaxPg(sh, sw),
where sh and sw represent the cluster size. With this

notation, the architecture of our network for these can be

written as Convg(1, 32)−→MaxPg(2, 2)−→Resg(32, 64)
−→MaxPg(4, 4)−→Resg(64, 128)−→MaxPg(7, 7)−→

1https://github.com/PIX2NVS/NVS2Graph

FC(128, 128)−→FC(128, Q), where Q is the number of

classes of each dataset. For the remaining datasets, three resid-

ual graph blocks are used, and the utilized network architecture

is Convg(1, 64)−→MaxPg(sh, sw)−→Resg(64, 128)−→
MaxPg(sh, sw)−→Resg(128, 256)−→MaxPg(sh, sw)−→
Resg(256, 512)−→MaxPg(sh, sw)−→FC(512, 1024)−→
FC(1024, Q). Since the datasets are recorded from different

sensors, the spatial resolution of each sensor is different

(i.e., DAVIS240c: 240×180, DAVIS128 & ATIS: 128×128),

leading to various maximum coordinates for the graph. We,

therefore, set the cluster size in pooling layers to: (i) 4×3,

16×12, 30×23 and 60×45 for N-Caltech101 and ASL-DVS

datasets; (ii) 4×4, 6×6, 20×20 and 32×32 for CIFAR10-DVS

and N-CARS datasets. We also compare the proposed residual

graph networks (RG-CNNs) with their corresponding plain

graph networks (G-CNNs), which utilize the same number

of graph convolutional and pooling layers but without the

residual connections. The degree of B-spline bases m of all

convolutions in this work is set to 1.

For the N-MNIST, MNIST-DVS and N-CARS datasets, we

use the predefined training and testing splits, while for N-

Caltech101, CIFAR10-DVS and ASL-DVS, we follow the

experiment setup of Sironi [14]: 20% of the data is randomly

selected for testing and the remaining is used for training.

During the non-uniform sampling, the maximal number of

events k in each space-time volume is set to 8. When con-

structing graphs, the radius R is 3, weight parameters α and

β are set to 1 and 0.5 × 10−5, respectively, the maximal

connectivity degree Dmax for each node is 32, and Tvol = 30
millisecond length events are randomly extracted to form the

graph. In particular, α and β are selected so that the spatial and

temporal components (µs) of (2) are balanced in magnitude

as best as possible. Despite NVS cameras being frameless,

NVS events can be grouped and visualized as sparse “frames”

with frame rate being as high as 2000 fps (i.e., 1 frame

containing the grouping of multiple NVS events appearing

every 0.5ms as reported for the Samsung Dynamic Vision

Sensor). This observation shows that a window of events

corresponding to 30ms is sufficient for graph construction in

our applications. In order to reduce overfitting, we add dropout

with probability 0.5 after the first fully connected layer and

also perform data augmentation. In particular, we spatially

scale node positions by a randomly sampled factor within

[0.95, 1), perform mirroring (randomly flip node positions

along 0 and 1 axis with 0.5 probability) and rotate node

positions around a specific axis by a randomly sampled factor

within [0, 10] in each dimension. Networks are trained with the

Adam optimizer and the cross-entropy loss between softmax

output and the one-hot label distribution for 150 epochs with

batch size 64 and learning rate 0.001 step-wise decreasing by

0.1 after 60 and 110 epochs.

Results: We compare Top-1 classification accuracy obtained

from our model with that from HOTS [15], H-First [52], SNN

[19], [53] and HATS [14]. We report results from Sironi et al.

[14], since we use the same training and testing methodology.

The results are shown in Table I. For the simple N-MNIST and

MNIST-DVS datasets, whose accuracy is already close to near-

perfect classification, our models achieve comparable results.
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TABLE I: Top-1 accuracy of our graph CNNs w.r.t. the state-of-the-art, other graph convolution networks and deep CNNs.

Model N-MNIST MNIST-DVS N-Caltech101 CIFAR10-DVS N-CARS ASL-DVS
H-First [52] 0.712 0.595 0.054 0.077 0.561 -
HOTS [15] 0.808 0.803 0.210 0.271 0.624 -

Gabor-SNN [19], [53] 0.837 0.824 0.196 0.245 0.789 -
HATS [14] 0.991 0.984 0.642 0.524 0.902 -
GIN [54] 0.754 0.719 0.476 0.423 0.846 0.514

ChebConv [38] 0.949 0.935 0.524 0.452 0.855 0.317
GCN [55] 0.781 0.737 0.530 0.418 0.827 0.811

MoNet [42] 0.965 0.976 0.571 0.476 0.854 0.867
VGG 19 [56] 0.972 0.983 0.549 0.334 0.728 0.806

Inception V4 [57] 0.973 0.985 0.578 0.379 0.864 0.832
ResNet 50 [45] 0.984 0.982 0.637 0.558 0.903 0.886

G-CNNs 0.985 0.974 0.630 0.515 0.902 0.875
RG-CNNs (proposed) 0.990 0.986 0.657 0.540 0.914 0.901

For the other datasets, our proposed RG-CNNs consistently

set the new state-of-the-art on these datasets.

Table I also includes the classification results stemming

from other graph convolutional networks; namely, GIN [54],

ChebConv [54], GCN [55] and MoNet [42]. The architectures

of these networks are the same as our plain graph networks

(G-CNNs) introduced in this section, with the only difference

being the graph convolutional operation. The training details

and data augmentation methods are the same as described

before. The Top-1 classification accuracy stemming from all

networks of Table I indicates that our proposed RG-CNN and

G-CNN outperform all the other graph convolutional networks.

To further validate our proposal, we compare our results

with conventional deep convolutional networks. There are no

conventional CNNs specifically designed for NVS events, so

we train/evaluate on three well-established CNNs, namely

VGG 19 [56], Inception V4 [57] and ResNet 50 [45]. The

format of the required input for these CNNs is frame-based, so

we convert neuromorphic spike events to frame form similarly

to the grouping of Zhu et al. [12]. We thereby introduce a

two-channel event image form with the same resolution as the

NVS sensor: the two channels encode the number of positive

and negative events that have occurred at each position. In

addition, each frame grouping corresponds to a random time

segment of 30 ms of spike events. To avoid overfitting, we

supplement the training with heavy data augmentation: first,

we resize the input images such that the smaller dimension is

256 and keep the aspect ratio; then, we use a random cropping

of 224×224 spatial samples of the resized frame; finally, the

cropped volume is randomly flipped and normalized according

to its mean and standard deviation. We train all CNNs from

scratch using stochastic gradient descent with momentum set

to 0.9 and L2 regularization set to 0.1 × 10−4. The learning

rate is initialized at 10−3 and decayed by a factor of 0.1 every

10k iterations. As shown in Table I, despite performing com-

prehensive data augmentation and L2 regularization to avoid

overfitting, the results acquired from conventional CNNs are

still below the-state-of-the-art since event images contain far

less information (see Fig. 1). Thus, except for the CIFAR10-

DVS dataset, the accuracy of our proposals surpasses that of

conventional frame-based deep CNNs.

Complexity Analysis: We now turn our attention to the

complexity of our proposals and compare the number of

floating-point operations (FLOPs) and the number of parame-

TABLE II: Complexity (GFLOPs) and size (MB) of networks.

Model GFLOPs Size (MB)
VGG 19 [56] 19.63 143.65

Inception V4 [57] 12.25 42.62
ResNet 50 [45] 3.87 25.61

G-CNNs 0.39 18.81
RG-CNNs 0.79 19.46

ters of each model. In conventional CNNs, we compute FLOPs

for convolution layers as [58]:

FLOPs = 2HW (CinK
2 + 1)Cout (10)

where H , W and Cin are height, width and the number of

channels of the input feature map, K is the kernel size, and

Cout is the number of output channels. For graph convolution

layers, FLOPs stem from 3 parts [40]; (i) for computation of B-

spline bases, there are Nedge(m+1)d threads each performing

7d FLOPs (4 additions and 3 multiplications), where Nedge

is the number of edges, m the B-spline basis degree and

d the dimension of graph coordinates; (ii) for convolutional

operations, the FLOPs count is 3NedgeCinCout(m+1)d, with

factor 3 stemming from 1 addition and 2 multiplications

in the inner loop of each kernel and Cin and Cout is the

number of input and output channels, respectively; (iii) for

scatter operations and the bias term, the FLOPs count is

(Nedge + Nnode)Cout, where Nnode is the number of nodes.

In total, we have

FLOPs = Nedge(m+ 1)d(3CinCout + 7d)

+ (Nedge +Nnode)Cout (11)

For fully connected layers, in conventional CNNs, G-CNNs

and RG-CNNs, we compute FLOPs as [58] FLOPs =
(2I − 1)O, where I is the input dimensionality and O is

the output dimensionality. As to the number of parameters,

for each convolution layer in CNNs, G-CNNs and RG-CNNs,

it is (CinK
2 + 1)Cout, while in fully connected layers, it is

(Cin+1)Cout. As shown by (11), FLOPs of graph convolution

depend on the number of edges and nodes. Since the size of

input graph varies per dataset, we opt to report representative

results from N-Caltech101 in Table II. G-CNNS and RG-

CNNs have the smaller number of weights and require the less

computation compared to deep CNNs. The main reason is that

the graph representation is compact, which in turn reduces the

amount of data that needs to be processed. For N-Caltech101,

the average number of nodes of each graph is 1000, while
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grouping events to 2-channel image makes the input size equal

to 86,400.

B. Action Recognition

Action recognition has numerous applications in intelligent

surveillance, human behavior analysis, and other motion-based

tasks [5], [6], [59]. Unlike recognition in static scenes that

focuses on visual appearance, one crucial factor of action

recognition is the motion dynamics. The performance of

action recognition system largely depends on whether the

dynamics of motion can be effectively represented and uti-

lized [60].We firstly introduce datasets for evaluation, then

proceed to discussing implementation details for framework,

detailing the architectures of the spatial feature learning mod-

ule, Graph2Grid block and temporal feature learning module.

Finally, we present results and complexity analysis on datasets

for variants of our framework and other recent state-of-the-art

methods.

Datasets: Previous work on neuromorphic vision sensing

for action recognition evaluates on the DVS128 Gestures

Dataset [17] and posture dataset [61]. DVS128 Gesture Dataset

comprises 1,342 instances of 11 hand and arm gestures,

while the posture dataset includes only three human actions,

namely, “bend”, “sit/stand” and “walk”. Both datasets were

collected from an experimental setting environment with a

monotonous background, and relative to equivalent datasets for

APS-based evaluation datasets, both are modest in their size

and class count; as such, they cannot represent complex real-

life scenarios and are not robust to evaluation for advanced

algorithms. Moreover, previous work [17], [34], [61], [62]

already achieves high accuracies on them. This is why, it is

necessary to establish larger and more complex datasets for

the evaluation of our proposal and for future proposals on

NVS-based action recognition.

We provision two new neuromorphic event datasets, namely

UCF101-DVS and HMDB51-DVS. Both datasets were re-

spectively captured from playbacks of the UCF101 [22] and

HMBD [23] datasets, which are well established datasets

for the evaluation of action recognition in the APS domain.

UCF101 comprises 13,320 videos of 101 different human

actions, while HMDB51 includes 6,766 videos with 51 human

action categories. Of relevance is the work of Hu et al.

[63] which previously recorded UCF50 by displaying existing

benchmark videos to stationary neuromorphic vision sensors

under controlled lighting conditions. We follow a recording

procedure similar to that of [63] to wholly capture remaining

of UCF101 and HMDB51. Displayed videos are recorded by

a neuromorphic vision sensor DAVIS240c that is adjusted to

cover the region of interest on the monitor. Our captured

datasets are the largest neuromorphic datasets for action recog-

nition, and recorded UCF101-DVS and HMDB51-DVS can be

found Online 2.

Implementation Details: We present our results on

action recognition in Table III and Table IV, where the

total number of graphs constructed from each event stream

S is set to either 8 or 16. Events within Tvol = 1/30

2https://github.com/PIX2NVS/NVS FeatureLearning

seconds are constructed into one spatial graph, where

individual nodes are connected to their nearest neighbor.

Given that we construct multiple graphs from events

sampled from multiple consecutive 30ms time windows,

our representation can cover a sufficiently long temporal

extent. Spatial features are learned using our proposed

residual graph CNNs (RG-CNN) where two residual blocks

are stacked, each followed by a graph max-pooling layer.

Specifically, for DVS128 Gesture Dataset [17] we use the

architecture: Resg(1, 64)−→MaxPg(2, 2)−→Resg(64, 128)
−→MaxPg(4, 4). Similarly, for UCF101-DVS and

HMDB51-DVS we use three residual blocks, and the

architecture is: Resg(1, 32)−→MaxPg(2, 2)−→Resg(32, 64)
−→MaxPg(4, 3) −→Resg(64, 128) −→MaxPg(8, 6). For

the temporal feature learning module, we explore three types

of architectures as described in Section III-D:

1) Plain 3D: We first consider a series of consecutive 3D

convolutional and pooling layers, where each intermediate

convolution layer is followed by batch normalization layer

and a ReLU activation function. We use Conv3D(cin, cout)
to denote traditional 3D convolutional layers with batch nor-

malization and activation functions, where cin and cout are

the number of input and output channels respectively. 3D max

pooling and global average pooling are denoted as Pool3D
and GlobAvgP respectively, fully connected layers as FC and

task classes as Q. Plain 3D convolution architectures are thus

represented as follows: Conv3D(128, 128) −→ Pool3D −→
Conv3D(128, 256) −→ Pool3D −→ Conv3D(256, 512) −→
Pool3D −→ Conv3D(512, 512) −→ Pool3D −→ GlobAvgP
−→ FC(Q). With the notation (h,w, t) denoting height, width

and time dimensions, we note that the kernel size and stride in

every convolution layer is (3, 3, 3) and (1, 1, 1) respectively,

and the window size and stride of all 3D max pooling layers is

(2, 2, 2), expect for the first pooling layer, where the stride is

(2, 2, 1) to ensure that temporal downscaling is not aggressive

early on.

2) Inception-3D(4): We next consider an Inception-3D

architecture, comprising a series of four consecutive I3D

blocks. In order to ensure that temporal feature learning

is not bottlenecked, we restrict the number of I3D blocks

to four. Similar to [6], our implementation of the I3D

block is a concatenation of four streams of convolutional

layers with varying kernel sizes. Where we use the

shorthand Incb(cin, cout) to denote each b-th I3D block,

we setup our architecture as: Inc1(128, 480) −→ Pool3D
−→ Inc2(480, 512) −→ Pool3D −→ Inc3(512, 512)−→
Pool3D −→ Inc4(512, 512) −→ Pool3D −→ GlobAvgP
−→ FC(Q). The number of output channels of the n-th

convolutional layer for the s-th stream is labelled as cout[s][n],
and the number of output channels per convolutional layer

for each I3D block is: [[128], [128, 192], [32, 96], 64]],
[[192], [96, 208], [16, 48], 64]], [[160], [112, 224], [24, 64], 64]]
and [[128], [128, 256], [24, 64], 64]].

3) Residual 3D: Finally, we consider 3D residual CNNs,

where we effectively replace the I3D block with a 3D residual

block. The 3D residual block design for temporal feature

learning is illustrated in Fig. 5; essentially, there are two 3D

convolutional layers in the base stream of the block, with a
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Fig. 8: Visualization of samples from DVS128 Gesture Dataest [17] and UCF101-DVS [22]. (A) DVS128 Gesture Dataset

: A-1: hand clap; A-2: right hand rotation clockwise; A-3: air drums; A-4: forearm roll. (B) UCF101-DVS: B-1: basketball

dunk; B-2: bowling; B-3: wall pushups; B-4: biking

non-linear residual connection from the input of the first to the

output of the second layer. We can define a 3D residual block

as Res(cin, cinter, cout), where cinter represents the number of

input channels to the second convolutional layer in the base

stream and cin and cout are the respective number of input

and output channels to the residual block. The 3D residual

CNN is defined as follows: Res(128, 256, 512) −→ Pool3D
−→ Res(512, 512, 1024) −→ Pool3D −→ GlobAvgP −→
FC(Q). Again, denoting (h,w, t) as the height, width and time

dimensions, the kernel size is (3, 3, 3) and stride is (1, 1, 1)
for all convolutional layers in the base stream.

In all of our tests, sampled graphs are spatially scaled by

random sampling factors within [0.8, 1], and are randomly left-

right flipped with a probability of 0.5. For all of our reported

results, we train using the Adam optimizer for 150 epochs,

with batch sizes respectively set to 32 and 16 for S = 8 and

S = 16. The learning rate is set to 0.001, with stepwise decay

by a factor of 0.1 after 60 epochs.

Reference Networks: We compare action recognition re-

sults of our proposed RG-CNN + Plain 3D, RG-CNN + Incep.

3D(4) and RG-CNN + Res. 3D models with previous proposals

for the APS domain, where we repurpose their use to the NVS

domain by maintaining the spatial coherence of events to pass

them as input frames. As external benchmarks, we include

C3D [5], I3D [6], 3D ResNet with 34 layers [45], P3D with 63

layers [64], R2+1D [65] and 3D ResNext with 50 layers [66].

In contrast to our framework, these aforementioned proposals

are entirely grid-based, and we construct independent frames

for their use by summing events within a 1/30 seconds

duration at each spatial position of the NVS sensor. In this

way, resulting event frames are represented by two channels,

where ON and OFF events are grouped independently, and in

order to align event maps with the number of input graphs

utilized in our framework, we produce S = 8 or S = 16
sampled frames for each input volume of events. To avoid

over-fitting during training, we supplement training with data

augmentation, where we normalize the input and re-size the

input frames such that the smaller side is 128 (178 for P3D,

256 for I3D) and keep the aspect ratio, and use a random

cropping to acquire appropriately sized inputs, and cropped

volumes are randomly left-right flipped with a probability of

0.5. We randomly initialize the parameters of all models and

use stochastic gradient descent with momentum set to 0.9, and

learning rate initialized at 0.01 with a decay factor of 0.1 every

50 epochs.

Results: We first evaluate our method on the DVS128

Gesture Dataset, and compare with both recent state-of-theart

methods and reference networks. The results are shown in

Table III, and for all recent methods, considered event record-

ing durations are set to 0.25 and 0.5 seconds. We follow

the same set up to set the number of graphs, enabling a

fair comparison. Examining the results, we find LSTM-based

methods [67] to be outperformed by others, and we attribute

this to the fact that LSTMs regard event streams as pure

temporal sequences and only learn temporal features from

events, without encoding spatial dependencies. In contrast,

PointNet-based methods [34], [35], [68] are more accurate,

and consider inputs as point clouds to learn to summarize

their geometric features. With regards to reference networks,

although I3D [6] and 3D ResNet-34 [45] perform spatio-

temporal feature learning, there is no explicit modelling of

event dependencies as events are directly grouped into frames.

As such, our proposal outperforms all existing works and ref-

erence networks on this dataset and sets a new benchmark. We

attribute this to the combination of our graph representation,

spatial feature learning and temporal feature learning over

multiple graphs, which results in learning a more informative

spatio-temporal representation of the input.

TABLE III: Top-1 classification accuracies on the DVS128G

gestures dataset. Performance is reported for input duration

with temporal depths of 0.25 and 0.5 seconds.

Method Duration(0.25s) Duration(0.5s)
LSTM [67] 0.882 0.865

PointNet [35] 0.887 0.902
PointNet++ [68] 0.923 0.941

Amir CVPR2017 [17] - 0.945
Wang WACV2019 [34] 0.940 0.953

ResNet 34 [45] 0.943 0.955
I3D [6] 0.951 0.965

RG-CNN + Plain 3D 0.954 0.968
RG-CNN + Incep. 3D 0.957 0.968
RG-CNN + Res. 3D 0.961 0.972

As shown in Fig. 8, DVS128 Gesture Dataset contain salient
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pattern differences, while UCF101-DVS comprises more com-

plex event volumes, and as shown in Table III, results of the

best performing models on DVS128 Gesture Dataset are close

to achieving complete accuracy. Therefore, we further evaluate

our algorithms on our newly introduced datasets, UCF101-

DVS and HMDB51-DVS, which contain more classes and

overall present a more challenging task for action recognition.

We note that when evaluating current NVS-based methods

for action recognition on UCF101-DVS and HMDB51-DVS,

the accuracy obtainable is only around 5%-7%, since these

methods only perform spatial (PointNet, PointNet++) or tem-

poral (LSTM) feature learning, and thus leaning to degenerate

solutions. Therefore, we focus our comparison on reference

networks for these datasets.

The Top-1 recognition accuracy of all models is reported

in Table IV for UCF101-DVS and HMDB51-DVS, where it

shows that all variants of our architecture outperform tested

benchmarks. Specifically, the highest performance obtained

from reference models is from I3D, while our base model

(RG-CNN + Plain 3D) outperforms I3D by 3.3% on UCF101-

DVS and by 6.1% on HMDB51-DVS when S = 8. The

accuracy of our models is further increased when considering

the Inception-3D and Residual-3D variants, where our model

performance increases slightly due to the higher capacity of

these architectures.

TABLE IV: Top-1 classification accuracy of UCF101-DVS

and HMDB51-DVS w.r.t. various model.

Model
UCF101-DVS HMDB51-DVS

S = 8 S = 16 S = 8 S = 16

C3D [5] 0.382 0.472 0.342 0.417
ResNet-34 [45] 0.513 0.579 0.350 0.438

P3D-63 [64] 0.484 0.534 0.343 0.404
R2+1D-36 [65] 0.496 0.628 0.312 0.419
ResNext-50 [66] 0.515 0.602 0.317 0.394

I3D [6] 0.596 0.635 0.386 0.466
RG-CNN + Plain 3D 0.629 0.663 0.447 0.494
RG-CNN + Incep. 3D 0.632 0.678 0.452 0.515

RG-CNN + Res. 3D 0.627 0.673 0.455 0.497

Complexity Analysis: We compare the complexity of tested

models, and do so with respect to the number of floating-point

operations (FLOPs) and required parameter counts. For graph-

based convolutional and fully-connected layers, FLOPs and

parameter counts are calculated as detailed in Section IV-B.

For conventional 3D convolutional layers, we compute FLOPs

as 2HWT (CinK
3 + 1)Cout multi-add operations, where H ,

W , and T are the height, width, and temporal length of input

maps, Cin is the number of input feature channels, K is

the kernel size, and Cout is the number of output channels.

Using similar notation, parameter counts of conventional 3D

convolutional layers are calculated as (CinK
3+1)Cout. FLOPs

of graph convolutions depend on edge and node counts (see

Section IV-B), and we specifically report results for UCF101-

DVS in Table V. For each sample, 16 graphs are sampled

as inputs to the spatial feature learning module, and FLOPs

in respective modules are the averages over the whole of

UCF101-DVS. Our results show how graph convolutions can

manage with smaller or comparably sized input volumes

relative to all reference models. As for complexity, though our

models require more floating-point operations when compared

to P3D-63 and ResNext-50, they achieve better performance

on all three datasets. On the other hand, accuracies of I3D are

close to ours while requiring complexities which are two to

three times higher.

TABLE V: Comparison of models w.r.t. complexity (GFLOPs)

and size of architecture parameters.

Model GFLOPs Parameters(×10
6)

C3D [5] 39.69 78.41
ResNet-34 [45] 11.64 63.70

P3D-63 [64] 8.30 25.74
R2+1D-36 [65] 41.77 33.22
ResNext-50 [66] 6.46 26.05

I3D [6] 30.11 12.37
RG-CNN + Plain 3D 12.46 6.95
RG-CNN + Incep. 3D 12.39 3.86
RG-CNN + Res. 3D 13.72 12.43

C. Action Similarity Labeling

Action similarity labeling is a binary classification task

wherein alignments of action pairs are predicted. In other

words, models are required to learn to evaluate the similarity of

actions rather than recognize particular actions. The challenge

of action similarity labeling lies in that the actions of test sets

belong to separate classes and are not available during training

[24]. That is to say, training does not provide an opportunity

to learn actions presented at test time. To the best of our

knowledge, as of yet there is no work on similarity detection

in the neuromorphic domain, and no existing dataset can be

used for evaluation. We use the ASLAN [24] dataset which

comprises 3,697 samples from 432 different action classes.

Using a similar setting to the one described in Section IV-B,

we captured an equivalent neuromorphic dataset ASLAN-DVS

to be publicly provisioned for relevant research. Our captured

ASLAN-DVS can be found online 3.

Training Details: We use the “View-2” method as detailed

in [24] to split samples into 10 mutually exclusive subsets,

where each subset contains 600 video pairs, with 300 to be

classified as ”similar” and 300 to be classified as ”not similar”.

We report our results by averaging scores of 10 separate

experiments in a leave-one-out cross validation scheme. In this

application, we used models trained for action recognition as

feature extractors, and extracted L2-normalised output features

from the last GlobalAvgP and Pool3D layers to acquire two

distinct types of representation. Similar to [24], we indepen-

dently compute 12 different distances for said features and for

every pair of actions. Finally, a support vector machine with a

radial basis kernel is trained to classify whether action pairs are

of similar or different activities. As baselines, we consider the

performance of reference architectures detailed in Sec. IV-B,

where features are extracted as the outputs of the last two

layers, and classifications are performed by support vector

machines. The complexity of our proposed spatio-temporal

feature learning and other reference models remain the same

as in Section IV-B.

In Table VI we report the performance of different models as

measured accuracies and areas under ROC curves (AUC). Our

3https://github.com/PIX2NVS/NVS FeatureLearning
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RG-CNN + Incep. 3D framework outperforms state-of-the-art

results acquired from I3D by 2.6% on accuracy and 3.1%

on AUC, which clearly indicates that graph-based models are

better suited for feature learning for the purposes of action

similarity labeling.

TABLE VI: Action similarity labeling performance

Model Acc. AUC
ResNet-34 [45] 0.605 0.643

P3D-63 [64] 0.598 0.638
R2+1D-36 [65] 0.615 0.652
ResNext-50 [66] 0.605 0.643

I3D [6] 0.623 0.659
RG-CNN + Plain 3D 0.635 0.674

RG-CNN + Incep. 3D(4) 0.649 0.690

RG-CNN + Res. 3D 0.641 0.684

V. CONCLUSION

In this work we develop an end-to-end trainable graph-based

feature learning framework for neuromorphic vision sensing.

We first represent neuromorphic events as graphs, which are

explicitly aligned with the compact and non-uniform sampling

of NVS hardware. We couple this with an efficient end-

to-end learning framework, comprising graph convolutional

networks for spatial feature learning directly from graph

inputs. We extend our framework with our Graph2Grid module

that converts the graphs to grid representations for coarse

temporal feature learning with conventional 3D CNNs. We

demonstrate how this framework can be employed for object

classification, action recognition and action similarity labeling,

and evaluate our framework on all tasks with standard datasets.

We additionally propose and make available three large-scale

neuromorphic datasets in order to motivate further progress

in the field. Finally, our results on all datasets show that we

outperform all recent NVS-based proposals while maintaining

lower complexity.

Potential proposals of this work can be extended in future

work. Firstly, we observed that the size of graphs tends to be

large even though we apply non-uniform sampling over events.

One interesting direction is to construct graphs dynamically

and adaptively based on various scenes instead of using events

within a fixed time window, thus making them more compact

and representative. In addition, instead of propagating graphs

into grids and using 3D CNNs for temporal feature learning,

it may be more efficient to propose a graph convolution that

can directly aggregate features over multiple graphs, as graph

convolution will be over sparse nodes, requiring less memory

and computation. Finally, due to the limited availability of

NVS data, an important direction is to use the newly-released

datasets to develop robust few-shot learning methods that can

learn to make reliable predictions from small datasets.
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