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Abstract

In graph coarsening, one aims to produce
a coarse graph of reduced size while pre-
serving important graph properties. How-
ever, as there is no consensus on which spe-
cific graph properties should be preserved
by coarse graphs, measuring the differences
between original and coarse graphs remains
a key challenge. This work relies on spec-
tral graph theory to justify a distance func-
tion constructed to measure the similarity be-
tween original and coarse graphs. We show
that the proposed spectral distance captures
the structural differences in the graph coars-
ening process. We also propose graph coars-
ening algorithms that aim to minimize the
spectral distance. Experiments show that the
proposed algorithms can outperform previous
graph coarsening methods in graph classifica-
tion and stochastic block recovery tasks.

1 INTRODUCTION

Graphs are widely used to represent object relation-
ships in real-world applications. As many applications
involve large-scale graphs with complex structures, it
is generally hard to explore and analyze the key prop-
erties directly from large graphs. Hence the graph
coarsening techniques have been commonly used to
facilitate the process (Liu et al., 2016; (Chevalier and
Safro, 2009).

Generally speaking, the aim of any graph reduction
scheme is to reduce the number of nodes and edges of
a graph, while also ensuring that the “essential prop-
erties” of the original graph are preserved. The ques-
tion of what these properties should be preserved re-
mains inconclusive, but there is significant evidence
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that they should relate to the spectrum of a graph
operator, such as the adjacency or normalized Lapla-
cian matrix (Spielman and Teng} [2011; Hermsdorff and
Gunderson, 2019). A long list of theorems in spec-
tral graph theory shows that the combinatorial prop-
erties of a graph are aptly captured by its spectrum.
As such, graphs with the similar spectrum are gener-
ally regarded to share similar global and local struc-
ture (Van Dam and Haemers, 2003; Banerjee, [2008)).
Based on this realization, modern graph sparsification
techniques (Spielman and Srivastaval 2011} |Jovanovié
and Stanic) [2012; [Batson et al., [2013)) have moved on
from previously considered objectives, such as cut and
shortest-path distance preservation, and now aim to
find sparse spectrally similar graphs.

In contrast to graph sparsification, in coarsening there
has been little progress towards attaining spectrum
preservation guarantees. The foremost roadblock
seems to lie in defining what spectral similarity should
entail for graphs of different sizes. The original and
coarse graphs now have different numbers of eigenval-
ues and eigenvectors, which prohibit a direct compar-
ison. To circumvent this issue, recent works have con-
sidered restricting the guarantees to a subset of the
spectrum (Loukas and Vandergheynst| [2018} |Loukas|
2019)). However, focusing only on a subset of eigenval-
ues and eigenvectors also means that important infor-
mation of the graph spectrum is ignored.

In this work, we start by reconsidering the funda-
mental spectral distance metric (Jovanovi¢ and Stanié}
2012; |Gu et al.l 2015} [Jovanovic, [2015; [Jovanovi¢ and
Stanié, [2014), which compares two graphs by means
of a norm of their eigenvalue differences. This metric
is seemingly inappropriate as it necessitates that two
graphs have the same number of eigenvalues. However,
we find that in the context of coarsening, this diffi-
culty can be circumvented by substituting the coarse
graph with its lifted counterpart: the latter contains
the same information as the former while also hav-
ing the correct number of eigenvalues. Our analysis
shows that the proposed distance naturally captures
the graph changes in the graph coarsening process. In
particular, when the graph coarsening merges nodes
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that have similar connections to the rest of the graph,
the spectral distance is provably small. By merging
similarly connected nodes, nodes and edges in coarse
graphs are able to represent the connectivity patterns
of the original graphs, thus preserving structural and
connectivity information.

Our contributions are summarized as follows:

o We show how the spectral distance (Jovanovi¢ and

Stanid, 2012} |Gu et al.l 2015} [Jovanovic] 2015} [Jo-|

vanovi¢ and Stanid, 2014]), though originally re-

stricted to graphs of the same size, can be uti-
lized to measure how similar a graph is with its
coarsened counterpart.

e We examine how the new spectral distance cap-
tures graph structural changes occurring during
the graph coarsening process.

e We present two coarsening algorithms that prov-
ably minimize the spectral distance.

o We experimentally show that the proposed meth-
ods outperform other graph coarsening algorithms
on two graph related tasks.

All proofs can be found in the supplementary material.

2 RELATED WORK

Recent works have proposed to coarsen graphs by
preserving the spectral properties of the matrix rep-
resentations of graphs (Loukas and Vandergheynst
2018}, [Loukas), 2019} [Durfee et al., [2019; [Purohit et al.
2014 Hermsdorff and Gunderson, [2019). For exam-
ple, [Loukas| (2019)) proposed to preserve the action of
the graph Laplacian with respect to an (eigen)-space
of fixed dimension, arguing that this suffices to cap-
ture the global properties of graph relevant to parti-
tioning and spectral clustering. [Durfee et al.| (2019)
proposed to preserve the all-pairs effective resistance.
|Garg and Jaakkolal (2019) defined a cost based on the
theory of optimal transport. Saket et al. suggested
a Minimum Description Length (MDL) principle rel-
evant to unweighted graphs (Navlakha et al.| [2008]).
Most of these distance functions are specific to par-
ticular applications; the question of how to define an
application-independent graph coarsening framework
remains a challenge.

There is a sizable literature dealing with the charac-
terization of graphs in terms of their spectral proper-
ties (Jovanovi¢ and Stani¢, [2012} Tsitsulin et al., 2018}
Dong and Bindel, |2019). Previous work defined dis-
tance functions based on Laplacian eigenvalues which
measure differences between graphs
[Stanid, 2012} |Gu et al.l [2015). Spielman and Teng in-
troduced a notion of spectral similarity for two graphs

in their graph sparsification framework (Batson et al.]

[2013; |[Spielman and Teng} 2011). Recently, Tsitsulin
et al. proposed an efficient graph feature extractor,
based on Laplacian spectrum, for comparisons of large
graphs (Tsitsulin et al.l|2018)). Dong uses spectral den-
sities to visualize and estimate meaningful information
about graph structures (Dong and Bindel, 2019). Nev-
ertheless, despite the popularity of spectral methods,
the graph spectrum remains little explored in the con-
text of graph coarsening.

3 PRELIMINARIES

Let G = (V,E, W) be a graph, with V a set of N = |V]
nodes, £ a set of M = |€| edges, and W € RNV*N
the weighted adjacency matrix. We denote the node
v; the node by w(i) € RY representing the vector
of the weights of the edges incident on v; and by
d(i) = Z;\f:l W (i, j) the node degree of v;. The graphs
considered in this work are weighted, undirected, and
possess no isolated nodes (i.e. d(i) > 0 for all v;).

The combinatorial and normalized Laplacians of G are
defined as

L=D-W and L=1Iy-D Y?WD 2, (1)

respectively, where Iy is the N x N identity matrix
and D is the diagonal degree matrix with D(i,7) =

d(i).
3.1 Graph Coarsening

The coarse graph G. = (V., &, W,) with n = |V,|
is obtained from the original graph G by first select-
ing a set of non-overlapping graph partitions P =
{81,82,...,8,} C V, which cover all the nodes in
V. Each partition S, corresponds to a “super-node”
denoted by s, and the “super-edge” connecting the
super-nodes W,(p, q) has weight equal to the accumu-
lative edge weights between nodes in the corresponding
graph partitions &, and S;:

Welp, @) = w(Sp, Sg) == Z W (i, j) (2)

V4 GST—' ,Uj GSq

Let P € R™¥ be the matrix whose columns are par-
tition indicator vectors:

1, ifv; € Sp

P(p,i) = {o

It is then well known that the weight matrix W, of
the coarse graph G. satisfies

othewise.

W,=PWP'.
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Figure 1: Left: an example illustrating the graph coarsening process. The original graph is a random graph
sampled from stochastic block model with 50-node and 10 predefined blocks. The coarse graph is coarsened from
the predefined partitions. Right: Eigenvalues and eigenvectors of normalized Laplacian matrices of original,
coarse and lifted graphs. The eigenvalues of coarse graphs align with the eigenvalues of original graphs and the

eigenvectors indicate the block membership information.

The definition of the coarsened Laplacian matrices fol-
lows directly:

L.=D.-W, and L.=1I,— D Y*W,D;'/2

Similarly to the adjacency matrix, the combinatorial
Laplacian of the coarse graph can be obtained by the
formula L. = PLPT. The same however doesn’t hold
for the normalized Laplacian, as in general PLPT #
L..

3.2 Graph Lifting

We define G; = (V,&,W;) to be the graph lifted
from the coarse graph G, with respect to a set of
non-overlapping partitions P. In graph lifting, each
node s, of the coarse graph is lifted to |S,| nodes and
nodes in the lifted graph are connected by edges whose
weight is equal to the coarse edge weight normalized
by the sizes of partitions. Specifically, for any v; € S,
and v; € §; we have:

Wi, j) = w(Sp, Sy) _ Yves,wes, W7
oISl 5,1
W.(p,q)
155115] (3)

When S, = §; = S, the weight Wi(i,j) can be seen
to be equal to the weight of all edges in the subgraph
induced by S, after normalization by |S|?. It easily
follows that if W (1, j) is the same for every v;,v; € S,
then also Wi(i,j) = W (i, j), i.e., in-partition weights
are exactly preserved by successive coarsening and lift-
ing in this case.

The above combinatorial definition can be expressed
in an algebraic form in terms of the the pseudo-inverse
Pt of P, (i.e., PP* = I), whose elements are:

P*(j,p) = {

1 .
5] if (S Sp

0 otherwise.

With this in place, the adjacency matrices of the lifted
and coarse graphs are connected by the following rela-
tions:

W,=P*"W_.PT and W.=PW,P'.

The following equation reveals that lifting preserves
the connectivity up to a projection onto the partitions:

W, = PTW_.P¥ = PTPWP'PT
=OWH' =TOWI, (4)

where IT = PT P is a projection matrix, with IIIT =

PTPPTP=PtP=1I

The lifted Laplacian matrices are given by

L,=P'L.PT and £, =C"L.C, (5)

where C € R"*¥ is the normalized coarsening matriz
whose entries are given by:

1
VIS

0 otherwise,

if v; € Sp

C(pJ):{

such that CT = Ct and CTC = P¥P =1II. In this

manner, we have

L.=PLP" and L.=CL/C'. (6)

For a more in-depth discussion of the mathematics of
graph coarsening and graph lifting, we refer the inter-
ested reader to (Loukas| 2019).

4 SPECTRAL DISTANCE

We start by briefly reviewing some basic facts about
the spectrum associated with the Laplacian matrix of
a coarse graph. We then demonstrate how to exploit
these properties in order to render the classical spec-
tral distance metric amenable to (coarse) graphs of
different sizes.
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4.1 Properties of the Coarse Laplacian
Spectrum

Denote the eigenvalues and eigenvectors of the normal-
ized Laplacian matrices as A and w, respectively, with
L = UAU " where the i-th column of U corresponds
to uw; and A = diag(\). The eigenvalues are ordered
in non-decreasing order.

Property 4.1 (Interlacing. Section 5.3 in (Butler]
2008)). The normalized Laplacian eigenvalues of the
original and coarsened graphs satisfy

A(@) <A(@) <AGE+N—n) forall i=1,...,n.

Property [41] is a general interlacing inequality that
captures pairwise difference between the eigenvalues
of the original and coarse graph Laplacians (Chung}
1997; [Butler}, [2007). Since it holds for any graph and
coarsening, the inequality will, in some cases, be loose.

Property 4.2 (Eigenvalue Preservation). The
normalized Laplacian eigenvalues of the lifted graph
contain all eigenvalues of the coarse graph and addi-
tional eigenvalues 1 with (N — n) multiplicity.

Property 4.3 (Eigenvector Preservation). The
etgenvectors of the coarse graph lifted by C, i.e. u; =
Cu. are the eigenvectors of L.

Property and state that the action of lifting
preserves most spectral properties of the coarse graph.
Thus, we may use the lifted graph as a proxy to define
the distance function (Toivonen et all |2011)). Figure
shows an example illustrating the graph coarsening
process as well as the effect on the graph spectrum.

4.2 Spectral Distance

In the following, we propose two notions of the spec-
tral distance to quantify the difference between orig-
inal and coarse graphs. We first use the lifted graph
as the “proxy” of the coarse graph and define the full
spectral distance:

Definition 4.4. The full spectral distance between
graph G and G. is defined as follows:

N

i=1

(@)1,

where vectors X and \; contain the eigenvalues of the
original and lifted graphs.

As the original and lifted graphs have the same number
of nodes, we may directly use a norm to measure the
pairwise differences between eigenvalues.

On the flip side, the definition requires computing all
eigenvalues of original graphs regardless of the coarse

graph size, which is computationally expensive, espe-
cially for large graphs. The limitation motivates us to
define the partial spectral distance by selecting part of
the terms in the full spectral distance definition.

Let k1 and ko be defined as k; = argmax;{i : A.(7) <
1}k = N —n+ k;. We expand the full spectral
distance into three terms as follows:

SDtan(G,Ge) = Z IA)
k1 k2
=Y A - > IAGE) = M)
=1 i=ki+1

N
+ D @) = M) (7)

i=ko+1
k2
—ZM @M+ > A@) -1
i=k1+1
N
£ S RO-AG-N+w)|  (®)
i=kao+1

The last equation is from the Property where \;
contains eigenvalues of the coarse graph as well as
eigenvalue 1 with N — n multiplicity. Eigenvalue X\;

satisfies:
Ac(7) i < ky
(i) =41 ki +1<i<ky
A(i—=N+n) i>k

With this in place, we define the partial spectral dis-
tance to be equal to the full spectral distance minus
the N — n terms for which A\; = 1:

Definition 4.5. The partial spectral distance between
graph G and G. is defined as

k
part g gc Z ‘A H‘
=1
> (i) = A+ N —n),
i=k+1

() < 1}

For the partial spectral distance, we only need to com-
pute n rather than N eigenvalues of the normalized
Laplacian of the original graph, which significantly re-
duces the computational cost when n < N.

where k = arg max,;{i :

The full and partial spectral distances are related by,

ko

> @ -1

i=ky+1

S-Dfull(ga gc) = SDpart(gu gc) +
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The excluded terms Zfiklﬂ [X(¢) — 1] measure the
closeness of the original Laplacian eigenvalues and
eigenvalue 1. The two definitions are equivalent when
the normalized Laplacian of the original graph Ly
contains eigenvalue 1 with N — n multiplicity. The
condition is equivalent to asserting that the adjacency
matrix W is singular with N — n algebraic multiplic-
ity of the eigenvalue 0 (Scirihay, 2007; |AL-Tarimshawy,
2018]). We have observed empirically that, when coars-
ening nodes that have similar connections, the adja-
cency matrix has eigenvalues close to 0. In such situ-
ations, the terms of the full spectral distance that are
excluded by the partial spectral distance are almost 0
and the partial distance closely approximates the full
one.

Note that both definitions of spectral distance are
proper distance metrics over the space of graph Lapla-
cian eigenvalues. However, the spectral distance is
not able to distinguish graphs with the same sets of
Laplacian eigenvalues (referred to as cospectral graphs
(Van Dam and Haemers| 2003)). Thus, there could ex-
ist multiple coarse graphs corresponding to the same
spectral distance.

4.3 Relation to Graph Coarsening

To illustrate the connections between spectral distance
and graph coarsening, we first consider the ideal case
when merged nodes within have the same normalized
edge weights:

Proposition 4.1. Let the graph G. be obtained by
coarsening G with respect to a set of partitions P =

{81,82,...,8n}. If P is selected such that every node
in a partition has the same normalized edge weights,
w(i) _ w(j)
- = —== or allv;,v; €S and S€P (9
a0 ) 7 J )
then

S-Dfull(ga gc) =0 and SDpart(ga gc) =0.
Therefore, the ideal graph coarsening attains a mini-
mal (full and partial) spectral distance.

We next provide a more general result on how the spec-
tral distance can capture the structural changes in the
graph coarsening framework. Consider the basic coars-
ening where the coarse graph is formed by merging one
pair of nodes (i.e. n = N —1). In this setting, we prove
the following:

Proposition 4.2. Suppose the graph G. is obtained
from G by merging a pair of nodes v(a) and v(b). If
the normalized edge weights of merged nodes satisfy

’w(a) w(b)

d(a) — d(b)

— )

1

Algorithm 1 Multilevel Graph Coarsening (MGC)

1: Input: Graph G = (V,£,W) and target size of
the coarse graph n.

2: s+ N
3: while s > n do
4: for v; € Vs do
5: for v; € N; do
. 5y — |[w@) _ w()
6: dy(i,5) = || %8 - % 1
T Z.Inirnjmin = arg mini,j ds (Za.j)
8: s4¢s5—1
9: Merge nodes v;,,, and v;_ ;. to form the coarse
graph Gs.

10: return G, = (V,,En, Wy)

then the spectral distance between the original and
coarse graphs is bounded by

S-Dfull(gy gc) S Ne and SDpart(gv gc) S ne.

The above proposition states that the spectral dis-
tance is bounded by the discrepancy of normalized
edge weights of merged nodes. The bound implies that
minimizing the nodes’ edge weights within the same
partitions results in bounded spectral perturbations.

5 ALGORITHMS

We propose two graph coarsening algorithms to pro-
duce coarse graphs with minimal small spectral dis-
tance. The first follows from Proposition [£.2] in that
the coarse graphs are formed by iteratively merging
graph nodes with similar normalized edge weights.
The second algorithm is inspired by spectral cluster-
ing: we leverage on the combinations of normalized
Laplacian eigenvectors combined with k-means clus-
tering to find the graph partitions and the correspond-
ing coarse graphs. Though different, both algorithms
are shown to generate coarse graphs of bounded spec-
tral distance.

5.1 Multilevel Graph Coarsening

The Multilevel Graph Coarsening (MGC) algorithm
iteratively merges pairs of nodes which share similar
connections. During each iteration, M GC searches
for the pair of nodes with the most similar normalized
edge weights and merges them into super-nodes. To re-
duce the computational cost, we constraint the candi-
date pairs of graph nodes to be within 2-hop distance.
We denote N; as the set of nodes that are within 2-hops
distance from node v;. The pseudo-code of MGC is
presented in Algorithm
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Analysis. The following corollary bounds the spec-
tral distance of MGC algorithm:

Corollary 5.1. Suppose the graph G. is coarsened
from G by iteratively merging pairs of nodes v(as) and
v(bs) for s from N to n+ 1, if the normalized edge
weights of merged nodes satisfy,

Hw(as) w(bs)
d(as)  d(bs)

then the spectral distance between the original and
coarse graphs is bounded by

> €s,

1

n+1 n+1
SDfull(g7 gc) S N Z €s,y SDpart(Qagc) S n Z €s
s=N s=N

The bound is a direct corollary Proposition [4.2

Time complexity. The time complexity of MGC
is O(M (N+n)(N—n)), which is derived as follows: For
each iteration, the computational cost of the 1-norm in
line 6 is O(s). Then the time complexity of the while
loop in line 3 is O(Zi\[:n s:M)=O0OM™ 2N (N—n)) =
O(M(N +n)(N —n)). When n =~ N, the complexity
reduces to O(MN). On the other hand, for n < N
the complexity becomes O(MN?).

5.2 Spectral Graph Coarsening

The spectral graph coarsening (SGC) algorithm iden-
tifies the coarsening partitions by attempting to min-
imize the k-means cost of rows of Laplacian eigenvec-
tors. Different from traditional spectral clustering, we
select eigenvectors with the eigenvalues corresponding
to the head and tail eigenvalues as in the definition of
partial spectral distance in Definition The proce-
dure is described in Algorithm[2] Notice that, since &y
is unknown at the start, SGC algorithm iterates over
different possible combinations of eigenvectors and se-
lects the coarsening with minimum k-means cost.

Analysis. The following theorem relates the partial
spectral distance with the k-means cost:

Theorem 5.2. Let the coarse graph G. be obtained
from Algorithm 2 with graph partition P*, suppose that
the graph coarsening is consistent, i.e., L. = CLCT,
and let the k-means cost satisfy F(U,P*) < 1. Then,
the partial spectral distance is bounded by

(n+2)F(U,P*)+4y/F(U,P*)

S-Dpart(g7 gc) S 1-— ]:(Ua P*)

The theorem states that the spectral distance is
bounded by the k-means clustering cost. Further,
when the graph eigenvectors point to well-separated

Algorithm 2 Spectral Graph Coarsening (SGC)

1: Input: Graph G = (V, &, W), eigenvectors U of
the normalized Laplacian L, target size n.

2: if A(N) <1 then

3: Set k1 < n > Spectral Clustering

4: else

5: Set k1 < argming{k : A(k) < 1,k <n,A(N —
n+k+1)>1} > Iterative Spectral Coarsening

6: k’g «~ N —n+ k’l.

7: while k; <n do

8: Up, < U1 :k);U(ka+1: N)J

9: Apply k-means clustering algorithm on the

rows of Uy, to obtain graph partitions P that
optimizes the following k-means cost:

2
N

FUaPL) =Y | 0% T

i=1 JES;

where 7 (i) is the i*™® row of Uy, .
10: ki< ki+1, ko=N-—n+k
11: return coarse graph G. generated with respect to
the partitions with minimum k-means clustering
cost as
P* = arg rr]iin F(Uk,, P,)
1

clusters and the k-means cost is small, the spectral
distance is smaller. The main assumption posed is
that £L. = CLC", which may not hold for some
graphs. For situations when this assumption is not
met, the claim can be readily reworked to hold for the
combinatorial Laplacian matrix for which the relation
L.= PLPT always holds.

Time complexity. FExcluding the one-time partial
sparse eigenvalue decomposition that takes roughly
O(R(Mn+ Nn?)) time using Lanczos iteration with R
restarts and a graph of M edges (we need the smallest
and largest n eigenvalues and eigenvectors) (Tremblay
and Loukas| 2020), the time complexity of SGC is
O(KTNn?), where K refers to the number of times
the while loop is executed with K < n and O(T'Nn?)
is the complexity of the k-means clustering (whereas
T bounds the number of k-means iterations).

6 EXPERIMENTS

We proceed to empirically evaluate the proposed graph
coarsening algorithms on tasks involving real-world
and synthetic graphs. Our first experiment consid-
ers the classification of coarsened graphs, whereas the
second examines how well one may recover the block
structure of graphs sampled from the stochastic block
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Table 1: Classification accuracy on coarse graphs that are five times smaller.

Datasets MUTAG ENZYMES NCI1 NCI109 PROTEINS PTC
EM 78.90 18.92 62.81 61.35 63.72 48.56
LV 79.01 24.68 63.59 60.49 62.72 50.24

METIS 77.62 24.79 59.74 61.64 63.70 49.34
SC 80.37 24.40 63.14 62.57 64.08 50.16
SGC 80.34 29.19 63.94 63.69 64.70 52.76

MGC 81.53 30.89 66.07 63.55 65.26 52.28

Original 86.58 37.32 66.39 64.93 66.60 53.72

model. We show that our graph coarsening algorithms,
which optimize the spectral distance, yield minimal
classification accuracy degradation and can recover the
block structures with high accuracy. Codes for both
experiments are publicly availableﬂ

Baseline Algorithms We compare our methods
with the following graph coarsening and partitioning
algorithms as,

e Edge Matching (EM). The coarse graphs
are formed by maximum-weight matching with
the weight calculated as W (i, j)/ max{d(i),d(j)}
(Dhillon et al., |2007)).

e Local Variation (LV). Local variation methods
coarsen a graph in a manner that approximately
preserves a subset of its spectrum (Loukas| [2019)).
Here, we used the neighborhood-based variant
and aimed to preserve the first max(10,n) eigen-
vectors and eigenvalues. Alternative choices for
the preserved eigenspace may yield different re-
sults.

e METIS. This is a standard graph partitioning al-
gorithm based on multi-level partitioning schemes
that are widely used various domains, such as fi-
nite element methods and VLSI (Karypis and Ku-
mar, 1998).

e Spectral Clustering (SC). Spectral clustering
is a widely used graph clustering algorithm that
finds densely connected graph partitions deter-
mined from the eigenvectors of the graph Lapla-
cian (Von Luxburg, 2007). For a review of re-
cent results on the fast approximation of SC, see
(Tremblay and Loukas| [2020)).

Note that to apply graph partitioning algorithms for
coarsening purposes, we coarsen the graphs with re-
spect to the graph partitions following the standard
coarsening process as in equation [2}

"https://github.com/yuj-umd /spectral-coarsening

6.1 Graph Classification with Coarse Graphs

Graph classification is a well studied graph machine
learning problem, with a variety of applications to ma-
terial design, drug discovery and computational neuro-
science (Tsitsulin et al.| |2018; |Jin and JaJal [2018; Xu
et all [2018; [Park and Friston, |2013)). However, some
graph classifiers are not scalable for large graphs, such
as those encountered in social network analysis and
computational neuroscience (Park and Friston, [2013;
Jin et all |2015). Graph coarsening can reduce the
graph sizes in the datasets, which provides accelera-
tion on the training and inference of graph classifica-
tion models. However, if the coarsening is not carefully
done, it can also result in loss of useful information
and, thus, of classification accuracy. In the following,
we quantify the effect of different coarsening choices to
graph classification. We utilize various graph coarsen-
ing methods to reduce the size of graphs in the datasets
before passing them to the graph classifier. We then
evaluate the quality of graph coarsening based on the
classification accuracy drop (as compared to the same
classifier on the original graphs).

Evaluation We coarsen the graph samples until n =
N/5, i.e., until their number of nodes is reduced by a
factor of five. The classification performance are evalu-
ated based on 10-fold cross validation—in accordance
to previous works (Tsitsulin et al., [2018; Dai et al.|
2016} Xu et al., [2018)).

Datasets. We use five standard graph classifica-
tion datasets for graph classification evaluation (Sher-
vashidze et all |2011; |[Kersting et al., 2016} |Jin and
JaJaj, [2018). Each dataset contains a set of variable-
sized graphs stemming from a variety of applications.
The graph statistics can be found in the supplemen-
tary materials.

The graph classifier. We wuse the Network
Laplacian Spectral Descriptor (NetLSD) combined
with a 1-NN classifier as the graph classification
method (Tsitsulin et al.l 2018). NetLSD was shown
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Table 2: Recovery Accuracy of Block Structures from Random Graphs in Stochastic Block Model

P, q Type EM LV METIS SC MGC SGC
Associative  0.1819 0.3076  0.7792  0.7845 0.3664 0.7845
0.2,0.01 Disassortative 0.0956 0.1071  0.0815  0.0877 0.1093  0.0850
Mixed 0.1052 0.1944  0.2389  0.3335  0.6062 0.7107
Associative  0.1015 0.1902  0.7820  0.7930 0.2868  0.7930
0.5,0.1 Disassortative 0.0854 0.1068  0.0602  0.078%  0.1474 0.7901
Mixed 0.0848 0.2241  0.2883  0.4074 0.7343 0.7699
Associative  0.0823 0.1139  0.5596  0.6532 0.1172 0.6532
0.8,0.3 Disassortative 0.0836 0.0976  0.0776  0.1342 0.7784 0.7931
Mixed 0.0888 0.1503  0.2929  0.3909  0.5428  0.7209

as an efficient graph feature extractor and achieve
state-of-the art classification performance (Tsitsulin
et al. 2018). Note that NetLSD extracts graph fea-
tures that only depend on the graph structure and does
not consider node and edge features.

Results Table [I| shows the graph classification per-
formance on coarse graphs. In all cases, the proposed
graph coarsening algorithms yield better classification
accuracy than alternative methods. Interestingly, for
four out of the six datasets (NCI1, NCI109, PRO-
TEINS, and PTC) there is almost no degradation
to the classification accuracy induced by coarsening,
even if the graphs in the coarse dataset are five times
smaller—this, we believe, is an encouraging result.

6.2 Block Recovery in the Stochastic Block
Model

In this experiment, we test whether coarsening algo-
rithms can be used to recover the block structures of
random graphs sampled from stochastic block models.

The stochastic block model is a random graph model
that is commonly used to evaluate graph partitioning
and clustering algorithms (Abbel 2017; |[Abbe et al.|
2015)). The model is parameterized by a probability
matrix B € [0,1]"", with graph nodes in blocks i
and j being connected with probability B(%,j). Ran-
dom graphs can be generated from the stochastic
block model by sampling the upper triangular en-
tries W (i,j) in accordance with the edge probabil-
ity.  The lower triangular entries are then set as
W (j,i) = W(i, j).

We parameterize B with p and q as follows:

e Assortative. The diagonal entries of B are p and
the off-diagonal entries are q.

e Disassortative. The diagonal entries of B are q
and the off-diagonal entries are p.

e Mized. The entries of B are randomly assigned
with p and g (each with probability 1/2).

Evaluation We evaluate the performance of graph
coarsening algorithms by measuring the discrepancy
between the recovered graph partitions and the
ground-truth blocks. We use the Normalized Mutual
Information (NMI) to measure the recovery error be-
tween any two graph partitions. The definition of
NMI can be found in the supplementary material.

For each stochastic block model setting, we set N =
200 and n = 10, with 20 nodes for each partition. We
repeat the experiment 10 times and report the average
NMI metric achieved by each method.

We compare our graph coarsening algorithms with
the graph coarsening and partitioning algorithms men-
tioned earlier. Table |2 reports the average NMI in
three different stochastic block model configurations.
Our proposed methods outperform other methods in
almost all cases. In particular, our methods achieve
high recovery accuracy for disassortative and mixed
settings, where traditional graph partitioning algo-
rithms fail to recover accurately. The EM and LV
coarsening algorithms are not optimized for block re-
covery and thus exhibit far worse performance on this
task.

7 CONCLUSION

In this work, we propose a new framework for graph
coarsening. We leverage the spectral properties of nor-
malized Laplacian matrices to define a new notion of
graph distance that quantifies the differences between
original and coarse graphs. We argue that the pro-
posed spectral distance naturally captures the struc-
tural changes in the graph coarsening process, and we
propose graph coarsening algorithms that guarantee
that the coarse graphs exhibit a bounded spectral dis-
tance. Experiments show that our proposed methods
can outperform other graph coarsening algorithms on
graph classification and block recovery tasks.
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