
 

Article

Reference

Graph colouring approaches for a satellite range scheduling problem

ZUFFEREY, Nicolas, AMSTUTZ, Patrick, GIACCARI, Philippe

Abstract

A goal of this paper is to efficiently adapt the best ingredients of the graph colouring
techniques to an NPhard satellite range scheduling problem, called MuRRSP. We propose
two new heuristics for the MuRRSP, where as many jobs as possible have to be scheduled on
several resources, while respecting time and capacity constraints. In the permutation solution
space, which is widely used by other researchers, a solution is represented by a permutation
of the jobs, and a schedule builder is needed to generate and evaluate a feasible schedule
from the permutation. On the contrary, our heuristics are based on the solution space which
contains all the feasible schedules. Based on the similarities between the graph colouring
problem and the MuRRSP, we show that the latter solution space has significant advantages.
A tabu search and an adaptive memory algorithms are designed to tackle the MuRRSP.
These heuristics are derived from efficient graph colouring methods. Numerical experiments,
performed on large, realistic, and challenging instances, showed that our heuristics are very
competitive, robust, and outperform algorithms based [...]

ZUFFEREY, Nicolas, AMSTUTZ, Patrick, GIACCARI, Philippe. Graph colouring approaches for
a satellite range scheduling problem. Journal of scheduling, 2008, vol. 11, no. 4, p. 263-277

DOI : 10.1007/s10951-008-0066-8

Available at:
http://archive-ouverte.unige.ch/unige:5263

Disclaimer: layout of this document may differ from the published version.

 1 / 1

http://archive-ouverte.unige.ch/unige:5263


J Sched (2008) 11: 263–277
DOI 10.1007/s10951-008-0066-8

Graph colouring approaches for a satellite range scheduling

problem

Nicolas Zufferey · Patrick Amstutz · Philippe Giaccari

Received: 16 May 2007 / Accepted: 25 March 2008 / Published online: 1 May 2008
© Springer Science+Business Media, LLC 2008

Abstract A goal of this paper is to efficiently adapt the
best ingredients of the graph colouring techniques to an NP-
hard satellite range scheduling problem, called MuRRSP.
We propose two new heuristics for the MuRRSP, where as
many jobs as possible have to be scheduled on several re-
sources, while respecting time and capacity constraints. In
the permutation solution space, which is widely used by
other researchers, a solution is represented by a permuta-
tion of the jobs, and a schedule builder is needed to gener-
ate and evaluate a feasible schedule from the permutation.
On the contrary, our heuristics are based on the solution
space which contains all the feasible schedules. Based on
the similarities between the graph colouring problem and
the MuRRSP, we show that the latter solution space has sig-
nificant advantages. A tabu search and an adaptive mem-
ory algorithms are designed to tackle the MuRRSP. These
heuristics are derived from efficient graph colouring meth-
ods. Numerical experiments, performed on large, realistic,
and challenging instances, showed that our heuristics are
very competitive, robust, and outperform algorithms based
on the permutation solution space.
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1 Introduction

As mentioned in (Marinelli et al. 2006), scheduling the daily
communications between satellites and ground control sta-
tions is getting very difficult, since an increasing number of
satellites must be controlled by a small set of ground sta-
tions. As a consequence, a large number of communication
requests (also called jobs) are unserved. Scheduling requests
(or jobs) on a satellite constellation is referred to as Satellite

Range Scheduling problem. In this paper, we only focus on a
specific subproblem called Multi-Resource Range Schedul-

ing Problem (MuRRSP for short), which is NP-hard (Bar-
bulescu et al. 2004a).

One goal of this paper is to show the similarities be-
tween the MuRRSP and the graph colouring problem with a
fixed number k of colours, which is denoted k-GCP (where
GCP holds for Graph Colouring Problem). We will see that
scheduling a job on a resource is equivalent to assigning
a vertex to a colour. A straightforward idea is therefore to
derive graph colouring heuristics to tackle the MuRRSP.
Thus, our goal is not to focus on standard jobs schedul-
ing techniques to tackle the MuRRSP. The reader interested
in classical scheduling problems and techniques is referred
to (Pinedo 2002), in which dynamic aspects are also con-
sidered. Currently, in the best heuristics for the MuRRSP
(Barbulescu et al. 2004a), each solution is encoded as a
permutation of the jobs. From each permutation, it is pos-
sible to build a feasible schedule by the use of a greedy
constructive heuristic. From a permutation of the vertices,
it is also possible to greedily build a feasible colouring of
the considered graph. Such a strategy was already tested
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within the context of graph colouring (e.g., Brélaz 1979;
Culberson 1992; Culberson and Luo 1995; Hertz and Costa
1997; Davis 1991). However, the results are very poor
when compared to the best colouring heuristics which are
not based on the permutation solution space. Therefore, it
seems to be meaningful to adapt some of the best graph
colouring techniques (e.g., Bloechliger and Zufferey 2008;
Galinier and Hao 1999; Galinier et al. 2008) to tackle the
MuRRSP.

The paper is organized as follows. We formally intro-
duce general satellite range scheduling problems and the
MuRRSP in Sect. 2. In Sect. 3, we present the main lessons
from the GCP literature that are useful when designing
heuristics for the MuRRSP. In Sect. 4, we derive a tabu
search for the MuRRSP from the tabu search for the k-GCP
proposed in (Bloechliger and Zufferey 2008). In Sect. 5,
we design an adaptive memory algorithm for the MuRRSP
from the evolutionary algorithms for the k-GCP proposed
in (Galinier and Hao 1999) and (Galinier et al. 2008). Re-
sults are reported and discussed in Sect. 6. Finally, general
conclusions and research avenues are drawn in Sect. 7.

2 The MuRRS: formulation and related works

Consider a set of satellites and a set of ground stations.
Ground stations are communication facilities (e.g., anten-
nae). Depending on the mission, satellites may be geosyn-
chronous or not. In the latter case, a ground station can
communicate with a satellite only when the satellite lies
within the transmitting horizon of the ground station. In
general, this happens periodically within the planning hori-
zon. Several operations must be performed on spacecrafts,
related to satellite control or payload. These operations re-
quire ground-to-space communications, called jobs. There-
fore, a job is associated with some information representing
the corresponding on-board operation. In a satellite range
scheduling problem, a set J = {1, . . . , n} of jobs have to be
scheduled. Each job j is characterized by the following pa-
rameters:

• satj , the (unique) satellite requested by j ;
• Mj , the set of ground stations able to process j ;
• pj , the processing time, i.e. the duration of communica-

tion j ;
• rj , the job release time, i.e. the time at which j becomes

available for processing;
• dj , the job due-date, i.e. the time by which j must be

completed;
• wj , the revenue of j ;
• lj , the size of the data packets (in kilobytes) associated

with j .

Note that pj , rj , and dj may depend on the considered
ground station. Transmission and reception are regarded as

being simultaneous and preemptions are not allowed. More-
over, both satellites and ground stations have unit capacity,
that is, can process at most one job at a time. The following
families of technological constraints have also to be taken
into account: precedence constraints between jobs, ground
station setup times (when a ground station processes two
consecutive jobs with two distinct satellites), on-board stor-
age constraints (at any time, the size of data packets up-
loaded on satellites cannot exceed a given limit).

A lot of work has already been done on satellite range
scheduling problems (e.g., Bensana et al. 1999; Harrison
et al. 1999; Pemberton 2000; Wolfe and Sorensen 2000;
Verfaillie and Lemaitre 2001; Frank et al. 2001; Lemaitre
et al. 2002; Gabrel and Murat 2003; Vasquez and Hao 2003;
Globus et al. 2003, 2004; Cordeau and Laporte 2005). In
this paper, we only focus on a subcase of the above gen-
eral problem, where wj = 1 for every job j , i.e. all the
jobs have the same revenue. In addition, we ignore prece-
dence, setup and on-board storage constraints. Such a result-
ing problem is called the Multi-Resource Range Schedul-

ing Problem (MuRRSP) and is NP-hard (Barbulescu et
al. 2004a). An important application is the one encoun-
tered by the U.S. Air Force Satellite Control Network (AF-
SCN), where more than 100 satellites and 16 antennae lo-
cated at 9 ground stations are considered. Customers re-
quest an antenna at a ground station for a specific time win-
dow along with possible alternative slots. The problem is,
in general, oversubscribed, i.e. all the jobs cannot be per-
formed. Any job that is not scheduled on the requested day
is said to be in conflict. Minimizing the number of conflict-
ing jobs is of crucial importance in a practical standpoint,
because human schedulers do not consider any conflicting
job worse than any other conflicting job (e.g., Schlack 1993;
Gooley 1993; Parish 1994). The human schedulers them-
selves state that minimizing the number of conflicts reduces
(1) their workload, (2) communication with outside agen-
cies, and (3) the time required to produce a conflict-free
schedule (Barbulescu et al. 2004a). Anytime there is a con-
flict, human schedulers have to contact the customer asso-
ciated with the conflicting job and have to discuss in order
to try to schedule the job somewhere else in the planning
horizon.

In summary, in the MuRRSP, for each job j , we know the
set of resources Mj on which j can be scheduled. For each
job j , we know its processing time pj and its time window
[rj ;dj ], where pj , rj , and dj can have different values de-
pending on the considered resource of Mj . The goal is to
schedule as many jobs as possible within its time window,
such that the processing of two jobs cannot overlap on the
same resource.

In the upper part of Fig. 1, we illustrate how the data as-
sociated with the MuRRSP can be represented, considering
k = 3 resources. In such an example, jobs 1 and 5 can be
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Fig. 1 Representation of a
feasible solution for the
MuRRSP, with k = 3

scheduled on resources 1 and 3, job 2 can be scheduled on
resources 1 and 2, and jobs 3 and 4 can be scheduled on
all the resources. For each couple (job j , resource Ci ), the
associated time window T

(i)
j is represented in black, while

the duration p
(i)
j is represented in grey. In the lower part of

Fig. 1, we propose a way to represent a feasible solution. We
can see that, for a given time, only one job can be scheduled
on a resource (each resource has a unit capacity). In addi-
tion, each job is scheduled on only one resource. Finally, we
can observe that job 3 is not scheduled in the proposed solu-
tion, which means that the value of the objective function is
equal to one.

Various methods already exists to tackle the MuRRSP.
Gooley (1993) and Schlack (1993) developed mixed-integer
algorithms and insertion heuristics. Parish (1994) adapt a ge-
netic algorithm called GENITOR. A comparison of greedy
constructive heuristics (derived from the job scheduling
methods proposed in Dauzère-Pérès 1995 and Bar-Noy et
al. 2002), local search algorithms (e.g., hill-climbing) and
GENITOR is performed in (Barbulescu et al. 2004a). Sev-
eral researchers (e.g., Globus et al. 2004; Barbulescu et al.
2004a) propose to encode a solution as a permutation π of
the n jobs to schedule. Let S1 be the solution space contain-
ing all the possible permutations, and let S2 be the solution
space containing all the possible feasible schedules to the
original problem. From a permutation π in S1, it is possi-
ble to generate a schedule in S2 by the use of a schedule
builder SB (which is a greedy constructive heuristic). More
precisely, SB considers jobs in the order that they appear in
the permutation π . In order to build the schedule associated
with π , which is denoted by SB(π), each job is assigned
to the first available resource, from its list of alternatives,
and at the earliest possible starting time. If the job cannot
be scheduled on any of the alternative resources, thus, it is a
conflicting job, it is dropped from the schedule, i.e. bumped.
The objective function to minimize is the total number of

jobs bumped from the schedule. As mentioned in (Globus
et al. 2004), the solution space S1 has the following advan-
tages.

1. SB can take any permutation as input.
2. SB always provides feasible solutions to the problem.

Thus, there is no need to implement any repairing pro-
cedure, which can be time consuming.

3. If there are many possible times at which jobs can be
scheduled, it is often the case that S1 is significantly
smaller than S2.

The latter can, however, be also considered as a draw-
back, because some solutions of S2 might not be reachable
from a permutation of S1. Note that one may allow at each
step to nondeterministically assign an available resource to
the considered job, instead of the first available resource.
However, in such a case, it is not possible to assign a sin-
gle schedule to a single permutation, which is another draw-
back. In this paper, we only focus on the above described
deterministic builder SB.

In order to design a local search (e.g., hill climbing,
tabu search, simulated annealing), it is necessary to define
a neighborhood structure. In solution space S1, in order to
generate a neighbor solution π ′ from a current solution π ,
one may simply move a single job from its current position
in π to another position. An alternative consists to swap two
jobs in π to get π ′. The latter neighborhood structure was
studied in (Globus et al. 2004) and (Barbulescu et al. 2004a)
within a hill climbing method, a tabu search, and a simu-
lated annealing algorithm. The following two main draw-
backs were noticed.

1. There are too many neighbor candidates for any current
solution (n · (n − 1) possibilities). Thus, it is too much
time consuming to evaluate all the neighbor candidates at
each iteration. Even if only a sample of candidate neigh-
bor solutions are considered at each iteration, it is still
difficult to find rules to select a promising sample.



266 J Sched (2008) 11: 263–277

2. BS(π ′) is often equal to BS(π) (in 33% of the cases, as
experimented in Barbulescu et al. 2004b). In other words,
π and π ′ in S1 such that π �= π ′ often lead to the same
schedule in S2. Thus, most of the candidate neighbor so-
lutions in S1 do not change the current schedule BS(π)

in S2.

Avoiding the second drawback within the context of the
MuRRSP, in (Barbulescu et al. 2004a), the authors used a
genetic algorithm based on S1, called GENITOR, which
was first proposed in (Parish 1994). Each permutation π in
S1 can be evaluated in two steps as follows: (1) apply SB

on π ; (2) compute the number of bumped jobs in SB(π).
In GENITOR, at each generation, two parent permutations
π1 and π2 are selected, using rank-based selection, in the
population P of permutations to generate an offspring per-
mutation π(off), which then replaces the worst permutation
of the population P . Such algorithm is able to perform large
changes on parent schedules at each generation. More pre-
cisely, SB(π(off)) is usually very different from SB(π1) and
SB(π2). This is due to the use of Syswerda’s crossover (see
Syswerda and Palmucci 1991 for more details), which ran-
domly selects about half of the positions in parent permuta-
tions and reorder them to produce offspring permutations. It
was observed that such a crossover may change as much as
50% of the resulting offspring schedules when compared to
parent schedules. In GENITOR for the MuRRSP, the pop-
ulation size is 200 and the algorithm stops as soon as 8000
applications of SB have been performed. The algorithm does
not perform better if one increases the number of evaluations
from 8000 to 50,000, and the population size from 200 to
400 (Barbulescu et al. 2004a).

3 Lessons from the GCP literature

In this section, we present the ingredients from the GCP lit-
erature that may help to design heuristics for the MuRRSP.

The Graph Colouring Problem (GCP) is a well known
NP-hard problem (Garey and Johnson 1979). Given a graph
G = (V ,E) with vertex set V and edge set E, and given
an integer k, a k-colouring of G is a function c : V →

{1, . . . , k}. The value c(x) of a vertex x is called the colour

of x. The vertices with colour i (1 ≤ i ≤ k) define a colour

class, denoted Ci . If two adjacent vertices x and y have the
same colour i, vertices x and y, the edge [x, y] and colour i

are said conflicting. A k-colouring without conflicting edges
is said legal and its colour classes are called stable sets. The
GCP is to determine the smallest integer k, called chromatic

number of G and denoted χ(G), such that there exists a
legal k-colouring of G. Given a fixed integer k, the opti-
mization problem k-GCP is to determine a k-colouring of G

that minimizes the number of conflicting edges. If the opti-
mal value of the k-GCP is zero, this means that G has a le-
gal k-colouring. An algorithm that solves the k-GCP can be
used to solve the GCP, by starting with an upper bound k on
χ(G), and then decreasing k as long as a legal k-colouring
can be found. The most efficient colouring heuristics are
based on that strategy. For a recent review on graph color-
ing techniques, the reader may refer to (Galinier and Hertz
2006).

In the k-GCP, we have to assign a vertex v ∈ {1, . . . , n}

to a colour class Ci , with i ∈ {1, . . . , k}, while respecting
the following constraint: two adjacent vertices should not
have the same colour. In the MuRRSP, we have to assign
a job v ∈ {1, . . . , n} to a resource Ci , with i in a subset of
{1, . . . , k}, while respecting the following constraint: job j

of duration pj has to be processed within its time window
Tj = [rj ;dj ] defined by a release time rj and a due date dj .
We can observe that the GCP is simpler than the MuRRS in
the sense that a vertex can be associated with any resource
as long as the vertex is not in conflict. In addition, in the
GCP, there is no need to order the vertices in each class or to
consider processing times. In the situations encountered by
the AFSCN (Air Force Satellite Control Network), the value
of k is set equal to 16.

The permutation solution space was also considered
within the context of graph colouring. Any permutation π

of the vertices can be transformed in a legal colouring by
the use of a colouring builder CB. Such a greedy construc-
tive heuristic considers the vertices in the order they ap-
pear in permutation π . At each step, CB gives the small-
est colour which does not create any conflict to the con-
sidered vertex. Methods based on such a solution space
are not competitive at all with the best colouring. Among
such methods, we can mention: a greedy heuristic (Brélaz
1979), iterated greedy algorithms (e.g., Culberson 1992;
Culberson and Luo 1995), an ant algorithm (Hertz and
Costa 1997), and moreover, a genetic algorithm described in
(Davis 1991) based on a crossover close to the one proposed
by Syswerda in (Syswerda and Palmucci 1991), which is
used in GENITOR for the MuRRSP in (Barbulescu et al.
2004a). To understand why methods based on the permuta-
tion solution space are not as efficient as methods directly
dealing with k-colourings (legal or not, complete or partial),
we can mention the following drawbacks associated with
the permutation solution space, when designing local search
heuristics. Let π and π ′ be two permutations of the vertices
such that π ′ can be obtained from π by only moving the po-
sition of a single vertex in π , or by switching the positions
of two vertices in π .

1. The resulting colourings s = CB(π) and s′ = CB(π ′) can
have structures which are very close or very different.
Therefore, it is difficult to have a good control on the
search.
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2. Let f (s) be the number of colours used in a colouring s.
It is difficult to quickly compute f (s′) from f (s) and s′.
Instead, one may apply CB on π ′ to know the number of
colours associated with π ′. In other words, incremental
computation is difficult to implement.

The two above mentioned drawbacks, which occur in the
local search algorithms proposed for the MuRRSP within
the permutation solution space (e.g., Globus et al. 2004;
Barbulescu et al. 2004a) can be easily avoided when dealing
with k-colourings. For example, in the neighborhood struc-
tures proposed in (Hertz and de Werra 1987) and (Bloech-
liger and Zufferey 2008), which are tabu search methods,
only a few number of vertices are involved in a colour
change. Thus, two neighbor solutions have a very close
structure, and incremental computation is easy to develop
when minimizing the number of conflicts or the number of
noncoloured vertices.

In the remaining part of the paper, and as suggested by
Globus et al. in the conclusion of (Globus et al. 2004), we
propose various heuristics working in the schedule solution
space S2, without using any schedule builder procedure.

4 Tabu search for the MuRRSP

In this section, we propose a tabu search heuristic for the
MuRRSP. Tabu search is a well-known local search heuris-
tic which was originally proposed in (Glover 1986) and
in (Hansen 1986). Its crucial component is to prevent the
search to cycle by forbidding the reverse of some moves dur-
ing a certain number of iterations (we also speak about the
duration of the tabu status). Many variants of tabu search can
be found, for example, in (Glover and Laguna 1997).

Remember that, in order to design an efficient heuristic
for the k-GCP, it is useful to deal with k-colourings or partial
legal k-colourings. The most efficient local search and pop-
ulation based methods work in such solution spaces (e.g.,
Hertz and de Werra 1987; Morgenstern 1996; Galinier and
Hao 1999; Galinier et al. 2008; Bloechliger and Zufferey
2008) and not in the permutation solution space. In this sec-
tion, we derive a tabu search TS-MuRRSP for the MuRRSP
from the tabu search TS-GCP colouring method proposed in
(Bloechliger and Zufferey 2008).

In (Morgenstern 1996), the author proposed the following
strategy to tackle the k-GCP. He considers the set of partial

legal k-colourings which are defined as legal k-colourings
of a subset of vertices of G. Such colourings can be rep-
resented by a partition of the vertex set into k + 1 subsets
C1, . . . ,Ck+1, where C1, . . . ,Ck are k disjoint stable sets
(i.e. legal colour classes) and Ck+1 is the set of noncoloured
vertices. In order to solve the k-GCP, the objective can thus
be to minimize the number of vertices in Ck+1 (i.e. the num-
ber of noncoloured vertices). Similarly, in the MuRRSP, the
goal is to minimize the number of non scheduled jobs.

Consider the solution space containing the set of par-
tial legal k-colourings. The associated objective function
is hence to minimize the number of noncoloured vertices.
In TS-GCP (Bloechliger and Zufferey 2008), in order to
generate a neighbor solution s′ = {C′

1, . . . ,C
′
k+1} from s =

{C1, . . . ,Ck+1}, a vertex v is moved from Ck+1 (the set of
noncoloured vertices) to a colour class Ci , then, vertices in
Ci which are in conflict with v are moved to Ck+1 (such
vertices are removed from the partial colouring). Then, all
the moves which will put v back in Ck+1 are tabu for a cer-
tain number of iterations. At each iteration, the best nontabu
move is performed, i.e. the move leading to the smallest re-
sulting size of C′

k+1. Some extensions of the above neighbor
structure were tested in (Bloechliger 2005). For example,
suppose that we would like to move vertex v from Ck+1 to
Ci (with 0 < i < k + 1), and that such a move implies that
one vertex x has to be removed from Ci (because x and v

are adjacent). Instead of immediately putting x in Ck+1, it
seems to be straightforward to try to put x in another color
class Cj (with 0 < i �= j < k+1) if Cj +{x} remains stable.
However, it was showed that such an extension needs more
computational effort without leading to better results.

It is now straightforward to derive TS-MuRRSP from TS-
GCP. In TS-MuRRSP, Ck+1 denotes the set of nonsched-
uled jobs, and the goal is to minimize its size. In order
to generate a neighbor solution s′ = {C′

1, . . . ,C
′
k+1} from

s = {C1, . . . ,Ck+1}, a job j is moved from Ck+1 to an ad-
missible resource Ci , then, jobs in Ci which are in conflict
with j are moved to Ck+1 (such jobs are removed from the
schedule associated with resource i). Then, all the moves
which will put j back in Ck+1 are tabu for a certain number
of iterations. As it is the case for TS-GCP (see the previous
paragraph), we do not try to immediately reschedule the jobs
of Ci which are in conflict with j , and we simply put them
in Ck+1.

At each iteration, for TS-GCP as well as for TS-MuRRSP,
we have the following.

• The selected neighbor solution is chosen among all the
possible neighbor (and nontabu) solutions.

• Incremental computation is easy to develop, i.e. it is easy
to compute the value of a neighbor solution if we know
the current solution and its value.

• The tabu duration t (v) during which it is forbidden
to put vertex v back in Ck+1 is equal to 0.6 · nc +

RANDOM(0;9), where nc is the number of vertices or
jobs in Ck+1 in the current solution, and RANDOM(a;b)

is a function which returns a number randomly generated
in the set {a, a + 1, . . . , b − 1, b}.

However, moving a job j from Ck+1 to Ci (with i ∈

{1, . . . , k} such that i is admissible for j ) is not as easy as
moving a vertex v from Ck+1 to Ci (with i ∈ {1, . . . , k}), be-
cause each job j has to be performed within its time window
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Fig. 2 Three situations which
can occur when generating
neighbor solutions

Tj = [rj ;dj ], and each resource cannot process two jobs at
the same time (if such a situation may occur, there is a con-
flict). Suppose that jobs j1, . . . , jr are already scheduled (in
that order) on resource Ci . In order to schedule job j in Ci

within its time window, three situations may occur.

(A) In the best situation, it is possible to adjust the sched-
ules of jobs j1, . . . , jr within their own time windows
(while keeping the same relative order j1, . . . , jr ) in or-
der to add job j to Ci without creating any conflict.
Such a successful move is represented in part (A) of
Fig. 2.

(B) If it is not possible, we have to remove some nontabu
jobs from Ci . Such a move is represented in part (B)
of Fig. 2, when one job is removed from the current
schedule.

(C) If the only way to schedule the considered job consists
in removing a tabu job from the current schedule, we do
not consider such a move further (i.e. it is an impossible
move, as represented in part (C) of Fig. 2).

Considering situation (B), the main question is now: which
nontabu jobs should be removed? Before answering such a
question, we define the flexibility Fj of a job j as the number
of resources it can be scheduled on, and we define the age

Aj of job j as the number of iterations, since job j has the
same position in the current solution (either a resource Ci

with i ∈ {1, . . . , k} or the set Ck+1). We test every possibility
to insert job j in Ci (while keeping the same relative order
j1, . . . , jr ).

We propose to apply the following rules (by priority or-
der) to remove jobs from Ci when it is not possible to insert
j in Ci without creating any conflict.

1. Remove the smallest number of nontabu jobs.
2. If there are several possibilities, break ties by removing

the set of jobs with the largest average flexibility.
3. If there are still several possibilities, break ties by remov-

ing the set of jobs with the largest average age.
4. If there are still several possibilities, break ties randomly.

The priority of the above rules are easy to understand. The
first rule focuses on the objective function to minimize (the

number of non scheduled jobs). The second rule proposes to
remove jobs which would be easier to schedule on another
resource later. The third rule has a diversification role be-
cause it proposes to remove the jobs which were scheduled
on Ci a long time ago. Several preliminary numerical ex-
periments showed that the above proposed list of rules is the
best combination of such rules, even if the proposed strategy
might cause the search to miss some better solutions.

Note that in order to generate an initial solution in TS-
MuRRSP, we apply SB on a random permutation π of the
n jobs. In addition, we mention that some of the ingredi-
ents of the proposed neighborhood and tabu list structures
were also efficiently and independently used to tackle the
selecting and scheduling satellite photographs problem in
(Habet and Vasquez 2004), where only one resource (i.e. us-
ing k = 1 in our notation) is considered. In (Bianchessi et
al. 2007), the authors considered a satellite scheduling prob-
lem involving two satellites and multiple orbits. Their tabu
search method works in the solution space of nonnecessar-
ily feasible schedules, and constraints violations are penal-
ized. Note that the less time one have to build a schedule, the
less it is appropriate to spend time dealing with nonfeasible
schedules. For this reason, we think that working within S2

(i.e. the set of feasible schedules) is a better option for real-
life problems.

In order to better diversify the search of TS-MuRRSP, we
propose two diversification mechanisms denoted DIV1 and
DIV2. The goal of DIV1 is to renew the set of nonscheduled
jobs by forcing their insertion in the current schedule, and
the goal of DIV2 is to renew the set of scheduled jobs by
removing jobs which are in the current solution for a long
time. After a given number p (parameter) of iterations with-
out improvement of the best solution s∗ encountered so far,
we perform DIV1 or DIV2 (we perform DIV1 if DIV2 was
the previous choice, and vice-versa).

The procedure DIV1 consists in scheduling as many
jobs as possible from Ck+1 of the current solution s =

{C1, . . . ,Ck+1} (jobs are considered in a random order).
More precisely, at each step of DIV1, we randomly select
a job in Ck+1 (each job of Ck+1 can only be selected once
during DIV1) and insert it at the best position in the sched-
ule, even if we need to remove one ore more non tabu jobs
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from the current schedule s to do it (see the situations (A),
(B), and (C) above). Therefore, at the end of DIV1, it might
happen that the resulting set of non scheduled jobs is com-
pletely different from the set Ck+1 of s. Note that anytime
a job is inserted in the schedule during DIV1, then, in TS-
MuRRSP, it is tabu to remove it from the schedule during
tDIV1 (parameter) iterations.

The procedure DIV2 consists in removing the oldest job
from every Ci , for all i ∈ {1, . . . , k}, in order to create ad-
ditional and new room in every Ci . It is then tabu to in-
sert such removed old jobs at their original position dur-
ing tDIV2 iterations. Preliminary experiments showed that
p = 50,000, tDIV1 = tDIV2 = 50 are good values for these
parameters. In addition, outside the context of the two diver-
sification mechanisms, when a job j is inserted in the current
schedule, it is then forbidden to remove it from the schedule
during t = RANDOM(30;50) iterations.

5 Adaptive memory algorithm for the MuRRSP

In this section, we first briefly present the main ingredi-
ents of the adaptive memory algorithm. Second, we describe
the recombination operators of the best evolutionary colour-
ing heuristics. Then we design an adaptive memory algo-
rithm from the evolutionary colouring methods presented in
(Galinier and Hao 1999) and (Galinier et al. 2008).

A recent hybrid evolutionary heuristic is the adaptive

memory algorithm (Rochat and Taillard 1995) that may
store pieces of solutions or complete solutions in a central
memory M. While two parent solutions are combined to
create an offspring in a standard genetic local search, all
pieces of solutions in the central memory can contribute to
the creation of an offspring in an adaptive memory algo-
rithm, which is summarized below.

1. Initialize the central memory M with (pieces of) solu-
tions.

2. Repeat until a stopping criterion is met:
(a) create an offspring solution s by using a recombina-

tion operator;
(b) apply a local search operator on s and let s′ denote

the resulting solution;
(c) use (pieces of) s′ in order to updateM.

The process consisting of creating an offspring solution s,
applying the local search operator on s′, and updating the
central memory with the resulting solution is called a gener-

ation. In order to create an offspring at step 2(a), the recom-
bination operator first chooses pieces of solutions inM.

Consider the k-GCP when minimizing the number of
conflicts in the k-colouring solution space. In the genetic hy-
brid method proposed in (Galinier and Hao 1999), as well as
in the adaptive memory algorithm proposed in (Galinier et

al. 2008), at each generation, an offspring solution s(off) =

{C
(off)
1 , . . . ,C

(off)
k } is build class by class from the popula-

tion of (pieces of) solutions. In (Galinier and Hao 1999), if
colour classes C

(off)
1 , . . . ,C

(off)
i−1 are already built from parent

solutions s1 = {C
(1)
1 , . . . ,C

(1)
k } and s2 = {C

(2)
1 , . . . ,C

(2)
k },

the next colour class C
(off)
i is build as follows. Let A be

the set of already coloured vertices (i.e. the vertices in
C

(off)
1 , . . . ,C

(off)
i−1 ). If i is an odd number, then choose the set

C
(1)
j in s1 that contains a maximum number of noncoloured

vertices and set C
(off)
i = C

(1)
j − A; else choose the set C

(2)
j

in s2 that contains a maximum number of noncoloured ver-
tices and set C

(off)
i = C

(2)
j −A. At the end of such a process,

the remaining noncoloured vertices are randomly coloured.
If we compare the crossover proposed for graph colour-

ing in (Davis 1991) (which is close to the one used in GEN-
ITOR for the MuRRSP, Barbulescu et al. 2004a) with the
two recombination operators proposed for graph colouring
in (Galinier and Hao 1999) and (Galinier et al. 2008), we
can observe that in the two latter ones, the structure of
the graph colouring problem is efficiently exploited (whole
colour classes are transmitted from parent solutions to off-
spring solutions). This is not the case in the crossover pro-
posed in (Davis 1991), which can be considered more as a
diversification mechanism rather than a recombination oper-
ator exploiting the structure of the considered problem.

In order to design an adaptive memory algorithm for the
MuRRSP (named hereafter AMA-MuRRSP), we have to de-
fine: the way to initialize the population P of (pieces of)
solutions, the recombination operator, the intensification (or
local search) operator, and the memory update operator.

We propose to work with partial legal schedules (which
correspond to partial legal k-colouring). In addition, we
choose |P | = 10 as in (Galinier and Hao 1999) and (Galinier
et al. 2008). In order to initialize P , we randomly generate
10 solutions in S2 (by performing SB on 10 random per-
mutations generated in S1) and improve such solutions by
performing TS-MuRRSP during 1000 iterations.

Our recombination operator is very similar to the one pro-
posed in (Galinier and Hao 1999) described above. A dif-
ference holds in the fact that more than two solutions may
contribute to build and offspring solution. Note that the
idea of not fixing the number of parents of the recombi-
nation operator was very efficiently experimented in (Zuf-
ferey 2002) for the k-colouring problem. This will be con-
firmed for the MuRRSP in Sect. 6. At each generation,
an offspring solution s(off) = {C

(off)
1 , . . . ,C

(off)
k } is build set

by set from P . Suppose that sets C
(off)
1 , . . . ,C

(off)
i−1 are al-

ready built from parent solutions, and that parent solution
sr ′ (with r ′ in {1, . . . ,10}) provided the set C

(off)
i−1 . In addi-

tion, let A be the set of already scheduled jobs (i.e. the jobs
in C

(off)
1 , . . . ,C

(off)
i−1 ). At that moment, we randomly choose

the next non considered resource i to deal with. Then, the
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Fig. 3 Recombination operator
for the MuRRSP

set C
(off)
i is provided by the solution sr = {C

(r)
1 , . . . ,C

(r)
k+1}

in P (with r �= r ′, i.e. the same solution of P can not con-
secutively provide two sets of the offspring solution) which
contains the maximum number of nonscheduled jobs (we
break ties randomly). Thus we set C

(off)
i = C

(r)
i − A. At

the end of such a process, we try to successively sched-
ule each nonscheduled job (considered in a random order)
in a feasible resource without removing other jobs (ties are
broken randomly). Therefore, in contrast with Syswerda’s
crossover used in GENITOR (Barbulescu et al. 2004a), our
recombination operator exploits much of the structure of
the MuRRSP. Our recombination operator is illustrated in
Fig. 3 with 8 jobs j1, . . . , j8 and k = 3. For sake of sim-
plicity, we do not represent the time windows and the du-
rations, and we assume that the central memory consists
in three solutions denoted s1, s2, and s3, and that every
job can be scheduled on every resource. C

(r)
i is the or-

dered set of scheduled jobs in solution sr on the ith re-
source. For example, jobs j1, j3, and j4 are scheduled (in
that order) on resource C1 in solution s2. In order to build
the offspring solution s(off) = ({C

(off)
1 ,C

(off)
2 ,C

(off)
3 )} from

s1, s2, and s3, we proceed as follows. First, we can either
set C

(off)
1 = C

(2)
1 or C

(off)
3 = C

(3)
3 or C

(off)
3 = C

(1)
3 . Assume

we randomly choose C
(off)
1 = C

(2)
1 = (j1, j3, j4) (this step 1

is drawn in bold face in the second column of Fig. 3).
Now, solution s2 cannot be considered for step 2. Then,
we can either set C

(off)
2 = C

(3)
2 or C

(off)
3 = C

(3)
3 − {j1} (but

not C
(off)
3 = C

(1)
3 − {j3, j4}). Assume we randomly choose

C
(off)
3 = C

(3)
3 − {j1} = (j5, j7) (this step 2 is drawn in bold

face in the fourth column of Fig. 3). Now, solutions s1 and s2

can be considered for step 3. Then, we can either set C
(off)
2 =

C
(1)
2 or C

(off)
2 = C

(2)
2 − {j7}. Assume we randomly choose

C
(off)
2 = C

(1)
2 = (j8) (this step 3 is drawn in bold face in

the third column of Fig. 3). Therefore, the resulting tempo-
rary offspring solution is {(j1, j3, j4), (j8), (j1, j5, j7)} (see
the line labeled “temporary offspring solution” in Fig. 3).
Finally, it may be possible to schedule j6 before j8 on re-
source C2, which leads to the resulting offspring solution
{(j1, j3, j4), (j6, j8), (j1, j5, j7)}.

Of course, different recombination operators could be de-
veloped and tested for the MuRRSP. We, however, decided

to only focus on the one that we derived from the best re-
combination operator for the k-GCP proposed in (Galinier
and Hao 1999).

The intensification operator is simply TS-MuRRSP de-
scribed in the previous section. As we would like to per-
form a significant number of generations in our adaptive
memory algorithm, at each generation, we have to perform
TS-MuRRSP for a short time. Such a strategy will balance
the roles associated with the recombination operator and
the intensification operator (tabu search). Let I (parame-
ter) be the number of iterations performed by TS-MuRRSP
at each generation of AMA-MuRRSP. Preliminary exper-
iments showed that I = 100,000 is a reasonable choice,
which corresponds to a few seconds of CPU time on the
computer used for the experiments and described in the next
section.

Finally, let s be the solution provided by TS-MuRRSP at
each generation, let sworst be the worst solution of P , and
let sold be the oldest solution of P . We propose to update P

with s as follows. If s is better or equal to sworst, we replace
sworst with s in P and update sworst. Otherwise, we replace
sold with s in P and update sold. In the latter case, even if s

is not able to improve the average quality of P , it is at least
able to bring “new blood” in P .

We have now all the ingredients to build AMA-MuRRSP.
At the beginning, we initialize the population P with 10
random solutions improved by TS-MuRRSP during 1000
iterations. Then, as long as a time condition is not met,
we perform a generation. At each generation, we first ap-
ply the recombination operator to build an offspring solu-
tion (resource by resource), which is then improved by TS-
MuRRSP during I = 100,000 iterations. The resulting so-
lution is finally used to replace the worst (in this case, the
average quality of P is improved) or the oldest (in this case,
new blood is provided to P ) solution of P .

The stopping conditions of TS-MuRRSP and AMA-
MuRRSP will be discussed in the next section.

6 Results

In this section, we give details on the considered instances
and then compare three heuristics on these instances: TS-
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Table 1 Comparison of GENITOR, TS-MuRRSP and AMA-MuRRSP on the instances E (time limit = 5 minutes)

GENITOR TS-MuRRSP AMA-MuRRSP

Instances Mean Min Mean Min Mean Min

1 2.5 2 2 2 2 2

2 2 2 2 2 2 2

3 5.5 5 5 5 5 5

4 7 6 6 6 6 6

5 5.5 5 5 5 5 5

6 7.75 7 7 7 7 7

7 1 1 1 1 1 1

8 3 3 3 3 3 3

9 2 2 2 2 2 2

10 3 3 3 3 3 3

MEAN 3.93 3.6 3.6 3.6 3.6 3.6

MuRRSP, AMA-MuRRSP, and GENITOR. We choose to
compare our two heuristics with GENITOR because the lat-
ter usually provides the best solutions for the MuRRSP in
the permutation solution space (Barbulescu et al. 2004a). We
end the section with a discussion on the number of parents
involved in the recombination operator of AMA-MuRRSP.

6.1 Description of the performed experiments

We perform experiments on instances of size 500 (i.e. n =

500), because it corresponds to the most difficult prob-
lems encountered in practice. Each instance is built by
a well-known generator which can be provided by the
Colorado State University (see http://www.cs.colostate.edu/
sched/people.html). The generator is well described and
used in (Barbulescu et al. 2004a). It produces instances of
the MuRRSP by modeling realistic features. Different types
of jobs are represented, such as downloading data from
a satellite, transmitting information or commands from a
ground station to a satellite, and checking the health and
status of a satellite. In addition, the generator takes into ac-
count some customer behaviors. The duration and window
size for each job are determined using the parameters as-
sociated with the job type. For each job, one or several re-
source(s) is (are) specified.

Using the provided generator, we generated two types of
instances: type E, which stands for “Easy”, and type D,
which stands for “Difficult”. The type E contains 10 in-
stances with k = 16 resources (such instances are exactly
of the same type as the ones considered in Barbulescu et
al. 2004a), and the type D contains the same 10 instances
but with only k = 9 resources, and 10 other instances with
k = 9. Because of the different numbers of available re-
sources, it is now straightforward to understand why in-
stances of type E are easier than the ones of type D. Note

that all the considered instances can be provided by the cor-
responding author of this paper upon request.

On each instance, we performed 30 runs, and we consider
three stopping time conditions for every method, which are
5, 15, and 30 minutes on a 2 GHz Pentium 4 with 512 MB

of RAM. Such stopping conditions are consistent with the
ones used in (Barbulescu et al. 2004a), and are appropriate
in a practical standpoint. Considering larger CPU times is
usually too much in practice, where people usually try to
find schedules as quickly as possible.

6.2 Comparison of the considered heuristics

With a time limit of 5 minutes, we compare GENITOR, TS-
MuRRSP, and AMA-MuRRSP on the instances E (the eas-
ier ones) in Table 1. For each method and each instance, we
give the average (see label “Mean”) and the minimum (see
label “Min”) numbers of bumped jobs (over 10 runs). In ad-
dition, we also give the average number of bumped jobs over
the 10 instances (see the line labeled “MEAN”). Note that
in every table of the paper, the numbers are always rounded.
We can observe that the considered methods are comparable,
as only a few number of jobs are bumped. However, GENI-
TOR seems to be slightly less robust than TS-MuRRSP and
AMA-MuRRSP, because not every run leads to the same so-
lution (namely, on instances 1, 3, 4, 5, and 6). We would like
to mention that extending the time limit to 30 minutes does
not affect the results.

We consider now the instances of type D (the difficult
ones) with three time limits (5, 15, and 30 minutes). The in-
stances 1 to 10 are the same as the ones of type E but with
k = 9, and the instances 11 to 20 are other instances with
k = 9. In Tables 2, 3, and 4, we respectively give the results
obtained by GENITOR, TS-MuRRSP, and AMA-MuRRSP.

http://www.cs.colostate.edu/sched/people.html
http://www.cs.colostate.edu/sched/people.html
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Table 2 Results obtained with GENITOR on the instances D

5 min 15 min 30 min

Inst. Min Mean Max Min Mean Max Min Mean Max

1 112 115.75 121 112 115.75 121 112 115.75 121

2 96 102 111 96 101.5 110 96 101.5 110

3 122 125.75 132 122 125.75 132 122 125.75 132

4 111 117.25 123 111 117 122 111 117 122

5 111 113.75 116 111 113.75 116 111 113.75 116

6 114 121 130 114 121 130 114 121 130

7 113 120.5 126 113 120.5 126 113 120.5 126

8 100 103.5 106 100 103.5 106 100 103.5 106

9 96 97 99 96 97 99 96 97 99

10 101 104.25 110 101 104 109 100 103.5 109

11 99 106.25 111 99 106 111 99 106 111

12 104 106.25 109 104 106.25 109 104 106.25 109

13 104 111 114 104 111 114 104 110.75 114

14 102 112.25 118 102 112 117 101 111.75 117

15 101 108.75 116 101 108.75 116 101 108.75 116

16 111 120.25 133 111 119.75 131 109 119.25 131

17 105 107.75 112 105 107.25 112 105 107.25 112

18 106 112.25 115 106 112.25 115 106 112.25 115

19 95 101 107 95 100.25 107 95 100.25 107

20 93 96.75 100 93 96.75 100 93 96.5 100

MEAN 104.8 110.16 115.45 104.8 110 115.15 104.6 109.91 115.15

Table 3 Results obtained with TS-MuRRSP on the instances D

5 min 15 min 30 min

Inst. Min Mean Max Min Mean Max Min Mean Max

1 56 56.75 57 55 55.75 57 55 55.25 56

2 54 54 54 54 54 54 54 54 54

3 66 66.5 67 65 65.75 66 65 65 65

4 49 50 51 49 49.5 50 49 49.25 50

5 52 52.75 54 51 52.25 53 51 51.75 52

6 59 59.75 60 59 59 59 59 59 59

7 54 55 56 52 53.25 55 52 53 54

8 49 49.5 50 49 49.5 50 48 49 50

9 38 38.75 39 38 38.25 39 38 38 38

10 51 51.5 52 50 50.75 51 50 50.5 51

11 52 52 52 51 51.75 52 51 51.5 52

12 47 47.5 48 46 46.5 47 45 45.5 46

13 57 58.5 60 56 56.75 57 55 56 57

14 58 59.75 62 56 58 60 56 57.5 59

15 43 43.75 44 42 42.5 43 42 42.5 43

16 58 58.5 59 57 58 59 56 57.25 58

17 49 50.25 52 49 50.25 52 49 50 52

18 53 54.5 55 53 53.25 54 52 52.75 53

19 47 48 49 47 47.5 48 47 47.25 48

20 41 41.25 42 41 41 41 41 41 41

MEAN 51.65 52.43 53.15 51 51.68 52.35 50.75 51.3 51.9

GEN-TS 53.15 57.73 62.3 53.8 58.32 62.8 53.85 58.61 63.25
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Table 4 Results obtained with AMA-MuRRSP on the instances D

5 min 15 min 30 min

Inst. Min Mean Max Min Mean Max Min Mean Max

1 56 56.5 57 55 55.5 56 54 54.75 55

2 54 54 54 54 54 54 54 54 54

3 66 66.25 67 63 63.5 64 63 63.25 64

4 51 51 51 50 50.25 51 49 49.25 50

5 52 52.25 53 51 51.75 52 51 51.75 52

6 59 59.25 60 58 58.75 59 57 57.75 59

7 53 53.5 54 52 52.5 53 51 52 53

8 49 49.5 50 48 48.75 49 48 48.5 49

9 38 38.75 39 38 38.5 39 38 38.5 39

10 52 52 52 51 51.5 52 51 51 51

11 52 52.5 53 52 52 52 52 52 52

12 47 47.5 48 46 46.75 48 46 46 46

13 56 57.75 59 56 56.75 58 55 55.75 56

14 59 59 60 57 57.5 58 56 56.75 57

15 43 43.5 44 42 42.75 43 42 42.5 43

16 58 59 60 58 58.25 59 56 57.75 59

17 50 50.5 51 50 50.5 51 49 50 51

18 54 55.5 56 52 52.5 53 52 52.5 53

19 47 48.5 49 47 47 47 46 46.75 47

20 41 41.5 42 41 41 41 41 41 41

MEAN 51.85 52.41 52.95 51.05 51.5 51.95 50.55 51.09 51.55

TS-AMA −0.2 0.02 0.2 −0.05 0.18 0.4 0.2 0.21 0.35

Such Tables have a structure which is very close to the struc-
ture of Table 1. In Table 3, the line labeled “GEN-TS” indi-
cates the average difference of bumped jobs between GEN-
ITOR and TS-MuRRSP. For example, 53.15 (the first num-
ber of the last line of Table 3) is the difference between
104.8 (the first number of line labeled “MEAN” of Table 2)
and 51.65 (the first number of line labeled “MEAN” of Ta-
ble 3). Similarly, in Table 4, the line labeled “TS-AMA” in-
dicates the average difference of bumped jobs between TS-
MuRRSP and AMA-MuRRSP.

Considering Tables 2, 3, and 4, the following comments
can be made.

• TS-MuRRSP is much better than GENITOR, as it is able
to schedule about 58 more jobs (approximate average
value of the line labeled “GEN-TS”).

• AMA-MuRRSP is slightly better than TS-MuRRSP, be-
cause the former method is able to schedule, on aver-
age, more jobs than the latter one (see line labeled “TS-
AMA”). More precisely, we can observe that the more
time is allowed, the better is AMA-MuRRSP. AMA-
MuRRSP is able to schedule 0.02 more jobs than TS-
MuRRSP if 5 minutes are allowed, 0.18 more jobs if 15
minutes are allowed, and 0.21 more jobs if 30 minutes are
allowed.

• If we consider the time limits of 5 and 30 minutes: GEN-
ITOR is able to schedule in average 110.16 − 109.91 =

0.25 additional jobs, TS-MuRRSP is able to schedule in
average 52.43 − 51.3 = 1.13 additional jobs, and AMA-
MuRRSP is able to schedule in average 52.41 − 51.09 =

1.32 additional jobs. Hence, as time goes by, our two pro-
posed methods seems to have more capability to improve
their solutions.

• If, for each method, we consider the difference between
columns “Mean”, “Max”, and “Min”, we can see that the
larger differences are obviously associated with GENI-
TOR, which indicates that GENITOR is less robust than
the two other methods. Notice also that AMA-MuRRSP
seems to be slightly more robust than TS-MuRRSP.

In Fig. 4, based on Tables 2, 3, and 4, we compare the
results of GENITOR, TS-MuRRSP, and AMA-MuRRSP
when considering a time limit of 5 minutes. For each method
and each difficult instance, we indicate the value of the
best (see label “Min”) and worst (see label “Max”) solu-
tions, as well as the average value over 30 runs (see la-
bel “Mean”). We can again observe that TS-MuRRSP and
AMA-MuRRSP have similar behaviors and clearly outper-
form GENITOR according to the objective function and the
robustness.
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Fig. 4 Number of bumped jobs with a time limit of 5 minutes

Table 5 Average results of each method depending on the time

Time (in minutes) GENITOR TS-MuRRSP AMA-MuRRSP

5 110.16 52.43 52.41

10 110.03 51.89 51.85

15 110 51.68 51.5

20 109.98 51.45 51.34

25 109.95 51.36 51.16

30 109.91 51.3 51.09

In Table 5, we compare the average number of bumped
jobs of GENITOR, TS-MuRRSP, and AMA-MuRRSP. Each
value is an average over the 20 instances of type D (and
30 runs on each instance). As already mentioned above, the
more time is allowed to tackle an instance, the larger is the
gap between AMA-MuRRSP and the other heuristics. In ad-
dition, in order to have a better estimate on the lower bounds,
we also ran AMA-MuRRSP with a larger time limit (120
minutes). We can mention that it was only able to sched-
ule one more job on 8 instances (namely, instances 3, 5, 8,
10, 11, 12, 15, and 18). This confirms that a time limit of
30 minutes is relevant for our methods.

The improvement capabilities of the three considered
methods presented in Fig. 5 are estimated from the results
of Tables 2, 3, and 4. The number of placed request after 15
and 30 minutes are compared with those after 5 minutes (see
label “Min” for the best solutions, label “Mean” for the av-
erage values, and label “Max” for the worst solutions). The
number of additional placed requests are afterwards aver-
aged over the 20 difficult instances. For example, the worst
value of AMA-MuRRSP is improved by approximately one
unit from minute 5 to minute 15.

Before concluding the paper, we would like to put for-
ward that the idea of not fixing the number of parents in
the recombination operator of AMA-MuRRSP is important,
as it was showed for the k-colouring problem in (Zufferey

Fig. 5 Improvements of the results from minute 5 to minute 30

2002). Let q be the number of parents that are involved in the
construction of the offspring solution. For example, q = 2
means that two parents are alternately involved in the build-
ing of the offspring solution. In Table 6, considering a time
limit of 30 minutes, we compare the used version of AMA-
MuRRSP where the number of parents is not fixed (sec-
ond column) with different versions of AMA-MuRRSP with
q ∈ {2,3,4,5} (four last columns). As usual, we performed
30 runs on each of the 20 instances of type D. For AMA-
MuRRSP (where q is not fixed), we indicate in column 2
the best number of bumped jobs. If the number of parents
if fixed to 2 (third column), we indicate the number of ad-
ditional bumped jobs that appears in the best found solution
of that version of the method. For example, on instance 3,
AMA-MuRRSP is able to schedule 63 jobs if the number of
parents is not fixed, but 65 jobs if q = 2; thus, 2 additional
jobs are not scheduled in the latter case (which is indicated
in column 3). We can observe that it is always better to leave
the number of parents unfixed, because it leads to equivalent
or better results on 18 instances (the results are worse only
on instances 10 and 11). In the last line of Table 6, we indi-
cate the average number of bumped jobs in the best solutions
found by each method.

7 Conclusion and future works

In this paper, we propose a tabu search heuristic and an
adaptive memory algorithm for the MuRRSP. Both heuris-
tics work in the solution space S2 which contains all the fea-
sible schedules. On the contrary, other methods (e.g., Bar-
bulescu et al. 2004a; Globus et al. 2004) work in the per-
mutation solution space S1. We discuss the main advantages
and drawbacks of S1 and show that S2 is a promising so-
lution space, mainly because two neighbor solutions have
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Table 6 Results of AMA-MuRRSP depending on the number q of parents

Instance q not fixed q = 2 q = 3 q = 4 q = 5

1 54 1 2 3 1

2 54 0 0 0 0

3 63 2 1 2 1

4 49 1 1 1 1

5 51 0 0 1 0

6 57 1 0 1 1

7 51 1 1 2 1

8 48 1 1 1 1

9 38 0 0 0 1

10 51 −1 0 −1 0

11 52 −1 −1 0 −2

12 46 0 1 0 0

13 55 1 2 2 1

14 56 1 0 0 2

15 42 0 1 0 0

16 56 1 2 1 1

17 49 2 0 2 2

18 52 0 1 1 2

19 46 2 2 1 1

20 41 0 0 0 0

MEAN 50.55 51.15 51.25 51.4 51.25

close structures and incremental computation is possible.
These two elements allow a quick and well controlled tra-
jectory in the search space S2. This analysis was confirmed
by our experiments, which showed that the proposed heuris-
tics working in S2 for the MuRRSP are much more efficient
and robust than GENITOR, which is considered as one of
the best heuristic working in S1 (Barbulescu et al. 2004a).

Even if the gap between GENITOR and our heuris-
tics is very significant, other techniques could be added to
TS-MuRRSP and AMA-MuRRSP. On the one hand, TS-
MuRRSP might be improved with the use of: a long-term
frequency memory, a compound neighborhood structure
(e.g., ejection chain), and strategic oscillations. On the other
hand, AMA-MuRRSP might be improved with the use of
more flexible recombination operators and advanced diver-
sification mechanisms. The goal of this paper is, however,
reached as we proposed bridges between the graph colour-
ing community and the satellite range scheduling commu-
nity by: (1) adapting the best ingredients from the graph
colouring techniques to the MuRRSP, and (2) showing the
great potential of these ingredients. We would like to men-
tion that some advanced techniques are not appropriate in
situations when only a small amount of CPU time is allowed
to the user.

Among the future works that can be done in the context
of our paper, a research avenue consists to use other evalu-

ation functions. For example, one can minimize the sum of
overlap in the schedule while scheduling the entire list of
jobs, as proposed in (Barbulescu et al. 2006). One may also
take the priorities of the jobs into account, as mentioned in
(Globus et al. 2004). Another research avenue is to consider
precedence constraints between jobs. In this area, there also
exists efficient graph colouring heuristics to colour mixed
graphs (in a mixed graph, some edges are oriented, and the
additional constraint for each oriented edge x → y is to give
a strictly smaller colour to x than to y) (Meuwly et al. 2007).
Such heuristics may be efficiently adapted within the context
of satellite range scheduling problems.

Finally, one may try to propose a general heuristic based
on the joint use of the two studied solution spaces S1 and S2.
For example, the use of a Variable Space Search (VSS, for
short) can be appropriate, and such a method was already
efficiently applied to the GCP (Hertz et al. 2007). VSS is an
extension of the well known Variable Neighborhood Search

(VNS, for short) (Mladenović and Hansen 1997) and of the
Reformulation Descent (Mladenović et al. 2005).
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