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Abstract— Using the tool of graph comparison from spectral
graph theory, we propose new methodologies to guarantee
complete synchronization in complex networks. The main idea
is to utilize flexibly topological features of a given network so
that the eigenvalues of the Laplacian matrix associated with the
network can be estimated. The proposed methodologies enable
the construction of different coupling-strength combinations
in response to different knowledge about sub-networks. The
obtained bounds of the network graphs’ eigenvalues can be
further used to study the robust synchronization problem in
face of link failures in networks. Examples are utilized to
demonstrate how to apply the methodologies to networks.

I. INTRODUCTION

In the past few decades, synchronization phenomena in
various complex networks have attracted much attention
[11], [18], [17], [10]. A general approach, called the master
stability function method, has been developed in [11] to
study the local synchronization problem for linearly coupled
chaotic systems. A systematic framework for the study
of synchronization of nonlinear dynamical systems with
diffusive couplings has been developed in [17]. One key
assumption made in quite a number of global synchronization
results is that in the network, the synchronized behavior of
any two systems is always possible to take place provided
that the coupling between the two is sufficiently strong
[17]. For networks whose links between nodes may fail to
function during the evolution of the networks, researchers
have also looked into the robust synchronization problem,
for which some robustness metrics have been defined that
are functions of all the eigenvalues of the Laplacian matrices
of the networks under study [20], [1].

Recently a new general method to study the global syn-
chronization has been proposed in [2], which uses extensive-
ly the topological information of the graph that describes the
couplings between the systems in a network. A key step is to
construct a bound on the total length of all the paths passing
through a chosen edge in the graph. This bound can then
be exploited to allocate coupling strengths to all the edges
in order to achieve global synchronization in the network.
As their conditions for network synchronization have been
obtained mainly though graph theoretic deduction, we pursue
in this paper further along the same line by using recently
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reported tools in graph theory, especially the idea of graph
comparison from spectral graph theory [14].

In [5], [6], [7], it has been shown that graph embedding
is useful in bounding the second smallest eigenvalues of
Laplacian matrices. To be more specific, the bounds are
obtained by embedding complete graphs into the graph under
study. Similar ideas for graph comparison have been reported
in [12], [14], where the comparison of combinatorial features
can be carried out between two arbitrary graphs with the
same vertex set for the purpose of bounding any eigenvalues
of Laplacian matrices of the graphs. In this paper, we follow
the approach delineated in [12], [14] to study conditions
based on graphs for the synchronization in complex net-
works. By doing so, we prove that the synchronization
condition given in [2] for allocating coupling strengths can be
explained by comparing the network graph with the complete
graph with the same number of vertices. We then look
further into the whole spectrums of all the eigenvalues of
the networks’ Laplacian matrices and thus try to gain new
insight into the robust synchronization problem. So the main
contribution of the paper lies in a set of new methodologies
using graph comparison to study different synchronization
problems in complex networks.

The rest of the paper is organized as follows. In Section
II, we review some relevant results in the literature on
synchronization. Such results are interpreted using concepts
from spectral graph theory in Section III. We then in Section
IV look into the robust synchronization problem of networks.

II. REVIEW OF A SUFFICIENT CONDITION FOR COMPLETE
SYNCHRONIZATION

We consider a network of n > 1 coupled identical
oscillators whose dynamics are described by

ẋi = f(xi) +

n∑
j=1

εij P xj , i = 1, . . . , n , (1)

where xi ∈ IRd is the state of the ith oscillator, f(·) : IRd →
IRd denotes the identical self-dynamics of each oscillator
and is a C1 function, εij ≥ 0 describes the strength of the
coupling from oscillator j to i, and the diagonal (0, 1)-matrix
P ∈ IRd×d determines through which components of the
states that the oscillators are coupled together. The couplings
between the oscillators can be conveniently described by a
graph G with n vertices in which there is an edge from vertex
j to i if εij > 0. We assume in this paper that the couplings
between oscillators are symmetric, namely εij = εji for all
1 ≤ i, j ≤ n. We use E(G) to denote the set of all the edges
of G and assume that there are altogether m edges.
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System (1) has been used widely to study under what
conditions the coupled oscillators can achieve asymptotically
global and complete synchronization, where for any initial
condition, ||xi(t) − xj(t)|| → 0 as t → ∞ for all i, j [17].
And the synchronization manifold is defined as the linear
subspace {x : xi = xj ,∀i, j}. Now we review some useful
such conditions. Towards this end, we make one standard
technical assumption about system (1).

Assumption 1: For any xi 6= xj and sufficiently large
positive constant a, it holds that

(xj − xi)T
[∫ 1

0

Df(βxj + (1− β)xi) dβ − aP
]

(xj − xi)

< 0 ,

where Df denotes the d× d Jacobian matrix of f .
Assumption 1 implies that any two coupled oscillators are
always able to synchronize when their coupling is sufficiently
strong. Here the constant a is determined by both the
function f and the projection matrix P .

With this assumption at hand, we can then present some
sufficient conditions for synchronization using features of
graph G. Consider a set of paths P = {Pij |i, j =
1, . . . , n, i 6= j}, one for each pair of distinct vertices i and
j. We denote the length of the path Pij by |Pij |, which is
the number of edges in Pij . One of the main results in [2]
is as follows.

Theorem 1: [2] Under Assumption 1, the synchronization
manifold of system (1) is globally asymptotically stable if∑

(i,j)∈E(G)

εij(xik − xjk)2 >
a

n

n−1∑
i=1

n∑
j>i

(xik − xjk)2

for 1 ≤ k ≤ d. Here xik is the kth component of xi.
If we label the edges of G by 1, . . . ,m, then the lower

bounds on the coupling strengths of all the edges can be
constructed to guarantee that the inequalities in Theorem 1
hold.

Theorem 2: [2] Under the assumptions in Theorem 1, the
synchronization manifold of system (1) is globally asymp-
totically stable if

εk >
bk
n
a, for k = 1, . . . ,m,

where bk =
∑

j>i;k∈Pij
|Pij | is the sum of the lengths of

all those paths Pij in P that contain the edge k.
Theorem 2 presents a synchronization condition for allo-

cating coupling strengths that can be checked using com-
binatorial features of G, which is appealing as this greatly
simplifies computations. This motivates us to further study
this condition by introducing more advanced tools in spectral
graph theory.

III. GRAPHICAL SYNCHRONIZATION CRITERIA AND
GRAPH COMPARISON

In this section, we first explore several graphical synchro-
nization criteria using tools in spectral graph theory, and
then rephrase the results reviewed in the previous section.
Towards this end, we introduce some notations and discuss

some algebraic properties of graphs. For a symmetric matrix
A, by A � 0 we mean that A is positive definite. And we
say A � B if A−B � 0. Similarly, we say A � B if A−B
is positive semi-definite. We extend this notation for graphs
as follows.

Definition 1: For two undirected graphs G and H with the
same vertex set V = {1, . . . , n}, we say

G � H

if their Laplacian matrices [4] satisfy LG � LH.
For a graph G with vertex set V , we use λk, 1 ≤ k ≤ n,

to denote the kth smallest eigenvalue of LG. For graphs G
and H with the same vertex set, we consider some multiple
cG of graph G. Using Courant-Fischer Theorem [14], one
can easily prove the following result.

Lemma 1: If G and H are the graphs with the same vertex
set V satisfying cG � H, then cλk(G) ≥ λk(H) for all
1 ≤ k ≤ n.

In the following, we give a general synchronization crite-
rion under Assumption 1.

Theorem 3: Under Assumption 1, the synchronization
manifold of system (1) is globally asymptotically stable if
there exists a connected undirected graph G0 with the same
vertex set of G such that

LG0 LG � aLG0 . (2)
Proof: Define x ,

[
xT1 , . . . , x

T
n

]T ∈ IRnd and F (x) ,[
fT (x1), . . . , fT (xn)

]T
. Then system (1) can be written in

the compact form

ẋ = F (x)− (LG ⊗ P )x , (3)

where ⊗ denotes the Kronecker product [3]. We first prove
that it always holds that xT (LG0 ⊗ Id)F (x) ≤ axT (LG0 ⊗
P )x.

Let the matrix B0 ∈ IRn×m0 denote the incidence matrix
of graph G0, and it is well known that B0B

T
0 = LG0

[4].
We label the m0 edges of graph G0 by ei = (hi, ti), i =
1, . . . ,m0, where according to the edge orientations defined
by B0, we call hi, ti the head and the tail of ei respectively.
Let x̄ denote the vector of pair-wise differences of the states

of neighboring oscillators, namely x̄ ,
[
x̄Te1 , . . . , x̄

T
em0

]T
,

where x̄ei = xhi − xti for i = 1, . . . ,m0. Then it is easy to
check that x̄ = (BT

0 ⊗ Id)x. From the inequality (13) in the
Appendix, we have

xT (LG0 ⊗ Id)F (x)

=

(
(BT

0 ⊗ Id)x

)T (
(BT

0 ⊗ Id)F (x)

)
≤
(

(BT
0 ⊗ In)x

)T

(Im ⊗ aP )

(
(BT

0 ⊗ Id)x

)
= axT (B0B

T
0 ⊗ P )x

= axT (LG0
⊗ P )x .

(4)

We now construct the candidate Lyapunov function for
system (3)

V =
1

2
xT (LG0 ⊗ Id)x ,
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Then its derivative along the trajectory of system (3) is

dV

dt
= xT (LG0

⊗ Id)

(
F (x)− (LG ⊗ P )x

)
= xT (LG0

⊗ Id)F (x)− xT (LG0
LG ⊗ P )x

≤ axT (LG0 ⊗ P )x− xT (LG0 LG ⊗ P )x

= xT
(

(aLG0
− LG0

LG)⊗ P
)
x .

(5)

Since LG0
LG � aLG0

, one has dV
dt ≤ 0. Since dV

dt = 0 if
and only if xi = xj for all i, j = {1, . . . , n}, we know that
the solutions of system (1) asymptotically converge to the
synchronization manifold {x : xi = xj ,∀i, j}. �

Theorem 3 gives a synchronization condition based on
graph comparison. One natural idea is then to compare
the system graph G with the complete graph [4]. Let Kn

denote the unweighted, undirected complete graph with n
vertices. If we take the graph G0 to be Kn, then one has
that the synchronization manifold of system (1) is glob-
ally asymptotically stable if LKn

LG � aLKn
. Note that

LKn = n In − J where J is the n-by-n all-one matrix.
So we know LKn LG = (nIn − J)LG = nLG � aLKn .
Thus, the synchronization manifold of system (1) is globally
asymptotically stable if LG � a

n LKn
. We summarize the

analysis in the following theorem.
Theorem 4: Under Assumption 1, the synchronization

manifold of system (1) is globally asymptotically stable if

G � a

n
Kn. (6)

In fact, Theorem 4 and Theorem 1 are one and the
same. On one hand, from

∑
(i,j)∈E(G) εij(xi − xj)

2 >
a
n

∑n−1
i=1

∑n
j>i (xi − xj)2, we have xT LGx >

a
n x

TLKn
x

for all x = (x1, x2, . . . , xn)T ∈ IRn. Then it must be true
that xT (LG − a

n LKn
)x > 0 for all x ∈ IRn. It follows that

G � a
n Kn, namely Theorem 1 implies Theorem 4. On the

other, one can easily check that the above argument also
holds in the reverse direction.

The implication of Theorem 4 is profound. For any cou-
pled oscillators whose couplings are described by a weighted
undirected graph G, one can always examine whether G �
a
n Kn holds by comparing G to the complete graph with
identical edge weight a

n . Now we show that the inequality
in Theorem 4 can be stated differently.

Theorem 5: It holds that

G � a

n
Kn ⇔ λ2(G) > a .

Proof: “⇒”: From G � a
n Kn and Lemma 1, we know

λ2(G) > a
n λ2(Kn). Since λ2(Kn) = n, it then must be

true that λ2(G) > a.
“⇐”: Since the all-one vector 1 = [1, . . . , 1]T is in the kernel
of LG and LKn . To prove G � a

n Kn, it is equivalent to prove
that xT (LG− a

n LKn
)x > 0 for any x ∈ IRn which is not in

the kernel of LG and LKn
. Furthermore, one can easily see

that it suffices to prove that xT (LG − a
n LKn

)x > 0 for all
the vector x ∈ IRn orthogonal to 1.
For any vector x orthogonal to 1, from Courant-Fischer

theorem [14], one has

λ2(G) ≤ min
x⊥1

xTGx
xTx

.

Thus one has

λ2(G)xTx ≤ xT LGx , ∀x ⊥ 1 .

Since λ2(G) > a, we know xT LGx > axTx for all x ⊥ 1.
Using the fact that LKn

= nIn − J , we have

xT (nLG − aLKn
)x = xT (nLG − a(nIn − J))x

= nxT LGx− naxTx+ axT Jx

≥ n(xTLGx− axTx) > 0,

which implies that nG − aKn � 0 for all x ⊥ 1, namely
G � a

n Kn. �
Remark 1: In Theorem 3 in [16], a lower bound for

λ2(G(t)) has been given to guarantee the synchronization
of coupled dynamical oscillators under certain assumptions.
In Theorem 5, we have shown the equivalence between graph
comparisons and bounding from below the second smallest
eigenvalues of the Laplacian matrices of graphs.

Remark 2: The constant a is determined by the oscilla-
tors’ self-dynamics and the projection matrix P . Hence, if
the oscillators’ self-dynamics and the projection matrix P
are given beforehand, the synchronizability [16], [17] of a
coupled dynamical network can be measured by λ2(G).

To apply more tools from spectral graph theory, we
need to introduce another equivalent definition of Laplacian
matrices of graphs. Following [12], we define the elementary
Laplacian L(u,v) to be the Laplacian of the graph with the
vertex set V and only one edge between vertices u and
v. Then for an arbitrary graph G with the edge set E , its
Laplacian matrix can be defined to be

L(G)
∆
=

∑
(u,v)∈E

L(u,v).

Two inequalities have been proved in [12] and we list them
below.

Lemma 2: [12] Let c1, . . . , cn−1 > 0. Then for graph G
with vertex set E , one has

c

(
n−1∑
i=1

ci L(i,i+1)

)
� L(1,n),

where c =
∑

i
1
ci

.
If we take c1 = c2 = . . . = cn−1 = 1, then Lemma 2

becomes the following result.
Lemma 3: [12] For graph G with vertex set E , it holds

that

(n− 1)

(
n−1∑
i=1

L(i,i+1)

)
� L(1,n).

Theorem 4 can be further used to give graphical conditions
for the synchronization of system (1). Theorem 2 can be
rephrased using very intuitive graphical ideas. By doing so,
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one can easily derive the result of Theorem 2.
A different proof of Theorem 2: It holds that

a

n
LKn =

a

n

n−1∑
i=1

∑
j>i

L(i,j)

� a

n

n−1∑
i=1

∑
j>i

|Pij |
∑

k∈Pij

k∈E(G)

Lk


(from Lemma 3)

=
a

n

m∑
k=1

 n−1∑
i=1,j>i
k∈Pij

|Pij |

Lk

=
a

n

m∑
k=1

bk Lk

≺
m∑

k=1

εk Lk = LG ,

where bk =
∑n−1

i=1,j>i
k∈Pij

|Pij | has been defined in Theorem

2. And the last inequality holds trivially when εk > a
n bk

for each edge k. Therefore, we arrive at the conclusion in
Theorem 2. �

Remark 3: The relations between different synchroniza-
tion criteria in this section can be summarized as follows:
a) Theorem 1 ⇔ Theorem 4 ⇔ Theorem 5;
b) Theorem 2 ⇒ Theorem 4.

Now we use a simple example to explain how to use graph
comparison to allocate coupling strengths in a connected
dynamical network to guarantee its synchronization.

1

2

3 4

5

(a) (b)

(c) (d)
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5

×

1
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×
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1

2

3 4

5

×

×

×

Fig. 1. Network topologies with or without link failures.

We take the graph G(a)
5 shown in Fig. 1(a) as an example.

Now we compare the graph G(a)
5 with the complete graph

K5. We use edge (1, 2) in G(a)
5 to represent the path

connecting vertices v1, v2, edge (1, 3) for vertices v1, v3,

edge (1, 5) for vertices v1, v5, edge (2, 3) for vertices v2, v3,
edge (3, 4) for vertices v3, v4, edge (3, 5) for vertices v3, v5,
edge (4, 5) for vertices v4, v5, path (1, 3, 4) for vertices
v1, v4, path (2, 3, 4) for vertices v2, v4, and path (2, 3, 5) for
vertices v2, v5. Then we have

LK5
= L(1,2) + L(1,3) + L(1,4) + L(1,5)

+ L(2,3) + L(2,4) + L(2,5) + L(3,4) + L(3,5) + L(4,5)

� L(1,2) + L(1,3) + [2L(1,3) + 2L(3,4)] + L(1,5)

+ L(2,3) + [2L(2,3) + 2L(3,4)] + [2L(2,3) + 2L(3,5)]

+ L(3,4) + L(3,5) + L(4,5)

= L(1,2) + 5L(2,3) + 5L(3,4) + L(4,5) + L(1,5)

+ 3L(1,3) + 3L(3,5)

where the inequality sign holds because of Lemma 3. Thus
we have b(1,2) = 1, b(2,3) = 5, b(3,4) = 5, b(4,5) = 1,
b(1,5) = 1, b(1,3) = 3, b(3,5) = 3. Let ε(a)

(i,j) be the coupling

strength of edge (i, j) in graph G(a)
5 . From Theorem 2, one

of the possible sets of bounds in graph G(a)
5 is as follows:

ε
(a)
(1,2) = ε

(a)
(4,5) = ε

(a)
(1,5) ≥

a
5 = 0.2a, ε(a)

(1,3) = ε
(a)
(3,5) ≥

3a
5 =

0.6a, ε(a)
(2,3) = ε

(a)
(3,4) ≥

5a
5 = a.

Remark 4: We have chosen a set of paths in the above
computation, and one can in fact arbitrarily choose paths
in graph G connecting distinct pairs of vertices. However,
in this example we have chosen the shortest paths between
vertices for simplicity. Optimal or suboptimal path selection
strategies are of great interest in our future work.

IV. ROBUST SYNCHRONIZATION AGAINST LINK
FAILURES

Along the line of graph comparison, we further explore
its applications in adjusting adaptively coupling strengths in
subnetworks in order to make the overall network robust
against link failures in synchronization processes. Robust
synchronization against network attacks has been extensively
studied in the literature [15], [9], [8]. However, most of
the existing work requires the knowledge about the whole
network topologies or vertex degree distributions. Few result
identifies distributed ways using only local information about
subnetworks to synchronize the overall networks under link
failures. Thus, it is meaningful to explore whether there is
an easy way to keep the network synchronizable by locally
adjusting the coupling strengths between oscillators. We
show in the sequel that graph comparison is especially useful
to find a solution to this challenge problem.

Consider the network shown in Fig. 1(b). Suppose that
edge (3, 5) is broken and is denoted by a dotted line in Fig.
1(b). We choose the path (3, 4, 5) for vertices v3, v5. From
Lemma 3, one has

2L(3,4) + 2L(4,5) � L(3,5) . (7)

Thus, in this case we only need to increase the coupling
strength assigned to the edges (3, 4) and (4, 5) by the amount
that is equal to or greater than 2ε

(a)
(3,5). It follows that

ε
(b)
(3,4) ≥ ε

(a)
(3,4) + 2ε

(a)
(3,5) , ε

(b)
(4,5) ≥ ε

(a)
(4,5) + 2ε

(a)
(3,5) ,
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and the other coupling strengths ε(b)
(1,2), ε

(b)
(2,3), ε

(b)
(1,5), ε

(b)
(1,3) are

just kept the same as those in network G(a)
5 . This local

adjustment strategy guarantees the following relationship for
the two weighted graphs

G(b)
5 � G(a)

5 . (8)

Using the same procedure, one can locally adjust the cou-
pling strengths in networks G(c)

5 and G(d)
5 to guarantee

synchronizability against link failures. From network G(a)
5 to

network G(d)
5 , the coupling strength adaptation can be done

either edge by edge or by directly comparing G(d)
5 with G(a)

5 .
Remark 5: The main idea of this coupling strength adap-

tation is to find another path at a local level in the network to
replace the edge corresponding to the failed link. And Lem-
ma 3 is used to determine the changing coupling strengths
for the edges on the chosen path. There may be multiple
choices for the path with the same two ending vertices of
the failed link. However we prefer to choose the shortest
path(s) in calculations. This is because a shorter path usually
corresponds to smaller changes in the coupling strengths for
the edges in the path.

Recently, in [20], [1] robustness metrics in terms of net-
work topologies have been discussed for the synchronization
of networked systems. Let LG be the Laplacian matrix of an
undirected connected graph with eigenvalues 0 = λ1 < λ2 ≤
· · · ≤ λn. Then the robustness of the associated networks for
synchronization is evaluated by

H =

(
Kf

2N

) 1
2

, (9)

in [20] using the Kirchhoff index [19]

Kf = N

n∑
j=2

1

λj
. (10)

It has been shown that networks with better synchronizability
have larger values of λ2, while networks with better syn-
chronization robustness have smaller values of Kf or H .
However, the structural robustness discussed in [1] deals
with the effect of changes in network topologies due to
link failures, while functional robustness discussed in [20]
addresses how well a system behaves in the presence of
noise. In fact, both of the two aspects are inter-related since
the relation in (9) holds. These measurements on robustness
of networks against link failures and noise all remind us to
pay more attention to the eigenvalue spectra of a Laplacian
matrices, not just the second-smallest eigenvalue λ2.

From Lemma 1 and (8), one has that the eigenvalues of
the two weighted graphs satisfy

λk(G(b)
5 ) ≥ λk(G(a)

5 ) ,

for k = 1, . . . , 5. Thus, under our proposed adaptation s-
trategies for coupling-strength allocation, a network performs
better synchronizability and better robustness for synchro-
nization, compared with the original network.

Finally, we discuss more general link changes in a net-
work. The results just discussed only consider link failures.

In fact, one can consider the scenarios of a combination of
rewiring, deleting or adding links that may take place at the
same time in the underlying network. The following lemma
shows that graph comparison can be carried out between any
two different graphs.

Lemma 4: [13] Let G and H be undirected connected
graphs. Let σ1 be the least number such that

G � σ1 H , (11)

and let σ2 be the greatest number such that

σ2 H � G . (12)

Then the condition number kf (G,H) = σ1/σ2. Furthermore,
if c2H � G � c1H, then kf (G,H) ≤ c1/c2.
This lemma implies that graph comparison can be carried
out between arbitrary two different graphs having the same
vertex set. Thus coupling strength adjustment still works
when a network suffers from a combination of different
topological changes. We will look at this problem more
carefully in our future work.

V. CONCLUSIONS

In this paper we have presented new ways to allocate
coupling strengths using spectral graph theory in order to
achieve synchronization in complex networks. The main idea
is to bound the second-smallest eigenvalues of Laplacian
matrices associated with the given networks by comparing
the corresponding network graphs to complete or other
graphs with the same vertex sets. The obtained results
can simplify the computation and be applied to growing
networks. We have also looked at the robustness issues in
network synchronization by carrying out graph comparison
for bounding the all the eigenvalues of the Laplacian matrices
of graphs under comparison.

We are interested in looking into applying the proposed
methodologies to networks with directed topologies. The
main challenge is then how to deal with the fact that the
Laplacian matrices associated with directed graphs are not
guaranteed to be positive semi-definite anymore. We are also
interested in using the constructed synchronization criteria
to develop optimal or sub-optimal solutions to add or delete
edges in a network to achieve better synchronizability.

APPENDIX

In this appendix, we show that Assumption 1 implies

(xj − xi)T [(f(xj)− f(xi))− aP (xj − xi)] < 0 , (13)

for any xi 6= xj .
Note that

f(xj)− f(xi) =

∫ 1

0

d

dβ
f(β xj + (1− β)xi) dβ

=

[∫ 1

0

Df(βxj + (1− β)xi) dβ

]
(xj − xi) ,
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where Df is the n× n Jacobian matrix of f . This equation
is given in [2]. Then we have

(xj − xi)T
[∫ 1

0

Df(βxj + (1− β)xi) dβ − aP
]

(xj − xi)

= (xj − xi)T [(f(xj)− f(xi))− aP (xj − xi)] .

Therefore, Assumption 1 implies the inequality (13).
The inequality (13) guarantees that the individual system

ẋi = f(xi) can be globally stabilized by the linear state
feedback −aPxi. Equivalently, one can check the unique
asymptotic behavior of system ẋi = f(xi)− aP xi from the
inequality (13). To do this, by using 1

2 (xj−xi)T (xj−xi) as
the quadratic Lyapunov function, one can show that for any
xi, xj with different initial conditions satisfying ẏ = f(y)−
aP y, the two system trajectories coincide asymptotically.
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[9] J. Lü, X. Yu, G. Chen, and D. Cheng. Characterizing the synchro-
nizability of small-world dynamical networks. IEEE Transactions on
circuits and systems-I, 51(4):787–796, 2004.

[10] S. Mei, X. Zhang, and M. Cao. Power Grid Complexity. Springer-
Verlag, Berlin, 2011.

[11] L. M. Pecora and T. L. Carroll. Master stability functions for
synchronized coupled systems. Physical Review Letters, 80:2019–
2112, 1998.

[12] D. A. Spielman. Spectral graph theory and its
applications. 2004. Lecture Notes. Available online,
http://www.cs.yale.edu/homes/spielman/eigs/.

[13] D. A. Spielman. Fast randomized algorithms for partitioning, sparsi-
fication, and solving linear systems. 2005. Lecture Notes from IPCO
Summer School 2005.

[14] D. A. Spielman. Spectral graph theory. In U. Naumann and O. Schenk,
editors, Combinatorial Scientific Computing. CRC Press, 2012.

[15] X. Wang and G. Chen. Synchronization in scale-free dynamical
networks: Robustness and fragility. IEEE Transactions on circuits
and systems-I, 49:54–62, 2002.

[16] C. W. Wu. Perturbation of coupling matrices and its effect on the
synchronizability in arrays of coupled chaotic systems. Physics Letters
A, 319:495–503, 2003.

[17] C. W. Wu. Synchronization in complex networks of nonlinear dynam-
ical systems. World Scientific, 2007.

[18] C. W. Wu and L. O. Chua. Synchronization in an array of linearly
coupled dynamical systems. IEEE Transactions on Circuits and
Systems I, 42:430–447, 1995.

[19] W. Xiao and I. Gutman. Resistance distance and laplacian spectrum.
Theor. Chem. Acc., 110:284–289, 2003.

[20] G. F. Young, L. Scardovi, and N. E. Leonard. Robustness of noisy
consensus dynamics with directed communication. In Proc. of the
American Control Conference, pages 6312–6317, 2010.

3814


