
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Graph Computing Systems and
Partitioning Techniques: A Survey
TEWODROS ALEMU AYALL1, HUAWEN LIU1 , CHANGJUN ZHOU1, ABEGAZ MOHAMMED
SEID4, FANTAHUN BOGALE GEREME3, HAYLA NAHOM ABISHU 2, YASIN HABTAMU
YACOB 2
1Department of Computer Science, Zhejiang Normal University, Jinhua, Zhejiang, 32100, China.
2School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
3Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.
4Information and Computing Technology, Hamad Bin Khalifa University, Doha, Qatar

Corresponding author: Tewodros Ayall (e-mail: ayalltewodros@zjnu.edu.cn)

This work was supported by Zhejiang Provincial Postdoctoral Science Foundation under Grant ZC304021941.

ABSTRACT Graphs are a tremendously suitable data representation that models the relationships of
entities in many application domains, such as recommendation systems, machine learning, computational
biology, social network analysis, and other application domains. Graphs with many vertices and edges have
become quite prevalent in recent years. Therefore, graph computing systems with integrated various graph
partitioning techniques have been envisioned as a promising paradigm to handle large-scale graph analytics
in these application domains. However, scalable processing of large-scale graphs is challenging due to their
high volume and inherent irregular structure of the real-world graphs. Hence, industry and academia have
recently proposed graph partitioning and computing systems to efficiently process and analyze large-scale
graphs. The graph partitioning and computing systems have been designed to improve scalability issues
and reduce processing time complexity. This paper presents an overview, classification, and investigation of
the most popular graph partitioning and computing systems. The various methods and approaches of graph
partitioning and diverse categories of graph computing systems are presented. Finally, we discuss future
challenges and research directions in graph partitioning and computing systems.

INDEX TERMS Large-scale graphs, graph partitioning, graph computing systems, graph processing
systems, graph databases.

I. INTRODUCTION
Graphs are a significant and powerful data representation
to model the relationships of entities in many application
domains in the form of vertices and edges. In general, vertices
represent the entities in the graph, while edges indicate the
relationships between the entities in the graph. Graphs are
used in search engines to model the relevance of web pages
recommended to users [1], [2]. The interactions of users
and groups in social networks [3]–[6], and the segment of
road networks are also well represented by graphs [7]. In
computational biology, graphs are applicable to represent
the interaction of protein-to-protein [8]–[10] and the layout
of infectious diseases [11]. For example, social networks
are made up of social ties, which include relationships be-
tween people or groups based on friendship, interest, kinship,
likes/dislikes, and various other factors. Those relationships
can be visualized as a graph representation. Fig.1 illustrates
how to represent a social network using the friendship of 34

karate club members. Each vertex represents an individual,
and the links/edges show individuals who interact outside
of the karate club setting (e.g., meeting up for a coffee or
spending social time together).

The study of network analysis has become not only es-
sential but also interdisciplinary in nature since graphs can
appear in such a wide variety of settings. The study of
these complex systems requires an understanding of their
characteristics, as well as their structure and their dynamics.
Therefore, academics and big technology companies like
Facebook, Google, and Microsoft have proposed different
solutions for organizing and analyzing the rising prevalence
of big graphs [12]. Furthermore, the size of these graphs
has rapidly increased, with hundreds of billions of nodes
and trillions of edges being possible [13], [14]. As the
graph size scales up, graph analysis can be performed in
a distributed environment. However, graph computing has
become a challenging problem due to access irregularity,

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE ACCESS

lack of locality, and intrinsic load imbalance distribution of
graphs in different computing clusters [14]. Thus, researchers
highlight the critical role of design computing systems in our
society today [12].

Fig. 1: An example of social network model of relationships
in the Karate Club [15].

Graph computing systems are becoming increasingly sig-
nificant to deal with graphs-based analytics such as graph
traversal [16], random walk [1], graph aggregation [17], mo-
tifs discovery [18] and e.t.c. The design of graph computing
systems focuses on two major categories, graph process-
ing systems (GPS) [19]–[24] and graph database systems
(GDBS) [25]–[28] based on their graph analytics nature. GPS
execute large-scale batch analytics using a variety of com-
putationally intensive graph algorithms. Google introduced
Pregel [19], the pioneer distributed GPS, to process inter-
connected data since 2010. After that many graph computing
systems have recently been proposed in distributed [20], [21],
[29] and single-machine [30]–[35] computing architecture to
improve scalability issues and reduce the systems’ processing
time complexity. On the other hand, GDBS are designed
for high-throughput data retrieval and transaction process-
ing. Before the graph databases systems, relational database
management systems (RDBMS) were widely used to store,
process, and analyze large-scale graphs [36]. However, there
are two issues with analysis of graph in RDBMS. First, the
vertices (nodes) and edges (relationships) are stored in sep-
arate tables. Therefore, it requires complex join operations
to perform a query [37]. Second, RDBMS are ineffective
when the data model changes over time, which means they
rely on a fixed schema and make it difficult to build new
object relationships [38]. Hence, due to these limitations
of RDBMS, GDBS [25]–[28] have been proposed to store,
process, and analyze large-scale graphs.

Graph partitioning is a technique to cut graph into dis-
tinct subgraphs based on different heuristic techniques by
minimizing cuts and maximizing load balance. Solving the
graph partitioning problem with the minimum cut and max-
imum load balance is a well-known NP-hard problem [39],

[40]. Graph partitioning is a significant preprocessing step
for large-scale graph computing systems. Integrating graph
partitioning techniques with computing systems can solve
many graph problems in data mining, graph machine learn-
ing and pattern discovery. Researchers have proposed many
graph partitioning algorithms in the last decade. The methods
of these graph partitioning can be categorized into three:
vertex partitioning [41]–[44], edge partitioning [23], [45]–
[50], and hybrid partitioning [22], [51]–[53]. These meth-
ods can further be classified as offline (in-memory), online
(stream), offStream, and dynamic approaches. The offline
approach loads the whole graph in memory and exploits the
graph’s global information to allocate edges or vertices to
the partitions. Many offline algorithms have been proposed
in sequentially, shared, and distributed memory. Before the
offline approach starts partitioning, the input graph is loaded
in memory. Therefore, it can quickly gather the global graph
structure to solve the optimization problem. This case leads
to obtaining a higher partitioning quality. However, it does
not support large-scale graph partitioning. This issue mo-
tivated the design of an online approach to scalable graph
partitioning [43]. The online approach loads vertices or edges
one by one to directly assign them to the partitions. Online
approach is very fast and consume little memory; yet, it yield
only low-quality partitioning. Therefore, offStream approach
has been proposed to fill the gap between offline and stream
approaches by slitting the edges of a graph into two edge
sets. One edge set is partitioned in the offline approach, and
another edge set is partitioned in the stream [54], [55]. The
dynamic approach has been proposed for repartitioning when
the graphs’ topology is dynamically changed [56]–[58].

Many research works exist on graph partitioning and com-
puting systems in the current literature. These research works
motivated us to provide a structured review of the exten-
sive literature, outlining essential concepts and presenting
recent research works that have not been included in prior
overviews. This systematic survey paper aims to guide fellow
researchers and practitioners to understand the concepts and
evolution of large-scale graph partitioning and computing
systems.

There exist several experimental and comprehensive stud-
ies on graph partitioning and computing systems. The ex-
perimental study of stream edge partitioning was performed
in [64]–[66]. The experimental analysis of both stream edge
and vertex partitioning was studied in [67], [68]. In [69],
discussed the traditional graph partitioning by grouping into
three, geometric, algebraic, and multilevel. The evolutionary
approach of graph partitioning was presented in [70]. The bi-
partile and hypergraph model for graph partitioning were sur-
veyed in [71]. Arora et al. [72] discussed the relationship be-
tween geometric and flow-based graph partitioning. The tra-
ditional multilevel graph partitioning has three main phases,
coarsening, partitioning and uncoarsening. These various
coarsening phase algorithms were discussed and compared in
[73]. In [74], reviewed static vertex partitioning for scientific
simulations on high performance parallel computers. An em-

2 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE ACCESS

TABLE 1: Related surveys.

No.
GP GCS Basic benchmarks and

evaluation metrics
Source of

graph-datasetsVP EP HP GPS GDBSDS SMS
[59] ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
[60] ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗
[61] ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗
[62] ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗
[63] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

pirical study of RDF (Resource descriptor framework) graph
partitioning techniques and benchmarks were discussed in
[75], [76]. The empirical evaluation of GPS was analyzed
in [59], [77]–[79]. Tran et al. [60] reviewed GPU based
large-scale GPS. In [61], discussed the essential features and
challenges of multi-core and out-of-core large-scale GPS.
The participants’ awareness for the usage of GPS and their
challenges were conducted in [80]. In [81], reviewed the key
core graph processing accelerators, preprocessing, parallel
graph computation, and run-time scheduling. The experimen-
tal evaluation of the graph databases was performed in [82],
[83]. As described in Table 1, there are a limited number
of comprehensive works on modern graph partitioning and
computing systems. This survey investigates, classifies, and
reviews graph partitioning and computing systems. The main
contributions of this work are summarized as follows:

• Optimization problems of graph partitioning, graph par-
titioning methods, approaches, and algorithms are re-
viewed and discussed. First, we classify the graph par-
titioning methods into three: vertex partitioning, edge
partitioning, and hybrid partitioning. These graph par-
titioning methods can be further categorized as offline,
online, offStream, and dynamic approaches. Then, the
representative graph partitioning algorithms in each ap-
proach are listed and discussed.

• We discuss the major computational models of graph
computing systems. These computational models of
graph computing systems can be categorized into two:
the computational models of graph processing and
graph database systems. The graph processing system’s
computational models, including programming, com-
munication, and execution models, are discussed. Also,
the data model, partitioning techniques, and query lan-
guage of graph databases are described.

• We provide a detailed review of the graph computing
systems and classify them into graph processing and
graph database systems based on their graph analytics
nature. These systems are further composed of several
subcategories using their architecture. For each sub-
category, various systems with detailed computational
models are listed and discussed.

• Future challenges and research directions in graph par-
titioning and computing systems are highlighted.

The rest of this paper is organized as follows. Section II
explains the basic concepts of graph algorithms, partitioning,

and computing systems. Section III describes types of graph
partitioning, and Section IV discusses the computational
models of graph computing systems. The taxonomy of graph
computing systems is presented in Section V. The future
challenges and research directions are indicated in Section
VI. Finally, the conclusion is summarized in Section VII.

II. CONCEPTS OF GRAPH ALGORITHMS,
PARTITIONING AND COMPUTING SYSTEMS
A. GRAPH ALGORITHMS
Graph algorithms are used to solve various real-world prob-
lems. These algorithms can be classified into the random
walk, graph traversal, and graph aggregation. They are the
primary benchmark for testing the performance of graph
computing systems. These algorithms can be implemented
in various ways based on the principles of the programming
model of the graph computing systems [19], [23], [84].

1) Random walk
A random walk is defined as an algorithm that starts at one
vertex, selects a neighbor to traverse at random or based on
a probability distribution, and then repeats the process from
that vertex, saving the resulting path in a list [85]. PageR-
ank [1], HITS [86], and ObjectRank [87] are examples of
random walks. Among them, PageRank is the most represen-
tative algorithm to determine the performance of these graph
computing systems. PageRank is an iterative vertex ranking
algorithm that weights vertices based on their relevance and
connectedness to other well-ranked vertices. The procedure
assigns a uniform rank to all vertices at the start. After that,
in each iteration, a vertex changes its rank by the new rank,
then spreads evenly to outgoing neighbors along outgoing
edges. When the difference between the vertex rank from
the current iteration and the previous iteration is less than
a defined threshold, the algorithm converges by adding the
partial ranks of its arriving neighbor vertices.

2) Graph traversal
Graph traversal entails visiting all of a graph’s vertices in
a specific order while checking and updating the vertices’
values. Connected Components [88], Single Source Shortest
Path [16], Approximate Diameter [89], Triangle Counting
[90], and Bipartite Matching [91] are examples of graph
traversal algorithms. These algorithms frequently use graph
search. Connected Components finds subgraphs in which
each vertex can be reached from every other vertex. Single

VOLUME 4, 2016 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE ACCESS

Source Shortest Path calculates the shortest path from the
source vertex to all associated vertices. At the start, it assigns
a zero value to the source vertex and infinity to all other ver-
tices. Then, each vertex changes its path length to the source
until it does not observe a new update value across two con-
secutive iterations. Approximate Diameter uses probabilistic
counting to estimate an approximation of a graph’s diameter,
which is the longest and shortest path between each pair of
vertices. Triangle Count counts the number of triangles in
each vertex in graph. A triangle is made up of three vertices
joined by three edges. It is utilized to detect communities and
measure the cohesiveness of those communities. Bipartite
matching takes two distinct sets of vertices as input, with
edges solely connecting them, and returns a subset of edges
with no common endpoints as output.

3) Graph aggregation
Graph aggregation condenses the graph into a structurally
identical but smaller graph by crumpling edges and vertices.
Graph sparsification [92], Graph summarization [93], and
graph coarsening [94] are some of the most common types
of graph aggregation. Graph sparsification approximates a
given graph to a sparse graph with fewer edges but the same
number of vertices. Graph summarization represents the in-
put graph into a smaller graph by keeping structural patterns.
It facilitates the identification of structural and informative
summaries of the input graph. Graph coarsening reduces the
number of vertices of a graph by contracting disjoint sets of
connected vertices. It is frequently used as an initial step in a
graph partitioning algorithms.

B. GRAPH PARTITIONING PROBLEM
To easily understand graph partitioning problems, let’s define
a graph a bit more formally. A given undirected graph G
is defined as G = (V,E), where V = {v1, ..., vn} and
E = {e1, ..., em} are a group of vertices and edges, respec-
tively. E ⊆ V × V , the size of V and E are denoted as n
and m, respectively. The undirected graph can be classified
as weighted or unweighted. If a graph is a weighted graph,
e ∈ E can have a positive weight associated with them. On
the other hand, if a graph is an unweighted graph, there is
no weight associated with edges. However, it is possible to
interpret the unweighted graph as a weighted graph in which
each edge has a weight of 1.

1) Vertex partitioning
Vertex partitioning (VP) is also called edge-cut, as depicted
in Fig. 2a. It divides the big graph into many subgraphs
by assigning vertices to the different partition sets while
considering minimize edge cuts with respect to load balance
constraint. Let V1 and V2 be two vertex sets of the graph
G. An edge-cut is defined as an edge(u, v) ∈ E, if and
only if ∀u, v ∈ V, u ∈ V1 and v ∈ V2. Balanced k−way
VP problem is defined as G is partitioned into k partitions

set {V1, V2, ..., Vk} such that
k⋃
i=1

Vi = V . The vertex set

of each partition is not duplicated, i.e, Vi ∩ Vj = ∅, where
(i, j ∈ {1, 2, ...k}, i ̸= j). The objective of VP is finding a
k-partition set that minimizes the cost of all external edges
(weighted or unweighted) connecting two partition vertex
sets Vi and Vi = V − Vi with respect to a balance constraint.
The edges-cut Γ(Vi, Vi) between two partition vertex sets Vi
and Vi is calculated as follows:

Γ(Vi, Vi) =
∑

(vi,vj)∈e,vi∈Vi,vj∈Vi

ω(vi, vj), (1)

where ω(vi, vj) is the weight of the edges (vi, vj). The
overall cost of the edge cut k-partitions Γ(Pk) is expressed
as:

Γ(Pk) =
∑
i∈k

Γ(Vi, Vi). (2)

Therefore, the optimization problem of VP is given by:

minΓ(Pk)

s.t. max
i∈k

|Vi| ≤ (1 + ϵ)
n

|k|
,

(3)

where |Vi| and |k| are the size of the vertex set of the partition
and the number of partitions, respectively. And ϵ ≥ 0 is an
imbalance factor.

The k-way vertex partitioning problem can commonly be
extended to graphs that contain weights associated with the
edges [95]. This scenario aims to divide the vertices into k
disjoint subsets where the sum of the edge weights whose
incident vertices belong to different subsets is minimized.
The basic implementation of distributed graph processing
systems usually needs the solution of graph partitioning,
where vertices represent computational tasks and edges con-
sider data exchange. Therefore, graph partitioning signifi-
cantly impacts these systems’ workload balance and com-
munication costs. In VP, computing nodes (machines) that
hold the partition set preserve local replicas of the vertices
and edge data for the cut edges. These cut edges can act as a
bridge to communicate with other machines. The machines’
communication and workload costs are determined by the
number of edge cuts and load balance.

2) Edge partitioning
Edge partitioning (EP) is also named vertex-cut, as shown
in Fig. 2b. It divides a big graph into many subgraphs by
assigning edges to the different partition sets while consid-
ering a maximum load balance and minimum vertex cut.
Let E1 and E2 be two edge sets of the graph G. A vertex-
cut is defined as a vertex u ∈ V , if and only if u ∈ E1

and u ∈ E2. A balanced k-way EP problem is defined as
G is partitioned into k partitions {E1, E2, ..., Ek} such that
k⋃
i=1

Ei = E. The edge set of each partition is not duplicated,

i.e, Ei ∩ Ej = ∅, where (i, j ∈ {1, 2, ...k}, i ̸= j). Let P (v)
be the set of partitions that each vertex v ∈ V is replicated.
The replication factor RF is calculated as the summation of

4 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE ACCESS

the number of replicas (copied versions of vertices) divided
by the number of vertices:

RF =
1

n

∑
i ∈ k,v∈V

|Pi(v)|. (4)

Therefore, the optimization problem of k−way EP is ex-
pressed as:

minRF

s.t. max
i∈k

|Ei| ≤ (1 + ϵ)
m

|k|
,

(5)

where |Ei| is the size of the edge set.
In the case of distributed and parallel computation with

edge partitioning, all machines holding cut vertices should
preserve a mirror (local replica) of the vertex. These mirror
vertices can act as a bridge communicator between the par-
titions. The number of mirror vertices and edges determines
the communication and workload costs, respectively.

(a) Vertex partitioning.

(b) Edge partitioning.

Fig. 2: Vertex vs Edge partitioning: (a) Input Graph is parti-
tioned into three partitions P1, P2, and P3 by cutting four
edges; (b) Input Graph is partitioned into three partitions
P1, P2, and P3 by cutting one vertex, and the shaded circle
vertices are replicas.

3) Hybrid partitioning
The EP evenly allocates edges to machines and only repli-
cates vertices to construct a local graph within each partition.
Therefore, the EP mainly focuses on minimizing the overall
replication factor (RF) of all vertices. However, Hybrid
partitioning (HP) considers that instead of reducing RF of
all vertices, it distinguishes vertices as a lower and higher
degree. Then, VP or EP is applied for better cuts.

HP is a hybrid of VP and EP methods. It exploits the
interior structure of the graph to perform partitioning [22].
Most of the real-world graphs are power-law graphs, where a
relatively small percentage of vertices have a higher degree,
and most vertices have a lower degree. HP differentiates
the vertices as low-degree and high-degree. Then, it evenly

distributes the edges of a high-degree vertex among partitions
(using vertex-cut) to disseminate the computation load and
allocates all the in-edges (or out-edges) of a low-degree
vertex to the same partition (using edge-cut) to reduce com-
munication among partitions.

Fig. 3: Hybrid partitioning: The red colored circle of vertices
are mirrors and others vertices are masters.

For example, consider the input graph in Fig. 3, how to
apply HP using Hashing [22]. Suppose that degree threshold
is 3. Therefore, if a vertex in-degree is ≥ 3, it is considered
to be high-degree vertex. As shown in Fig. 3, the vertex 2 is
high-degree and all the other vertices are low-degree. Assume
that vertices 1, 4, 7, 8 and 10 are hashed to p1 and vertices 2,
3, 5, 6, and 9 are hashed to p2. Then, the in-edges of vertex
2, namely, (7, 2), (8, 2), and (9, 2) will be assigned with
their source vertices (source hashing). Therefore, the edges
(7, 2) and (8, 2) are assigned to p1 and the edge (9, 2) is
assigned to p2. Then, the in-edges of other vertices, namely,
(3, 1), (4, 1), (1, 5), (1, 6), (2, 6), and (2, 10) will be assigned
with their target vertices (target hashing). Therefore, based
on their target vertices, edges (3, 1), (4, 1) and (2, 10) are
assigned to p1 and (1, 5), (1, 6) and (2, 6) are assigned to
p2. The partitioned result is depicted in Fig. 3 in p1 and p2,
where the green and red colored circles of vertices represent
the masters and mirrors (replicas), respectively.

C. GRAPH COMPUTING SYSTEMS
Recently, there has been an increase in the demand for
large-scale graph computing systems. Because graphs can
describe a diverse set of objects, the computations performed
on graph-based data structures are at the heart of many
applications such as machine learning, data mining, and
pattern recognition. The requirement to process large graphs
has led to the development of various frameworks that can
handle the processing of large graphs in different comput-
ing architectures. Graph computing systems, also known as
graph analytic systems, process graph-based computation.
Existing graph computing systems can be classified into
two; GPS [20], [21], [29] and GDBS [25]–[28]. The GPS,
known as offline graph analytics systems, process an iterative
computation on the whole graph until a convergence criterion
is satisfied. The GDBS, also called online graph analytics
systems, perform analysis on subgraphs or entire graphs and
require a fast response time.

D. PERFORMANCE EVALUATION METRICS

VOLUME 4, 2016 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE ACCESS

1) Metrics of graph partitioning
The following general metrics measure the performance of
the graph partitioning: load balance, the number of cut ver-
tices or edges (locality), run-time, and scalability [47], [96].
Among these metrics, partitioning quality is measured by the
number of cut vertices or edges and load balance.

Load balance (ρ): It indicates how well the number of
vertices or edges is distributed across partitions. For vertex
and edge partitioning methods, the two metrics are calculated
differently. The ρ is calculated as:

ρ =

max
i=1,..N

|Pi|
ψ
N

, (6)

where ψ is the input size (the number of vertices for vertex
partitioning or the number of edges for edge partitioning)
and |Pi| is the size of vertices for VP or the size of edges
for EP that belong to the partitions. Further, balanced load
partitions reduce processing latency and enhance the resource
utilization of distributed graph computing.

Locality: The fraction of edges cut (τ) from balanced
constraint vertex partitioning can be calculated as:

τ =

∑k
i=1 Γ(Vi, Vi)

m
. (7)

However, other versions of the vertex partitioning problem
do not have a fixed balance constraint but encode balance
directly in the objective function. Conductance [97], ratio
cut [98], and normalized cut [99] are used to measure non
balanced constraint vertex partitioning. The conductance of a
set of vertices Φ(Vk) can be expressed as:

Φ(Vk) =

k∑
i=1

Γ(Vi, Vi)

min(vol(Vi), vol(Vi))
. (8)

The ratio cut of a set of vertices ∆(Vk) can be expressed as:

∆(Vk) =

k∑
i=1

Γ(Vi, Vi)

|Vi|
. (9)

The normalized cut of a set vertices Θ(Vk) can be defined as:

Θ(Vk) =

k∑
i=1

Γ(Vi, Vi)

vol(Vi, V)
, (10)

where vol(Vi, V) =
∑
ui∈Vi,vj∈V w(ui, vj) is total degree

of the vertices Vi in a graph G. If the value of these metrics
Φ(Vk), ∆(Vk) , and Θ(Vk) are low, the vertices set are in a
good cluster. The balance constraint vertex partition are more
applicable to graph computing systems due to equal distri-
bution of edges or vertices to computing nodes. However,
the non-balance constraint vertex partition metrics are more
applicable to graph clustering [100].

For edge partitioning, the number of cut vertices are called
replicas. It is measured by a replication factor (σ). The σ is
calculated as:

σ =
1

n

∑
i ∈ k

|Pi(v)|, (11)

where Pi(v) is the total number of replicas of vertices in
each partition. A good partitioner must minimize the value
of σ and τ . The number of cut vertices indicates the external
communication overhead between different computing ma-
chines because communication in such systems coexists with
vertices.

Run-time: It indicates the elapsed time to partition the
graph. The run-time includes ingress (loading the input graph
to the memory) and partitioning time of the graph.

2) Metrics of graph computing systems
The following metrics measure the performance of graph
computing systems: total time, communication cost, memory
usage, and scalability.

Total-time: It is a time that requires the overall running
time from the beginning to the end of graph computation. It
can be divided into preprocessing and computation time. The
preprocessing time is the time to load the input graph into
memory, partition it, and write the output. The computation
time is how long it takes to perform barrier local syn-
chronization, vertex computation, and communication. When
algorithms have quick per-vertex computations, computation
time combined with CPU utilization might uncover message
processing overheads.

Communication cost: It is the sum of per-machine net-
work usage across all worker machines, with total sent (out-
going) and total incoming (received) network usage. It is
influenced by the amount and distribution of data transmitted
across servers.

Memory usage: It is the total of memory allocations for
computing tasks. The memory footprint of each server must
be kept to a minimum. This ensures that fewer servers may
be utilized for processing large-scale graphs, which is useful
when resources are constrained.

Scalability: It measures a system’s capacity to adjust its
performance and cost in response to shifting application and
system processing requirements. Thus, large graph must be
loaded and processed by smaller clusters. Communication
and computing must become cheaper as the cluster size
grows, and the overall job must run faster. Similarly, graph
partitioning algorithms also provide rigorous assurances re-
garding locality and balance while scaling to large-scale
graphs at the same time. Thus, providing such assurances
frequently necessitates costly coordination or global views
of the graph. This limiting scalability [96].

E. GRAPH DATASETS
The generated synthetic graphs of varying sizes and real-
world datasets are the main benchmarks for testing the
performance of graph partitioning and computing systems.
RMAT (Recursive Matrix) [101] is used to generate a syn-
thetic skewed degree distribution graph. The main sources
of real-world graph datasets repository are found in SNAP
(Stanford Network Analysis Project) [102], Online Network
Research Web Portal [103], KONECT (Koblenz Network
Collection) [104], LAW (Laboratory for Web Algorithmics)

6 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE ACCESS

[31], Twitter [105], Friendster [106] and MovieLens 10M
datasets [107].

TABLE 2: List of Abbreviations.

Abbreviations Meaning
VP Vertex partitioning
EP Edge partitioning
HP Hybrid partitioning

Sync Synchronous execution model
Async Asynchronous execution model
Hsync Hybrid execution model
PGM Property graph model
RDF Resource descriptor framework
GPS Graph processing systems

GDBS Graph database systems
MR MapReduce programming model
VC Vertex centric porgamming model

GAS Gather-Apply-Scatter programming model
SC Subgraph centric programming model
MP Message passing model
SM Shared memory model
DF Dataflow model

SMSM Single-machine shared memory system
SMOC Single machine-out-of-core system

DS Distributed system
OSSMVP Offline sequential single machine vertex partitioning

OSMSMVP Offline shared memory single machine vertex partitioning
ODSVP Offline distributed vertex partitioning
OSMEP Offline single machine edge partitioning
ODSEP Offline distributed edge partitioning

The SNAP1 data set repository was founded in 2004 as a
result of a study into the analysis of significant information
and social networks. These datasets on the website were
primarily collected for the objectives of the research works
in July 2009. The KONECT2 is a project that aims to collect
massive network data sets to aid network mining research.
The collection’s website also includes statistics, charts, and
code for generating all network data sets from the internet.
The LAW3 was founded in 2002 at the University of Milan’s
Department of Information Sciences and has since integrated
with the Computer Science Department. The research at
LAW focuses on all algorithmic aspects of web and social
network researches.

III. TYPES OF GRAPH PARTITIONING
The method of graph partitioning can be further classified
into four approaches based on how the input graph is pro-
cessing. The way of handling the input graph processing
determines the scalability of the graph partitioning. Based
on the input graphs they are accessed, we classify graph
partitioning methods into four approaches, Offline, Online
(Stream), OffStream, and Dynamic as depicted in Fig. 4.

A. OFFLINE APPROACH
Offline approach is a traditional graph partitioning approach
that exploits the graph’s global information to allocate edges
or vertices to the partitions. The graph is loaded into memory

1https://snap.stanford.edu/.
2http://konect.cc/.
3http://law.di.unimi.it/.

before it applies the partitioning algorithms. In this approach,
many algorithms have been proposed via single and dis-
tributed machines. Offline single machine partitioning uses
a single machine to perform its partitioning and has a high
partitioning accuracy; however, it can not support large-
scale graph partitioning due to a lack of memory that can
accommodate the entirety of the graph [41]. The two main
challenges of graph partitioning are quality and scalability.
First, high-quality partitioning is evaluated by total cuts and
load balance. However, it is difficult to obtain since graph
partitioning is proved to be an NP-hard problem. Second,
graph partitioning is required to scale up and deal with large
graphs since the size of real-world graphs has been increasing
quickly. Therefore, distributed memory graph partitioning
has been proposed to support scalability with compromised
quality partitioning. In the distributed approach, the graph
is already distributed in a distributed memory application.
However, to preserve scalability, not every processor stores
the whole graph. As a result, distributed-memory partitioning
algorithms frequently rely on their partitioning choices on
partial views of local graph data rather than having an overall
view of the entire graph. Each processor communicates with
the other to minimize the cut and maximize load balance. The
distributed approach supports large-scale partitioning; how-
ever, its partitioning quality is less than the single machine
approach. In this approach, offline sequential single machine
vertex partitioning (OSSMVP), offline shared memory single
machine vertex partitioning (OSMSMVP), offline distributed
vertex partitioning (ODVP), Offline single machine edge par-
titioning (OSMEP) and Offline distributed edge partitioning
(ODEP) have been proposed.

1) Offline sequential single machine vertex partitioning
Initially, the input graph is loaded into a single machine;
then, various iterative techniques are applied to improve the
partitioning quality. Most algorithms were proposed based
on the multilevel partitioning model. The multilevel graph
partitioning model [108], [109] is the most successful heuris-
tic for partitioning a graph. It consists of three phases:
coarsening, initial partitioning, and refinement (uncoarsen-
ing) as depicted in Fig. 5. During the graph coarsening
phase, a sequence of graphs G1, G2, ...Gm are created by
compressing selected vertices of the input graph into a re-
lated coarser graph. This newly built graph is then used
as the input graph for another round of graph coarsening
until the graph is small enough. Coarsening phase is often
accomplished by computing matching algorithms [95], [108],
[110]. During initial partitioning phase, a partition Pi of the
much smaller graph Gi is created using spectral bisection
or graph growing heuristic [108]. Local search approach
KL [111] and FM [112] are frequently used for refinement
phase. KL [111] is the pioneer offline vertex partitioner. To
partition the graph, initially, vertices are randomly assigned
to one of the partitions; then, it tries to improve partitioning
efficiency by evaluating the cut-vertex function’s gain, if
necessary, exchanging the vertices between partitions. This

VOLUME 4, 2016 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE ACCESS

Fig. 4: Graph partitioning methods, approaches and algorithms.

process is continued until there are no possible exchanges
that optimize the final partition’s cut vertices. FM [112]
begins by calculating the gain values for each vertex, where
gain refers to the difference in edge cut if a vertex was shifted
to the other partition. The algorithm works in rounds, with
a subset of vertices being shifted from one partition to the
other in each round. The vertex with the highest gain value
is chosen to be moved. Hence, its neighbors’ gain values
are updated appropriately, and the procedure is repeated with
the remaining unmoved vertices until all vertices have been
moved precisely once. Metis [41], Scotch [113], Chaco [114],
and KaHIP [115] are an examples of well-known offline
sequential vertex partitioning software packages.

2) Offline shared memory single machine vertex partitioning

Recently, the number of cores per chip has increased dramat-
ically. As a result, offline shared-memory single machine ver-
tex partitioning efficiently utilizing available computer cores
are highly demanded. Mt-Metis [116] and Mt-KaHIP [117]
have proposed in this category. Mt-Metis is a multi-threaded
implementation of the Metis algorithms by avoiding message
passing overhead and modifying existing parallel algorithms
implemented in ParMetis. The Mt-Metis has less memory
overhead than either PT-Scotch or ParMetis. Because Mt-
Metis stores information for each vertex just once, PT-Scotch
and ParMetis need to communicate and store the information
of remote neighbor vertices. Mt-KaHIP is a multilevel SM
partitioning that adopts KaHIP. It uses label propagation for
coarsening and refinement and a cache-aware hash table to
limit memory consumption and enhance locality. Mt-KaHIP
has better partitioning quality and less memory overhead than
Mt-Metis. However, Mt-Metis is faster than Mt-KaHIP [116].

Fig. 5: Multilevel graph partitioning. The gray-colored ver-
tices are formed by applying a coarsening phase, which
contains groups of vertices. After initial partitioning is done,
coarsening is performed to get a partitioned graph.

3) Offline distributed vertex partitioning

The input graph is loaded into different machines, then
various optimization techniques are applied to improve the
partitioning quality. Most of the distributed partitioning apply
the label propagation method [118]. This method assigns k
labels to represent partitions. First, each vertex chooses a
random label and sends its label to neighbors. Then, each
vertex ranks the labels based on neighbors’ labels, choosing
the label with the highest rank for itself, and sending it to

8 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE ACCESS

its neighbors again. These steps are iterated until the label
of vertices ceases modifying and the algorithm converges.
ParMETIS [119], PT-Scotch [120], KaPPa [121], JOSTLE
[122], JA-BE-JA [123], Blp [124], BS [125], XTRAPULP
[126], and Spinner [96] are examples of offline distributed
vertex partitioning.

ParMETIS [119] is MPI-based parallel partitioning that
implements several methods for partitioning unstructured
graphs and computing sparse matrices fill-reducing order-
ings. It adopts the popular multilevel partitioning METIS
[41] by including routines explicitly designed for parallel
computations and large-scale numerical simulations. PT-
Scotch [120] extends SCOTCH to parallelize the nested
dissection method to compute efficient ordering of very
large graphs. Unlike ParMETIS, PT-Scotch does not have a
limit on the number of processors. PT-Scotch outperforms
ParMETIS in terms of graph ordering quality. KaPPa is a
parallel match-based multilevel graph partitioning. It uses
either scotch or pMetis [133] for initial partitioning and
FM for refinement. JOSTLE [122] uses the MPI and single
program multiple data paradigms to parallelize multilevel
graph partitioning by enhancing multiphase mesh partition-
ing, heterogeneous mapping, and partitioning to improve
subdomain shape. ParHIP [127] adopts the label propaga-
tion clustering algorithm for multilevel graph partitioning
phases of coarsening and refinement. First, it computes the
cluster of a graph via size-constrained label propagation.
The clustering is shrunk by replacing each cluster with a
single node, and the process is continued recursively until
the graph is small enough to compute a graph hierarchy.
Then it uses a coarse-grained distributed memory parallel
evolutionary algorithm to perform partitioning. ParHIP has
achieved a higher partitioning quality and scalable than either
ParMetis or PT-Scotch. However, Multilevel-based partitions
can only scale to a few hundred processors [134]. JA-BE-
JA [123] considers a partial view of the graph information
and uses Simulated Annealing optimization techniques to
avoid becoming terminated in local optima. Each vertex is
a processing unit, contains information of its neighboring
vertices and a few subsets of random vertices. Initially, every
vertex chooses a random partition. Through time, vertices
swap their partition to improve a locality value based on the
number of neighbors they have in the same partition. Blp
[124] partitions large-scale graphs based on label propagation
by maximizing edge locality, the total of edges that are
allocated to a similar shard of the partition. BS [125] uses
a scatter-gather local search strategy, the simulated annealing
techniques, and the Bulk Synchronous Parallel computation
model. XTRAPULP [126] extends PULP [135] which is
multiple objective and constraint partitioning based on label
propagation to improve partitioning quality with minimal
computational time. Spinner [96] exploits label propagation
algorithm (LPA) and vertex-centric programming model. It
executes on top of Giraph and exploits a recursive node
migration approach using LPA to deal with scalability and
changing partitions. Comparison of distributed partitioning

is described in Table 3.

4) Offline single machine edge partitioning
Initially, the input graph is loaded into single machine mem-
ory. Then, the partitioners get complete information of the
graph and evenly assign edges to the partition via structure-
aware of vertices relationship. Offline single machine edge
partitioning include, SBVCut [136], SGVCut [128], and NE
[49]. SBVCut [136] works to get a structurally balanced
cut. First, it identifies a set of balanced vertices that can
be exploited effectively bisect a direct graph. The graph is
then further divided by an iterative application of structurally
balanced cut to get the graph’s hierarchical partitioning.
SGVCut [128] performs a workload-aware block-based par-
titioning strategy. First, it groups edges into blocks based on
their connectivity scores to different predefined seeds. Next,
if the blocks are too large, it splits the blocks by considering
connectivity values. Finally, it merges all these blocks into
balanced partitions.

Fig. 6: Edge partitioning by Expansion. The broken line
edges are unallocated, and the solid line edges are allocated.
Initially, vertices v1 and v2 are in boundary sets. Therefore,
v1 is selected to be included in a core set because v1 has
fewer external neighbors than v2. Then, edge allocation is
performed. This step is continued until all edges are allo-
cated.

NE [49] is the state-of-the-art edge partitioning algorithm
which partitions based on neighborhood expansion heuristics
with two stages, edge expansion and edge allocation as de-
picted in Fig. 6. First, one edge set is generated from the given
graph then that edge set is allocated to the partitions during
the edge allocation stage. In NE algorithm, partitioning is
performed in iterative manner. To build partition ki, first,
NE establishes the core C and boundary B sets. The B
begins to expand, and then the relevant vertices are selected
as participants in C. A seed vertex is chosen before the
expansion. The seed vertices are placed inC. All neighboring
vertices of each seed vertex in ki are placed in a boundary set
Bi. Edges that link vertices between or within C and Bi are
assigned to the current partition ki. In the expansion step, the
vertex form Bi with the external degree dext and the fewest
neighbors who are neither inBi nor in C is chosen. Then, the
vertex was relocated from Bi to C, and the external degree
for each vertex v in Bi was calculated. Finally, NE allocates
edges between v and vertices in Bi and C to the current
partition ki and removes the edges from the graph. The vertex
inBi with the lowest dext is then determined and moved toC
using the following expansion phase. The remaining edges of
a partition will overflow into the next partition if the partition

VOLUME 4, 2016 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE ACCESS

TABLE 3: Summary of offline approach graph partitioning

Algorithms Partitioning
methods Years No.of Times Cited

(as of 20/09/2021)
Programming
models Strategies Multi

Constriant Scalability

Mt-Metis [116] OSMSMVP 2013 196 Shared Multilevel Matching No Not scalable
Mt-KaHIP [117] OSMSMVP 2020 32 Shared Multilevel Parallel label propagation No Not scalable
ParMetis [119] ODVP 1997 523 Distributed multilevel Matching No Limited

PT-Scotch [120] ODVP 2008 496 Distributed multilevel Nested dissection No Limited
JA-BE-JA [123] ODVP 2013 120 VC Label Exchange Yes Scalable

Blp [124] ODVP 2013 219 VC Label propagation Yes Limited
XTRAPULP [126] ODVP 2017 63 VC Label propagation Yes Scalable

ParHIP [127] ODVP 2017 146 Multilevel Label propagation No Limited
Spinner [96] ODVP 2017 97 VC Label propagation No Scalable

SGVcut [128] OSMEP 2017 4 Random walks Local access pattern Yes Not scalable
NE [49] OSMEP 2017 42 Neighborhood Expansion Expansion Boundary vertices Yes Not scalable

JA-BE-JA-VC [129] ODEP 2014 58 VC Label Exchange Yes Scalable
Dfep [130] ODEP 2015 22 VC Currency distribution No Limited
Sheep [131] ODEP 2015 61 MapReduce Elimination tree Yes Scalable

Distributed NE [132] ODEP 2019 24 Neighborhood Expansion Parallel Expansion No Scalable

reaches its capacity limit. When the partition is complete, all
of the edges in the graph will be eliminated, and the algorithm
will begin again at the seed vertex. The method comes to a
halt once the entire graph has been partitioned.

5) Offline distributed edge partitioning
All edges of a graph are resigned in different machines
and it employ global placement heuristics to optimize edge
allocation. Sheep [131], JA-BE-JA-VC [129], Dfep [130],
dSPAC+X [137], and DNE [132] are examples of offline
distributed edge partitioning. Sheep [131] converts the graph
near to a smaller elimination tree using a distributed MapRe-
duce operation. It sorts the vertices, reduces the input graph
into an elimination tree, and partitions the elimination tree.
Finally, translates the partitioned tree into edge partition. JA-
BE-JA-VC [129] randomly assigns the edges to the partitions
and applies edge coloring. Then, vertices perform edge-color
exchange to reduce the vertex cut. It uses simulated annealing
to improve the partitioning quality iteratively. dSPAC+X is
a scalable distributed edge partitioning via split and con-
nect graph construction method. First, the input graph G
is changed to a hypergraph (Hg) via the split and connect
method, and then the Hg is partitioned via vertex partitioning.
dSPAC+X partitions billions of edges by integrating parallel
vertex partitionings like ParMETIS [119] and ParHIP [127].
DNE [132] is a distributed version of NE [49] and introduces
a parallel expansion heuristic. It divides edges into disjoint
sets and minimizes the number of replicated vertices. Dfep
[130] assigns random vertices and an equal amount of funds
to each partition. In each round, each partition makes an offer
to obtain an edge based on its neighbors vertices.

B. ONLINE APPROACH
The offline approach loads the complete graph in memory
before it begins partitioning. This loaded graph in memory
helps it quickly gather the global graph structure to solve
the optimization problem. Thus, it has a higher partition-
ing quality. However, it does not support large-scale graph
partitioning. This issue motivated the design of an online
approach to scalable graph partitioning. The online approach

is also known as stream approach. The vertices with edge
sets arrive in a pipeline fashion to a partitioner as shown
in Fig. 7. The online approach performs partitioning based
on partial view graph data and needs to save a partitioned
state for further decisions. This state is crucial for the online
partitioners to assign the incoming edges to the appropriate
partitions. However, once edges or vertices are allocated, they
will never be reassigned again. Because the edges does not
need to be retained in memory entirely at any time, the online
approach allows graphs to be partitioned with minimum
memory overhead. Therefore, lower capacity workstations
can be utilized to partition massive graphs, which reduces
the monetary expense of graph partitioning. However, in
the beginning, the online approach does not have enough
partition state to allocate the incoming edges, but over time,
it accumulates the partition state. Early edges or vertices in
the stream are allocated to partitions with little partitioning
state available, leading to poor quality of such allocations.
Therefore, its partitioning quality is worse than the offline
approach. However, it supports big graph partitioning. Fur-
thermore, the graph data may reach the partitioner either in
Random, DFS (Depth First Search), or BFS (Breadth First
Search) orders. These arrival orders affect the performance
of the partitioning methods [65].

Fig. 7: Vertices with edge sets arrive online (one edge at a
time), and then target partition is determined after each edge
arrives.

10 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE ACCESS

1) Online vertex partitioning
When vertices with edge sets arrive in stream fashion, a
partitioner chooses one of the k partitions to allocate the
vertices. The aim of the partitioner is to discover a balanced
partitioning that close to optimal as possible with as little
computation. An example of online vertex partitioning in-
cludes Hashing, LDG [43], Fennel [138], FG [42], and Akin
[139]. Hashing is used for both vertex or edge partitioning.
It allocates edges or vertices to the partitions by mapping the
hashing function to edges or vertices. LDG [43] assigns the
incoming vertices line by line to most of its neighborhood
found and controls by load balance factor. Fennel [138]
extends the idea of LDG to formulate graph partitioning
problem as modularity maximization in streaming settings,
and it relaxes hard cardinality constraints into an element that
accounts for the cost of edges cut and the sizes of individual
clusters. It assigns incoming vertices to the partition which
holds the highest neighborhood and a minimum of none-
neighborhood. FG [42] considers partial restream on the
portion of the graph, applies one pass for the rest of the
portion, and assigns the loaded vertex to the partition that
consists of its neighbor, but it does not reach maximal size.
Akin [139] exploits the similarity vertices to gather struc-
turally related vertices and put them in the same partition,
if possible. It takes the stream of edges and vertices as input.
Vertices are assigned by deterministic hashing during vertex
stream, and edges are assigned by vertices similarity during
edge placement. It constructs a fixed neighbor list sorted
by the degree to access every vertex easily. Nishimura and
Ugander [140] proposed a restreaming partitioning model to
extend existing online vertex partitioning. The restreaming
partitioning model is driven by circumstances in which the
same dataset is consistently streamed, allowing streaming
partitioning algorithms to be transformed into an iterative
approach. reFennel and reLDG are extended versions of Fen-
nel and LDG, respectively, via the restreaming partitioning
model. They retain linear memory bounds as single-pass
online vertex partitioning and present comparable results
with METIS. This model can also support parallelization
without inter-stream communication.

2) Online edge partitioning
The input graph is loaded edge by edge online (one edge at a
time), and each edge is immediately allocated to a partition.
The choice to allocate an edge to a partition is made using
a scoring function that considers graph properties such as
degree and cluster information of a graph, and partition state
(previously allocated edge information). Online edge parti-
tioning has been proposed in a single-pass (e.g. DBH [48],
Grid [46], PDS [45], Greedy [23], HDRF [47], CLDA [141]
and Deter [142], Quasi-streaming [143]), window-based
(e.g. ADWISE [144], RBSEP [145], and WSGP [146]),
restreaming (e.g. 2PS-L [50], 2PS-HDRF [147], and CLUGP
[148])

DBH [48] assigns the incoming edge based on vertices’
degree. It compares the degree of the paired value of edge

vertices and gives a hash value of the vertex with a smaller
degree to the edge. Grid [46] organizes all the partition into
a square matrix. This constraint set for any vertex v is the
group of all the partitions in the row and column of the
partition v hashes. The Grid works for only none prime
numbers of partitions. PDS [45] uses a Perfect Difference
Sets to generate a constraint set and applies for only prime
numbers of partitions. Greedy [23] assigns the incoming
edge by checking the previously allocated partition state and
considering a minimum load balance among each partition.
HDRF [47] (Higher Degree Replicated First) exploits the
advantage of Greedy and considers a degree of vertices.
It assigns the incoming edge based on a maximum HDRF
computing value. CLDA [141] is a hybrid of two edge
partitioning techniques, Greedy and HDRF, and considers a
lower degree edge assignment. The lower and higher degree
edges are partitioned by Greedy and HDRF, respectively. It
has the same replication factor with HDRF but achieves a
better load balance than HDRF. Deter [142] extends the idea
of HDRF by considering both degree and cluster information
into account when assigns an edge to the partition. This
cluster information helps to allocate high dense subgraph
into the same partition to reduce the communication cost.
Quasi-streaming [143] divides incoming edges into batches
of a fixed size (a constant multiple of partitions) and assigns
edges to partitions using a game theory model. All edges in
each batch make up the players in a gaming process. The rea-
sonable strategy in the game is the edge’s partition selection.
The edge partitioning for this batch is completed when the
game process of each batch finds a Nash Equilibrium. Quasi-
streaming reduces memory overhead and achieves a lower
replication factor than online single pass edge partitioning.

Window-based edge partitioning is proposed to overcome
the uninformed stateful problem of state-based single-pass
online edge partitioning by storing some edges or postponing
them in a buffer window. The buffered window helps to
gather enough information of two end vertices of incoming
edge to determine edge allocation. The edges are stored in
the buffer window and used to calculate the score function
depending on the scenario of the algorithms. ADWISE [144]
performs edge partitioning by storing and selecting the best
edge among multiple edge lists in the buffered window.
ADWISE controls window size at run-time and considers
adaptive balance score, degree aware window score, and
clustering score to calculate the score function. It determines
the best edge from the buffered window via the high score
function, assigns it to the best partition, and refills the win-
dow with edges from the edge stream. RBSEP [145] exploits
HDRF by introducing a buffer window, postponing, and reas-
signing edges. If the incoming edge incident vertices neigh-
borhood has not been visited yet, the edge will be stored in
the buffer window and postponed edge allocation. Otherwise,
the edge allocation is made using HDRF procedures. Later,
edges stored in the buffer will be considered for reallocation.
WSGP [146] adapts edge allocation from Greedy and delays
the incoming edge, which does not fit to be assigned in the

VOLUME 4, 2016 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE ACCESS

current iteration to a fixed-bounded buffered window. After
the buffered window has been filled, the edge is popped and
allocated to a partition. The assignment is determined using
the information gained from the edges that have previously
been settled and the ones that are still cached in the buffer
window. ADWISE, RBSEP, WSGP have a lower replication
factor than HDRF, however, they have memory and run-time
overhead.

Mayer et al. [147] proposed a two-phase stream edge par-
titioning model via streaming vertex clustering and streaming
partitioning. A lightweight streaming clustering technique
[149] is used in the initial phase to begin separating vertices
into clusters. In the second phase, the graph is re-streamed,
and the vertex clustering that was done in the first phase is
exploited to achieve a lower replication factor. The model
checks that the edges are pre-partitioned via adjacent ver-
tices in the same cluster or in the cluster mapped to the
same partition during restreaming. If the conditions for pre-
partition are satisfied, the edge is skipped because it has
already been allocated. Otherwise, a score is performed to
allocate the edges. Based on this model, 2PS-HDRF and 2PS-
L are proposed. They used the same clustering algorithm in
the first phase. However, they considered different scoring
functions in the second phase. 2PS-HDRF exploits the same
score function as HDRF. However, 2PS-L considers three
things to calculate the score function: the degree of a vertex,
the cluster of a vertex, and the volume of a vertex. Unlike
the 2PS-HDRF, the 2PS-L calculates score functions for only
two partitions to determine the highest score partition. They
have a lower replication factor and a good runtime than
HDRF. 2PS-HDRF outperforms 2PS-L in terms of replica-
tion factor. However, 2PS-L has a shorter runtime than 2PS-
HDRF. CLUGP [148] is a restreaming edge partitioning con-
sisting of three phases: stream clustering, cluster partitioning,
and partition transformation. The streaming clustering phase
takes advantage of the relationship between clustering and
vertex-cut partitioning to generate fine-grained clusters and
decrease the number of vertex replicas. In this phase, CLUGP
improves the stream clustering via a split operation (when
a cluster’s volume reaches its max, it splits higher degree
vertices to generate a new cluster). The cluster partition phase
converts the clusters to partitions by considering balancing
and edge cutting as a cost function. This problem is solved
using game theory. Finally, it combines the output of the two
phases to map vertex to partition in the partition transforma-
tion phase to edge partitioning. CLUGP outperforms online
single pass partitioning replication factor and run-time in web
graphs [148].

3) Online hybrid partitioning
It targets reducing the cuts of low-degree vertices. First, it
distinguishes low-degree and high-degree vertices. Then, it
applies various techniques for the lower-degree and high-
degree vertices to get optimal partitioning quality. Hybrid-
Cut [22], Ginger [22], and HybridCutPlus [52] are examples
of online hybrid partitioning. Hybrid-Cut differentiates the

vertices as the lower and higher degree based on the user-
defined threshold. Then, the vertex partitioning and edge
partitioning are applied for the lower and higher degree
vertices, respectively. The lower degree vertices are evenly
assigned vertices along with in-edges to partition by hashing
their target vertices. And for the higher degree vertices, it dis-
tributes all in-edges by hashing their source vertices. Ginger
differentiates the lower and higher degree vertices similar to
Hybrid-Cut. Then, the lower degree vertices are partitioned
like Hybrid-Cut. However, for the higher-degree vertices, it
employs a Fennel-like heuristic to minimize the replication
factor by allocating the vertex and its in-edges to the partition
that minimizes the expected replication. Unlike Fennel [138],
Ginger includes both the size of edges and vertices into its
objective function. HybridCutPus uses Hybrid-Cut, if one
vertex of an edge is the higher degree and another vertex
is the lower degree; otherwise, it performs similar to Grid
partitioner [46]. Table 4 describes the comparison of online
partitioning.

C. OFFSTREAM APPOACH
OffStream partitioning approach was proposed by hybriding
the offline and stream approaches. It Overcome the gap
between pure in-memory and pure streaming algorithms.
The main idea is that if a graph is too large to partition in
memory, the algorithm instead reads only some input graph
scale to memory, runs a good partitioning method for the
offline and stream parts. OffStreamNG [53], OffStreamNH
[54], and HEP [55] are examples of Offstream edge parti-
tioning. Initially, OffStreamNG and OffStreamNH randomly
split edge set in two parts; then, it applies online and stream
edge partitioners. They transfer stateful partition state from
the offline to stream part to reduce random edge allocation.
OffstreamNG uses NE [49] and Greedy [46] heuristic for
the offline and stream components with minor modifications
of both algorithms, respectively. OffStreamNH uses NE and
HDRF [47] for the offline and stream parts, respectively.
HEP reduce its memory overhead by splitting the edge set
of the graph into two, low-degree and high-degree vertices.
The low-degree vertices is partitioned by a novel in memory
NE++ algorithm, while the other sub-set of higher-degree is
partitioned by HDRF [47].

D. DYNAMIC APPROACH
In the recent big graph era, graphs are inherently dynamic.
The graphs’ topology is dynamically changed because some
vertices and edges may be removed or added from the graph
over time [150], [151]. As these graphs’ topology evolves,
the partitioning quality of partitioners would be constantly
degraded due to unbalanced load distribution in each parti-
tion and communication overhead. Therefore, the dynamic
approach is proposed to overcome this challenge.

1) Dynamic vertex partitioning
Dynamic vertex partitioning regulates the communications
and load of computing nodes during execution. This infor-

12 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE ACCESS

TABLE 4: Summary of online graph partitioning algorithms.

Algorithms Partitioning
Methods Years Cited

(as of 20/09/2022) Strategies State Time
Complexity

Space
Complexity

LDG [43] VP 2012 466 Neighbors Vertices and partitions O(kn+m) O(n)
Fennel [138] VP 2014 346 Neighbor/Non neighbor Vertices and partitions O(kn+m) O(n)
Akin [139] VP 2018 18 Vertices similarity Vertices, degree and partitions - -

FG [42] VP 2014 10 Partial stream Vertices and partitions - O(n)
Grid [46] EP 2013 99 Hash Vertices, and partitions O(m) O(1)

Greedy [23] EP 2012 2160 End vertices Vertices and partitions O(km) O(n ∗ k)
DBH [48] EP 2014 98 Degree, hash Vertices, degree and partitions O(m) O(n)

HDRF [47] EP 2015 121 End vertices, degree Vertices, degree and partitions O(km) O(n ∗ k)
ADWISE [144] EP 2018 35 End vertices, degree, window Vertices, degree and partitions,cluster information O(km) O(n ∗ k + w)

2PS-HDRF [147] EP 2022 4 End vertices, degree Vertices, degree and partitions, cluster information O(km) O(n ∗ k)
2PS-L [50] EP 2022 - End vertices, degree Vertices, degree and two partitions, cluster information O(m) O(n ∗ k)

CLUGP [148] EP 2022 - End vertices, degree Vertices, degree and cluster information O(m) O(n)

mation guides the selection of vertices to migrate among
computing nodes. The main differences among dynamic
vertex partitioning are how to choose vertices for migration,
selecting target partition, and how to exchange vertices.
xDGP [56], X-Pregel [57], Mizan [58], GPS [29], and LogGP
[152] graph processing systems integrate their own dynamic
vertex partitioning. xDGP uses adaptive iterative partitioning,
which performs an iterative vertex migration, relying only
on local information. At every iteration, after initial parti-
tioning, each vertex will decide whether to remain in the
present partition or migrate to other partitions, which have
the highest number of neighbor vertices to minimize edge
cut. GPS uses Large Adjacency-List Partitioning (LALP). To
dynamic repartition the graph, it considers only external com-
munication of vertices. Migrations of vertices are performed
from vertex v, at worker wi to new worker wj, if v has
more incoming/outgoing message from wj than any other
workers. X-Pregel uses dynamic repartition by considering
both internal and external communications of vertices. It pro-
posed two options before migrating vertices to each worker,
sharing and without sharing adjacent lists of the vertices to
the workers. Mizan uses a migration planner to find the most
substantial cause of workload imbalance based on three met-
rics, an outgoing message, incoming message, and response
time. Each machine computes the correlation between each
metric and selects the factor with the highest correlation as
the objective factor for moving vertices. LogGP introduces
a log-based graph partitioning that records, analyzes, and
reuses the previous partition and calculates statistical infor-
mation to improve partitioning quality. It uses hypergraph
repartitioning and superstep repartitioning. Hermes [153]
was developed as a fork for Neo4j [25] graph database.
Hermes uses a multi-level partitioning method like Metis
[41] to partition the graph across numerous servers. Metis
was designed for offline; however, Hermes has introduced
the lightweight repartitioner, which maintains high-quality
partitions while adapting to graph changes. The lightweight
repartitioner algorithm tries to improve an existing partition-
ing by reducing edge-cuts while keeping divisions nearly
balanced. KGGGP [154] is a dynamic vertex partitioning that
can be easily implemented into a multilevel structure with
some minor adjustments to the fixed vertices at the start. To
begin, an extra restriction is imposed during the coarsening
step, preventing fixed vertices from belonging to distinct

portions from being matched together, whereas they can be
directly matched with free vertices.

2) Dynamic edge partitioning
DynamicDFEP [155], GrapH [156], and GraphSteal [157]
are an example of dynamic edge partitioning. DynamicDFEP
leverages Dfep [130] algorithm to make initial partitioning
and introduces three update strategies, a complete parti-
tioning method, partial partitioning method, and unit-based
insertion. It updates the partition of a large graph when new
vertices and edges are included or removed. GrapH uses
H-adapt strategies to migrate a set of bag-of edges after
GAS iteration. It selects two arbitrary partitions after each
superstep and migrates nominee edges between them. To
avoid inconsistency, it exploits locking techniques on the
vertices adjacent nominee edges. GraphSteal is a dynamic
edge partitioner that dynamically re-partition graph based on
the job’s runtime characteristics. It migrates edges from slow
nodes to fast nodes to avoid computational imbalance in the
cluster.

IV. COMPUTATIONAL MODELS OF GRAPH COMPUTING
SYSTEMS
We classify the computational models of existing graph com-
puting systems into two general categories; computational
models for graph processing and graph database systems.
Both platforms have used different computational models to
process graph analytic on large-scale graphs. The computa-
tional models of GPS and graph databases are discussed in
this section.

A. COMPUTATIONAL MODELS OF GRAPH
PROCESSING SYSTEMS
The graph processing systems’ design explores a new model
to compute large-scale graphs efficiently due to the explosive
graphs size and its inherent complex structure of graphs.
The principal computational models of GPS include the
programming models, communication models, and execution
models, and graph partitioning methods.

1) Programming models
Programming models are a higher-level programming inter-
face that users quickly write graph applications. They provide
a set of methods that allows users to read and modify their

VOLUME 4, 2016 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE ACCESS

graph data. Therefore, users can focus on their algorithms’
logic and not bother about communication patterns, data rep-
resentation, and the underlying architecture of the computing
system. Algorithms for graph processing usually require a
sequence of iterative operations. Hence, several program-
ming models are proposed to improve iterative computa-
tion. The programming models of GPS include MapReduce
[158], Vertex-centric [19], Gather-Apply-Scatter [23], and
Subgraph-centric [84].

a: MapReduce programming model

Jeffrey and Sanjay [158] proposed the MapReduce (MR)
programming model. It is a distributed programming frame-
work for large-scale data computing on commodity clusters.
MR has two components, Map and Reduce functions. Both
Map and Reduce functions are written by the users. The
Map function accepts a batch of data and changes it into
another intermediate data called key-value pairs. The Reduce
function gets the Map function output as input and com-
bines them to form possibly smaller key-value pairs. Apache
Hadoop [159] implements the MR for the distributed analysis
of large-scale data across clusters. Many real-world tasks
are represented in this model, as well as graph algorithms.
However, the MR paradigm can not efficiently process the
graph data. Because graphs have poor locality of memory
access as well as perform insignificant work per vertex.
Hence, the vertex-centric programming model is proposed by
[19].

b: Vertex-centric programming model

The vertex-centric (VC) programming model is also named
as Think-Like-A-Vertex (TLAV). It is the most mature model
for large-scale GPS that users express computational tasks
from the point of a single vertex. Each vertex consists of,
unique id, its local state, its outgoing edges, and optional
vertex and edge value. The computation of the VC model is
represented as an order of supersteps. In each superstep, ver-
tices can be active or inactive, and messages are exchanged
among vertices synchronously. The VC model exploits the
vertex partitioning method to compute large-scale graphs
[19].

c: Gather-Apply-Scatter programming model

PowerGraph [23] introduced the Gather-Apply-Scatter
(GAS) programming model and applied edge partitioning to
avoid the imbalanced workload distribution when using the
VC programming model on power-law graphs. To eliminate
the influence of degree in vertex program, the GAS pro-
gramming model decomposes the vertex program into three
stages, Gather, Apply and Scatter. Data about adjacent edges
and vertices are collected using a derived sum over vertex
neighborhood in the Gather stage. In the Apply stage, the
accumulated sum is updated on the central vertex. Finally,
in the Scatter stage, the adjacent edges’ values are updated
by the central vertex’s new value.

d: Subgraph-centric programming model
The above two models, VC and GAS, operate on the scope of
one vertex computation. This characteristic brings simplicity
and scalability. However, since these models work by single
hops in iterations called supersteps, sometimes it may take
time to communicate with the targeted node. Moreover,
communication comes with the cost of network messaging,
and if there are many big messages to exchange, it may
become problematic. Therefore, the Subgraph-centric (SC)
[84] model is proposed to address communication latency
issues by offering a scope of subgraph computation. Instead
of storing different vertices on each partition, it suggests
keeping their subgraphs.

2) Communication models
During graph computation, the vertices send messages
through edges to their neighbors. Therefore, plenty of mes-
sages are exchanged among partitions of subgraphs for co-
ordination and data synchronization. Communication models
play a critical role in coordinating the data transfer among the
cluster of computing machines. The communication models
can be classified as message-passing, shared memory, and
dataflow based on how data is transferred.

a: Message passing model
In message passing (MP) model information is dispatched
from one vertex program to another using a message. The
message has local vertex data and Id of the target vertex.
In MP model, the graph entities have their own local and
non-local states. These states are partitioned and distributed
across different workers. These workers have read-only ac-
cess to the local state and can not access and modify other
workers’ states. The update is performed by sending and
receiving messages explicitly or implicitly within the graph
entities. Message passing interface is commonly used in GPS
[19]–[23].

b: Shared memory model
Vertex data is exposed as shared variables in shared memory
(SM), which can be read or updated directly by other vertex
programs. SM eliminates the additional memory overhead
caused by messages and eliminates the need for employees
to perform intermediate processing. Communication through
the SM model allows tasks in different worker machines to
communicate by mutating a shared state. The framework that
employs this model uses lock or semaphore to handle race
conditions and data consistency [160].

c: Dataflow model
A distributed application is represented by a Distributed
Acyclic Graph (DAG) of operations in dataflow (DF) model,
which is a generalization of the MR model. The DF model
[161] is a DAG that consists of operators, sources, and
target. The data sources, targets, and intermediate data sets
that pass through operators. Vertices represent data-parallel

14 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE ACCESS

tasks, whereas edges represent data flowing from one task to
another in the DAG. In DF model [52], the data flows through
the systems towards the next computation phase. The frame-
work deploys this model that provides explicitly or automatic
caching mechanisms and integrate general-purpose operators
(e.g., map, reduce, join, filter) to load and transform graphs.

3) Execution models
In GPS, distributed coordination of graph entity is an essen-
tial task to perform iterative computation. Execution models
deal with how a specific implementation of a program model
leads to convergence. There are three types of execution
models in the existing GPS: synchronous, asynchronous, and
hybrid.

a: Synchronous execution model
Synchronous (Sync) [19] execution refers to concurrent
workers that process their task one iteration followed by
other iteration based on global barriers as shown in Fig.8.
Initially, a graph computation has an input. Then, the graph is
initialized and followed by a series of supersteps separated by
global barriers until the overall graph computation terminates
with the desired output. At the end of each superstep i,
changes to the vertex and edge data are committed and visible
in the next superstep i+ 1. In each superstep, active vertices
are executed. Regardless of the number of machines, the
Sync execution model assures deterministic execution. The
frequent barriers that reduce the efficiency distributed execu-
tion and algorithm convergence [23]. Most single machine or
distributed GPS use the Sync execution model.

Fig. 8: Execution flow of Sync model. Within each iteration,
all vertices in the input graph are performed in a fixed order.

b: Asynchronous execution model
In the asynchronous (Async) execution model, computation
is performed immediately after its current iteration. As shown
in Fig. 9, it does not use any global barriers. Synchronization
can be applied either through shared memory or through
local barriers and distributed coordination. In the Async
execution model, computing engines execute active vertices
as processors and allocate network resources immediately.
During computation, changes to the edge and vertex data
are automatically committed to the graph and accessible to
subsequent computation on neighboring vertices. The Async
execution model can make better use of resources while
increasing the algorithm convergence rate.

Fig. 9: Execution flow of Async model. As quickly as pos-
sible, the update of each vertex is accessible to neighboring
vertices.

c: Hybrid execution model

The hybrid execution model (Hsync) is a hybrid of the Sync
and Async models that changes from the Sync and Async
mode based on the current situation vice versa as shown
in Fig. 10. Recently, several GPS have used this model to
overcome the shortcoming of existing systems. PowerSwitch
[162] adapts a Hsync that allows dynamic switching from
the Async to Sync model to gain performance. PowerSwitch
captures execution statistics such as active vertices, through-
put and convergence speed on a continuous basis and uses
online sampling, offline profiling, and a set of algorithms
to reliably forecast ideal mode transition points. GoFFish
[163] and Giraph++ [84] also uses hybrid execution model.
These frameworks apply the Async execution model for local
vertices and the Sync execution model for remote vertices.

Fig. 10: Execution flow of Hsync model. Based on a statisti-
cal analysis of algorithms, the Hsync switches from Sync to
Asysn model vice versal.

B. COMPUTATIONAL MODELS OF GRAPH DATABASE
SYSTEMS

Graph databases design mainly focus on general architecture,
data model and organization, data distribution, and transac-
tion queries. This sub-section describes the computational
model of graph databases, including the data models, parti-
tioning techniques, and query languages.

VOLUME 4, 2016 15

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE ACCESS

1) Data models
Data models are essential to represent information and
knowledge, depend on application areas and user require-
ments. The data models of graph database can be classified
as graph and nongraph data.

a: Graph data models
They are utilized to model the graph entity of vertices (nodes)
and edges (relationships). The graph data models include a
simple graph, hypergraph, property graph model (PGM), and
RDF.

Simple graph model is used to represent the group of ver-
tices and edges that form the graph and is frequently applied
in graph processing platform [19]. However, it doesn’t seem
applicable in graph databases. Hypergraph model is extends
version of the simple graph model that an edge (called a
hyperedge) can connect multiple nodes. It can be applied
when data sets contain a plenty number of many-to-many
relationships [25]. PGM is a broadened version of the simple
graph model that contains the property of nodes and relation-
ships. The PGM has three components, nodes, relationships,
and properties (data stored on the relationships or nodes)
[25], [37]. Nodes represent real-world entities. They can store
any number of attributes. Relationships represent the relation
type of the start and end nodes, with distinct properties just
like nodes. A property is a key-value pair that key identifies
a property name, and value is actual data. The PGM is the
most popular data model for graph database [25]. Fig. 11
illustrates property graph model. RDF [164] is a framework

Fig. 11: An example of PGM representation of author and
journal relationships.

for modeling information on the Web. The RDF is also named
as triples store. It can be intuitively considered as a semantic
network. The RDF contains three elements to represent data,
subject (resource), predicate (attribute), and object (attribute
value). Each element expresses a logical relationship between
the subjects and objects. The RDF triples can be represented
the subjects and objects as nodes, and the predicates are
denoted as edges. Fig. 12 illustrates an example of the RDF
model. For more comprehensive reviews on RDF, readers can
refer to [76].

b: Nongraph data models
There exist data models that are not specific to graphs;
however, they are used in various systems to design and store

Fig. 12: An example of RDF data model representation
of author and journal relationships. Author, publishes and
journal as the subjects and age, name, since, from, to and rank
as the predicates and "27", "Tedy", "2019", "2", and "bigdata"
as the objects.

graphs. Those data models [165] include key-value, wide-
column, and document stores. Key-value-store contains key-
value pairs with unique keys. It helps easy partitioning and
efficient querying data with high scalability. In the key-value-
store, vertices and edges are stored as values and are indexed
by unique keys. Wide-column-store is also called column-
family stores [166] that presents data in tabular form of rows
and columns. This storage combines the nature of relational
tables and key-value pairs. Each row can have an arbitrary
number of columns, and every column consists of key-value
pairs. Each vertex is stored in a row and is indexed by a
unique key. The vertex value, labels, properties, and adjacent
edges are stored in row columns (cells). Document-store
[167] extends the key-value-store that encodes the values via
semi-structured formats such as XML or JSON documents.
The values have a flexible schema, which consists of an
attribute with one or more values. Document-store queries
entire document by key and also fetches only some part of the
documents. The vertices and edges are encoded in documents
and linked via document Ids.

2) Partitioning techniques

Graph partitioning and sharding are the essential data parti-
tioning techniques for large-scale data. The former and the
latter are used to partition graphs and tabular data, respec-
tively. As we have seen in section II, graph partitioning is
utilized for graph processing and GDBS to divide large-scale
graphs into subgraphs. Some parts of these subgraphs are
replicated before it starts processing.

Sharding involves splitting large-scale data into many par-
titions that are distributed across several database instances
[168]. Its primary purpose is to speed up query processing
and extend the system as needed. The sharding process
comprises a database server that handles the burden of the re-
quests that are delivered to it. The database server must have
a user id, and each database is served by one server. Unlike
graph partitioning, sharding does not use a requirement for
load balance and splits rows or columns of a large database
table into multiple smaller tables without replication [169].
The server can use lookup, hash, and rang sharding strategies.
The sharding is commonly practiced for relational database

16 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE ACCESS

systems [170] and NoSQL [171] databases; however, it is
rarely applied to graph databases [172].

3) Graph query languages
Graph query languages are designed for the manipulation
of GDBS. The most widely used graph query languages
for graph databases include, SPARQL [173], Cypher [174],
Gremlin [175] and GraphQL [176]. Each query language has
its functionality to navigate the data. SPARQL and Cypher
are designed to operate for RDF graphs and property graphs,
respectively. Gremlin and GraphQL are designed towards
graph traversal and APIs for fulfilling those queries with
existing data. Some graph databases can support two or more
than two query languages.

SPARQL [173] is a standard declarative query language
recommended by the W3C4 for querying RDF. SPARQL
supports all of the complicated graph patterns. Triple patterns
of RFD (the subject, object, or predicate) are the core build-
ing blocks of SPARQL queries. Both SPARQL and Cypher
contain graph pattern matching styles that can be composed
via SQL-ish keywords.

Cypher [174] is a high-level, well-established declarative
query language for the PGM, initially invented and imple-
mented as part of the Neo4j graph database project. It gets a
property graph as input and displays a table as output. Cypher
is designed similar to SQL to make the transition between the
two languages as smooth as possible. For many functions,
it uses the same clause syntax structure and implements the
existing semantics. It includes new features to the language
to support multiple graphs and query composition. Many
commercial products like Memgraph, HANA Graph, Redis
Graph, and Agens Graph have recently implemented Cypher
as a core query language. Cypher is now being defined as
a fully specified standard under the auspices of the open-
Cypher5, which can be independently implemented utilizing
various architectures and storage and query optimization
techniques.

Gremlin [175] is a low-level language that offers im-
perative and declarative query language within the same
framework. TinkerPop6 project designed, and distributed this
Gremlin query language. It is more imperative in nature
and focuses on graph traversal instead of pattern matching.
Gremlin supports pattern matching features in a declarative
pattern style. These two features help to execute the query on
graph database and graph processing system.

GraphQL7 [176] is an open-source graph query language
for application programming interfaces and is initially cre-
ated by Facebook. GraphQL is more popular as an alternative
to REST-based interfaces, which have influenced the Web-
API scenario by giving the decision to clients instead of
servers. Like Germlin, GraphQL supports imperative and

4https://www.w3.org/TR/rdf-sparql-query/.
5https://opencypher.org/Group.
6http://tinkerpop.apache.org/.
7https://graphql.org/.

declarative query processing. For more comprehensive re-
views on graph query languages, readers can refer to [177].

V. TAXONOMY OF GRAPH COMPUTING SYSTEMS
Graph computing systems are developed for processing, and
analyzing large-scale graphs. Based on their graph analytics
nature, the graph computing systems can be classified into
two categories, GPS and graph databases. The various classi-
fication of GPS and graph databases platforms are discussed
in this Section. Fig.13 illustrates the detailed taxonomy of
graph computing systems.

A. GRAPH PROCESSING SYSTEMS
Based on the architecture they are designed, GPS also can be
classified into two, distributed graph (DS) and single machine
graph processing systems [31].

1) Distributed graph processing systems
Distributed GPS are a group of multiple processing nodes and
each node participates during graph computations. They use
various computing model to improve their performance. We
classify these systems into two, MapReduce and NonMapRe-
duce family based on their computing model.

a: MapReduce family systems
MapReduce family systems are used MR model with a minor
modification of the stage of the MR model. Hadoop [159]
uses MR model to enable users to easily build scalable
parallel algorithms and processes large-scale data on clusters
machines. However, Hadoop does not give direct support for
iterative data analysis tasks. To solve this, several MapRe-
duce family graph analysing systems have been proposed
with modification of of MR model to improve the efficiency.
These systems include pegasus [178], HaLoop [179], Twister
[180], iMapReduce [181], and Surfer [182]. Pegasus [178]
implements GIM-V(Generalized Iterated Matrix-Vector mul-
tiplication) as a two-stage MapReduce algorithm. It repre-
sents the input graph as two files, vertices as vector and edges
as matrix. To operate, it provides three function combine2(),
combineAll(), and assign(). In the first stage, the map phase
converts the input edges to set destination vertex as the key,
and the reduce phase performs combine2() to multiplicate the
matrix element with the vector element. The second stage
accepts the output of the first stage. In this second stage,
combineAll() and assign() perform summation of partial mul-
tiplication and write the new result, respectively. HaLoop
[179] is a modified variant of the MapReduce framework that
supports an iterative computation. It uses task scheduler loop-
aware and caching mechanisms to avoid reloading iteration-
invariant data and to reduce communication costs. Twister
[180] extends MapReduce API to support an iterative com-
putation. It provides broadcast and scatters data transfers.
Its communication and data transfer are performed through
publish/subscribe messaging. Surfer [182] is designed to han-
dle large-scale graph analytic based on two principal primi-
tives for users: MapReduce and Propagation. In this system,

VOLUME 4, 2016 17

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE ACCESS

MapReduce performs different key-value pair in parallel
while propagation is an iterative computation that transfer
information along the edges from a vertex to its neighbors
in the graph. iMapReduce [181] allows for programmers
to specify the iterative processing with a map and reduce
functions. It explicitly provides model, iterative algorithm,
and the concept of persistence task to accomplish recursive
computation by avoiding frequently destroying, creating,and
scheduling tasks. It also provides to load input data to the
persistence task once and never needs to be shuffled between
the map and reduce the job.

b: NonMapReduce family
MapReduce family GPS are inefficient for the graph pro-
cessing because the efficiency of graph computations de-
pends heavily on inter-processor bandwidth as graph ele-
ments are transferred over the network after each iteration
[19]. To solve this inherent performance degradation, many
nonMapReduce based graph processing system have been
proposed. In 2010, Google has proposed a novel scalable
platform using vertex centric programming model called
Pregel [19]. Recently, many graph processing have been
proposed by extending this framework. The nonMapReduce
family systems can be classified into, Vertex-centric, Gather-
Apply-Scatter, and Subgraph-centric based on the program-
ming model they operated.

Vertex-centric systems (VCS). VCS execute a user-defined
program over the vertices of a graph iteratively. The vertex
program is written from the point of view of a vertex, and
it accepts data from neighboring vertices and incident edges
as input. The VCS include Pregel [19], Giraph [20], HAMA
[21], Pregelix [183], GPS [29], Mizan [58], and Cyclops
[184]. Pregel [19] is a pioneer GPS. It uses the vertex-centric
programming model, bulk synchronization parallel model,
and vertex partitioning method. Giraph8 [20] is an open-
source implementation of Pregel and adds several charac-
teristics beyond the principal Pregel model such as edge-
oriented input, shared aggregator, out-of-core computation
and master computation. HAMA9 [21] is a distributed system
on top of Hadoop for graph computations and massive matrix
computations. It supports three computation engines, BSP,
MapReduce, and Microsoft Dryad [185]. MapReduce is used
for matrix multiplication, BSP and Drayd are used for graph
computation. Pregel+10 [186] supports vertex mirroring and
request-respond paradigm for the reduction of message ex-
change through a network. Mirroring is needed to create
a copy of vertex for the higher degree vertex on a differ-
ent machine. In the request-respond paradigm, each vertex
requests another vertex to send a message. All machine
request from the same target vertex merged together into
one single request. Pregelix11 [183] supports in-memory and
out-of-core workloads. It is an open-source implementation

8https://giraph.apache.org/.
9https://hama.apache.org/.
10http://www.cse.cuhk.edu.hk/pregelplus/.
11http://pregelix.ics.uci.edu/.

on top of the Hyracks (parallel dataflow engine based). It
represents messages and vertices data as a tuple, then ap-
plies join operation for message exchange between vertices.
GPS12 [29] introduces many built-in system optimizations
such as message objects, single canonical vertex, and using
per-worker rather than per-vertex message buffering (which
improves network usage), Large Adjacency List Partitioning
(LALP), and dynamic migration. Mizan13 [58] identifies the
runtime characteristics of the system and provides a dynamic
migration scheme. Cyclops [184] combine the best feature
from other GPS. It takes the BSP from Pregel [19], direct
memory access from Graphlab [187], and distributed activa-
tion from PowerGraph [23]. It uses a distributed immutable
view that permits a vertex alongside read-only access to every
its neighboring vertices and provides read-only replication of
vertices for the edges spanning during a graph cut.

Gather-Apply-Scatter systems (GASS). GASS improve
power-law graph processing by combining the GAS model
with vertex-cut partitioning. GASS systems include Pow-
erGraph [23], PowerLyra [22], GraphA [188], Cube [189],
SympleGraph [190] and Topox [191]. PowerGraph14 is de-
signed to compute large scale power-law graphs. It supports
GAS Programming model, edge partitioning, synchronous
and asynchronous serializable timing. PowerLyra15 extends
the PowerGraph system and introduces a hybrid graph
partition method to reduce replication by separate lower
and higher degree vertices. It uses the GAS programming
model, synchronous execution model. The higher-degree ver-
tex computes as same as PowerGraph. However, the lower-
degree vertex limit from bidirectional flow to unidirectional
computations. GraphA [188] introduced an adaptive and uni-
form graph partitioning algorithm that partitions graphs using
an incremental number of mapping functions. To achieve
fine-grained and low-cost graph storage, GraphA leverages
the Adaptive Radix Tree adjacency list [192]. It uses the
GAS model and synchronous timing. SympleGraph [190] ob-
serves user-defined functions and identifies the loop-carried
dependency. This system enforces the precise semantics by
performing dependency propagation dynamically. Circulant
scheduling and double buffering is proposed to improve
performance. Topox [191] utilizes GAS Model, hybrid-BL
partitioner and topology refactorization (TR). TR transforms
the power-low graph into a further communication efficiency
topology through the fusion and fission method. The fusion
organizes a group of neighboring lower-degree vertices into
a super-vertex while the fission makes splitting a higher-
degree vertex into a group of siblings-vertices. The hybrid-
BL partitions the new topology.

Subgraph-centric systems (SCS). SCS extend the view
of the vertex as specified subgraph. SCS include Giraph++
[84], GoFFish [163], and Blogel [193]. Giraph++ uses SC
programming model to open partitions structure to users and

12http://infolab.stanford.edu/gps/.
13https://github.com/khayyatzy/Mizan.
14https://github.com/jegonzal/PowerGraph.
15https://github.com/realstolz/powerlyra.

18 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE ACCESS

Fig. 13: Taxonomy of graph computing systems.

allows information to flow freely inside the partitions. It
contains two groups of vertices, internal and boundary. Inter-
nal vertices contain vertex value, edge values, and incoming
message; however, boundary vertices have only vertex value.
It is implemented based on Apache Giraph. GoFFish uses SC
programming model with a distributed steady graph storage
for large-scale graphs analytics on commodity clusters, pro-
viding natural flexibility of SM sub-graphs computation. Blo-
gel is a block centric framework via SC programming model.
A block represents to connected subgraph, and message
exchanges occur within the blocks. It uses graph Voronoi
diagram partitioner to create a block.

2) Single-machine graph processing systems

Plenty of distributed GPS have recently been proposed to
support the large-scale graph, such as Pregel, PowerGraph,
etc. However, these systems have suffered from load bal-
ance [194], synchronization overhead [195] and fault toler-
ance overhead [196]. Moreover, the programmers face chal-
lenges to easily use and optimize the graph algorithm in
distributed than single-machine systems. Therefore, single-
machine GPS are introduced to tackle large-scale graphs
by extending multi-core, Solid State Drive (SSD) or Hard
Disk Drive (HDD). The design issue of single-machine graph
processing must consider four rules: (i) ensure the locality of
graph data; (ii) exploit the parallelism of multi-thread CPU;
(iii) minimize the size of disk data transfer and (iv) streamline
the disk Input/Output. We classify the single-machine graph

processing into single-machine shared memory (SMSM) and
single-machine out-of-core (SMOC) systems based on mem-
ory usage.

a: Single-machine shared memory systems
They consist of one processing unit, physical memory, and
one or more CPU cores that share the graph entities across all
the cores. The SMSM with multicore can handle surpassing
terabytes of memory, which can fit graphs alongside tens or
even hundreds of billions of edges [33]. The SMSM include
Grace [32], Ligra [33], Polymer [199], NXgraph [35], and
CGraph [200]. Grace [32] introduces block-oriented com-
putation by separating application logic and execution. It
operates similar to the VC programming model; however, it
executes a block of highly connected vertices at a time. It ap-
plies block-level and vertex level scheduling policies. Ligra16

[33] is a lightweight framework that is applicable for graph
traversal. It provides two routines for mapping vertices and
edges. Polymer [199] adapts non-uniform memory access
(NUMA) architecture by co-locating graphs and computation
inside NUMA-nodes as far as possible. To minimize random
and remote memory access, it uses hierarchical schedul-
ing, edge partitioning and adaptive data structure. NXgraph
[35] offers a destination-sorted sub-shard structure to store
graphs. It splits vertices and edges into intervals and sub-
shards, respectively. Edges in each shard are sorted according
to their destination vertices to ensure graph data access

16https://github.com/jshun/ligra.

VOLUME 4, 2016 19

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE ACCESS

Fig. 14: Out-of-core graph representation in GraphChi. a) A given graph vertices are divide into P intervals and each interval
has a shard, b) Input graph is split into 3 intervals and 3 shards.

locality and enable fine-grained scheduling. CGraph [200]
uses a correlation-aware execution model, together with a
core-subgraph-based scheduling algorithm, and achieves im-
provement on concurrent recursive graph processing (CGP)
jobs. SMSM systems are mainly characterized by simple pro-
gramming and computing models, low hardware overhead,
and limited computing power.

b: Single-machine Out-of-core systems
With the advent of big graph data, the intuition of another ap-
proach is required to store a graph out-of-core in the external
memory, such as SSD and HDD to tackle the challenge of
scalability. The primary consideration for Out-of-core GPS
is that the size of the graphs is larger than the main memory.
However, it can fit the storage size of the HDD or SSD.
However, computing capacity and data exchange bandwidth
of external memory are hard to process large-scale graphs
under acceptable conditions because of random disk access
memory. The SMOC systems include, GraphChi [30], MMap
[202], GridGiraph [31], Mosaic [203], and GraphQ [201].

GraphChi 17 is a pioneer in single machine out-of-core
GPS. It performs preliminary processing on the graph data
before beginning the actual computation. It introduces the
parallel sliding windows (PSW) method, which represents
graph properties to efficient processing from disk. It uses
the VC programming model, PSW (to load data for com-
puting), and selective scheduling to accelerate convergence.
GraphChi divides the graph into several vertex intervals and
keeps each vertex interval’s incoming edges as a shard. Each
shard contains all the input edges of the corresponding vertex
set and sorts them according to the ID of their source vertices.

17http://graphlab.org/projects/graphchi.html.

Fig. 14a depicts graph representation as intervals and shards
in GraphChi. For example, Fig. 14b shows the shard structure
for input graph. The shard (1) saves every incoming edge
of the vertex interval V1, shard (2) stores every incoming
edge of the vertex interval V2, and shard (3) stores every
incoming edge of the vertex interval V3−V6, respectively. As
shown in Fig. 14b, when the vertex set in interval 2 is active
(the green colored vertex), the shard (2) (the green edge list)
is loaded to memory. After the computation is completed,
the result is written to the disk. This step continues until it
reaches convergence. MMap exploits the memory mapping,
which maps the edge list into the virtual memory so that
the edge file on the disk is accessed as the same as file is
loaded in memory. The memory-mapped edge file minimizes
data copy to and from the user-space buffer; thus, improves
performance. Mosaic18 uses Hilbert-order tiles graph rep-
resentation, hybrid computation and execution model. The
hybrid computation model enables the vertex-centric model
computation for the fast processor and edge-centric model
for massively parallel co-processors. The hybrid execution
applies synchronous vertex states update. However, if there
are no changes in the current programming abstraction, it
will use the asynchronous update to help attain scale-up and
scale-out and enabling graph analytic on one trillion edges.
GridGraph19 utilize a 2-level hierarchical method to partition
a graph at the preprocessing and run time phase. During
the preprocessing phase, vertices and edges are divided into
1D-partitioned vertex chunk and 2D-partitioned edge blocks,
respectively. At the run time phase, it uses a dual sliding
window method to partition the graph by stream edges and

18https://github.com/sslab-gatech/mosaic.
19https://github.com/thu-pacman/GridGraph.

20 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE ACCESS

TABLE 5: Summary of graph processing systems.

GPS Architectures Storage Years No.of Times Cited
(as of 20/09/2022)

Programming
Models

Partitioning
Methods

Communication
Models

Execution
Models

Implemented
Languages

Peagsus [178] DS RAM 2009 930 MR VP MP Sync Java
Surfer [182] DS RAM 2010 119 MR VP MP Sync Java

HaLoop [179] DS RAM 2010 1137 MR VP DF Sync Java
Twister [180] DS RAM 2010 1253 MR VP DF Sync Java

iMapReduce [181] DS RAM 2011 307 MR VP DF Async Java
Pregel [19] DS RAM 2010 4783 VC VP MP Sync C++

Apache Hama [21] DS RAM 2016 321 VC VP MP Sync Java
Apache Giraph [20] DS RAM 2011 - VC VP MP Sync Java

GPS [29] DS RAM 2013 694 VC VP MP Sync Java
Mizan [58] DS RAM 2013 386 VC VP MP Sync C++

Pregelix [183] DS RAM 2014 386 VC VP DF Sync Java
Cyclops [184] DS RAM 2014 66 VC VP MP/SM Sync Java
Pregel+ [186] DS RAM 2015 133 VC EP MP Sync C++

PowerGraph [23] DS RAM 2012 2160 GAS EP SM Async,Sync C++
PowerLyra [22] DS RAM 2015 447 GAS HP SM Sync C++

Cube [189] DS RAM 2016 69 GAS EP MP Sync C++
GraphA [188] DS RAM 2017 4 GAS EP MP Sync C++
GrapH [156] DS RAM 2018 25 GAS EP MP Sync Java

L-PowerGraph [197] DS RAM 2020 2 GAS EP MP Sync C++
SympleGraph [190] DS RAM 2020 9 GAS EP SM Sync C++

Topox [191] DS RAM 2020 5 GAS HP SM Sync C++
Giraph++ [84] DS RAM 2013 404 SC VC MP Hsync Java
GoFFish [163] DS RAM 2014 123 SC VP MP Hsync Java

Bloge [193] DS RAM 2014 239 SC VP MP Hsync C++
Grace [198] SMSM RAM 2013 104 VC VP MP Async C++
Ligra [33] SMSM RAM 2013 877 SC VP SM Async C++

Polymer [199] SMSM RAM 2015 219 VC EP SM Sync C++
CGraph [200] SMSM RAM 2018 23 SC EP SM Sync C++
GraphChi [30] SMOC RAM&Disk 2012 1304 VC EP SM Async C++

GridGiraph [31] SMOC RAM&Disk 2015 356 VC EP MP Async C++
GraphQ [201] SMOC RAM&Disk 2015 66 VC VP MP Async Java
MMap [202] SMOC RAM&Disk 2014 59 VC VP SM Sync Java
Mosaic [203] SMOC RAM&Disk 2017 170 Hybrid VP MP Hsync C++

perform vertices update. Table 5 describes the detail compar-
ison of GPS.

B. GRAPH DATABASE SYSTEMS

GDBS are designed to efficiently store, process, and analyze
large-scale graphs based on the principle of database man-
agement systems such as persistent data storage, data consis-
tency, and integrity, logical or physical data independence.
They use various data models to store and retrieve graph
elements, vertices, edges, and properties. The fundamental
element of GDBS are edges (connections) that are treated
as the core component of the model, along with vertices. In
contrast with conventional relational databases, connections
between data are stored in separate tables; therefore, search-
ing for connections require join operations, which takes much
computational time. The GDBS face main challenges due to
the nature of irregular graph computations to achieve low
latency and high throughput of the graph queries to accessing
or modifying a small or a large part of the graph.

Based on the graph storage and processing, graph
databases can be classified as native and nonnative graph
databases. Graph storage refers to the underlying storage
layer of the database that is designed specifically for storing
graph data. It is known as native graph storage. Graph pro-
cessing refers to how the graph databases execute database
operations, including both storage and queries.

1) Native graph databases
Native graph databases implement their own underlying data
structures and indexing for storing and querying graphs.
Native graph databases include Neo4j [37], TigerGraph [26],
AllegroGraph [27], Dgraph [28]. Neo4j is a famous stan-
dalone graph database based on a property graph model
that naively stores nodes (vertices), relationships (edges),
and attributes. It uses pointers to navigate and traverse the
graph, supports transactions operation, and fulfills the ACID
(Atomicity, Consistency, Isolation, Durability) properties. It
is implemented in Java and utilizes Cypher query language
to query graphs. TigerGraph is a commercial, native parallel,
and distributed graph database based on a property graph
model that supports bulk data loading, providing built-in
parallel computation and real-time graph updates. It is written
in C++ programming language and uses GSQL (TigerGraph
Query Language). AllegroGraph is an enterprise, supports a
multi-mode(property graph, Document, and RDF), horizon-
tally distributed graph database. It uses a federation function
to speed up complex queries across highly and knowledge
bases and distributed data sets. It is written in python, Java,
and Lips and uses SPARQL query language. Dgraph is an
open-source and distributed native graph database based on
a property graph model. It provides horizontal scalable, high
availability, low-latency arbitrary depth joins, and crash re-
silience. It is written by Go programming language and uses
GraphQL query language.

VOLUME 4, 2016 21

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE ACCESS

TABLE 6: Summary of GDBS.

GDBS Data models Years Partition methods Query Languages Types Implemented Languages Licenses
AllegroGraph [27] Multi-model 2004 VP SPARQL Nonnative C++ Commercial
BlazeGraph [204] Multi-model 2006 Sharding SPARQL Nonnative Java Open Source
OrientDB [205] Multi-model 2010 Sharding Gremlin Nonnative Java Open source
Stradog [206] Multi-model 2010 No GraphQL Nonnative Java Commercial

ArangoDB [207] Multi-model 2012 No AQL, Gremlin and GraphQL Nonnative C++ Open source
FaunaDB [208] Multi-model 2014 VP GraphQL Nonnative Scala Commercial

Neo4j [37] Property graph 2007 No Cypher Native Java Open source
Dgraph [28] Property graph 2016 VP GraphQL Native Go Open source

JanusGraph [209] Property graph 2017 VP Gremlin Nonnative Java Open Source
TigerGraph [26] Property graph 2017 No GSQL Native C++ Commercial

2) Nonnative graph databases

Nonnative graph databases exploit other database systems
such as relational or NoSQL [165] to store graph data and de-
sign query interfaces to execute graph queries over the back-
end system. Nonnative graph databases include, ArangoDB
[207], OrientDB [205], Janusgraph [209], FaunaDB [208],
Stardog [206], and Blazegraph [204]. ArangoDB is a multi-
model (property graph, Document, and key-value) graph
database system, and it can scale up vertically and hori-
zontally, fulfills the ACID consistency properties, and sup-
ports fault tolerance. It is implemented in C++ and uses
its own query language AQL (ArangoDB Query Language),
and supports the other two query language, Gremlin, and
GraphQl. OrientDB is a multi-model (property graph, Doc-
ument, and key-value), distributed architecture, and trans-
actions graph database. It is implemented in Java and uses
Gremlin for query processing. Janusgraph is an open-source
and a distributed graph database. It can scale graph data
processing for analytics and traversal across a multi-machine
cluster through Hadoop. It is designed based on a property
graph data model and is implemented in Java. It supports
concurrent transaction and batch graph processing. It uses
Gremlin query language as manipulation of the graph data.
FaunaDB is a multi-model (property graph, Document, and
key-value) and serverless graph database in which the cloud
provider dynamically allocates and manages the resource
distribution. It is implemented in Scala and uses GraphQL
query language. Stardog is a multi-model (property graph and
RDF), secure, scalable, and an enterprise graph database and
knowledge graph platform. It combines graph storage and
visualization capability for cost effective and flexible integra-
tion. It is written in Java and uses GraphQL query language.
Blazegraph is a multi-model (Property graph and RDF) and
high-performance graph database. It is implemented in Java
and uses SPARQL query language. Table 6 describes the
comparison of GDBS.

VI. FUTURE CHALLENGES AND RESEARCH
DIRECTIONS
Although researchers have made significant contributions to
graph partitioning and computing systems in the last decade,
there are still many challenges, from the algorithms to the
system perspectives. This section discusses several research
directions in graph partitioning and computing systems.

Scalability: Graph partitioning is an NP-hard problem
to reduce the cuts and maximize the load balance. This
problem and the increased size of graph datasets make the
graph partitioning problem more difficult. This problem is an
open challenge. Research on the scalability of high-quality
parallel graph partitioning is still ongoing. Even on shared-
memory machines, scaling to a large number of threads
remains challenging. In particular, attaining good scalability
and quality on larger distributed memory machines is still a
challenging problem. The stream partitioning is more scal-
able and performs well with minimal resource constraints.
Unlike offline partitioning techniques, streaming partitioning
produces substantially lower quality because such partition-
ers do not view a global graph structure. Thus, improving
the performance of stream partitioning is an open problem.
OffStream partitioning has recently been proposed to trade
off the stream and in-memory edge partitioning by distribut-
ing one edge set in-memory and another edge set in stream.
This partitioning technique can be extended in two ways:
First, this partitioning can be improved by hybridizing in-
memory partitioning with window-based stream partitioning
because OffStream partitioning allocated a memory space
for in-memory partitioning. Therefore, utilizing this allocated
memory to cooperate with window-based edge partitioning
to get more graph knowledge to improve partitioning quality.
Second, OffStream was applied for only edge partitioning;
thus, applying OffStream partitioning to vertex partitioning
is recommended.

Dynamicity: Graphs are in nature dynamic in a way
that vertices or edges may appear or disappear and that
vertices/edges inputs may change time by time. Dynamic
graph partitioning has been proposed to repartition dynamic
graphs. Most existing dynamic partitioners are repartitioning
the graphs based on the vertex partitioning method. However,
many GAS-centric distributed frameworks use edge parti-
tioning models. Therefore, there is a gap in the dynamic
edge partitioning approach, which can be exploited in future
research.

Domain specific: Real-world graphs and graph algorithms
have unique characteristics. General-purpose graph partition-
ers have recently been proposed and integrated into comput-
ing systems to analyze all graph structures and algorithms.
However, these partitioners frequently aim to divide a graph
into pieces of equal sizes and minimize the edges and vertices

22 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE ACCESS

to balance workload and lower synchronization overhead.
For instance, it does not achieve a deserved performance
improvement when computing PageRank and Triangle Count
algorithms in the graph computing system with the same
partitioning strategy. Due to the variability in algorithms’
computation and communication patterns, such criteria do
not always capture the bottleneck variables that affect the
performance of parallel graph algorithms. Therefore, graph
algorithms computation-aware partitioning should be inves-
tigated in the future. In the same manner, real-world graphs
have different topological structures. For instance, web and
social network graphs do not have the same topology struc-
ture. Therefore, instead of designing a general graph parti-
tioning, it could be investigated as a graph structure-aware
partitioning in future research direction.

Adopting machine learning: Recently, many research
works on extending deep learning approaches for graph
data have emerged [210]. The integration of graph neural
networks and federated learning has been applied for graph
classification, node classification, and edge classification
[211]. However, the adoption of these techniques for graph
partitioning has not been investigated. Thus, formulating a
graph partitioning problem into a graph neural network and
applying federated learning for distributed learning should
be investigated in the future. Moreover, formulating a graph
partitioning problem into a game theory approach is also
envisioned in the future. Hua et al. [143] introduced a game
theory for stream edge partitioning. Thus, applying a game
theory for future static and dynamic vertex partitioning is a
potential research direction.

System perspectives: Most existing graph processing sys-
tems have been developed to handle static graphs. However,
real-world graphs are dynamic, with new vertices and edges
quickly added and removed. Preserving a large amount of
updating in dynamic graphs and performing practical real-
time computation are challenging tasks. Thus, more study
is needed to bring a dynamic large-scale graph processing
system. Developing a routing-aware or topology-aware data
distribution scheme for graph databases is still not investi-
gated, especially in the context of recently proposed data
center and high-performance computing network topologies
and routing architectures. Moreover, designing a general-
purpose graph computing system that supports both dis-
tributed graph processing and graph database could solve
problems in this area. Applying a deep learning techniques
on transactional aware data partitioning, user-friendly query
formulation, high-performance transaction processing, and
ensuring security in the form of authentication is significant
in graph databases.

VII. CONCLUSION
The graphs have become a significant and influential data
representation in many application domains in the recent Big
data era. To handle the rapid increase in large-scale graph
sizes, efficient graph algorithms and computing systems are
essential. Thus, graph partitioning methods and graph com-

puting systems have been suggested to address these large-
scale graph computing challenges in various architectures
and computing models.

In this survey, we have discussed a comprehensive review
of graph partitioning methods and graph computing systems.
We have classified and discussed the graph partitioning meth-
ods and graph computing systems into several subcategories
to understand the subject area. Their approaches, comput-
ing, and data models of those algorithms and systems are
presented briefly. Finally, we have highlighted promising
research directions in graph partitioning and computing sys-
tems.

REFERENCES
[1] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web

search engine,” Computer networks and ISDN systems, vol. 30, no. 1-7,
pp. 107–117, 1998.

[2] S. Kulkarni and S. F. Rodd, “Context aware recommendation systems:
A review of the state of the art techniques,” Computer Science Review,
vol. 37, p. 100255, 2020.

[3] L. Harris and A. Rae, “Social networks: the future of marketing for small
business,” Journal of business strategy, vol. 30, no. 5, pp. 24–31, 2009.

[4] D. F. Nettleton, “Data mining of social networks represented as graphs,”
Computer Science Review, vol. 7, pp. 1–34, 2013.

[5] C. Orellana-Rodriguez and M. T. Keane, “Attention to news and its
dissemination on twitter: A survey,” Computer Science Review, vol. 29,
pp. 74–94, 2018.

[6] A. De Salve, P. Mori, and L. Ricci, “A survey on privacy in decentralized
online social networks,” Computer Science Review, vol. 27, pp. 154–176,
2018.

[7] L. Cao and J. Krumm, “From gps traces to a routable road map,” in
Proceedings of the 17th ACM SIGSPATIAL international conference on
advances in geographic information systems. ACM, 2009, pp. 3–12.

[8] R. Jansen, H. Yu, D. Greenbaum, Y. Kluger, N. J. Krogan, S. Chung,
A. Emili, M. Snyder, J. F. Greenblatt, and M. Gerstein, “A bayesian net-
works approach for predicting protein-protein interactions from genomic
data,” science, vol. 302, no. 5644, pp. 449–453, 2003.

[9] N. B. Turk-Browne, “Functional interactions as big data in the human
brain,” Science, vol. 342, no. 6158, pp. 580–584, 2013.

[10] H. Bolouri, “Modeling genomic regulatory networks with big data,”
Trends in Genetics, vol. 30, no. 5, pp. 182–191, 2014.

[11] I. Shrier and R. W. Platt, “Reducing bias through directed acyclic graphs,”
BMC medical research methodology, vol. 8, no. 1, p. 70, 2008.

[12] S. Sakr, A. Bonifati, H. Voigt, A. Iosup, K. Ammar, R. Angles, W. Aref,
M. Arenas, M. Besta, P. A. Boncz et al., “The future is big graphs: a
community view on graph processing systems,” Communications of the
ACM, vol. 64, no. 9, pp. 62–71, 2021.

[13] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan,
“One trillion edges: Graph processing at facebook-scale,” Proceedings of
the VLDB Endowment, vol. 8, no. 12, pp. 1804–1815, 2015.

[14] H. Cao, Y. Wang, H. Wang, H. Lin, Z. Ma, W. Yin, and W. Chen,
“Scaling graph traversal to 281 trillion edges with 40 million cores,” in
Proceedings of the 27th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2022, pp. 234–245.

[15] W. W. Zachary, “An information flow model for conflict and fission in
small groups,” Journal of anthropological research, vol. 33, no. 4, pp.
452–473, 1977.

[16] E. W. Dijkstra et al., “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[17] U. Endriss and U. Grandi, “Graph aggregation,” Artificial Intelligence,
vol. 245, pp. 86–114, 2017.

[18] S. Yu, Y. Feng, D. Zhang, H. D. Bedru, B. Xu, and F. Xia, “Motif
discovery in networks: A survey,” Computer Science Review, vol. 37,
p. 100267, 2020.

[19] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”

VOLUME 4, 2016 23

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE ACCESS

in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data. ACM, 2010, pp. 135–146.

[20] “Giraph,” URL http://giraph.apache.org/, Online, 2012.
[21] S. Seo, E. J. Yoon, J. Kim, S. Jin, J.-S. Kim, and S. Maeng, “Hama: An

efficient matrix computation with the mapreduce framework,” in 2010
IEEE Second International Conference on Cloud Computing Technology
and Science. IEEE, 2010, pp. 721–726.

[22] R. Chen, J. Shi, Y. Chen, B. Zang, H. Guan, and H. Chen, “Powerlyra:
Differentiated graph computation and partitioning on skewed graphs,”
ACM Transactions on Parallel Computing (TOPC), vol. 5, no. 3, p. 13,
2019.

[23] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
ergraph: Distributed graph-parallel computation on natural graphs,” in
Presented as part of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12), 2012, pp. 17–30.

[24] Y. Xing, Z. Chen, N. Xiao, F. Liu, and Y. Lu, “Graph analytics on
manycore memory systems,” IEEE Access, vol. 6, pp. 51 429–51 439,
2018.

[25] “Neo4j,” URL https://neo4j.com/, Online, 2007.
[26] “Tigergraph,” URL https://www.tigergraph.com/, Online, 2017.
[27] “Allegrograph,” URL https://franz.com/agraph/allegrograph/, Online,

2004.
[28] “Dgraph,” URL https://docs.dgraph.io/design-concepts., Online, 2016.
[29] S. Salihoglu and J. Widom, “Gps: A graph processing system,” in Pro-

ceedings of the 25th International Conference on Scientific and Statistical
Database Management, 2013, pp. 1–12.

[30] A. Kyrola, G. Blelloch, and C. Guestrin, “Graphchi: Large-scale graph
computation on just a pc,” in Presented as part of the 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
12), 2012, pp. 31–46.

[31] X. Zhu, W. Han, and W. Chen, “Gridgraph: Large-scale graph processing
on a single machine using 2-level hierarchical partitioning,” in 2015
USENIX Annual Technical Conference (USENIX ATC 15), 2015, pp.
375–386.

[32] W. Xie, G. Wang, D. Bindel, A. Demers, and J. Gehrke, “Fast iterative
graph computation with block updates,” Proceedings of the VLDB En-
dowment, vol. 6, no. 14, pp. 2014–2025, 2013.

[33] J. Shun and G. E. Blelloch, “Ligra: a lightweight graph processing frame-
work for shared memory,” in Proceedings of the 18th ACM SIGPLAN
symposium on Principles and practice of parallel programming, 2013,
pp. 135–146.

[34] N. Sundaram, N. R. Satish, M. M. A. Patwary, S. R. Dulloor, S. G.
Vadlamudi, D. Das, and P. Dubey, “Graphmat: High performance graph
analytics made productive,” arXiv preprint arXiv:1503.07241, 2015.

[35] Y. Chi, G. Dai, Y. Wang, G. Sun, G. Li, and H. Yang, “Nxgraph: An
efficient graph processing system on a single machine,” in 2016 IEEE
32nd International Conference on Data Engineering (ICDE). IEEE,
2016, pp. 409–420.

[36] S. Sumathi and S. Esakkirajan, Fundamentals of relational database
management systems. Springer, 2007, vol. 47.

[37] I. Robinson, J. Webber, and E. Eifrem, “Graph database internals,” Graph
Databases,, pp. 149–170, 2015.

[38] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins,
“A comparison of a graph database and a relational database: a data
provenance perspective,” in Proceedings of the 48th annual Southeast
regional conference, 2010, pp. 1–6.

[39] K. Andreev and H. Racke, “Balanced graph partitioning,” Theory of
Computing Systems, vol. 39, no. 6, pp. 929–939, 2006.

[40] I. Holyer, “The np-completeness of some edge-partition problems,”
SIAM Journal on Computing, vol. 10, no. 4, pp. 713–717, 1981.

[41] G. Karypis, “Metis: Unstructured graph partitioning and sparse matrix
ordering system,” Technical report, 1997.

[42] G. Echbarthi and H. Kheddouci, “Fractional greedy and partial restream-
ing partitioning: New methods for massive graph partitioning,” in 2014
IEEE International Conference on Big Data (Big Data). IEEE, 2014,
pp. 25–32.

[43] I. Stanton and G. Kliot, “Streaming graph partitioning for large dis-
tributed graphs,” in Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2012, pp.

1222–1230.
[44] M. Li, H. Cui, C. Zhou, and S. Xu, “Gap: Genetic algorithm based large-

scale graph partition in heterogeneous cluster,” IEEE Access, vol. 8, pp.
144 197–144 204, 2020.

[45] H. Halberstam and R. Laxton, “Perfect difference sets,” Glasgow Mathe-
matical Journal, vol. 6, no. 4, pp. 177–184, 1964.

[46] N. Jain, G. Liao, and T. L. Willke, “Graphbuilder: scalable graph etl
framework,” in First International Workshop on Graph Data Management
Experiences and Systems. ACM, 2013, p. 4.

[47] F. Petroni, L. Querzoni, K. Daudjee, S. Kamali, and G. Iacoboni, “Hdrf:
Stream-based partitioning for power-law graphs,” in Proceedings of the
24th ACM International on Conference on Information and Knowledge
Management. ACM, 2015, pp. 243–252.

[48] C. Xie, L. Yan, W.-J. Li, and Z. Zhang, “Distributed power-law graph
computing: Theoretical and empirical analysis,” in Advances in Neural
Information Processing Systems, 2014, pp. 1673–1681.

[49] C. Zhang, F. Wei, Q. Liu, Z. G. Tang, and Z. Li, “Graph edge partitioning
via neighborhood heuristic,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2017, pp. 605–614.

[50] R. Mayer, K. Orujzade, and H.-A. Jacobsen, “Out-of-core edge partition-
ing at linear run-time,” arXiv preprint arXiv:2203.12721, 2022.

[51] D. Dai, W. Zhang, and Y. Chen, “Iogp: An incremental online graph
partitioning algorithm for distributed graph databases,” in Proceedings
of the 26th International Symposium on High-Performance Parallel and
Distributed Computing. ACM, 2017, pp. 219–230.

[52] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and
I. Stoica, “Graphx: Graph processing in a distributed dataflow frame-
work,” in 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), 2014, pp. 599–613.

[53] T. Ayall, H. Duan, C. Liu, F. Gereme, and M. Deleli, “Offstreamng:
Partial stream hybrid graph edge partitioning based on neighborhood
expansion and greedy heuristic,” in European Conference on Advances
in Databases and Information Systems. Springer, 2020, pp. 118–128.

[54] T. Ayall, H. Duan, C. Liu, F. Gereme, M. Abegaz, and M. Deleli, “Taking
heuristic based graph edge partitioning one step ahead via offstream
partitioning approach,” in 2021 IEEE 37th International Conference on
Data Engineering (ICDE). IEEE, 2021, pp. 2081–2086.

[55] R. Mayer and H.-A. Jacobsen, “Hybrid edge partitioner: Partitioning
large power-law graphs under memory constraints,” in Proceedings of
the 2021 International Conference on Management of Data, 2021, pp.
1289–1302.

[56] L. Vaquero, F. Cuadrado, D. Logothetis, and C. Martella, “xdgp: A
dynamic graph processing system with adaptive partitioning,” arXiv
preprint arXiv:1309.1049, 2013.

[57] N. T. Bao and T. Suzumura, “Towards highly scalable pregel-based graph
processing platform with x10,” in Proceedings of the 22nd International
Conference on World Wide Web, 2013, pp. 501–508.

[58] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and
P. Kalnis, “Mizan: a system for dynamic load balancing in large-scale
graph processing,” in Proceedings of the 8th ACM European Conference
on Computer Systems, 2013, pp. 169–182.

[59] O. Batarfi, R. El Shawi, A. G. Fayoumi, R. Nouri, A. Barnawi, S. Sakr
et al., “Large scale graph processing systems: survey and an experimental
evaluation,” Cluster Computing, vol. 18, no. 3, pp. 1189–1213, 2015.

[60] H.-N. Tran and E. Cambria, “A survey of graph processing on graphics
processing units,” The Journal of Supercomputing, vol. 74, no. 5, pp.
2086–2115, 2018.

[61] J. Huang, W. Qin, X. Wang, and W. Chen, “Survey of external memory
large-scale graph processing on a multi-core system,” The Journal of
Supercomputing, vol. 76, no. 1, pp. 549–579, 2020.

[62] M. Junghanns, A. Petermann, M. Neumann, and E. Rahm, “Management
and analysis of big graph data: current systems and open challenges,” in
Handbook of Big Data Technologies. Springer, 2017, pp. 457–505.

[63] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz, “Recent
advances in graph partitioning,” in Algorithm Engineering. Springer,
2016, pp. 117–158.

[64] S. Verma, L. M. Leslie, Y. Shin, and I. Gupta, “An experimental
comparison of partitioning strategies in distributed graph processing,”

24 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE ACCESS

Proceedings of the VLDB Endowment, vol. 10, no. 5, pp. 493–504, 2017.
[65] T. Ayall, H. Duan, and C. Liu, “Edge property based stream order reduce

the performance of stream edge graph partition,” in Journal of Physics:
Conference Series, vol. 1395, no. 1. IOP Publishing, 2019, p. 012010.

[66] H. Mykhailenko, F. Huet, and G. Neglia, “Comparison of edge par-
titioners for graph processing,” in 2016 International Conference on
Computational Science and Computational Intelligence (CSCI). IEEE,
2016, pp. 441–446.

[67] A. Pacaci and M. T. Özsu, “Experimental analysis of streaming algo-
rithms for graph partitioning,” in Proceedings of the 2019 International
Conference on Management of Data, 2019, pp. 1375–1392.

[68] Z. Abbas, V. Kalavri, P. Carbone, and V. Vlassov, “Streaming graph par-
titioning: an experimental study,” Proceedings of the VLDB Endowment,
vol. 11, no. 11, pp. 1590–1603, 2018.

[69] A. Pothen, “Graph partitioning algorithms with applications to scientific
computing,” in Parallel Numerical Algorithms. Springer, 1997, pp. 323–
368.

[70] H.-J. Kim and Y.-H. Kim, “Recent progress on graph partitioning prob-
lems using evolutionary computation,” arXiv preprint arXiv:1805.01623,
2018.

[71] B. Hendrickson and T. G. Kolda, “Graph partitioning models for parallel
computing,” Parallel computing, vol. 26, no. 12, pp. 1519–1534, 2000.

[72] S. Arora, S. Rao, and U. Vazirani, “Geometry, flows, and graph-
partitioning algorithms,” Communications of the ACM, vol. 51, no. 10,
pp. 96–105, 2008.

[73] I. Safro, P. Sanders, and C. Schulz, “Advanced coarsening schemes for
graph partitioning,” Journal of Experimental Algorithmics (JEA), vol. 19,
pp. 1–24, 2015.

[74] K. Schloegel, G. Karypis, and V. Kumar, “Graph partitioning for high
performance scientific simulations,” 2000.

[75] A. Akhter, A.-C. N. Ngonga, and M. Saleem, “An empirical evaluation of
rdf graph partitioning techniques,” in European Knowledge Acquisition
Workshop. Springer, 2018, pp. 3–18.

[76] T. Chawla, G. Singh, E. S. Pilli, and M. C. Govil, “Storage, partitioning,
indexing and retrieval in big rdf frameworks: A survey,” Computer
Science Review, vol. 38, p. 100309, 2020.

[77] M. Han, K. Daudjee, K. Ammar, M. T. Özsu, X. Wang, and T. Jin,
“An experimental comparison of pregel-like graph processing systems,”
Proceedings of the VLDB Endowment, vol. 7, no. 12, pp. 1047–1058,
2014.

[78] Y. Lu, J. Cheng, D. Yan, and H. Wu, “Large-scale distributed graph
computing systems: An experimental evaluation,” Proceedings of the
VLDB Endowment, vol. 8, no. 3, pp. 281–292, 2014.

[79] K. Ammar and T. Ozsu, “Experimental analysis of distributed graph
systems,” arXiv preprint arXiv:1806.08082, 2018.

[80] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu, “The ubiquity
of large graphs and surprising challenges of graph processing: extended
survey,” The VLDB Journal, vol. 29, no. 2, pp. 595–618, 2020.

[81] C.-Y. Gui, L. Zheng, B. He, C. Liu, X.-Y. Chen, X.-F. Liao, and H. Jin, “A
survey on graph processing accelerators: Challenges and opportunities,”
Journal of Computer Science and Technology, vol. 34, no. 2, pp. 339–
371, 2019.

[82] D. Dominguez-Sal, P. Urbón-Bayes, A. Giménez-Vanó, S. Gómez-
Villamor, N. Martínez-Bazan, and J.-L. Larriba-Pey, “Survey of graph
database performance on the hpc scalable graph analysis benchmark,”
in International Conference on Web-Age Information Management.
Springer, 2010, pp. 37–48.

[83] S. Jouili and V. Vansteenberghe, “An empirical comparison of graph
databases,” in 2013 International Conference on Social Computing.
IEEE, 2013, pp. 708–715.

[84] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson,
“From" think like a vertex" to" think like a graph",” Proceedings of the
VLDB Endowment, vol. 7, no. 3, pp. 193–204, 2013.

[85] F. Xia, J. Liu, H. Nie, Y. Fu, L. Wan, and X. Kong, “Random walks: A
review of algorithms and applications,” IEEE Transactions on Emerging
Topics in Computational Intelligence, vol. 4, no. 2, pp. 95–107, 2019.

[86] J. M. Kleinberg et al., “Authoritative sources in a hyperlinked environ-
ment.” in SODA, vol. 98. Citeseer, 1998, pp. 668–677.

[87] A. Balmin, V. Hristidis, and Y. Papakonstantinou, “Objectrank:

Authority-based keyword search in databases,” in VLDB, vol. 4, 2004,
pp. 564–575.

[88] J. Hopcroft and R. Tarjan, “Algorithm 447: efficient algorithms for graph
manipulation,” Communications of the ACM, vol. 16, no. 6, pp. 372–378,
1973.

[89] U. Kang, C. E. Tsourakakis, A. P. Appel, C. Faloutsos, and J. Leskovec,
“Hadi: Mining radii of large graphs,” ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 5, no. 2, pp. 1–24, 2011.

[90] S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last
reducer,” in Proceedings of the 20th international conference on World
wide web, 2011, pp. 607–614.

[91] M. Bayati, D. Shah, and M. Sharma, “Maximum weight matching via
max-product belief propagation,” in Proceedings. International Sympo-
sium on Information Theory, 2005. ISIT 2005. IEEE, 2005, pp. 1763–
1767.

[92] V. Satuluri, S. Parthasarathy, and Y. Ruan, “Local graph sparsification
for scalable clustering,” in Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data, 2011, pp. 721–732.

[93] Y. Liu, T. Safavi, A. Dighe, and D. Koutra, “Graph summarization
methods and applications: A survey,” ACM computing surveys (CSUR),
vol. 51, no. 3, pp. 1–34, 2018.

[94] J. Chen, Y. Saad, and Z. Zhang, “Graph coarsening: from scientific
computing to machine learning,” SeMA Journal, vol. 79, no. 1, pp. 187–
223, 2022.

[95] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM Journal on scientific Computing,
vol. 20, no. 1, pp. 359–392, 1998.

[96] C. Martella, D. Logothetis, A. Loukas, and G. Siganos, “Spinner: Scal-
able graph partitioning in the cloud,” in 2017 IEEE 33rd International
Conference on Data Engineering (ICDE). Ieee, 2017, pp. 1083–1094.

[97] R. Andersen, F. Chung, and K. Lang, “Local graph partitioning using
pagerank vectors,” in 2006 47th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS’06). IEEE, 2006, pp. 475–486.

[98] L. Hagen and A. B. Kahng, “New spectral methods for ratio cut parti-
tioning and clustering,” IEEE transactions on computer-aided design of
integrated circuits and systems, vol. 11, no. 9, pp. 1074–1085, 1992.

[99] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Transactions on pattern analysis and machine intelligence, vol. 22, no. 8,
pp. 888–905, 2000.

[100] G. Palubeckis, “Metaheuristic approaches for ratio cut and normalized
cut graph partitioning,” Memetic Computing, pp. 1–33, 2022.

[101] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model
for graph mining,” in Proceedings of the 2004 SIAM International
Conference on Data Mining. SIAM, 2004, pp. 442–446.

[102] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[103] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattachar-
jee, “Measurement and analysis of online social networks,” in Proceed-
ings of the 7th ACM SIGCOMM conference on Internet measurement.
ACM, 2007, pp. 29–42.

[104] J. Kunegis, “Konect: the koblenz network collection,” in Proceedings of
the 22nd International Conference on World Wide Web. ACM, 2013,
pp. 1343–1350.

[105] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social network
or a news media?” in Proceedings of the 19th international conference on
World wide web, 2010, pp. 591–600.

[106] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” Knowledge and Information Systems, vol. 42,
no. 1, pp. 181–213, 2015.

[107] “Grouplens,” URL https://grouplens.org/datasets/movielens/.
[108] B. Hendrickson and R. W. Leland, “A multi-level algorithm for partition-

ing graphs.” SC, vol. 95, no. 28, pp. 1–14, 1995.
[109] A. Valejo, V. Ferreira, R. Fabbri, M. C. F. d. Oliveira, and A. d. A. Lopes,

“A critical survey of the multilevel method in complex networks,” ACM
Computing Surveys (CSUR), vol. 53, no. 2, pp. 1–35, 2020.

[110] B. Monien, R. Preis, and R. Diekmann, “Quality matching and lo-
cal improvement for multilevel graph-partitioning,” Parallel Computing,
vol. 26, no. 12, pp. 1609–1634, 2000.

[111] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for par-

VOLUME 4, 2016 25

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE ACCESS

titioning graphs,” The Bell system technical journal, vol. 49, no. 2, pp.
291–307, 1970.

[112] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for
improving network partitions,” in 19th design automation conference.
IEEE, 1982, pp. 175–181.

[113] F. Pellegrini and J. Roman, “Scotch: A software package for static
mapping by dual recursive bipartitioning of process and architecture
graphs,” in International Conference on High-Performance Computing
and Networking. Springer, 1996, pp. 493–498.

[114] B. Hendrickson and R. Leland, “The chaco users guide. version 1.0,”
Sandia National Labs., Albuquerque, NM (United States), Tech. Rep.,
1993.

[115] P. Sanders and C. Schulz, “Kahip v3. 00–karlsruhe high quality
partitioning–user guide,” arXiv preprint arXiv:1311.1714, 2013.

[116] D. LaSalle and G. Karypis, “Multi-threaded graph partitioning,” in 2013
IEEE 27th International Symposium on Parallel and Distributed Process-
ing. IEEE, 2013, pp. 225–236.

[117] Y. Akhremtsev, P. Sanders, and C. Schulz, “High-quality shared-memory
graph partitioning,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 31, no. 11, pp. 2710–2722, 2020.

[118] S. Gregory, “Finding overlapping communities in networks by label
propagation,” New journal of Physics, vol. 12, no. 10, p. 103018, 2010.

[119] G. Karypis, K. Schloegel, and V. Kumar, “Parmetis: Parallel graph
partitioning and sparse matrix ordering library,” 1997.

[120] C. Chevalier and F. Pellegrini, “Pt-scotch: A tool for efficient parallel
graph ordering,” Parallel computing, vol. 34, no. 6-8, pp. 318–331, 2008.

[121] M. Holtgrewe, P. Sanders, and C. Schulz, “Engineering a scalable high
quality graph partitioner,” in 2010 IEEE International Symposium on
Parallel & Distributed Processing (IPDPS). IEEE, 2010, pp. 1–12.

[122] C. Walshaw and M. Cross, “Jostle: parallel multilevel graph-partitioning
software–an overview,” Mesh partitioning techniques and domain decom-
position techniques, vol. 10, pp. 27–58, 2007.

[123] F. Rahimian, A. H. Payberah, S. Girdzijauskas, M. Jelasity, and S. Haridi,
“Ja-be-ja: A distributed algorithm for balanced graph partitioning,” in
2013 IEEE 7th International Conference on Self-Adaptive and Self-
Organizing Systems. IEEE, 2013, pp. 51–60.

[124] J. Ugander and L. Backstrom, “Balanced label propagation for parti-
tioning massive graphs,” in Proceedings of the sixth ACM international
conference on Web search and data mining, 2013, pp. 507–516.

[125] T. Chen and B. Li, “A distributed graph partitioning algorithm for
processing large graphs,” in 2016 IEEE Symposium on Service-Oriented
System Engineering (SOSE). IEEE, 2016, pp. 53–59.

[126] G. M. Slota, S. Rajamanickam, K. Devine, and K. Madduri, “Partitioning
trillion-edge graphs in minutes,” in 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2017, pp. 646–655.

[127] H. Meyerhenke, P. Sanders, and C. Schulz, “Parallel graph partitioning
for complex networks,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 9, pp. 2625–2638, 2017.

[128] Y. Li, C. Constantin, and C. Du Mouza, “Sgvcut: a vertex-cut partitioning
tool for random walks-based computations over social network graphs,”
in Proceedings of the 29th International Conference on Scientific and
Statistical Database Management, 2017, pp. 1–4.

[129] F. Rahimian, A. H. Payberah, S. Girdzijauskas, and S. Haridi, “Dis-
tributed vertex-cut partitioning,” in IFIP International Conference on
Distributed Applications and Interoperable Systems. Springer, 2014,
pp. 186–200.

[130] A. Guerrieri and A. Montresor, “Dfep: Distributed funding-based edge
partitioning,” in European Conference on Parallel Processing. Springer,
2015, pp. 346–358.

[131] D. Margo and M. Seltzer, “A scalable distributed graph partitioner,”
Proceedings of the VLDB Endowment, vol. 8, no. 12, pp. 1478–1489,
2015.

[132] M. Hanai, T. Suzumura, W. J. Tan, E. Liu, G. Theodoropoulos, and
W. Cai, “Distributed edge partitioning for trillion-edge graphs,” Proceed-
ings of the VLDB Endowment, vol. 12, no. 13, pp. 2379–2392, 2019.

[133] G. Karypis and V. Kumar, “A parallel algorithm for multilevel graph par-
titioning and sparse matrix ordering,” Journal of parallel and distributed
computing, vol. 48, no. 1, pp. 71–95, 1998.

[134] S. Kirmani and P. Raghavan, “Scalable parallel graph partitioning,” in

SC’13: Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis. IEEE, 2013,
pp. 1–10.

[135] G. M. Slota, K. Madduri, and S. Rajamanickam, “Pulp: Scalable multi-
objective multi-constraint partitioning for small-world networks,” in 2014
IEEE International Conference on Big Data (Big Data). IEEE, 2014, pp.
481–490.

[136] M. Kim and K. S. Candan, “Sbv-cut: Vertex-cut based graph partition-
ing using structural balance vertices,” Data & Knowledge Engineering,
vol. 72, pp. 285–303, 2012.

[137] S. Schlag, C. Schulz, D. Seemaier, and D. Strash, “Scalable edge
partitioning,” in 2019 Proceedings of the Twenty-First Workshop on
Algorithm Engineering and Experiments (ALENEX). SIAM, 2019, pp.
211–225.

[138] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic, “Fennel:
Streaming graph partitioning for massive scale graphs,” in Proceedings
of the 7th ACM international conference on Web search and data mining.
ACM, 2014, pp. 333–342.

[139] W. Zhang, Y. Chen, and D. Dai, “Akin: A streaming graph partitioning al-
gorithm for distributed graph storage systems,” in 2018 18th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CC-
GRID). IEEE, 2018, pp. 183–192.

[140] J. Nishimura and J. Ugander, “Restreaming graph partitioning: simple
versatile algorithms for advanced balancing,” in Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM, 2013, pp. 1106–1114.

[141] H. C. Rad and R. Azmi, “Clda: Vertex-cut partitioning for streaming
power-law graphs,” in 2017 9th International Conference on Information
and Knowledge Technology (IKT). IEEE, 2017, pp. 104–110.

[142] C. Hu, J. Zhong, Q. Li, and Q. Li, “Deter: Streaming graph partitioning
via combined degree and cluster information,” in International Confer-
ence on Algorithms and Architectures for Parallel Processing. Springer,
2019, pp. 242–255.

[143] Q.-S. Hua, Y. Li, D. Yu, and H. Jin, “Quasi-streaming graph partition-
ing: A game theoretical approach,” IEEE Transactions on Parallel and
Distributed Systems, vol. 30, no. 7, pp. 1643–1656, 2019.

[144] C. Mayer, R. Mayer, M. A. Tariq, H. Geppert, L. Laich, L. Rieger,
and K. Rothermel, “Adwise: Adaptive window-based streaming edge
partitioning for high-speed graph processing,” in 2018 IEEE 38th Interna-
tional Conference on Distributed Computing Systems (ICDCS). IEEE,
2018, pp. 685–695.

[145] M. Taimouri and H. Saadatfar, “Rbsep: a reassignment and buffer based
streaming edge partitioning approach,” Journal of Big Data, vol. 6, no. 1,
pp. 1–17, 2019.

[146] Y. Li, C. Li, A.-C. Orgerie, and P. R. Parvédy, “Wsgp: A window-
based streaming graph partitioning approach,” in 2021 IEEE/ACM 21st
International Symposium on Cluster, Cloud and Internet Computing
(CCGrid). IEEE, 2021, pp. 586–595.

[147] R. Mayer, K. Orujzade, and H.-A. Jacobsen, “2ps: High-quality edge par-
titioning with two-phase streaming,” arXiv preprint arXiv:2001.07086,
2020.

[148] D. Kong, X. Xie, and Z. Zhang, “Clustering-based partitioning for large
web graphs,” arXiv preprint arXiv:2201.00472, 2022.

[149] A. Hollocou, J. Maudet, T. Bonald, and M. Lelarge, “A streaming
algorithm for graph clustering,” arXiv preprint arXiv:1712.04337, 2017.

[150] D. Choi, J. Han, J. Lim, J. Han, K. Bok, and J. Yoo, “Dynamic graph
partitioning scheme for supporting load balancing in distributed graph
environments,” IEEE Access, vol. 9, pp. 65 254–65 265, 2021.

[151] A. Zaki, M. Attia, D. Hegazy, and S. Amin, “Comprehensive survey on
dynamic graph models,” International Journal of Advanced Computer
Science and Applications, vol. 7, no. 2, 2016.

[152] N. Xu, L. Chen, and B. Cui, “Loggp: a log-based dynamic graph parti-
tioning method,” Proceedings of the VLDB Endowment, vol. 7, no. 14,
pp. 1917–1928, 2014.

[153] D. Nicoara, S. Kamali, K. Daudjee, and L. Chen, “Hermes: Dynamic
partitioning for distributed social network graph databases.” in EDBT,
2015, pp. 25–36.

[154] M. Predari and A. Esnard, “A k-way greedy graph partitioning with
initial fixed vertices for parallel applications,” in 2016 24th Euromicro
International Conference on Parallel, Distributed, and Network-Based

26 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE ACCESS

Processing (PDP). IEEE, 2016, pp. 280–287.
[155] C. Sakouhi, S. Aridhi, A. Guerrieri, S. Sassi, and A. Montresor, “Dy-

namicdfep: A distributed edge partitioning approach for large dynamic
graphs,” in Proceedings of the 20th International Database Engineering
& Applications Symposium, 2016, pp. 142–147.

[156] C. Mayer, M. A. Tariq, R. Mayer, and K. Rothermel, “Graph: Traffic-
aware graph processing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 29, no. 6, pp. 1289–1302, 2018.

[157] D. Kumar, A. Raj, and J. Dharanipragada, “Graphsteal: Dynamic re-
partitioning for efficient graph processing in heterogeneous clusters,”
in 2017 IEEE 10th International Conference on Cloud Computing
(CLOUD). IEEE, 2017, pp. 439–446.

[158] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–
113, 2008.

[159] “Hadoop,” URL http://hadoop.apache.org/., Online, 2006.
[160] Y. Low, “Joseph,” Distributed GraphLab: A framework for machine

learning and data mining in the cloud. PVLDB, vol. 4, p. 5, 2012.
[161] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl, “Spinning fast

iterative data flows,” arXiv preprint arXiv:1208.0088, 2012.
[162] C. Xie, R. Chen, H. Guan, B. Zang, and H. Chen, “Sync or async: Time

to fuse for distributed graph-parallel computation,” ACM SIGPLAN
Notices, vol. 50, no. 8, pp. 194–204, 2015.

[163] Y. Simmhan, A. Kumbhare, C. Wickramaarachchi, S. Nagarkar, S. Ravi,
C. Raghavendra, and V. Prasanna, “Goffish: A sub-graph centric frame-
work for large-scale graph analytics,” in European Conference on Parallel
Processing. Springer, 2014, pp. 451–462.

[164] W. W. W. Consortium et al., “Rdf 1.1 concepts and abstract syntax,” 2014.
[165] A. Davoudian, L. Chen, and M. Liu, “A survey on nosql stores,” ACM

Computing Surveys (CSUR), vol. 51, no. 2, pp. 1–43, 2018.
[166] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-

rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” ACM Transactions on Computer
Systems (TOCS), vol. 26, no. 2, pp. 1–26, 2008.

[167] A. Moniruzzaman and S. A. Hossain, “Nosql database: New era of
databases for big data analytics-classification, characteristics and com-
parison,” arXiv preprint arXiv:1307.0191, 2013.

[168] B. M. Abdelhafiz and M. Elhadef, “Sharding database for fault tolerance
and scalability of data,” in 2021 2nd International Conference on Com-
putation, Automation and Knowledge Management (ICCAKM). IEEE,
2021, pp. 17–24.

[169] C. H. Costa, J. V. B. Filho, P. H. M. Maia, and F. Carlos, “Sharding by
hash partitioning,” in Proceedings of the 17th International Conference
on Enterprise Information Systems-Volume 1. SCITEPRESS-Science
and Technology Publications, Lda, 2015, pp. 313–320.

[170] D. Kuhn and T. Kyte, “Architecture overview,” in Expert Oracle Database
Architecture. Springer, 2022, pp. 83–107.

[171] G. Harrison and M. Harrison, “Sharding,” in MongoDB Performance
Tuning. Springer, 2021, pp. 315–342.

[172] M. Indrawan-Santiago, “Database research: Are we at a crossroad?
reflection on nosql,” in 2012 15th International Conference on Network-
Based Information Systems. IEEE, 2012, pp. 45–51.

[173] J. Pérez, M. Arenas, and C. Gutierrez, “Semantics and complexity of
sparql,” ACM Transactions on Database Systems (TODS), vol. 34, no. 3,
pp. 1–45, 2009.

[174] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault,
S. Plantikow, M. Rydberg, P. Selmer, and A. Taylor, “Cypher: An
evolving query language for property graphs,” in Proceedings of the 2018
International Conference on Management of Data, 2018, pp. 1433–1445.

[175] M. A. Rodriguez, “The gremlin graph traversal machine and language
(invited talk),” in Proceedings of the 15th Symposium on Database
Programming Languages, 2015, pp. 1–10.

[176] O. Hartig and J. Pérez, “Semantics and complexity of graphql,” in
Proceedings of the 2018 World Wide Web Conference, 2018, pp. 1155–
1164.

[177] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. Reutter, and D. Vrgoč,
“Foundations of modern query languages for graph databases,” ACM
Computing Surveys (CSUR), vol. 50, no. 5, pp. 1–40, 2017.

[178] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “Pegasus: A peta-scale

graph mining system implementation and observations,” in 2009 Ninth
IEEE International Conference on Data Mining. IEEE, 2009, pp. 229–
238.

[179] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “Haloop: Efficient
iterative data processing on large clusters,” Proceedings of the VLDB
Endowment, vol. 3, no. 1-2, pp. 285–296, 2010.

[180] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and
G. Fox, “Twister: a runtime for iterative mapreduce,” in Proceedings of
the 19th ACM international symposium on high performance distributed
computing, 2010, pp. 810–818.

[181] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “imapreduce: A distributed com-
puting framework for iterative computation,” Journal of Grid Computing,
vol. 10, no. 1, pp. 47–68, 2012.

[182] R. Chen, X. Weng, B. He, and M. Yang, “Large graph processing in
the cloud,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, 2010, pp. 1123–1126.

[183] Y. Bu, V. Borkar, J. Jia, M. J. Carey, and T. Condie, “Pregelix: Big (ger)
graph analytics on a dataflow engine,” arXiv preprint arXiv:1407.0455,
2014.

[184] R. Chen, X. Ding, P. Wang, H. Chen, B. Zang, and H. Guan, “Com-
putation and communication efficient graph processing with distributed
immutable view,” in Proceedings of the 23rd international symposium
on High-performance parallel and distributed computing, 2014, pp. 215–
226.

[185] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: distributed
data-parallel programs from sequential building blocks,” in Proceedings
of the 2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007, 2007, pp. 59–72.

[186] D. Yan, J. Cheng, Y. Lu, and W. Ng, “Effective techniques for message
reduction and load balancing in distributed graph computation,” in Pro-
ceedings of the 24th International Conference on World Wide Web, 2015,
pp. 1307–1317.

[187] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, and C. Guestrin, “Graphlab:
A distributed framework for machine learning in the cloud,” arXiv
preprint arXiv:1107.0922, 2011.

[188] Y. Zhang, D. Li, C. Zhang, J. Wang, and L. Liu, “Grapha: efficient
partitioning and storage for distributed graph computation,” IEEE Trans-
actions on Services Computing, 2017.

[189] M. Zhang, Y. Wu, K. Chen, X. Qian, X. Li, and W. Zheng, “Exploring the
hidden dimension in graph processing,” in 12th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 16), 2016,
pp. 285–300.

[190] Y. Zhuo, J. Chen, Q. Luo, Y. Wang, H. Yang, D. Qian, and X. Qian,
“Symplegraph: distributed graph processing with precise loop-carried
dependency guarantee,” bioinformatics, vol. 1, no. 14, p. 29, 2020.

[191] Y. Zhang, H. Wang, M. Jia, J. Wang, D. Li, G. Xue, and K.-L. Tan,
“Topox: Topology refactorization for minimizing network communica-
tion in graph computations,” IEEE/ACM Transactions on Networking,
2020.

[192] V. Leis, A. Kemper, and T. Neumann, “The adaptive radix tree: Artful
indexing for main-memory databases,” in 2013 IEEE 29th International
Conference on Data Engineering (ICDE). IEEE, 2013, pp. 38–49.

[193] D. Yan, J. Cheng, Y. Lu, and W. Ng, “Blogel: A block-centric framework
for distributed computation on real-world graphs,” Proceedings of the
VLDB Endowment, vol. 7, no. 14, pp. 1981–1992, 2014.

[194] M. Randles, D. Lamb, and A. Taleb-Bendiab, “A comparative study
into distributed load balancing algorithms for cloud computing,” in 2010
IEEE 24th International Conference on Advanced Information Network-
ing and Applications Workshops. IEEE, 2010, pp. 551–556.

[195] Y. Zhao, K. Yoshigoe, M. Xie, S. Zhou, R. Seker, and J. Bian, “Light-
graph: Lighten communication in distributed graph-parallel processing,”
in 2014 IEEE International Congress on Big Data. IEEE, 2014, pp.
717–724.

[196] P. Wang, K. Zhang, R. Chen, H. Chen, and H. Guan, “Replication-
based fault-tolerance for large-scale graph processing,” in 2014 44th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks. IEEE, 2014, pp. 562–573.

[197] Y. Zhao, K. Yoshigoe, M. Xie, J. Bian, and K. Xiong, “L-powergraph: a
lightweight distributed graph-parallel communication mechanism,” The
Journal of Supercomputing, vol. 76, no. 3, pp. 1850–1879, 2020.

VOLUME 4, 2016 27

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE ACCESS

[198] S. Hong, S. Depner, T. Manhardt, J. Van Der Lugt, M. Verstraaten,
and H. Chafi, “Pgx. d: a fast distributed graph processing engine,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2015, pp. 1–12.

[199] K. Zhang, R. Chen, and H. Chen, “Numa-aware graph-structured an-
alytics,” in Proceedings of the 20th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2015, pp. 183–193.

[200] Y. Zhang, X. Liao, H. Jin, L. Gu, L. He, B. He, and H. Liu, “Cgraph:
A correlations-aware approach for efficient concurrent iterative graph
processing,” in 2018 USENIX Annual Technical Conference (USENIX
ATC 18), 2018, pp. 441–452.

[201] K. Wang, G. Xu, Z. Su, and Y. D. Liu, “Graphq: Graph query processing
with abstraction refinement—scalable and programmable analytics over
very large graphs on a single pc,” in 2015 USENIX Annual Technical
Conference (USENIX ATC 15), 2015, pp. 387–401.

[202] Z. Lin, M. Kahng, K. M. Sabrin, D. H. P. Chau, H. Lee, and U. Kang,
“Mmap: Fast billion-scale graph computation on a pc via memory map-
ping,” in 2014 IEEE International Conference on Big Data (Big Data).
IEEE, 2014, pp. 159–164.

[203] S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar, and T. Kim, “Mosaic:
Processing a trillion-edge graph on a single machine,” in Proceedings of
the Twelfth European Conference on Computer Systems, 2017, pp. 527–
543.

[204] “Blazegraph,” URL https://www.blazegraph.com/, Online, 2006.
[205] “Orientdb,” URL https://orientdb.com, Online, 2010.
[206] “Stardog,” URL https://www.stardog.com, Online, 2010.
[207] “Arangodb,” URL https://docs.arangodb.com/, Online, 2012.
[208] “Faunadb,” URL https://fauna.com/., Online, 2014.
[209] L. Foundation, “Janusgraph,” URL http://janusgraph.org/, Online, 2017.
[210] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A

comprehensive survey on graph neural networks,” IEEE transactions on
neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[211] C. He, K. Balasubramanian, E. Ceyani, C. Yang, H. Xie, L. Sun, L. He,
L. Yang, P. S. Yu, Y. Rong et al., “Fedgraphnn: A federated learn-
ing system and benchmark for graph neural networks,” arXiv preprint
arXiv:2104.07145, 2021.

TEWODROS ALEMU AYALL received his
B.Sc. degree in computer science from Univer-
sity Gondar, Ethiopia in 2010, M.Sc. degree in
computer science from Andhra University, India
in 2015, and Ph.D. in computer Science and Tech-
nology from School of Computer Science and
Engineering at University of Electronic Science
and Technology of China (UESTC) in 2021. He
is currently a postdoctoral researcher at Zhejiang
Normal University. His research interest includes

Distributed graph computing, Big data processing, Big graph partitioning,
and Graph machine learning.

HUAWEN LIU received his M.S. and Ph.D. de-
grees in Computer Science from Jilin University,
Changchun, China, in 2007 and 2010, respectively.
He is currently a Visiting Scholar with The Uni-
versity of Texas at San Antonio, San Antonio, TX,
USA. He is also a Professor with the Department
of Computer Science, Zhejiang Normal Univer-
sity, Jinhua, China. His research interests include
feature selection, sparse learning, and machine
learning.

CHANGJUN ZHOU was born in Shangrao,
China in 1977. He received Ph.D. degree in Me-
chanical Design and Theory from the School
of Mechanical Engineering, Dalian University of
Technology, Dalian in 2008. He is currently a
professor at Zhejiang Normal University. His re-
search interests include pattern recognition and
intelligence computing, and DNA computing. He
has published 60 papers in these areas.

ABEGAZ MOHAMMED SEID received his
B.Sc. and M.Sc. in Computer Science from Ambo
University, Ethiopia in 2010 and Addis Ababa
University, Ethiopia in 2015 respectively. And,
Ph.D. in Computer Science and Technology from
School of Computer Science and Engineering at
University of Electronic Science and Technology
of China (UESTC) in 2021. His research interests
include wireless network, Mobile Edge Comput-
ing, Fog computing, UAV Network, IoT, 5G wire-

less network and Graph partitioning.

FANTAHUN BOGALE GEREME received B.Sc.
degree in Computer Science and IT from Hara-
maya University, Ethiopia in 2006; M.Sc. degree
in Computer Science from Osmania University,
India in 2011 and Ph.D. degree in Computer Sci-
ence and Technology from Institute of Fundamen-
tal and Frontier Sciences at University of Elec-
tronic Science and Technology of China (UESTC)
in 2021 and engaged in the research area of Intel-
ligence Computing.

HAYLA NAHOM ABISHU received his B.Sc.
in Computer Science and Information Technol-
ogy from Haramaya University in 2007 and
M.Sc. in Computer Science and Networking from
Dilla University in 2017, Ethiopia. He is cur-
rently studying Ph.D. in Computer Science and
Technology at (UESTC). His research interests
include Mobile Computing, Wireless networks,
Blockchain, UAV networks, IoT, Network Secu-
rity, and Machine Learning.

28 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE ACCESS

YASIN HABTAMU received his B.Sc. in Com-
puter Science and Information Technology from
Haramaya University in 2007 and M.Sc. in Com-
puter Science and Networking from Dilla Univer-
sity in 2017, Ethiopia. He is currently studying
Ph.D. in Computer Science and Technology at
(UESTC). His research interests include Mobile
Computing, Wireless networks, Blockchain, UAV
networks, IoT, Network Security, and Machine
Learning.

VOLUME 4, 2016 29

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219422

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

