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GRAPH CONNECTION LAPLACIAN METHODS CAN BE MADE
ROBUST TO NOISE

BY NOUREDDINE EL KAROUI1 AND HAU-TIENG WU2

University of California, Berkeley and University of Toronto

Recently, several data analytic techniques based on graph connection
Laplacian (GCL) ideas have appeared in the literature. At this point, the prop-
erties of these methods are starting to be understood in the setting where the
data is observed without noise. We study the impact of additive noise on these
methods and show that they are remarkably robust. As a by-product of our
analysis, we propose modifications of the standard algorithms that increase
their robustness to noise. We illustrate our results in numerical simulations.

1. Introduction. In the last few years, several interesting variants of kernel-
based spectral methods have appeared in the applied mathematics literature. These
ideas were developed in connection with new types of data, where pairs of objects
or measurements of interest have a relationship that is “blurred” by the action of
a nuisance parameter. More specifically, we can find this type of data in a wide
range of problems, for instance, in the class averaging algorithm for the cryo-
electron microscope (cryo-EM) problem [34, 40], in a modern light source imaging
technique known as ptychography [27], in graph realization problems [11, 12], in
vectorized PageRank [9], in multi-channels image processing [4], etc. . . .

Before we give further details about a specific motivating example, the cryo-
EM problem, let us present the main building blocks of the methods we will study.
They depend on the following three components:

(1) An undirected graph G= (V,E) which describes all observations. The ob-
servations are the vertices of the graph G, denoted as {Vi}ni=1.

(2) An affinity function w :E → R+, satisfying wi,j = wj,i , which describes
how close two observations are (i and j index our observations). One common
choice of wi,j = w(Vi,Vj ) is of the form wi,j = exp(−m(Vi,Vj )

2/ε), where
m(x,y) is a metric measuring how far x and y are.

(3) A connection function r :E→ G, where G is a Lie group, which describes
how two samples are related. In its application to the cryo-EM problem, ri,j ’s can
be thought of estimates of our nuisance parameters, which are orthogonal matrices
in this example.
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These three components form the connection graph associated with the data,
which is denoted as (G,w, r). They can be either given to the data analyst or have
to be estimated from the data, depending on the application.

This fact leads to different connection graph and associated noise models.
For example, in the cryo-EM problem, all components of the connection graph
(G,w, r) are determined from the given projection images, where each vertex rep-
resents an image [18], Appendix A; in the ptychography problem [27], G is given
by the experimenter, r is established from the experimental setup and w is built up
from the diffractive images collected in the experiment. Depending on the appli-
cation, different metrics, deformations or connections among pairs of observations
are considered or estimated from the dataset to present the local information among
data; see, for example, [3, 6, 10, 26, 28, 36, 37, 39].

We focus in this paper on the graph connection Laplacian (GCL), and hence we
take the Lie Group G = O(k), where k ∈ N, and assume that r satisfies ri,j = r−1

j,i .

1.1. Motivating example: The Cryo-EM problem. In the cryo-EM problem,
the experimenter collects 2-dimensional projection images of a 3-dimensional
macro-molecular object of interest, and the goal is to reconstruct the 3-dimensional
geometric structure of the macro-molecular object from these projection images.
Mathematically, the collected images XcryoEM := {Ii}Ni=1 ∈ R

m2
can be modeled

as the X-ray transform of the potential of the macro-molecular object of interest,
denoted as ψ :R3 → R+. More precisely, in the setting that is usually studied, we
have Ii = Xψ(Ri), where Ri ∈ SO(3), SO(3) is the 3-dimensional special orthog-
onal group and Xψ is the X-ray transform of ψ . The X-ray transform Xψ(Ri) is a
function from R

2 to R+ and hence can be treated by the data analyst as an image.
We refer the reader to [18], Appendix A, for precise mathematical details. (For the
rest of the discussion, we write Ri = [R1

i R2
i R3

i ] in the canonical basis, where
Rk

i are three-dimensional unit vectors.)
The experimental process produces data with a high level of noise. Therefore,

to solve this inverse problem, that is, to reconstruct ψ from {Ii}Ni=1, it is a common
consensus to preprocess the images to increase the signal-to-noise ratio (SNR)
before sending them to the cryo-EM data analytic pipeline. An efficient way to do
so is to estimate the projection directions of these images, that is, R3

i . This direction
plays a particular role in the X-ray transform, which is different from the other two
directions. If R3

i ’s were known, we would cluster the images according to these
vectors and, for instance, take the mean of all properly rotationally aligned images
in a cluster as a starting point for data-analysis. This would increase the SNR of
the projection images. With these “improved” images, we can proceed to estimate
Ri for the ith image by applying, for example, the common line algorithm [22], so
that the 3-D image can be reconstructed by the inverse X-ray transform [20]. We
note that R3

i is a unit vector in R
3 and hence lives on the standard sphere S2.

Conceptually, the problem is rendered difficult by the fact that the X-ray trans-
form Xψ(Ri) is equivariant under the action of rotations that leave R3

i unchanged:
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if rθ is an in-plane rotation, that is, a rotation that leaves R3
i unchanged but rotates

R1
i and R2

i by an angle θ , the image Xψ(rθRi) is Xψ(Ri) rotated by the angle θ . In
other words, Xψ(rθRi) = r2(θ)Xψ(Ri), where r2(θ) stands for the 2-dimensional
rotation by the angle θ . These in-plane rotations are clearly nuisance parameters if
we want to evaluate the projection direction R3

i .
To measure the distance between R3

i and R3
j , we hence use a rotationally in-

variant distance, that is, d2
i,j = infθ∈[0,2π) ‖Ii − r2(θ)Ij‖2

2. More concretely, we
look at the Euclidean distance between our two X-ray transforms/images after we
have “aligned” them as best as possible. We now think of R3

i ’s—the vectors we
would like to estimate—as elements of the manifold S2, equipped with a met-
ric gψ , which depends on the macro-molecular object of interest. It turns out that
the vector diffusion maps algorithm (VDM), which is based on GCL and which we
study in this paper, is effective in producing a good approximation of gψ from the
local information di,j ’s and the rotations we obtain by aligning the various X-ray
transforms. This, in turn, implies better clustering of the R3

i ’s and improvement in
the data-analytic pipeline for cryo-EM problems [34, 40].

1.2. Motivation for the paper: Impact of noise on these procedures. The point
of this paper is to understand how the GCL algorithms perform when the input data
is corrupted by noise. The relationship between this method and the connection
concept in differential geometry is the following: the projection images Ii form a
graph, and we can define the affinity and connection among a pair of images so
that the topological structure of the 2-dimensional sphere (S2,gψ) is encoded in
the graph. This amounts to using the local geometric information derived from our
data to estimate the global information—including the topology—of (S2,gψ).

What is missing from these considerations and the current literature is an under-
standing of how noise impacts the procedures which are currently used and have
mathematical backing in the noise-free context. The aim of our paper is to shed
light on the issue of the impact of noise on these interesting and practically useful
procedures. We will be concerned in this paper with the impact of adding noise on
the observations, collected, for instance, in the way described above.

Note that additive noise may impact all three building blocks of the connection
graph associated with the data. First, it might make the graph noisy. For example,
in the cryo-EM problem, the standard algorithm builds up the graph from a given
noisy data set, where {Pi}ni=1 = {Ii + Ni}ni=1 − Ii is the signal, and Ni is additive
noise, using the nearest neighbors determined by a pre-assigned metric. In other
words, we put an edge between two vertices when they are close enough in that
metric. Then, clearly, the existence of the noise Ni will likely create a different
nearest-neighbor graph from the one that would be built up from the (clean) pro-
jection images {Ii}ni=1. As we will see in this paper, in some applications, it might
be beneficial to consider a complete graph instead of a nearest-neighbor graph.
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The second noise source is the way in which w and r are provided or deter-
mined from the samples. For example, in the cryo-EM problem, although {Pi}ni=1
are points located in a high-dimensional Euclidean space, we determine the affinity
and connection between two images by evaluating their rotationally invariant dis-
tance. It is clear that when Pi is noisy, the derived affinity and connection will be
noisy and likely quite different from the affinity and connection we would compute
from the clean dataset {Ii}ni=1. On the other hand, in the ptychography problem,
the connection is directly determined from the experimental setup, so that it is
noise-free, even when our observations are corrupted by additive noise.

In summary, corrupting the observations by additive noise might impact the
following elements of the data analysis:

(1) which scheme and metric we choose to construct the graph;
(2) how we build up the affinity function;
(3) how we build up the connection function.

1.3. More details on GCL methods. At a high-level, graph connection Lapla-
cian (GCL) methods create a block matrix from the connection graph. The spec-
tral properties of this matrix are then used to estimate properties of the intrinsic
structure from which we posit the data is drawn from. This in turns lead to good
estimation methods for, for instance, geodesic distance on the manifold, if the un-
derlying intrinsic structure is a manifold. We refer the reader to the Supplementary
Material [19] D and references [2, 8, 9, 31, 33] for more information.

Given a n × n symmetric matrix W , with scalar entries denoted by wi,j and
a nk × nk block matrix G with k × k block entries denoted by Gi,j , we define a
nk × nk matrix S with (i, j)-block entries

Si,j = wi,jGi,j

and a nk × nk block diagonal matrix D with (i, i)-block entries

Di,i = ∑
j �=i

wi,j Idk,

which is assumed to be invertible. Let us call

L(W,G) := D−1S and L0(W,G) := L(W ◦ 1i �=j ,G).(1)

In other words, L0(W,G) is the matrix L(W,G) computed from the weight matrix
W where the diagonal weights have been replaced by 0.

GCL terminology. Suppose we are given a connection graph (G,w, r), and
construct the (symmetric) n × n affinity matrix W so that wi,j = w(i, j) and the
connection matrix G, the nk × nk block matrix with k × k block entries Gi,j =
r(i, j). The (normalized) GCL associated with the connection graph (G,w, r) is
defined as

Idnk − L(W,G).(GCL)
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The modified GCL associated with the connection graph (G,w, r) is defined as

Idnk − L0(W,G).(modifGCL)

We note that under our assumptions on r , that is, ri,j = r−1
j,i = r∗

i,j , the connection
matrix G is Hermitian. [Since W is symmetric, L(W,G) and L0(W,G) are similar
to Hermitian matrices.]

We are interested in the large eigenvalues of L(W,G) [or, equivalently, the
small eigenvalues of the GCL Idnk −L(W,G)] as well as the corresponding eigen-
vectors. In the case where the data is not corrupted by noise, the GCL’s asymptotic
properties have been studied in [31, 33], when the underlying intrinsic structure is
a manifold. Its so-called synchronization properties have been studied in [2, 9].

1.4. Organization of the paper. We develop in Section 2 a theory for the im-
pact of noise on a specific metric motivating this work, the rotationally invariant
distance and related quantities. In Section 3, we give results concerning general
GCL algorithms and propose modifications to the standard algorithms to render
them more robust to noise. We present in Section 4 some numerical results, illus-
trating in part the points we raised in Sections 2 and 3.

Questions we address. The aim of our study is to understand the impact of
additive noise on GCL algorithms. Our main results are Propositions 2.1 and 2.2,
which explain the effect of noise on the affinity, and Theorem 2.2, which explains
the effect of noise on the connection. These results are derived in the important case
of the rotationally invariant distance. They lead to suggestions for modifying the
standard GCL algorithms: the methods are more robust when we use a complete
graph than when we use a nearest-neighbor graph, the latter being commonly used
in practice. One should also use the matrix L0(W,G) instead of L(W,G) to make
the method more robust to noise. After we suggest these modifications, one main
result is Theorem 3.1, which shows that even when the signal-to-noise-ratio (SNR)
is very small, that is, going to 0 asymptotically, our modifications of the standard
algorithm will approximately yield the same spectral results as if we had been
working on the GCL matrix computed from noiseless data. Another important
result in the paper is Theorem 3.2, which generalizes Theorem 3.1 to a broader
class of GCL methods.

Notation. T denotes a set of linear transforms. Idk stands for the k ×k identity
matrix. If v ∈R

n, D({v}) is a nk ×nk block diagonal matrix with the (i, i)th block
equal to viIdk . We denote by A ◦ B the Hadamard, that is, the entry-wise, product
of the matrices A and B . |||M|||2 is the largest singular value (a.k.a. operator norm)
of the matrix M . ‖M‖F is its Frobenius norm. We use the probabilistic Landau
notation oP and OP with the standard meaning; see, for example, [38], page 12
for definitions, if needed.

We now turn to the analysis of elements of a specific algorithm, the class aver-
aging algorithm in the cryo-EM problem, with a broadly accepted model of noise
contamination to demonstrate the impact of noise on this procedure.
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2. Impact of additive noise on the rotationally invariant distance. We as-
sume that we observe noisy versions of the k-dimensional images/objects, k ≥ 2,
we are interested in. If the images in the (unobserved) clean dataset are called
{Si}ni=1, we observe

Ii = Si + Ni.

Here {Ni}ni=1 are pure-noise images/objects. Naturally, after discretization, the im-
ages/objects we consider are just data vectors of dimension p—we view Si and Ni

as vectors in R
p . In other words, for a k-dimensional image, we sample p points

from the domain R
k using the sampling grid X := {xi}pi=1 ⊂ R

k , and the image is
discretized according to these points. We also assume that the random variables
Ni ’s, i = 1, . . . , n, are independent.

2.1. Distance measurement between pairs of images. We start from a general
definition. Take a set of linear transforms T (k) ⊂ O(k). Consider the following
measurement between two objects/images, dij ≥ 0, with

d2
ij = inf

O∈T (k)
‖Ii − O ◦ Ij‖2

2,

where ◦ means that the transform is acting on the pixels. For example, in the con-
tinuous setup where Ij is replaced by fj ∈ L2(Rk), given O ∈ SO(k), we have
O ◦ fj (x) := fj (O−1x) for all x ∈ R

k . When T (k) = SO(k), dij is called the rota-
tionally invariant distance (RID).

Difficulties arising from discretization. In the discrete setup of interest in this
paper, we assume that X = O−1X for all O ∈ T (k); that is, the linear transform is
exact (with respect to the grid X), in that it maps the sampling grid onto itself.
For concreteness, here is an example of sampling grid and associated exact lin-
ear transforms: Let k = 2, and take the sampling grid to be the polar coordinates
grid. Since we are in dimension 2, we pick m rays of length 1 at angles 2πk/m,
k = 0, . . . ,m − 1 and have l equally spaced points on each of those rays. We con-
sider Ii to be the discretization of the function fi ∈ L2(R2) which is compactly
supported inside the unit disk, at the polar coordinate grid. The set T (2) consisting
of elements of SO(2) with angles θk = 2π k

m
, where k = 1, . . . ,m, is thus exact and

associated to the polar coordinate grid.
The discretization and notation merit further discussion. As a linear transform

of the domain R
k , O ∈ T (k) can be represented by a k × k matrix. On the other

hand, in the discretized setup we consider here, we can map T (k) to a set T of
p×p matrices O which act on the discretized images Ij . These images are viewed
as a set of p-dimensional vectors, denoted as I∨

j , and O acts on a “flattened” or
“vectorized” (i.e., 1-dimensional) version of the k-dimensional object of interest.
Note that to each transform O there corresponds a unique p × p matrix O. In the
following, we will use O to denote the transform acting on the pixels, and use O to
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mean its companion matrix acting on the vectorized version of the object we are
interested in. A simple but very important observation is that

(O ◦ Ii)
∨ = OI∨

i .

In other words, we will have infO∈T (k) ‖Ii − O ◦ Ij‖ = infO∈T ‖I∨
i − OI∨

j ‖. To
simplify the notation, when it is clear from the context, we will use Ij to mean
both the discretized object of interest and its vectorized version.

Approximation results. In what follows, we assume that T always contains
Idp . We study the impact of noise on dij through a uniform approximation argu-
ment. Let us call for O ∈ T ,

d2
ij,noisy(O) := ∥∥I∨

i − OI∨
j

∥∥2 and d2
ij,clean(O) := ∥∥S∨

i − OS∨
j

∥∥2
.

Essentially we will show that, when T contains only orthogonal matrices and is
not “too large,”

sup
O∈T

sup
i �=j

∣∣d2
ij,noisy(O) − d2

ij,clean(O) − f (i, j)
∣∣ = oP (1),

where f (i, j) does not depend on O. Our approximations will in fact be much
more precise than this, but we will be able to conclude that in these circumstances,

sup
i �=j

∣∣∣ inf
O∈T d2

ij,noisy(O) − inf
O∈T d2

ij,clean(O) − f (i, j)
∣∣∣ = oP (1).

We have the following theorem for any given set of transforms T .

THEOREM 2.1. Suppose that for 1 ≤ i ≤ n, Ni are independent, with N∨
i ∼

N (0,�i). Call

tp := sup
i

sup
O∈T

√
trace

((
O�iO′)2)

and

sp := sup
1≤i≤n

sup
O∈T

√∣∣∣∣∣∣O�iO′∣∣∣∣∣∣
2.

Then we have

sup
O∈T

sup
i �=j

∣∣d2
ij,noisy(O) − d2

ij,clean(O) − trace
(
�i + O�j O′)∣∣

= OP

(√
log

[
Card{T }n2

](
tp + sp sup

i,O∈T
∥∥OS∨

i

∥∥)
+ log

[
Card{T }n2]

s2
p

)
.

A proof of this theorem can be found in Section A-1 in the Supplementary
Material [19]. In light of the previous theorem, we have the following proposition.
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PROPOSITION 2.1. Suppose that for all 1 ≤ i ≤ n and O ∈ T , |||O�iO′|||2 ≤
σ 2

p ,
√

trace([O�iO′]2)/p ≤ s2
p and ‖OS∨

i ‖ ≤ K , where K is a constant indepen-
dent of p. Then

sup
O∈T

sup
i �=j

∣∣d2
ij,noisy(O) − d2

ij,clean(O) − trace
(
�i + O�j O′)∣∣ = OP (un,p),(2)

where un,p :=
√

log[Card{T }n2](√ps2
p + Kσp) + log[Card{T }n2]σ 2

p .

It follows that, if
√

log[Card{T }n2]max(
√

ps2
p, σp) → 0, and T contains only

orthogonal matrices,

sup
O∈T

sup
i �=j

∣∣d2
ij,noisy(O) − d2

ij,clean(O) − trace(�i + �j)
∣∣ = OP (un,p) = oP (1).

Furthermore, in this case,

sup
i �=j

∣∣d2
ij,noisy − d2

ij,clean − trace(�i + �j)
∣∣ = oP (1),

where

d2
ij,noisy := inf

O∈T
∥∥I∨

i − OI∨
j

∥∥2
,

d2
ij,clean := inf

O∈T
∥∥S∨

i − OS∨
j

∥∥2
.

The following set of assumptions is natural in light of the previous proposition:

ASSUMPTION G1. ∀i,O ∈ T , |||O�iO′|||2 ≤ σ 2
p ,

√
trace([O�iO′]2)/p ≤

s2
p and ‖OS∨

i ‖ ≤ K , where K is a constant independent of p. Furthermore,√
log[Card{T }n2]max(

√
ps2

p, σp) → 0 and hence un,p → 0.

We refer the reader to Proposition C.1 on page 16 in the Supplementary Material
[19] for a bound on Card{T } that is relevant to the class averaging algorithm in the
cryo-EM problem.

PROOF OF PROPOSITION 2.1. The first two statements are immediate conse-
quences of Theorem 2.1. For the second one, we use the fact that since O ∈ T is
orthogonal, trace(O�j O′) = trace(�j ).

Now, if F and G are two functions, we clearly have | infF(x) − infG(x)| ≤
sup |G(x) − F(x)|. Indeed, ∀x, F(x) ≤ G(x) + sup |G(x) − F(x)|. Hence, for
all x,

inf
x

F (x) ≤ F(x) ≤ G(x) + sup
∣∣G(x) − F(x)

∣∣,
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and we conclude by taking inf in the right-hand side. The inequality is proved
similarly in the other direction. The results of Theorem 2.1 therefore show that

sup
i �=j

∣∣d2
ij,noisy − d2

ij,clean − trace(�i + �j)
∣∣

= OP

(√
log

[
Card{T }n2

](√
ps2

p + Kσp

) + log
[
Card{T }n2]

σ 2
p

)
and we get the announced conclusions under our assumptions. �

We now present two examples to show that our assumptions are quite unrestric-
tive. This will later help to prove that the algorithms we are studying can tolerate
very large amounts of noise.

Magnitude of noise: First example. Assume that N∨
i ∼ p−(1/4+ε)N (0, Idp),

where ε > 0. In this case, ‖N∨
i ‖ ∼ p1/4−ε � supi ‖S∨

i ‖ if ε < 1/4. In other words,
the norm of the error vector is much larger than the norm of the signal vector.
Indeed, asymptotically, the signal to noise ratio ‖S∨

i ‖/‖N∨
i ‖ is 0. Furthermore,

σp = p−(1/4+ε) and
√

ps2
p = p−2ε . Hence, if Card{T } = O(pγ ) for some γ , our

conditions translate into
√

log(np)max(p−(1/4+ε),p−2ε) → 0. This is of course
satisfied provided n is subexponential in p. See Proposition C.1 in [19] for a natu-
ral example of T whose cardinal is polynomial in p.

Magnitude of noise: Second example. We now consider the case where �i has
one eigenvalue equal to p−ε , and all the others are equal to p−(1/2+η), ε, η > 0. In
other words, the noise is much larger in one direction than in all the others. In this
case, σ 2

p = p−ε and trace(�2
i ) = p−2ε + (p − 1) ∗ p−(1+2η) ≤ p−2ε + p−2η. So if

once again, Card{T } = O(pγ ), our conditions translate into
√

log(np)max(p−ε +
p−η,p−ε/2) → 0. This example would also work if the number of eigenvalues
equal to p−ε were o(p2ε/[log(np)]), provided

√
log(np)max(p−η,p−ε/2) → 0.

Comment on the conditions on the signal in Assumption G1. At first glance, it
might look like the condition supi,O∈T ‖OS∨

i ‖ ≤ K is very restrictive due to the
fact that, after discretization, Si has p pixels. However, it is typically the case that
if we start from a function in L2(Rk), the discretized and vectorized image S∨

i is
normalized by the number of pixels p, so that ‖S∨

i ‖ is roughly equal to the L2-
norm of the corresponding function. Hence, our condition supi,O∈T ‖OS∨

i ‖ ≤ K is
very reasonable.

2.2. The case of “exact rotations.” We now focus on the most interesting case
for our problem, namely the situation where O leaves our sampling grid invariant.
We call T (k)

exact ⊂ SO(k) the corresponding matrices O and Texact the companion
p × p matrices. We note that T (k)

exact depends on p, but since this is evident, we
do not index T (k)

exact by p to avoid cumbersome notation. From the standpoint of



GCL CAN BE MADE ROBUST TO NOISE 355

statistical applications, our focus in this paper is mostly on the case k = 1 (which
corresponds to “standard” kernel methods commonly used in statistical learning)
and k = 2.

We show in Proposition C.1 in [19] that if O ∈ Texact, O is an orthogonal p ×
p matrix. Furthermore, we show in Proposition C.1 in [19] that Card{Texact} is
polynomial in p. We therefore have the following proposition.

PROPOSITION 2.2. Let

d2
ij,noisy := inf

O∈T (k)
exact

‖Ii − O ◦ Ij‖2, d2
ij,clean := inf

O∈T (k)
exact

‖Si − O ◦ Sj‖2.

Suppose Ni are independent with N∨
i ∼ N (0,�i). When Assumption G1 holds

with Texact being the set of companion matrices of T (k)
exact, we have

sup
i �=j

∣∣d2
ij,noisy − d2

ij,clean − trace(�i + �j)
∣∣ = oP (1)

and

sup
O∈T (k)

exact

sup
i �=j

∣∣d2
ij,noisy(O) − d2

ij,clean(O) − trace(�i + �j)
∣∣ = OP (un,p) = oP (1).

2.3. On the transform O∗
ij,noisy. We now use the notation

dij,noisy(O) = ‖Ii − O ◦ Ij‖ and dij,clean(O) = ‖Si − O ◦ Sj‖.
Naturally, the study of

O∗
ij,noisy = argmin

O∈T (k)
exact

dij,noisy(O)(3)

is more complicated than the study of inf
O∈T (k)

exact
dij,noisy(O).

We will assume that the clean/noise-free images are nicely behaved when it
comes to the dij,clean(O) minimization, in that rotations that are near minimizers of
dij,clean(O) are close to one another. More formally, we assume the following.

ASSUMPTION A0. T (k)
exact is a subset of SO(k) and contains only exact ro-

tations. Call O∗
ij,clean := argmin

O∈T (k)
exact

d2
ij,clean(O) and call T (k)

ij,ε := {O ∈ T (k)
exact :

d2
ij,clean(O) ≤ d2

ij,clean(O
∗
ij,clean) + ε}. We assume that

∃δij,p > 0: ∀ε < δij,p,∀O ∈ T (k)
ij,ε d

(
O,O∗

ij,clean
) ≤ gij,p(ε),

for d the canonical metric on the orthogonal group and some positive gij,p(ε).

ASSUMPTION A1. δij,p can be chosen independently of i, j and p. Further-
more, there exists a function g such that g(ε) → 0 as ε → 0 and gij,p(x) ≤ g(x),
if x ≤ δij,p ≤ δ.
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We discuss the meaning of these assumptions after the following theorem.

THEOREM 2.2. Suppose that the assumptions underlying Theorem 2.1 hold
and that Assumptions G1, A0 and A1 hold. Suppose further that T (k)

exact is the set of
exact rotations for our discretization. Then, for any η given, where 0 < η < 1, as
p and n go to infinity,

sup
i �=j

d
(
O∗

ij,noisy,O
∗
ij,clean

) = OP

(
g
(
u1−η

n,p

))
,(4)

where un,p is defined in (2). (Under Assumption G1, un,p → 0 as n and p tend to
infinity.)

The informal meaning of this theorem is that under regularity assumptions on
the set of clean/noise-free images, the optimal rotation computed from the set of
noisy images is close to the optimal rotation computed from the set of clean/noise-
free images. In other words, this step of the GCL procedure is robust to noise.

Interpretation of Assumptions A0–A1. Assumption A0 guarantees that all near
minimizers of dij,clean(O) are close to one another and hence the optimum. Our
uniform bounds in Proposition 2.2 only guarantee that O∗

ij,noisy is a near minimizer
of dij,clean(O) and nothing more. If dij,clean(O) had near minimizers that were far
from the optimum O∗

ij,clean, it could very well happen that O∗
ij,noisy end up being

close to one of these near minimizers but far from O∗
ij,clean, and we would not have

the consistency result of Theorem 2.2. Hence, the robustness to noise of this part
of the GCL algorithm is clearly tied to some regularity or “niceness” property for
the set of clean/noise-free images.

In the cryo-EM problem, these assumptions reflect a fundamental property of
a manifold dataset, its condition number [29]. Conceptually, the condition num-
ber reflects “how difficult it is to reconstruct a manifold” from a finite sample of
points from that manifold. Precisely, it is the inverse of the reach of the manifold,
which is defined to be the radius of the smallest normal bundle that is homotopic
to the manifold. This also highlights the fact that even if we were to run the GCL
algorithm on the clean/noise-free dataset, without these assumptions, the results
might not be stable and reliable since intrinsically distant points (i.e., distant in the
geodesic distance) might be identified as neighbors.

About T (k)
exact and extensions. We are chiefly interested in this paper about 2-

dimensional images and hence about the case k = 2; see the cryoEM example.
It is then clear that when our polar coordinate grid is fine, T (k)

exact is also a fine
discretization of SO(2) and contains many elements. (More details are given in
Section C-3 in [19].) The situation is more intricate when k ≥ 3, but since it is a
bit tangential to the main purpose of the current paper, we do not discuss it further
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here. We refer the interested reader to Section C-3 in [19] for more details about
the case k ≥ 3.

We also note that our arguments are not tied to using a standard polar coordinate
grid for the discretization of the images. For another sampling grid, we would
possibly get another T (k)

exact. Our arguments go through when: (a) if O ∈ T (k), the
operation O◦ maps our sampling grid of points onto itself and (b) Card{T (k)} grows
polynomially in p.

2.4. Extensions and different approaches. Central to our arguments are strong
concentration results for quadratic forms in Gaussian random variables. Naturally,
our results extend to other types of random variables for which these concentration
properties hold. We refer to [25] and [15] for examples. A natural example in
our context would be a situation where Ni = �

1/2
i Xi , and Xi has i.i.d. uniformly

bounded entries. This is particularly relevant in the case where �i is diagonal, for
instance, the interpretation being then that the noise contamination is through the
corruption of each individual pixel by independent random variables with possibly
different standard deviations. The arguments in Lemma C-1 in [19] handle this
case, though the bound is slightly worse than the one in Lemma C-2 in [19] when a
few eigenvalues of �i are larger than most of the others. Indeed, the only thing that
matters in this more general analysis is the largest eigenvalue of �i , so that in the
notation of Assumption G1,

√
ps2

p is replaced by
√

pσ 2
p . Hence our approximation

will require in this more general setting that σp = o(p−1/4), whereas we have seen
in the Gaussian case that we can tolerate a much larger largest eigenvalue.

We also note that we could of course settle for weaker results on concentration
of quadratic forms, which would apply to more distributions. For instance, using
bounds on E(|‖Ni‖2 − E(‖Ni‖2)|k) would change the dependence of results such
as Proposition 2.1 on b � Card{T }n2 from powers of log(b) to powers of b1/k .
This is in turn would mean that our results would become tolerant to lower levels
of noise but apply to more noise distributions.

3. Robustness theory for general GCL problems. Our aim in this section
is to develop a theory that explains the behavior of GCL algorithms in the pres-
ence of noise. In particular, it will apply to algorithms of the cryo-EM type. We
give in Section 3.1 approximation results that apply to general GCL problems. In
Section 2, we study in detail the impact of noise on both the affinity and the con-
nection used in the computation of the GCL when using the rotationally invariant
distance (this is particularly relevant for the cryo-EM problem). We put these two
sets of results together for a detailed study of GCL algorithms in the presence of
noise in Section 3.2. We also propose in Section 3.2 modifications to the standard
algorithms that increase the robustness to noise of GCL methods.
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3.1. General approximation results. We first present two results that apply
generally to GCL algorithms and are not related to specific affinity or connection
functions.

LEMMA 3.1. Suppose W and W̃ are n × n matrices, with scalar entries de-
noted by wi,j and w̃i,j and G and G̃ are nd ×nd block matrices, with d ×d blocks
denoted by Gi,j and G̃i,j . We assume that

∃{fi}ni=1, fi > 0: sup
i,j

∣∣∣∣w̃i,j

fi

− wi,j

∣∣∣∣ ≤ ε and sup
i,j

‖G̃i,j − Gi,j‖F ≤ η.

Suppose furthermore that there exists C > 0 such that 0 ≤ wi,j ≤ C,
supi,j ‖Gi,j‖F ≤ C and supi,j ‖G̃i,j‖F ≤ C. Then, if infi

∑
j �=i wi,j /n > γ and

γ > ε, we have, with the notation of equation (1),

∣∣∣∣∣∣L(W,G) − L(W̃ , G̃)
∣∣∣∣∣∣

2 ≤ 1

γ
C(η + ε) + ε

γ (γ − ε)
C2 .

We note that quite remarkably, there are essentially no conditions on fi ’s: in
particular, w̃i,j and wi,j could be of completely different magnitudes. The previous
lemma also shows that, for the purpose of understanding the large eigenvalues and
eigenvectors of L(W,G), we do not need to estimate fi ’s: we can simply use
L(W̃ , G̃), that is, just work with the noisy data.

In the case fi = 1 for all i’s, this lemma says that if we can approximate the
matrix W well entrywise and each of the individual matrices Gi,j well too, data
analytic techniques working on the GCL matrix L(W̃ , G̃) will do essentially as
well as those working on the corresponding matrix for L(W,G) in the spectral
sense.

This result is useful because many methods rely on these connection graph
ideas, with different input in terms of affinity and connection functions [6, 7,
10–12, 26, 28, 34, 36, 37, 40]. However, it will often be the case that we can ap-
proximate wi,j —which we think of as measurements we would get if our signals
were not corrupted by noise—only up to a constant, which is why we need to allow
for the presence of fi ’s.

PROOF OF LEMMA 3.1. Let us call W̃f the matrix with scalar entries w̃i,j /fi .
We note simply that

L(W̃f , G̃) = L(W̃ , G̃).

The assumptions of Lemma C-3 in the Supplementary Material [19] apply to
(W̃f , G̃), and hence we have

∣∣∣∣∣∣L(W,G) − L(W̃f , G̃)
∣∣∣∣∣∣

2 ≤ 1

γ
C(η + ε) + ε

γ (γ − ε)
C2.
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But since L(W̃f , G̃) = L(W̃ , G̃), we also have

∣∣∣∣∣∣L(W,G) − L(W̃ , G̃)
∣∣∣∣∣∣

2 ≤ 1

γ
C(η + ε) + ε

γ (γ − ε)
C2. �

In some situations that will be of interest to us below, it is, however, not the case
that we can find fi ’s such that

∃{fi}ni=1, fi > 0: sup
i,j

∣∣∣∣w̃i,j

fi

− wi,j

∣∣∣∣ ≤ ε.

Rather, this approximation is possible only when i �= j , yielding the condition

∀i,∃fi > 0: sup
i �=j

∣∣∣∣w̃i,j

fi

− wi,j

∣∣∣∣ ≤ ε.

This apparently minor difference turns out to have significant consequences,
both practical and theoretical. We propose in the following lemma to modify the
standard way of the computing the GCL matrix to handle this more general case.

LEMMA 3.2. We work under the same setup as in Lemma 3.1 and with the
same notation. We now assume that multiplicative approximations of the weights
is possible only on the off-diagonal elements of our weight matrix

∃{fi}ni=1, fi > 0: sup
i �=j

∣∣∣∣w̃i,j

fi

− wi,j

∣∣∣∣ ≤ ε and sup
i,j

‖G̃i,j − Gi,j‖F ≤ η.

Suppose furthermore that there exists C > 0 such that 0 ≤ wi,j ≤ C,
supi,j ‖Gi,j‖F ≤ C, and supi,j ‖G̃i,j‖F ≤ C. Then if infi

∑
j �=i wi,j /n > γ and

γ > ε, we have

∣∣∣∣∣∣L0(W,G) − L0(W̃ , G̃)
∣∣∣∣∣∣

2 ≤ 1

γ
C(η + ε) + ε

γ (γ − ε)
C2

and

∣∣∣∣∣∣L(W,G) − L0(W̃ , G̃)
∣∣∣∣∣∣

2 ≤ 1

γ
C(η + ε) + ε

γ (γ − ε)
C2 + C2

nγ
.

The lemma is shown in Section A-3 in the Supplementary Material [19].

Comment. Concretely, this lemma means that if we do not include the block
diagonal terms in the computation of the GCL obtained from our “noisy data,”
that is, (W̃ , G̃), we will get a matrix that is very close in spectral norm to the GCL
computed from the “clean/noise-free data,” that is, (W,G). The significance of this
result lies in the fact that recent work in applied mathematics has proposed to use
the large eigenvalues and eigenvectors of L(W,G) for various data analytic tasks,
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such as the estimation of local geodesic distances when the data is thought to be
sampled from an unknown manifold.

What our result shows is that even when fi are arbitrarily large, which we can
think of as the situation where the signal to noise ratio in W̃ is basically 0, working
with L0(W̃ , G̃) will allow us to harness the power of these recently developed
tools. Naturally, working with (W̃ , G̃) is a much more realistic assumption than
working with (W,G) since we expect all our measurements to be noisy in practice.
Results based on (W,G) essentially assume that there is no noise in the dataset.

Finally, the previous lemma also suggests that practitioners not use nearest-
neighbor information when using GCL methods. Indeed, the nearest-neighbor in-
formation is generally different for noisy and noise-free datasets, and incorporat-
ing it would damage or destroy the spectral approximate-equivalence results of
Lemma 3.2.

We provide a simple extension that may be useful from a practical standpoint in
Lemma A-2 in the Supplementary Material [19], Section A-3.1: in the case where
L0(W,G) can be approximated by a sparser matrix, we are able to weaken the
requirement of uniform approximation of Gi,j ’s by G̃i,j ’s.

3.2. Consequences for GCL algorithm and other kernel-based methods.

3.2.1. Reminders and preliminaries Recall that in GCL methods performed
with the rotationally invariance distance induced by SO(k) (henceforth RID), we
mostly care about the spectral properties—especially large eigenvalues and corre-
sponding eigenvectors—of the GCL matrix L(W̃ , G̃), where W̃ is a n × n matrix,
and G̃ is a nk × nk block-matrix with k × k blocks defined through

W̃i,j = exp
(−d2

ij,noisy/ε
)
, G̃i,j = O∗

ij,noisy,

where O∗
ij,noisy is defined in equation (3).

The “good” properties of GCL stem from the fact that the matrix L(W,G), the
GCL matrix associated with the clean/noise-free images, has “good” spectral prop-
erties. For example, when a manifold structure is assumed, the theoretical work in
[31, 33] relates the properties of L(W,G)—the matrix obtained in the same man-
ner as above when we replace dij,noisy by dij,clean and O∗

ij,noisy by O∗
ij,clean—to the

geometric and topological properties of the manifold from which the data is sam-
pled. The natural approximate “sparsity” of the spectrum of these kinds of matrices
is discussed in Section D in the Supplementary Material [19].

In practice, the data analyst has to work with L(W̃ , G̃) or variants taking into
account only the k nearest neighbors of each datapoint. Hence, it could potentially
be the case that L(W̃ , G̃) or its variants do not share many of the good properties
of L(W,G). It is therefore natural to study the properties of the standard GCL
algorithm applied to noisy data.

We mention that GCL algorithms may apply beyond the case of the rotational
invariance distance and O(k), and we explain in Section 3.2.3 how our results
apply in this more general context.
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3.2.2. Modified GCL algorithm and rotationally invariant distance. We now
show that our modification to the standard algorithm is robust to noise. More pre-
cisely, we show that the modified GCL matrix L0(W̃ , G̃) is spectrally close to the
GCL matrix computed from the noise-free data, L(W,G). We also argue below
that it is important to use the full matrix L0(W̃ , G̃) and not incorporate nearest-
neighbor information.

THEOREM 3.1. Consider the modified GCL matrix L0(W̃ , G̃) computed from
the noisy data and the GCL matrix L(W,G) computed from the noise-free data.
Under Assumptions G1 and A0–A1, we have, if trace(�i) = trace(�j ) = trace(�)

for all (i, j),
∣∣∣∣∣∣L0(W̃ , G̃) − L(W,G)

∣∣∣∣∣∣
2 = oP (1),

provided there exists γ > 0, independent of n and p such that

inf
i

∑
j �=i

exp(−d2
ij,clean/ε)

n
≥ γ > 0.

The proof is given in Section A-4 in the Supplementary Material [19].
Note that the previous result means that L0(W̃ , G̃) and L(W,G) are essentially

spectrally equivalent: indeed we can use the Davis–Kahan theorem or Weyl’s in-
equality to relate eigenvectors and eigenvalues of L0(W̃ , G̃) to those of L(W,G);
see [5, 35] or [14] for a brief discussion putting all the needed results together; note
that L0 and L are similar to Hermitian matrices. In particular, if the large eigen-
values of L(W,G) are separated from the rest of the spectrum, the eigenvalues of
L0(W̃ , G̃) and corresponding eigenspaces will be close to those of L(W,G).

Is the diagonal modification of the algorithm really needed? It is natural to ask
what would have happened if we had not used a diagonal modification to the stan-
dard algorithm, that is, if we had worked with L(W̃ , G̃) instead of L0(W̃ , G̃). It is
easy to see that

L(W̃ , G̃) = L0(W̃ , G̃) + D,

where D is a block diagonal matrix with

D(i, i) = w̃i,i∑
j �=i w̃i,j

Idk = 1∑
j �=i w̃i,j

Idk.

Under our assumptions,
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣n exp

(−2 trace(�)/ε
)
D − D

({[∑
j �=i exp(−d2

ij,clean/ε)

n

]−1}n

i=1

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

= oP (1).



362 N. EL KAROUI AND H.-T. WU

We also recall that under Assumption G1, trace(�) can be as large as p1/2−η, a
very large number in our asymptotics. So in particular, if n is polynomial in p, we
have then n−1 exp(2 trace(�)/ε) → ∞. This implies that

L(W̃ , G̃) = L0(W̃ , G̃) + D

is then dominated in spectral terms by D in general. So it is clear that in the
high-noise regime, if we had used the standard GCL algorithm, the spectrum of
L(W̃ , G̃) could have mirrored that of D—which has little to do in general with the
spectrum of L(W,G), which we are trying to estimate—and the noise would have
rendered the algorithm ineffective. An exception is the case where D is spectrally
close to the identity, in which case the eigenvectors of L(W̃ , G̃) would be close to
those of L0(W̃ , G̃). Even in this case, it is, however, not harmful to use L0(W̃ , G̃)

instead of L(W̃ , G̃). There is therefore no downside to using L0(W̃ , G̃) instead of
L(W̃ , G̃) by default, and potentially there is some upside.

By using the modification we propose, we guarantee that even in the high-noise
regime, the spectral properties of L0(W̃ , G̃) mirror those of L(W,G). We have
hence made the GCL algorithm more robust to noise.

On a technical note, the fact that, in the noisy case, our approximation results
for the RID distance hold only (up to a scalar) off the diagonal forces us to work
with Lemma 3.2 and not Lemma 3.1. If it were the case, for instance, for differ-
ent affinity functions, that the approximation results held on the diagonal too, we
could use the results of Lemma 3.1, and we would not have to do the diagonal
modification.

On the use of nearest-neighbor graphs. In practice, variants of the GCL algo-
rithms we have described use nearest-neighbor information to replace wi,j by 0 if
wi,j is not among the k largest elements of {wi,j }nj=1. In the high-noise setting,
the nearest-neighbor information is typically not robust to noise, which is why we
propose to use all the wi,j ’s and avoid the nearest-neighbor variant of the GCL al-
gorithm, even though the latter probably makes more intuitive sense in the noise-
free context. A systematic study of the difference between these two variants is
postponed to future work. In Section 4, we carry out some numerical experiments
to illustrate the lack of robustness to noise of the nearest-neighbor information and
the improvements that result from using L0(W̃ , G̃).

Comparison with previous results in the literature. As far as we know, the study
of the impact of high-dimensional additive noise on kernel methods was started in
[16]. Compared to this paper, our extension is two-fold: (1) the noise level [i.e.,
trace(�)] that is studied in the current paper is much higher than what was studied
in [16]. This is partly a result of the fact that the current paper focuses on the Gaus-
sian kernel whereas [16] studied many more kernels. (2) El Karoui [16] focused
on standard kernel methods based on the graph Laplacian, that is, k = 1, and the
connection information is not included in the data analysis. Incorporating this new
element creates new difficulties. See also [30] for another study of the influence of
noise in a different setup.
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3.2.3. GCL beyond the rotational invariance distance. The previous analysis
has been carried out for the RID and corresponding rotations where we studied the
impact of additive noise in Section 2. However, it is clear that our results apply
much more broadly. We have the following theorem.

THEOREM 3.2. Suppose we are given a collection di,j,noisy of (scalar-valued,
symmetric in i, j ) dissimilarities between noisy versions of objects i and j ,
1 ≤ i, j ≤ n. Suppose objects i and j have (scalar-valued, symmetric in i, j ) dis-
similarity di,j,clean. Consider the asymptotic regime where n → ∞, and suppose
that there exists ξn ∈ R such that

sup
i �=j

∣∣d2
i,j,noisy − d2

i,j,clean − ξn

∣∣ = oP (1).

Call w̃i,j = exp(−d2
i,j,noisy/ν) and wi,j = exp(−d2

i,j,clean/ν) the corresponding
affinities. ν is held fixed in our asymptotics, though the way affinities are computed
may change with n.

Suppose G̃i,j is the connection between noisy versions of objects i and j , and
Gi,j is the connection between the clean/noise-free version of objects i and j .
Suppose that wi,j , Gi,j and G̃i,j satisfy the assumptions of Lemma 3.2, with ε and
η possibly random but oP (1) and γ bounded below as n → ∞. Then∣∣∣∣∣∣L(W,G) − L0(W̃ , G̃)

∣∣∣∣∣∣
2 = oP (1).

PROOF. This theorem is just a consequence of Lemma 3.2. Indeed, the affini-
ties are all bounded by 1. Furthermore, we can use fi = exp(−ξn/ν), and all the
approximation results needed in Lemma 3.2 are true, so the result follows. �

3.2.4. A situation without robustness to noise. So far, our work has been quite
general and has shown that when the noise is Gaussian (or Gaussian-like) and its
covariance �i is such that trace(�i) = trace(�j ) for all i, j , GCL algorithms can
be made robust to noise.

It has been recognized [13, 15–17] that to study the robustness of various sta-
tistical procedures in high-dimension, it is essential to move beyond the Gaussian-
like situation and study, for instance, elliptical/scale mixture of Gaussian models.
This is largely due to the peculiar geometry of high-dimensional Gaussian and
Gaussian-like vectors; see the above references and [23].

If we now write down a model for the noise where Ni = λiZi , where Zi are
i.i.d. N (0,�), λi ’s are i.i.d. with Eλ2

i = 1 and λi ∈ R is independent of Zi , it
is easy to modify our analysis (assuming, e.g., that λ2

i are bounded, though this
condition could easily be relaxed) and to realize that our main approximation result
in Proposition 2.1 is replaced by

sup
i �=j

∣∣d2
ij,noisy − d2

ij,clean − [
λ2

i + λ2
j

]
trace(�)

∣∣ = oP (1).
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In this situation, Theorem 2.2 is still valid. However, Theorem 3.1 is not valid
anymore. The matrix L0(W̃ , G̃) can be approximated by a matrix that depends
both on the signal and the distribution of the λ2

i ’s, and there is no guarantee in
general that this matrix will have approximately the same spectral properties as
L(W,G) or L0(W,G), the GCL matrix generated from the noise-free signals.
This suggests that even our modification of the original GCL algorithm will not be
robust to this “elliptical”-noise contamination.

4. Numerical work. Although the robustness properties of GCL methods
were not well studied in the past, these methods have been successfully applied
to different problems, for example, [1, 12, 27, 31, 34, 40]. In this section, we show
simulated examples to illustrate the practical performance of our theoretical find-
ings about GCL methods. We refer interested readers to the aforementioned papers
for details and results of its applications.

To demonstrate the main finding of this paper—that GCL methods are robust
to high-levels of noise in the spectral sense—we take the noise to be a random
Gaussian vector Z ∼N (0, cIp/pα), where α ≤ 1 and c > 0. Note that the amount
of noise, or the trace of the covariance matrix of Z, is cp1−α and will tend to
infinity when p → ∞ and α < 1.

4.1. 1-dimensional manifold. Our first example is a dataset sampled from a
low-dimensional manifold, which is embedded in a high-dimensional space. This
dataset can be viewed as a collection of high-dimensional points which is (locally)
parametrized by only few parameters,3 but in a nonlinear way.

As a concrete example, we take the twisted bell-shaped simple and closed
curve, denoted as M, embedded in the first 3 axes of Rp , where p � 2, via ι : [0,

2π) →R
p ,

ι : t �→ [
cos(t),

(
1 − 0.8e−8 cos2 t ) cos

(
π

(
cos(t) + 1

)
/4

)
,

(
1 − 0.8e−8 cos2 t ) sin

(
π

(
cos(t) + 1

)
/4

)
,0, . . . ,0

] ∈ R
p.

M is a 1-dimensional smooth manifold without boundary; that is, no matter how
big p is, locally the points on M can be parametrized by only 1 parameter. See
Figure 1(A) for an illustration. One interesting such dataset is the 2-D tomography
from noisy projections taken at unknown random directions [32].

For our numerical work, we independently sample n points uniformly at random
from [0,2π). Due to the nonlinear nature of ι, it is equivalent to nonuniformly sam-
pling n points from M independently. Denote the clean data as Y = {yi}ni=1 ⊂ M.
The data X = {xi}ni=1 we analyze is the clean data contaminated by additive noise,

3By definition, although locally the manifold resembles Euclidean space near a point, globally it
might not. Thus, in general, we can only parametrize the manifold locally. This feature captures the
possible nonlinear structure in the data.



GCL CAN BE MADE ROBUST TO NOISE 365

FIG. 1. Clean samples from the twisted bell-shaped manifold. (A): The clean samples. Here we
only plot the first 3 axes of the high-dimensional data Y . The color of each point is a surrogate of
the norm of each embedded point—blue means a relative small norm and dark red means a relative
large norm; the scale above the figure refers to {‖yi‖2}ni=1, that is, the norm of the data vectors in
R

p . (B): The results of the truncated diffusion maps (tDM), �1,1000,3, when the connection graph is
GNN, and the diagonal entries are not removed, where the number of nearest neighbors is chosen to
be 100; (C): The result of tDM, �1,1000,3, when the connection graph is G and the diagonal entries
are not removed; (D): The result of tDM, �1,1000,3, when the connection graph is G and the diagonal
entries are removed. Note that without surprise, the “parametrization” of the bell-shaped manifold
is recovered in (B), (C) and (D). For (B), (C), and (D) in Figure 2, the scales above the figures
refer to the norm of {�1,1000,3(yi)}ni=1; these vectors are of course 3-dimensional, which explains
the difference in magnitude of our scales. Indeed, in order to recover the local geodesic distance
between two close points, we need more eigenvectors than 3. However, for the visualization purpose,
we have only taken the first 3 nontrivial eigenvectors into account here.

that is, xi = yi + Zi , with Zi i.i.d. with the same distribution as Z. We measure

the signal-to-noise ratio of the dataset by the quantity snrdb := 20 log
√
EXT X√
EZT Z

. We
take n = p = 1000 and α = 1/4. Note that α = 1/4 is the critical value in our
analysis beyond which our results do not apply. For concreteness, the snrdb will
be −9.25 and −18.73, respectively, when c = 0.25,0.4.

Then, we build up the GCL [in this 1-dimensional manifold with the trivial con-
nection, it is equivalent to the graph Laplacian (GL)] from X by setting L(W̃ , G̃)

[see (1)], where the n × n affinity matrix W̃ is defined as W̃i,j := e−‖xi−xj‖2
Rp /m,

the bandwidth m is the first quartile of all Euclidean distances between pairs of
(xi, xj ) ∈ E and the n × n connection matrix G̃ is defined as G̃i,j := 1 for all
(xi, xj ) ∈ E. That choice of m is a common in practice.

Note that in practice, it is also common to use a nearest-neighbor (NN) scheme
to build up the GCL for the sake of computational efficiency; see the Supple-
mentary Material [19], Section B for details. The associated affinity matrix (resp.,
connection matrix and GCL) is denoted as W̃NN [resp., G̃NN and L(W̃NN, G̃NN)],
where we choose 100 nearest neighbors to construct edges. We have seen in the
analysis described earlier in the paper that when α < 1, it theoretically helps to re-
move the diagonal terms of the GCL matrix in order to preserve spectral properties,
so we also consider the matrix L0(W̃ , G̃) for the comparison.

We then evaluate the eigenvalues and eigenvectors of the above three different
GCL’s. To simplify the notation, we use the same notation to denote the eigen-
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vectors u1, u2, u3 . . . ∈ R
n associated with the eigenvalues 1 = λ1 > λ2 ≥ λ3 ≥ · · ·

≥ 0. We now show two sets of results to demonstrate the robustness of the GCL
methods studied in this paper.

Dimension reduction and data visualization. To achieve this, we may embed
the sampled points into R

m by the truncated diffusion maps (tDM) with time t > 0
and m ≥ 1,

�t,n,m :xi �→ (
λt

2u2(i), λ
t
3u3(i), . . . , λ

t
m+1um+1(i)

) ∈ R
m,

where m is chosen by the user depending on the problem; that is, we map the
ith data point to R

m using the first m nontrivial eigenvectors of the GCL. For
the purpose of visualization, we may take m = 2 or m = 3. For other purposes,
we may choose m depending on a given threshold δ > 0. m is chosen so that
|λm+1/λ2|t > δ and |λm+2/λ2|t ≤ δ. In this example, we choose t = 1 and m = 3
for the visualization; see also Section B-1 in the Supplementary Material [19]
for more details about this simulation. The embedding results of Y , �1,1000,3,
based on the above different GCL’s are shown in Figure 1, and the results from
X with c = 0.4 are shown in Figure 2. Ideally, we would expect to recover the
“parametrization” of the dataset with the idea that the eigenvectors of the GCL
represent a set of new coordinates for the data points, so the high-dimensional
dataset can be visualized in this new set of coordinates, or its dimension can be

FIG. 2. Noisy samples from the twisted bell-shaped manifold with α = 1/4 and c = 0.4. (A): The
noisy samples. We only plot the first 3 axes of the data X ; hence we see only a small fraction of the
noise, as 997 out of 1000 coordinates are not plotted. The color of each point is a surrogate for ‖xi‖,
xi ∈ R

1000. (B): The results of the truncated diffusion maps (tDM), �1,1000,3, when the connection
graph is constructed by the NN scheme and the diagonal entries are not removed, where the number
of nearest neighbors is chosen to be 100. We can barely see the circular structure in the middle, and
there are several big outliers; (C): The result of tDM, �1,1000,3, when the connection graph is com-
plete and the diagonal entries are not removed. Note that when compared with (B), the embedding
is better in the sense that the “parametrization,” the simple and close curve, is better recovered. But
we can still observe several outliers; (D): The result of tDM, �1,1000,3, when the connection graph
is complete and the diagonal entries are removed. Note that compared with (C), the embedding is
yet better in the sense that the number of outliers is reduced and the parametrization of the manifold
is recovered. Note that for (B), (C), (D), the scale above the figures refer to {‖�1,1000,3‖(xi)}ni=1,
which are 3-dimensional vectors. The different scales indicate the presence of outliers.
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reduced. In this specific example, we would expect to find a simple and closed
curve out of the noisy dataset which represents the dataset in R

3. Clearly when
the dataset is clean, we succeed in the task no matter which GCL we use. How-
ever, if the dataset is noisy, at high-noise levels, the embedding might not be that
meaningful if we use L(W̃NN, G̃NN) or L(W̃ , G̃). Indeed, as shown in Figure 2,
with L(W̃NN, G̃NN) the structure of the dataset is barely recovered; with L(W̃ , G̃),
even though we can get the simple closed curve4 back, there are several outliers
which might deteriorate the interpretation. In this noisy case, we can only succeed
in the task if we choose L0(W̃ , G̃), as is discussed in this paper.

Identifying neighbors. Identifying neighbors (in various metrics) of a given
data point from a noisy dataset is not only important but also challenging in prac-
tice (e.g., it is essential in the class averaging algorithm for the cryo-EM problem
to find the correct neighbors when the projection images are noisy). This prob-
lem is directly related to local geodesic distance estimation when the dataset is
modeled by a manifold. The theoretical properties of diffusion maps and vector
diffusion maps make these methods particularly well suited for these tasks [31].
To determine neighbors, we of course need a notion of distance. In addition to the
naive L2 distance between points, we consider the (truncated) diffusion distance
between two points xi, xj ∈X by

dDM,t,n,m(xi, xj ) := ∥∥�t,n,m(xi) − �t,n,m(xj )
∥∥
Rm,

where m is determined in the tDM, �t,n,m, with m chosen by a given threshold-
ing δ > 0. Then we determine the nearest neighbors of each data point based on
these distances, where we choose t = 1 and δ = 0.2 for the diffusion distance.
More precisely, we first determine 10 nearest neighbors of xi , denoted as xij ,
j = 1, . . . ,10, from the noisy dataset X , for all i. Then, since we know the ground
truth, we may check the true relationship between yi and yij , j = 1, . . . ,10, that
is, dDM,t,n,m(yi, yij ) for various GCL methods, or ‖yi − yij ‖ if we use L2 dis-
tance. Clearly, if the method preserves nearest-neighbor information, at least ap-
proximately, the ranks of the yij ’s measured in terms of distances to yi should be
small. To quantify the estimation accuracy, we collect the ranks of all estimated
nearest neighbors, and plot the cumulative distribution results in Figure 3. In other
words, if we call Rij the rank of yij in terms of distance to yi , we plot the c.d.f. of
{{Rij }10

j=1}ni=1 for the various distances we use. (There are many other methods one
could use to do these comparisons, such as using Kendall’s τ and variants thereof;
see [21]. The one we use here has the benefit of simplicity.) When the dataset is
clean, all methods perform in the same way, as is predicted in Theorem D.7 of [19].

4The main idea behind tDM is embedding the dataset to a lower dimensional Euclidean space so
that the structure underlying the data can be extracted. Please see Section D-5 in the Supplementary
Material [19] for details.
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FIG. 3. The result of nearest-neighbors estimation. In all subfigures, the x-axis is the true rank of
an estimated nearest neighbor, and the y-axis is its cumulative distribution. To emphasize the dif-
ference, we only show the area ranging from 90% to 100% in the y-axis. The gray dashed (gray,
black dashed and black, resp.) curve is the cumulative distribution of the true ranks of the esti-
mated nearest neighbors estimated from the ordinary Euclidean distance [diffusion distance based
on L(W̃NN, G̃NN), L(W̃ , G̃) and L0(W̃ , G̃), resp.]. From left to right: clean samples from the bell
shaped manifold, noisy samples with α = 1/4 and c = 0.25,0.4,0.5, respectively. It is clear that
when the noise is large, the result based on the L2 distance is much worse than the others. The result
based on L(W̃NN, G̃NN) is slightly better, but not that good, L(W̃ , G̃) is even better and L0(W̃ , G̃)

is the best.

It is clear from the results that when the noise is large, the result based on the L2

distance is much worse than the others. The performance based on the diffusion
distance from L(W̃NN, G̃NN) is better when the noise level is not big, but still a
nonnegligible portion of error exists; the results based on L(W̃ , G̃) and L0(W̃ , G̃)

are much better, while the result based on L0(W̃ , G̃) is the best.

4.2. 2-dimensional images. In Section 4.1, we investigated numerically the
influence of noise on GCL methods when the connection function is trivial. In this
subsection, we discuss an example where the connection function plays an essen-
tial role in the analysis. We consider a dataset which contains randomly rotated
versions of a set of objects, and the task is to align these objects in addition to clas-
sifying them. We encounter these kinds of datasets and problems in, for example,
image processing [31, 34, 40], shape analysis [24], phase retrieval problems [1,
27], etc. In [1, 27, 31, 34, 40] and others, the GCL methods have been applied to
solve the problem.

To focus specifically on demonstrating the influence of noise on this problem,
we work with 2-dimensional images observed in polar coordinates. To make mat-
ters simple, our images are defined as functions observed on the unit circle at
equally spaced points. We have nK different clean images. We then randomly and
independently rotate these images to create our dataset. We use nR random ro-
tations for each image. In the end we get n = nKnR randomly rotated images
{Si}ni=1 ⊂ R

p . To each image corresponds a rotation Ri ∈ SO(2), or equivalently
an angle. The data X = {Ii}ni=1 we analyze is the clean data contaminated by in-
dependent noise, which is i.i.d. sampled from Z; that is, we have Ii = Si + Zi .
We give more precise mathematical and simulation details in Section B-2 in the
Supplementary Material [19].
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FIG. 4. (A): One of nK = 5 clean surrogate images; (B)–(D): Alignment vectors z computed from
clean images; (E): A noisy surrogate image. (F)–(H): Alignment vectors z computed from noisy im-
ages with c = 6σ and α = 1/4. (A) and (E): The black curve is a clean surrogate image, and the gray
curve is its noisy version; (B) and (F): The result from the GCL built up from the NN scheme; (C) and
(G): The result from the GCL built from complete connection graph and the diagonal entries are not
removed; (D) and (H): The result from the GCL built from the complete connection graph with the
diagonal entries removed. It is clear that when the images are clean, all different GCL’s give equiva-
lent results (see text for explanation of visual differences which are of no statistical importance). But
in the presence of noise, the GCL built up from the NN scheme is obviously worse.

We now build up the GCL L(W̃ , G̃) by setting W̃i,j := e−d2
RID(Ii ,Ij )/m, where

m is the first quartile of all nonzero RID distances, and the connection function
as G̃i,j := argminR∈T (2) ‖Ii − R ◦ Ij‖. For comparison purposes, we also take the
NN scheme to construct the connection graph, denoted by L(W̃NN, G̃NN), where
we choose 100 nearest neighbors—as defined by the RID distance—to construct
edges. Thanks to the connection function, we can estimate the rotations Ri applied
to the ith image up to a common rotation from the top eigenvector v1 ∈ C

n of the
GCL’s.

To evaluate the performance of the estimated rotation, we construct a complex
vector u ∈ C

n whose ith entry is the complex form of the rotation Ri . We then
evaluate the difference between the estimated rotation of the ith object and the
ground truth by observing the angle of u(i)∗v(i). This quantity shows the discrep-
ancy between the true rotation and the estimated one. For visualization, we plot
the vector z ∈R

n where z(i) is the angle of the complex number u(i)∗v(i), which
measures estimation error. In Figure 4, the resulting z’s with p = 1000, nK = 5,
nR = 200, α = 1/4 and c = 6σ are plotted; see the Supplementary Material [19],
Section B for the value of σ . Since there are 5 different images, we see a piecewise
function with 5 different values when the images are clean/noise-free, indicating
that we correctly estimate the rotations Ri’s as well as the class membership of
the images. The visual dissimilarities between the functions in Figures 4(B), (C)
and (D) is due to the fact that all estimation tasks here can be performed only up
to a rotation for each of the nK = 5 template images. Further discussion of this
example can be found in the Supplementary Material [19], Section B-2.

5. Conclusion. In this paper, we have studied the statistical properties of a re-
cent generalization of kernel methods called GCL methods and in particular their
sensitivity to additive noise. We have shown both theoretically and numerically
that they can be made tolerant to very high levels of noise. Based on our analysis,
we have proposed two modifications of the standard approach that improve per-
formance in the setup we consider. First, practitioners will benefit from not trying



370 N. EL KAROUI AND H.-T. WU

to incorporate nearest-neighbor information derived from the affinity function as
those tend to be very sensitive to noise. Second, setting the diagonal elements of
the affinity matrix to zero increases robustness to noise.
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SUPPLEMENTARY MATERIAL

Supplement to “Graph connection Laplacian methods can be made robust
to noise” (DOI: 10.1214/14-AOS1275SUPP; .pdf). We provide detailed proofs
and supplementary information in the Supplementary Material.
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