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Abstract

Sparse Subspace Clustering (SSC) is one of the recent

approaches to subspace segmentation. In SSC a graph is

constructed whose nodes are the data points and whose

edges are inferred from the L1-sparse representation of

each point by the others. It has been proved that if the

points lie on a mixture of independent subspaces, the graph-

ical structure of each subspace is disconnected from the

others. However, the problem of connectivity within each

subspace is still unanswered. This is important since the

subspace segmentation in SSC is based on finding the con-

nected components of the graph. Our analysis is built upon

the connection between the sparse representation through

L1-norm minimization and the geometry of convex poly-

topes proposed by the compressed sensing community. Af-

ter introduction of some assumptions to make the problem

well-defined, it is proved that the connectivity within each

subspace holds for 2- and 3-dimensional subspaces. The

claim of connectivity for general d-dimensional case, even

for generic configurations, is proved false by giving a coun-

terexample in dimensions greater than 3.

1. Introduction

Subspace clustering is a very important problem with ap-

plications in many different areas in computer vision includ-

ing motion segmentation [11], video shot segmentation [7],

illumination invariant clustering [5], image segmentation

[12] and image representation and compression [6]. SSC

[3] is one of the state-of-the-art methods proposed for sub-

space segmentation with considerable advantages over the

previous methods (see [10]). In SSC the subspace cluster-

ing is done based on the neighbourhood graph obtained by

the L1-norm sparse representation of each point by the other

points.
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Department of Broadband, Communications and the Digital Economy and

the Australian Research Council through the ICT Centre of Excellence

program.

The basic SSC method works as follows:

Consider a set of points X = {x1,x2, . . . ,xn} in R
D,

sampled from a mixture of different subspaces such that no

point lies on the origin. Considering these points as vec-

tors, each xi can be obtained as a linear combination of the

others:

xi =
∑

j

ajxj = Xa, where ai = 0, (1)

where X is the matrix [x1x2 · · ·xn] and a is the vector of

the combination coefficients aj .

Of course, this combination (if it exists) is not unique in

general. In SSC we are interested in a combination with

smallest ‖a‖1, i.e. for each xi the following is solved:

ai = argmin
a
‖a‖1 s.t. xi = Xa, ai = 0 (2)

The corresponding points of the nonzero elements of ai are

set to be the neighbours of xi. Doing the same thing for

every point forms a directed neighbourhood graph on X .

In [3] it has been proved that if the subspaces are inde-

pendent, then the neighbours of each point would be in the

same subspace. This means that there is no link between

the graphs of two different subspaces. Based on this fact,

a subspace segmentation method is proposed by finding the

connected components of the neighbourhood graph.1 How-

ever, in [3] it is not investigated whether the graphs within

each subspace are connected or not. This paper seeks to

answer this question.

To investigate the problem, first, an interpretation of the

SSC is presented based on the geometry of convex poly-

topes [4]. The connection between the L1-sparse represen-

tation and convex polytopes was first noticed in [2], where

both strong and weak L1/L0 equivalence is investigated

using the properties of convex polytopes. In particular, it

is shown that the basis vectors xi and their negatives −xi

forming vertices of a so-called k-neighbourly polytope is

both necessary and sufficient for L1/L0 equivalence un-

der some conditions on the sparse solution. In [8] the po-

lar polytope of the centrosymmetric polytope with vertices

1In practice this is done by spectral clustering.
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±xi is used to analyze the conditions for unique-optimality

of the L1-norm minimization for sparse representation.

Based on this geometric representation, a proof of con-

nectivity is given for 2D and 3D subspaces when the points

are in general position. Graph connectivity for the general

d-dimensional case, even in generic arrangements, is dis-

proved by constructing a counterexample.

2. Basic conventions

In this document the term xi may either refer to a vec-

tor or the corresponding point in the Euclidean space. For

the corresponding graph nodes, we use the indices of the

points (i,j, etc.). By Ni we refer to the set of neighbours of

the node i. Therefore, XNi
shows the set of neighbouring

points of xi.

Here, when it is said that a point, line, etc. falls inside a

region, it means that it can also be on the boundary. When

we mean being contained in the (relative) interior of the re-

gion we use the term strictly inside. Similarly, when we

say that a point, line, etc. is on one side of a hyperplane,

we mean that it can lie also on the hyperplane, and when

we want to exclude the hyperplane itself from each of the

half-spaces it bounds, we use the term strictly on one side.

Here, O denotes the origin and ray(x) refers to the half-

line from the origin through the point x. Also, hull(Y )
refers to the convex hull of the the set of points Y and

cone(Y ) = {ay | a ≥ 0,y ∈ hull(Y )} represents the con-

vex cone generated by the set of points Y . If Y is a finite set,

polytope(Y ) refers to the polytope structure of hull(Y ).
simplex(Y ) shows the m-dimensional simplex whose ver-

tices are the points in the set Y , where m = |Y |.
To denote the unique hyperplane passing through a set of

points Y , we use h-plane(Y ). For a hyperplane not passing

through O, we use the terms negative and positive sides to

respectively refer to the corresponding half-spaces includ-

ing and not including O.

3. Preparation

We add the negative points −xi to the set of points X
to obtain X± = {±xi}. Indices n+1, . . . , 2n are used

to denote the added opposite points. Also, î is used for

the indices or graph nodes corresponding to −xi, for i =
1, 2, . . . , 2n.

To obtain the neighbourhood graph of X±, for each point

xi ∈ X± we solve:

ai = argmin
a
1Ta

s.t. xi = X± a, a � 0, ai = 0 (3)

where the matrix X± = [x1,x2, . . . ,x2n] and a � 0 means

a has nonnegative elements. Again, the nodes correspond-

ing to the nonzero elements of ai are set to be the neigh-

bours of the node i.

It is known that (2) and (3) are equivalent problems [1].

For any combination xi=
∑

j 6=i ajxj by replacing ajxj for

−ajxĵ whenever aj<0 we can find a solution with a � 0.

It can be easily shown that for ai to be a solution to (3) must

we have ai
î
= 0 for all i and for any j either aij or ai

ĵ
is zero.

Based on this, it is not hard to show that the neighbourhood

graph of X obtained by (2), can be achieved by identifying

each pair of nodes (i, î) in the neighbourhood graph of X±
obtained by (3) whenever the solution to (2) is unique for

all i. When the solution is not unique for any i, there still is

a one-to-one correspondence between the graphs obtained

by (2) and (3) as long as the set of solutions a1,a2, . . . ,a2n

to (3) is symmetric in the sense that aîj=ai
ĵ
. Then we have:

Proposition 1. The neighbourhood graph of X is con-

nected if and only if the extended neighbourhood graph of

X± is connected.

Here, by the extended neighbourhood graph of X± we

mean the graph formed by adding edges between every pair

of opposite nodes (i, î) to the neighbourhood graph.

4. Geometric interpretation of SSC

Using (3) instead of (2) has the advantage of enjoying an

interesting geometric interpretation. This property has been

noticed by the compressed sensing community for sparse

representations (see [2] and [8]). In (3) the search is only

done on the conical combination of the points in X−i
def

=
X± − {xi}. In fact we can rewrite the constraints in (3) as:

xi = X−ib = X−i

b

1Tb
· 1Tb = X−i pα, (4)

where X−i is the matrix corresponding to X−i and b can be

though of as a in (3) with the i-th element removed. Thus,

both b,p ∈ R
2n−1 have nonnegative elements, 1Tp = 1

and α is a positive scalar. Evidently the set of points

{X−i p |p � 0,1Tp = 1} forms hull(X−i), i.e. the con-

vex hull of the points X−i. By taking β = 1

α
, equation (3)

turns to:

maximize β subject to βxi ∈ hull(X−i) (5)

Therefore, we are seeking a vector βmaxxi on ray(xi) and

contained in the convex hull of X−i whose length is as large

as possible. Thus:

Proposition 2. If βmax is the solution to (5), then

yi
def

= βmaxxi is the point on the boundary of the convex

hull where ray(xi) exits from the convex hull.

This fact is illustrated in fig. 1.

For the finite set of points X−i, the convex hull is a

bounded polytope. Thus, yi lies in the relative interior of a

unique k-face of this polytope, where k ∈ {0, 1, . . . , d−1}.
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Figure 1. ray(xi) (the dashed line) intersects a face of the polytope

at yi. The extremal points xj1 , xj2 and xj3 on the intersected face

are the neighbours of xi

Writing the point yi as a convex combination of the points

X−i, all the combination coefficients will be zero except

those corresponding to the points on the mentioned k-face.

This means that XNi
, the set neighbouring points of xi, is a

subset of the points in X−i lying on the k-face. If there are

only k+1 points of X−i on the k-face, then the k-face is a

k-simplex having these points as its vertices. In this case,

these k+1 vertices are the unique set of neighbours of xi

(see [2]).

5. Connectivity on a single subspace

5.1. Statement of the problem

The core of the SSC method is the fact that in the SSC

graph there is no link between points belonging to different

subspaces. Here, we want to study the graph connectivity in

a single d-dimensional subspace of RD with n > d points

in it. Without loss of generality, we can assume that this

subspace is Rd and the set of points on this subspace is again

shown by X = {xi} with xi ∈ R
d.

At this point, we have to make clear what we mean by

a single subspace. It is obvious that the points in this sin-

gle subspace cannot have any arbitrary configuration. At

least a single subspace must not be divisible into smaller

subspaces.

If the points are in general position, each point has a set

of d point as its unique neighbours. Otherwise, there are de-

generate cases in which each point has fewer than d neigh-

bours resulting in a disconnected graph (see fig. 2). How-

ever, these counterexamples are of no practical significance

as they are non-generic cases which are removed by apply-

ing any small random perturbation to the set of points. To

avoid such cases the following assumption is made:

Assumption 1. No d points of X lie in a (d−1)-
dimensional subspace.

This assumption implies that no subset of X± not con-

taining two opposite points lies on a (d−1)-dimensional

subspace. It also requires that no k points of X can lie in a

Figure 2. A counterexample to the graph connectivity conjec-

ture for the case where there are d points of X lying on a d-

dimensional subspace. Here, x2 and x3 are on a line passing

through O. ray(x2) (the dashed line) intersects the boundary of

polytope(X−2) (the shaded region) on the vertex x3 and there-

fore x3 is the only neighbour of x2. Likewise, x2 is the only

neighbour of x3. Arrows show the neighbourhood relation on the

set of points.

(k−1)-dimensional subspace for k ≤ d. Consequently, no

subset of points can form a k-dimensional subspace, k < d.

It is true as well for 0-dimensional subspaces as it does not

allow O to be among the set of points. Thus, this assump-

tion implies the condition that X cannot be non-trivially de-

composed into disjoint subspaces of smaller dimensions.

The main consequence of assumption 1 is that if xi is

represented as a linear sum, as in (1), then there must be at

least d nonzero coefficients aj . Returning to our geomet-

ric representation of the problem, assumption 1 demands

that the vector yi (introduced in proposition 2) must lie in

the interior of a (d−1)-face (a facet) of polytope(X−i). In

other words, each point has at least d neighbours.

In a generic configuration of the points, the intersected

facet has only d points of X± on it which have to be its

vertices. In this case (3) has a unique solution and those d
points form the unique set of neighbours of xi. If there are

more than d points on the intersected facet, whether they are

vertices or not, the solution to (3) and hence XNi
, the set of

neighbours of xi, is not unique. To avoid this, we make an

extra assumption:

Assumption 2. No d+1 points of X lie on a d−1 dimen-

sional affine subspace (a hyperplane),

which is sufficient for uniqueness of the neighbours.

Assumptions 1 and 2 are not practically restricting be-

cause they hold if the points are in general position. In

fact, we can avoid assumption 2 by setting the neighbouring

points of xi to all the points lying on the intersected facet,

and all the conclusions in the rest of the paper still hold with

slight adjustments. However, for simplicity, we retain this

assumption in the sequel. To sum up, we can say that:

Lemma 3. Under assumptions 1 and 2, the unique set of

neighbours of each point xi is the set of d vertices of the

facet of polytope(X−i) intersected by ray(xi).

Corollary 4. h-plane(XNi
) has all the points in X−i on its

negative side. (see sec. 2)
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Figure 3. The (boundary of) the neighbourhood cone of xi.

Proof. Since the hyperplane h-plane(XNi
) corresponds to

a facet of polytope(X−i), it has all of the volume of the

polytope on one side of it. The origin O is strictly inside

the polytope and therefore on the same side of the hyper-

plane. This means that this side is the negative side of the

hyperplane.

Note that xi itself can be on either side of h-plane(XNi
).

From corollary 4 it is immediate that the point −xi falls

strictly on the negative side of h-plane(XNi
) and cannot be

a neighbour of xi. Also, the points xj and −xj cannot both

be neighbours of xi because otherwise it would require O

to be on h-plane(XNi
).

5.2. Neighbourhood cones

In this section we introduce the concept of neighbour-

hood cones and present a theorem which plays a crucial role

in proving our main results.

We define the neighbourhood cone of each point xi to be

Cng(xi) = cone(XNi
), i.e. the convex cone generated by

the neighbouring points of xi. From the discussion in sec. 4

we can conclude that assumption 1 requires Cng(xi) to have

the entire ray(xi) (except O) strictly inside it. Fig. 3 shows

the neighbourhood cone of a point xi.

Neighbourhood cones are worth considering since the

intersection between each pair of them can give useful in-

formation about connectivity of their corresponding graph

nodes. This is described in the next theorem:

Theorem 5. Two points xi and xj in X± are neighbours in

the neighbourhood graph of X± if and only if their neigh-

bourhood cones strictly intersect.

By two cones strictly intersecting we mean that their in-

tersection has nonempty interior.

Proof. First, assume that xj is a neighbouring point of xi.

Then the line segment from xi to xj except at xj lies in

the interior of Cng(xi). Now, xj is strictly inside Cng(xj).
Thus, there is an open ball centred at xj being contained in

the interior of Cng(xj). Evidently, the line segment from xj

to xi intersects this ball in points other than xj and these

points are in the interior of both cones. Taking one of these

Figure 4. In this figure all the points x1,x2, . . . ,x8 lie on a single

facet of polytope(X±). Both {x3,x4,x5} and {x6,x7,x8} are

candidate neighbours for x1 and also for x2. If {x3,x4,x5} and

{x6,x7,x8} are chosen to be neighbours of x1 and x2 respec-

tively, then cone({x3,x4,x5}) and cone({x6,x7,x8}) strictly

intersect, while x1 and x2 are not neighbours. This shows the

reliance of theorem 5 on assumption 2.

points and considering the open ball around it being in the

interior of both points shows that the intersection of the two

cones must have an interior.

Now, assume there is a point x strictly inside the inter-

section of the two cones. In this case, there exists an open

ball contained in both cones centred at x. It means that

a set of d points z1, z2, . . . , zd not lying on any (d−1)-
dimensional subspace can be found inside the ball. Since

the intersection of two cones is again a cone, for each

zk, ray(zk) is entirely inside the intersection cone. For

each zk, ray(zk) must intersect both simplex(XNi
) and

simplex(XNj
). According to assumption 2, simplex(XNi

)
and simplex(XNj

) do not lie on a common hyperplane,

hence at least for one k, ray(zk) intersect the two sim-

plices at different points. Without loss of generality, we

say that ray(zk) has intersected simplex(XNj
) at a less dis-

tance from O than simplex(XNi
). This means that the in-

tersected point on simplex(XNi
) is strictly on the positive

side of h-plane(XNj
). It follows that at least one of the

extremal points of simplex(XNi
), i.e. one of the points in

XNi
, must be strictly on the positive side of h-plane(XNj

).
But, according to corollary 4 this point can only be xj , and

hence, xj has to be a neighbour of xi.

Theorem 5 is very useful as it establishes a link be-

tween the connectivity of the neighbourhood graph and

the connectivity of the neighbourhood cones of the set of

points. For example, it tells us that for a single con-

nected component C1 of the neighbourhood graph, the in-

terior of ∪i∈C1
Cng(xi) forms a connected region. For two

distinct connected components C1 and C2 the interiors of

∪i∈C1
Cng(xi) and ∪i∈C2

Cng(xi) are disjoint.

Notice that the results obtained in theorem 5 is not true

without assumption 2 (see Fig. 4.)
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Figure 5. Projection on the unit hypersphere. The shaded region

shows Sng(zi), the neighbourhood simplex of zi, which is the

spherical triangle formed by projecting Cng(xi) on S2.

5.3. Projection on the unit hypersphere

The geometric structure made by a set of cones can be

further compressed by projecting them on a hypersphere

centred at the origin. Here, for simplicity we consider the

unit hypersphere Sd−1.

The projection is given by x 7→ x

‖x‖ for each point x in

the space. Let zi denote the projected point of xi. The pro-

jection of the neighbourhood cone of each point xi on the

hypersphere, which is the intersection of the surface of the

hypersphere with that cone, forms a hyperspherical simplex

called the neighbourhood simplex of zi and is denoted by

Sng(zi). This is shown in fig. 5 for S2.

It has to be noticed that the neighbourhood structure is

built before applying the projection, i.e. the optimization

problem (3) is run upon {xi} and not {zi}.

As the neighbourhood cones strictly intersecting is

equivalent to their corresponding neighbourhood simplices

strictly intersecting, restricting ourselves to Sd−1, most of

the interesting properties mentioned about the neighbour-

hood cones hold. The point zi must lie strictly inside

Sng(zi) and theorem 5 obtains by substituting neighbour-

hood simplices for neighbourhood cones. Again, for a con-

nected component C of the neighbourhood graph, the inte-

rior of ∪i∈CSng(zi) forms a connected region, disjoint from

that of the other connected components.

This projection is useful as it decreases the dimension-

ality by one and eliminates the intrinsic redundancy of the

convex cones. As far as the connectivity of the cones is

concerned, we can forget about the cones Cng(xi) and work

with the simpler structures Sng(xi).

5.4. Proof of connectivity for 2D

The proof of connectivity of the neighbourhood graph

for 2D subspaces is quite simple and the concept of projec-

tion of the neighbourhood cones on the unit circle S1 makes

it even easier. Here the projected neighbourhood simplices

are in the form of arcs on the circumference of the circle.

Notice that being strictly inside its neighbourhood arc,

each projected point zi must have its two neighbours on left

and right sides of it on the unit circle. By left and right

here we mean clockwise and anticlockwise directions re-

spectively.

It is easily shown that having more that one connected

component is impossible. A connected component means

the set of points in X± or Z± corresponding to the nodes of

a single connected component of the neighbourhood graph.

Consider a single connected component C1. Since each

point of C1 has a left neighbour and the points are finite

in number, there must be a loop zi1 , zi2 , . . . , zim , zim+1
,

where im+1 = i1 and zik+1
is the left neighbour of zik . It is

clear that the circumference of the circle from zik to its left

neighbour zik+1
(not including zik+1

) is strictly inside the

neighbouring arc of zik , and thus, the neighbourhood arcs

of the points in this loop occupy all the circumference of the

circle. Therefore, if another connected component coexists

with C1, the neighbourhood arc of each of its points strictly

intersect with one of the arcs in C1 and this is impossible

due to theorem 5.

5.5. A proof for 3D

In 3D the neighbourhood simplices (triangles) of one

connected component may not occupy the whole surface of

the unit sphere and the proof of connectivity is harder than

in 2D.

As suggested in sec. 5.3, the points in X± and the cone

structures are projected on S2. The neighbourhood cone

of each point xi, is projected on S2 as a spherical trian-

gle called the neighbourhood triangle of zi. It follows from

theorem 5 that if two nodes belong to different connected

components, their neighbourhood triangles can never inter-

sect.

The point zi strictly lies inside its neighbourhood trian-

gle and the points ZNi
lie on the corners of the triangle.

In the next two lemmas, a single connected component and

its corresponding set of neighbourhood triangles are consid-

ered.

Lemma 6. Consider a single connected component C1 of

the neighbourhood graph. Then S2 − ∪i∈C1
Sng(zi) con-

sists of a (possibly empty) set of regions each of which is

topologically an open disk.

Proof. Since the spherical triangles Sng(zi) are finite and all

closed then S2 − ∪i∈C1
Sng(zi) is open and consequently

each of its connected subsets is open. Consider one con-

nected area on the surface of the sphere not containing any

spherical triangles. This open region must be bounded by

the boundary of spherical triangles. If this area is not topo-

logically a disk, it has to have more than one boundary. But,

this means that the spherical triangles related to one bound-

ary are disconnected from those related to the other bound-

ary, which is impossible due to theorem 5 as the neigh-
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Figure 6. The neighbourhood triangles of a single connected com-

ponent and the residual holes left on the surface of the sphere.

bourhood triangles correspond to a single connected com-

ponent.

Here, we refer to these remaining regions as residual

holes of a connected component. Fig. 6 shows the residual

holes left on the sphere after projecting the neighbourhood

triangles.

Lemma 7. Each of the residual holes of a connected com-

ponent is a spherical polygon whose internal angles are

each less than π radians.

Proof. Each hole is bounded by parts of the boundaries of

neighbourhood triangles. This means that the boundary is

piecewise geodesic, and each hole is a spherical polygon.

Recall from sec. 5.2 that the neighbourhood cone of xi

has the whole ray(xi), except O, strictly inside it, and thus

each corner of any triangle is strictly inside another triangle

and cannot exist on the boundary of the holes. Therefore, all

the angles on the boundary have to be created by the inter-

section of two geodesics each being a side of some triangle.

The intersection creates four angles each smaller than or

equal to π radians. Since the intersection is not on the cor-

ner of any triangle, in a sufficiently small neighbourhood

around the intersection point, the regions corresponding to

three of these four angles are occupied by some neighbour-

hood triangles. The internal angle of the boundary of the

residual hole is thus one of the four angles at the intersec-

tion and hence is ≤ π radians.

Not all of the angles can be equal to π radians, since

otherwise, some triangle corners must lie on the boundary.

We can disregard possible π radian angles and say that all

the angles of the polygon are less than π radians.

Lemma 8. The area of each residual hole of one connected

component is less than the area of a half-sphere, i.e. 2π.

Proof. Being topologically a disk on the surface of a

sphere, the closure of each residual hole is a compact two-

dimensional Riemannian manifold and thus, the Gauss-

Bonnet theorem [9] can be applied. Applying the Gauss-

Bonnet theorem to a residual hole which is a spherical poly-

gon gives:

A = 2π −
∑

i

αi (6)

where A is the total area of the hole and αi-s are the jump

angles on the boundary, which are here equal to the external

angles of the spherical polygon. Since the internal angles of

the hole are less than π radians, the external angles αi are

more than zero and thus the area is less than a half-sphere

(i.e. 2π).

Theorem 9. Under assumptions 1 and 2, the neighbour-

hood graph of every set of points in R
3 made by the SSC

method is connected.

Proof. Assume there is more than one connected compo-

nent, call two of them A and B; Since, neighbourhood trian-

gles of each of the connected components cannot intersect,

all neighbourhood triangles of the connected component B
must fall inside one of the residual holes of the connected

component A. Let us show this hole by H. Since the area

of H is less than a half-sphere, the area of S2−H has to

be more than a half-sphere. But, since the connected com-

ponent B also leaves holes on the sphere, and the entire

neighbourhood triangles of B lie inside H, S2−H has to be

contained in one of the holes of B. But, this requires the

area of that hole of B to be bigger than a half-sphere, which

is impossible due to lemma 8.

5.6. A counterexample for dimensions ≥ 4

We observed that the restrictions imposed by the neigh-

bourhood simplices of a single connected component in 3D

were less severe compared to 2D, as residual holes were not

allowed in 2D. One can expect that in higher dimensions

the restrictions would be more relaxed and at some point,

they are weak enough to allow more than one connected

component. In fact, this break point is 4D. Here a simple

counterexample is illustrated and proved for 4D. For greater

than 4 dimensions the construction of the counterexample is

given without a proof.

We consider two sets of points aligned around (not on)

two non-intersecting great circles [cosα, sinα, 0, 0] and

[0, 0, cosα, sinα] of the hypersphere ‖x‖2= 1. The points

are X± = XC1
∪ XC2

where XC1
consists of the points

[cos θk, sin θk, sδ, s
′δ]T , with θk = kπ/m for the posi-

tive integer m, for all k=0, 1, . . . , 2m−1 and all s, s′ ∈
{−1, 1}. Here, δ is a positive constant. Thus, there are a

total of 8m points in XC1
. Similarly, points in XC2

are

[sδ, s′δ, cos θk, sin θk]T . Notice that the data points are

aligned on the hypersphere ‖x‖2= 1+2δ2 and the negative

of each point of each XCj
is also in XCj

for j = 1, 2.
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Here we show that for some values of m and δ the four

neighbours of each point [cos θk, sin θk, sδ, s
′δ]T are:

[cos θk+1, sin θk+1, sδ, s
′δ]T

[cos θk−1, sin θk−1, sδ, s
′δ]T

[cos θk, sin θk, −sδ, s′δ]T

[cos θk, sin θk, sδ, −s′δ]T .

It means that the neighbours of each node in C1 remain in

C1. Giving the similar arguments for C2 shows that C1 and

C2 are disconnected.

Since the algorithm is not sensitive to rotation and reflec-

tion, for a typical point [cos θk, sin θk, sδ, s
′δ]T in XC1

,

we make the last two coordinate positive by possible reflec-

tions across their axes and then rotate the first two coordi-

nates by −θk to obtain xi = [1, 0, δ, δ]T . The whole set

of points in XC1
and XC2

is reflected and rotated accord-

ingly. Note that XC1
is closed under the mentioned rotation

and reflection while XC2
is only closed under the reflection.

Hence, we have to show that the neighbours of xi are:

x1 = [cos θ1, sin θ1, δ, δ]
T

x2 = [cos θ1, − sin θ1, δ, δ]
T

x3 = [1, 0, −δ, δ]T

x4 = [1, 0, δ, −δ]T

First, observe that xi is strictly inside cone(XN ), where

XN = {x1,x2,x3,x4}. It means that xi is on the same side

of h-plane({O} ∪ (XN − {xj})) as xj for j = 1, 2, 3, 4,

i.e. aTj xi > 0 where aj is the solution to aTj XN = eTj ,

with ej being the j-th column of the 4×4 identity matrix

and XN = [x1,x2,x3,x4]. In other words, all elements of

X−1

N xi are positive. We have:

X−1

N =
1

4d









0 2d/ sin θ1 1 1
0 −2d/ sin θ1 1 1
2δ 0 −1− cos θ1 1− cos θ1
2δ 0 1− cos θ1 −1− cos θ1









We see that X−1

N xi =
1

2
[1, 1, 1 − cos θ1, 1 − cos θ1] has

positive elements for every positive value of m, and hence,

xi is strictly inside cone(XN ).
Now, consider the hyperplane h-plane(XN ). We show

that for large enough values of m and a range of values for

δ, this hyperplane has all the points except x1,x2,x3,x4

and xi strictly on its negative side and hence x1, . . . ,x4

are vertices of a facet of polytope(X−i). The hyperplane

h-plane(XN ) has the equation aTy = 1TX−1

N y = 1 and

for points strictly on its negative side we have aTy < 1.

Now, aT = 1

2δ
[2δ, 0, 1− cos θ1, 1− cos θ1].

First we check for points in XC1
. Since XC1

is closed

under reflections across the axes of the last two coordinates

and also rotations by −θk on the first two coordinates, we

only check it for a typical point [cos θk, sin θk, sδ, s
′δ]T in

XC1
:

aT [cos θk, sin θk, δ, δ]
T = cos θk − cos θ1 + 1

aT [cos θk, sin θk, ±δ, ∓δ]T = cos θk

aT [cos θk, sin θk, −δ, −δ]T = cos θk + cos θ1 − 1

which is equal to 0 for x1,x2,x3 and x4, > 0 for xi and

< 0 for all the other points in X±.

The set XC2
is closed under reflection across its last

two coordinates but not rotation by −θk on the first two

coordinates. Therefore, we first apply this rotation to a

point [sδ, s′δ, cos θl, sin θl]T to obtain y = [(s cos θk +
s′ sin θk)δ, (s′ cos θk − s sin θk)δ, cos θl, sin θl]

T and then

check for this new rotated point:

aTy = (s cos θk + s′ sin θk)δ +
(cos θl+sin θl)(1− cos θ1)

2δ
.

For (s cos θk + s′ sin θk) and (cos θl+sin θl),
√
2 is a tight

upper bound, and hence, the above is less than 1 if
√
2δ2 −

δ +
√
2

2
(1 − cos θ1) < 0, i.e. cos θ1 > 3

4
and |δ −

√
2

4
| <

( 1
8
− 1

2
(1− cos θ1))

1
2 . It means that the condition holds for

δ ∈ (∆,
√
2

2
−∆), where ∆ =

√
2

4
− ( 1

8
− 1

2
(1− cos θ1))

1
2 .

Notice that cos θ1>
3

4
can be obtained and also ∆ can be

made small enough by choosing a sufficiently large m.

The above argument tells us that the points x1,x2,x3

and x4 must be vertices of a facet of polytope(X−i). As xi

is strictly inside cone(XN ), the interior of this facet is in-

tersected by ray(xi) and hence XN is the set of neighbours

of xi. It is the unique set of neighbours because it has only

d = 4 points on it.

Fig. 7 shows an illustration of the described example.

Fig. 7(c) is worth considering as the distance between the

two connected components is small. As δ can be made close

enough to
√
2/2, the distance between the two sets of cir-

cles [cosα, sinα, sδ, s′δ]T and [tδ, t′δ, cosβ, sinβ]T on

which our data points lie can be arbitrarily close to zero, e.g.

at the two point where α=β = π
4

and s=s′=t=t′ = 1. This

shows that the data points being close together (i.e. being

on a trajectory) does not necessarily imply connectedness.

To show that this counterexample is not non-generic

(nowhere dense) note that for each point xi, ray(xi) in-

tersects the interior of a facet of polytope(X−i). This

means that the neighbourhood structure is preserved if all

the points have an arbitrary perturbation within a small

enough ball. Therefore, the graph is disconnected at least

within one open set of the space of all the points and thus

cannot be nowhere dense. In other words, the set of point

arrangements with a connected SSC graph in 4D cannot be

dense and hence is not generic.
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(a) (b)

(c) (d)

Figure 7. The orthographic projection of ∪iSng(zi) on the 4th co-

ordinate axis, for m = 9 (∆ ≈ 0.3491). For simplicity, the 1-

skeleton of the hyperspherical tetrahedra Sng(zi) after projection

is shown as straight lines. (a) δ = ∆ + ǫ, (b) δ = ∆ + ǫ and

rotated before projection, (c) δ =
√
2

2
−∆− ǫ, the two connected

components are quite close together, and (d) δ =
√
2

2
− ∆ + ǫ,

there is just one connected component.

Here, we did not mention assumptions 1 and 2 because

their purpose was showing the connectivity in 2- and 3-

dimensional cases for generic arrangements. In 4D the con-

nectivity is not a generic property, however, as these as-

sumptions are true for an open and dense set of point con-

figurations and our counterexample holds in an open ball,

there must exist an open ball in which the counterexample

exists and assumptions 1 and 2 are satisfied.

A similar counterexample can be made for higher

dimensional spaces by arranging the data around non-

intersecting great circles of a hypersphere. For example two

sets of points [cos θk, sin θk, s1 δ, s2 δ, . . . , sd−2 δ]
T , and

[s1 δ, s2δ, cos θk, sin θk, s3 δ, . . . , sd−2 δ]
T . The structure

of the proof is similar to that of 4D, however it is slightly

more intricate.

6. Conclusion

The paper investigated the problem of connectivity in

the SSC method when the points lie on a single subspace

and cannot be segmented into smaller subspaces. The treat-

ment was based on a geometric interpretation of the sparse

representation problem. The connectivity of a set of nodes

in SSC is then converted to the connectivity of the region

formed by the union of the neighbouring cones. It was

shown that, if the points are in general position, the restric-

tion imposed by the neighbouring cones of one connected

component prevents the existence of extra connected com-

ponents for 2- and 3-dimensional subspaces and hence, the

graph is connected in these cases. However, the conjecture

of connectivity was rejected in the general d-dimensional

case by providing counterexamples.

As a conclusion, we can say that it is possible for the

SSC algorithm to over-segment subspaces for dimensions

higher than 3. It has to be studied whether some simple

treatments such as adding a post-processing stage can re-

solve this intrinsic drawback, especially in the presence of

noise and outliers. The next step is to seek for a variant of

the SSC not suffering from this disadvantage.

References

[1] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic

Decomposition by Basis Pursuit. SIAM Journal on Scientific

Computing, 20(1):33–61, 1999.

[2] D. L. Donoho. Neighborly polytopes and sparse solutions of

underdetermined linear equations. Technical report, Depart-

ment of Statistics, Stanford University, 2005.

[3] E. Elhamifar and R. Vidal. Sparse subspace clustering.

In 2009 IEEE Conference on Computer Vision and Pattern

Recognition, pages 2790–2797. IEEE, June 2009.

[4] B. Grunbaum. Convex polytopes (Graduate Texts in Mathe-

matics). Springer, second edition, 2003.

[5] J. Ho, M.-H. Yang, J. Lim, K.-C. Lee, and D. Kriegman.

Clustering appearances of objects under varying illumina-

tion conditions. In Computer Vision and Pattern Recogni-

tion, 2003. Proceedings. 2003 IEEE Computer Society Con-

ference on, volume 1, pages I–11 – I–18 vol.1, 2003.

[6] W. Hong, J. Wright, K. Huang, and Y. Ma. A multiscale hy-

brid linear model for lossy image representation. In Com-

puter Vision, 2005. ICCV 2005. Tenth IEEE International

Conference on, volume 1, pages 764 – 771 Vol. 1, 2005.

[7] L. Lu and R. Vidal. Combined central and subspace cluster-

ing for computer vision applications. In Proceedings of the

23rd international conference on Machine learning, ICML

’06, pages 593–600, New York, NY, USA, 2006. ACM.

[8] M. Plumbley. On polar polytopes and the recovery of sparse

representations. Information Theory, IEEE Transactions on,

53(9):3188 –3195, 2007.

[9] M. Spivak. A comprehensive introduction to differential ge-

ometry. Vol. III. Publish or Perish Inc., Wilmington, Del.,

second edition, 1979.

[10] R. Vidal. A tutorial on subspace clustering. IEEE Signal

Processing Magazine, to appear.

[11] R. Vidal, R. Tron, and R. Hartley. Multiframe motion seg-

mentation with missing data using powerfactorization and

gpca. International Journal of Computer Vision, 79:85–105,

2008. 10.1007/s11263-007-0099-z.

[12] A. Y. Yang, J. Wright, Y. Ma, and S. S. Sastry. Unsupervised

segmentation of natural images via lossy data compression.

Comput. Vis. Image Underst., 110:212–225, May 2008.

2144


