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Abstract

Session-based recommendation, which aims to pre-
dict the user’s immediate next action based on
anonymous sessions, is a key task in many online
services (e.g., e-commerce, media streaming). Re-
cently, Self-Attention Network (SAN) has achieved
significant success in various sequence modeling
tasks without using either recurrent or convolution-
al network. However, SAN lacks local dependen-
cies that exist over adjacent items and limits its ca-
pacity for learning contextualized representation-
s of items in sequences. In this paper, we pro-
pose a graph contextualized self-attention model
(GC-SAN), which utilizes both graph neural net-
work and self-attention mechanism, for session-
based recommendation. In GC-SAN, we dynam-
ically construct a graph structure for session se-
quences and capture rich local dependencies vi-
a graph neural network (GNN). Then each ses-
sion learns long-range dependencies by applying
the self-attention mechanism. Finally, each session
is represented as a linear combination of the global
preference and the current interest of that session.
Extensive experiments on two real-world dataset-
s show that GC-SAN outperforms state-of-the-art
methods consistently.

1 Introduction

Recommender systems play an important role in helping user-
s alleviate the problem of information overload and select
interesting contents in many applications domains, e.g., e-
commerce, music, and social media. Most of existing rec-
ommender systems are based on user historical interactions.
However, in many application scenarios, user identification
may be unknown and there are only user historical actions
during an ongoing session. To solve this problem, session-
based recommendation is proposed to predict the next action
(e.g., click on an item) that a user may take based on the se-
quence of the user’s previous behaviors in the current session.

∗Pengpeng Zhao is the corresponding author. And his email is
ppzhao@suda.edu.cn.

Due to its highly practical value, many kinds of approach-
es for session-based recommendation have been proposed.
Markov Chain (MC) is a classic example, which assumes
that the next action is based on the previous ones [Rendle
et al., 2010]. With such a strong assumption, an indepen-
dent combination of the past interactions may limit the ac-
curacy of recommendation. Recent studies have highlighted
the importance of using recurrent neural network (RNN) in
session-based recommender systems and obtained promising
results [Zhao et al., 2019]. For instance, Hidasi et al. [Hidasi
et al., 2016] proposed to model short-term preferences with
GRU (a variant of RNN), and then an improved version [Tan
et al., 2016] is proposed to further boost its recommendation
performance. Recently, NARM [Li et al., 2017] is designed
to capture the user’s sequential pattern and main purpose si-
multaneously by employing a global and local RNN. Howev-
er, the existing methods usually model single-way transitions
between consecutive items and neglect complex transitions
among the entire session sequence.

More recently, a new sequential model, Transformer
[Vaswani et al., 2017], has achieved state-of-the-art perfor-
mance and efficiency in various translation tasks. Instead
of using recurrence or convolution, Transformer utilizes an
encoder-decoder structure composed of stacked self-attention
network to draw global dependencies between input and out-
put. Self-attention, as a special attention mechanism, has
been widely used to model the sequential data and achieved
remarkable results in many applications, e.g., machine trans-
lation [Vaswani et al., 2017], sentiment analysis [Lin et al.,
2017], and sequential recommendation [Kang and McAuley,
2018; Zhou et al., 2018]. The success of the Transformer
model can be attributed to its self-attention network, which
takes full account of all signals with a weighted averaging
operation. Despite its success, such an operation dispers-
es the distribution of attention, which results in lacking lo-
cal dependencies over adjacent items and limiting its capac-
ity for learning contextualized representations of items [Li-
u et al., 2019]. While the local contextual information of
adjacent items has been shown that it can enhance the a-
bility of modeling dependencies among neural representa-
tions, especially for the attention models [Yang et al., 2018;
Liu et al., 2019].
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In this work, we propose to strengthen self-attention net-
work through graph neural network (GNN). On the one
hand, the strength of self-attention is to capture long-range
dependencies by explicitly attending to all the positions. On
the other hand, GNN is capable of providing rich local con-
textual information by encoding edge or node attribute fea-
tures [Battaglia et al., 2018]. Specifically, we introduce
a graph contextual self-attention network, named GC-SAN,
for session-based recommendation, which benefits from the
complementary strengths of GNN and self-attention. We
first construct a directed graph from all historical session se-
quences. Based on the session graph, GC-SAN is able to
capture transitions of neighbor items and generate the latent
vectors for all nodes involved in the graph correspondingly.
Then we apply the self-attention mechanism to model long-
range dependencies regardless of the distance, where session
embedding vectors are composed by the latent vectors of all
nodes in the graph. Finally, we use the linear weighted sum
of the user’s global interests and his/her local interests in that
session as the embedding vector to predict the probability of
clicking on the next item.

The main contributions of this work are summarized as fol-
lows.

• To improve the representation of session sequences, we
present a novel graph contextual self-attention model
based on graph neural network (GC-SAN). GC-SAN u-
tilizes the complementarity between self-attention net-
work and graph neural network to enhance the recom-
mendation performance.

• Graph neural network is used to model local graph-
structured dependencies of separated session sequences,
while multi-layer self-attention network is designed to
obtain contextualized non-local representations.

• We conduct extensive experiments on two benchmark
datasets. Our experimental results show the effective-
ness and superiority of GC-SAN, comparing with the
state-of-the-art methods via comprehensive analysis.

2 Related Work

Session-based recommendation is a typical application of rec-
ommender systems based on implicit feedback, where user-
s’ identifications are unknown, and no explicit preferences
(e.g., ratings) but only positive observations (e.g., purchas-
es or clicks) are provided [He et al., 2016]. These positive
observations are usually in the form of sequential data ob-
tained by passively tracking users’ records over a sequence
of time. In this setting, classical CF methods (e.g., matrix
factorization) break down because no user profile can be con-
structed from anonymous history interactions. A natural solu-
tion to this problem is the item-to-item recommendation ap-
proaches [He et al., 2018]. In the session-based setting, an
item-to-item similarity matrix is pre-computed for the avail-
able session data using simple item co-occurrence (frequent)
patterns [Bonnin and Jannach, 2015]. Sarwar et al. [Sarwar
et al., 2001] analyzed different item-based recommendation
generation techniques and compared their results with basic
k-nearest neighbor approaches. Moreover, to model the se-
quence relationship between two adjacent actions, Rendle et

al. [Rendle et al., 2010] proposed to combine the power of M-
F and Markov Chain (MC) for next-basket recommendation.
Though these methods are proved to be effective and widely
employed, they only take into account the most recent click
of the session, ignoring the global information of the whole
click sequence.

Recently, researchers turn to neural networks and
attention-based models for session-based recommender sys-
tem. For instance, Hidasi et al. [Hidasi et al., 2016] were
among the first to explore Gated Recurrent Unit (GRU) as
a special form of RNN for the prediction of the next action
in a session, and later an improved version [Tan et al., 2016]

is proposed to boost its recommendation performance further.
Nowadays, Graph Neural Network (GNN) has been proposed
to learn the representation for graph structured data [Scarselli
et al., 2009; Wang et al., 2019] in the form of RNN, which
is broadly applied for the different tasks, e.g., image classifi-
cation [Marino et al., 2017], script event prediction [Li et al.,
2018] and recommender systems [Wu et al., 2018].

On the other hand, several attention-based mechanisms
have been introduced across various applications, e.g. natural
language processing and computer vision. Standard vanil-
la attention mechanism has been incorporated into recom-
mender systems [Li et al., 2017; Liu et al., 2018]. More
recently, Vaswani et al. [Vaswani et al., 2017] proposed to
model the dependencies between words based entirely on
self-attention without any recurrence or convolution, which
has achieved state-of-the-art performance on machine transla-
tion task. Based on the simple and parallelized self-attention
mechanism, Kang et al. [Kang and McAuley, 2018] proposed
a self-attention based sequential model, which outperforms
MC/RNN/RNN-based sequential recommendation methods.
Huang et al. [Huang et al., 2018] proposed a unified con-
textual self-attention network at feature level to capture the
polysemy of heterogeneous user behaviors for sequential rec-
ommendation.

Most existing sequential recommendation models utilize
the self-attention mechanism to capture distant item-item
transitions in a sequence and have achieved state-of-the-art
performance. However, it is still challenging for establishing
complex contextual information between adjacent items. In
this paper, we strengthen the self-attention network through
graph neural network and meanwhile maintain the model’s
simplicity and flexibility. To the best of our knowledge, this
is the first attempt to complement SAN and GNN for session-
based recommendation, in which the first one can model the
global item-item information of a session and the latter is ca-
pable of learning local contextual information by encoding
attribute features of constructing graphs.

3 Graph Contextualized Self-Attention

Network

In this section, we introduce the proposed contextualized self-
attention recommendation model based on graph neural net-
work (GC-SAN). We first formulate the problem of session-
based recommendation, and then describe the architecture of
our model in detail (As shown in Figure 1).
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Figure 1: The general architecture of the proposed model. We first construct a directed graph of all session sequences. Based on the graph,
we apply graph neural network to obtain all node vectors involved in the session graph. After that, we use a multi-layer self-attention network
to capture long-range dependencies between items in the session. In prediction layer, we represent each session as a linear of the global
preference and the current interest of that session. Finally, we compute the ranking scores of each candidate item for recommendation.

3.1 Problem Statement

Session-based recommendation aims to predict which item a
user would like to click next, only based upon his/her cur-
rent interaction sequence. Here we give a formulation of the
session-based recommendation problem as below.

Let V = {v1, v2, ..., v|V |} denote a set of all unique item-
s involved in all sessions. For each anonymous session,
a sequence of clicked actions by the user are denoted as
S = {s1, s2, ..., sn} in time order, where st ∈ V repre-
sents a clicked item of the user at time step t. Formally,
our model aims to predict the next possible click (i.e., st+1)
for a given prefix of the action sequence truncated at time t,
St = {s1, s2, ..., st−1, st} (1 ≤ t < n). To be exact, our
model generates a ranking list over all candidate items that
may occur in that session. ŷ = {ŷ1, ŷ2, ..., y|V |} denotes the
output probability for all items, where ŷi corresponds to the
recommendation score of item vi. Since a recommender typi-
cally makes more than one recommendation for the user, thus
we choose the top-N items from ŷ for recommendation.
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Figure 2: An example of a session graph structure and the connec-
tion matrices MI and M

O .

3.2 Dynamic Graph Structure

Graph Construction. The first part of GNN is to a con-
struct meaningful graph from all sessions. Given a session

S = {s1, s2, ..., sn}, we treat each item si as a node and
(si−1, si) as an edge which represents a user clicks item si
after si−1 in the session S. Therefore, each session sequence
can be modeled as a directed graph. The graph structure is
updated by promoting communication between different n-
odes. Specifically, let MI ,MO ∈ R

n×n denote weight-
ed connections of outgoing and incoming edges in the ses-
sion graph, respectively. For example, considering a session
S = {s1, s3, s2, s4, s3}, the corresponding graph and the ma-
trix (i.e.,MI and MO) are shown in Figure2. Since several
items may appear in the session sequence repeatedly, we as-
sign each edge with normalized weight, which is calculated
as the occurrence of the edge divided by the outdegree of that
edge’s start node. Note that our model can support various
strategies of constructing session graph and generate the cor-
responding connection matrices. Then we can apply the two
weighted connection matrices with graph neural network to
capture the local information of the session sequence.

Node Vectors Updating. Next, we present how to ob-
tain latent feature vectors of nodes via graph neural network.
We first convert every item v ∈ V into an unified low-
dimension latent space and the node vector s ∈ R

d denotes
a d-dimensional real-valued latent vector of item v. For each
node st at time t in the graph session, given by the connection
matrices MI and MO , the information propagation between
different nodes can be formalized as:

at = Concat(MI
t ([s1, ..., sn]W

I
a + bI),

MO
t ([s1, ..., sn]W

O
a + bO)),

(1)

where WI
a, WO

a ∈ R
d×d are the parameter matrices.

bI , bO ∈ R
d are the bias vectors. MI

t ,MO
t ∈ R

1×n are t-
th row of each matrix corresponding to node st, respectively.
at extracts the contextual information of neighborhoods for
node st. Then we take them and the previous state st−1 as
input and feed into the graph neural network. Thus, the final
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output ht of GNN layer is computed as follows.

zt = σ(Wzat + Pzst−1),

rt = σ(Wrat + Prst−1),

h̃t = tanh(What + Ph(rt ⊙ st−1)),

ht = (1− zt)⊙ st−1 + zt ⊙ h̃t.

(2)

where Wz,Wr,Wh ∈ R
2d×d, Pz,Pr,Ph ∈ R

d×d, are learn-
able parameters. σ(·) represents the logistic sigmoid function
and ⊙ denotes element-wise multiplication. zt, rt are update
gate and reset gate, which decide what information to be pre-
served and discarded, respectively.

3.3 Self-Attention Layers

Self-attention is a special case of the attention mechanism and
has been successfully applied in lots of research topics in-
cluding NLP [Vaswani et al., 2017] and QA [Li et al., 2019].
The self-attention mechanism can draw global dependencies
between input and output, and capture item-item transition-
s across the entire input and output sequence itself without
regard to their distances.

Self-Attention Layer. After feeding a session sequence
into the graph neural network, we can obtain the latent vec-
tors of all nodes involved in the session graph, i.e., H =
[h1, h2, ..., hn]. Next, we feed them into the self-attention
layer to better capture the global session preference.

F = softmax(
(HWQ)(HWK)T√

d
)(HWV ) (3)

where the projection matrices WQ,WK ,WV ∈ R
2d×d.

Point-Wise Feed-Forward Network. After that, we apply
two linear transformations with a ReLU activation function to
endow the model with nonlinearity and consider interaction-
s between different latent dimensions. However, transmis-
sion loss may occur in self-attention operations. Thus we add
a residual connection after the feed-forward network, which
makes the model much easier to leverage low-layer informa-
tion inspired by [Vaswani et al., 2017].

E = ReLU(FW1 + b1)W2 + b2 + F (4)

where W1 and W2 are d × d matrices, b1 and b2 are d-
dimensional bias vectors. Moreover, to alleviate overfitting
problems in deep neural networks, we apply “Dropout” reg-
ularization techniques during training. For simplicity, we de-
fine the above whole self-attention mechanism as:

E = SAN(H) (5)

Multi-layer Self-Attention. Recent work shows that dif-
ferent layers capture different types of features. In this work,
we investigate which levels of layers benefit most from the
features modeling to learn more complex item transitions.

The 1-st layer is defined as E(1) = E. The k-th (k > 1)
self-attention layer is defined as:

E(k) = SAN(E(k−1)) (6)

where E(k) ∈ R
n×d is the final output of the multi-layer self-

attention network.

3.4 Prediction Layer

After several self-attention blocks that adaptively extract se-
quential information of sessions, we achieve the long-term

self-attentive representation E(k). To better predict the us-
er’s next clicks, we combine the long-term preference and
the current interest of the session, and then use this com-
bined embedding as the session representation. For a ses-
sion S = {s1, s2, ..., sn}, we take the last dimensions of

E(k) as the global embedding following [Kang and McAuley,
2018]. The local embedding can be simply defined as the last
clicked-item vector, i.e., hn. Then we weight them together
as the final session embedding.

Sf = ωE(k)
n + (1− ω)hn (7)

where E
(k)
n ∈ Rd represent n-th row of the matrix. Finally,

we predict the next click for each candidate item vi ∈ V given
session embedding Sf as follows:

ŷi = softmax(ST
f vi). (8)

where ŷi denotes the recommendation probability of item vi
to be the next click in session S. Finally, we train our model
by minimizing the following objective function:

J = −
n∑

i=1

yilog(ŷi) + (1−yi)log(1− ŷi) + λ||θ||2. (9)

where y denotes the one-hot encoding vector of the ground
truth item, θ is the set of all learnable parameters.

4 Experiments and Analysis

In this section, we first set up the experiment. And then we
conduct experiments to answer the following questions:
RQ1: Does the proposed graph contextualized self-attention
session-based recommendation model (GC-SAN) achieve
state-of-the-art performance?
RQ2: How do the key hyper-parameters affect model perfor-
mance, such as the weight factor and embedding size ?

4.1 Experimental Setup

Datasets. We study the effectiveness of our pro-
posed approach GC-SAN on two real-world datasets, i.e.,
Diginetica1 and Retailrocket2. Diginetica dataset comes
from CIKM Cup 2016, where only the transactional da-
ta is used in this study. Retailrocket dataset is published
by a personalized e-commerce company, which contains six
months of user browsing activities. To filter noisy data,
we filter out items appearing less than 5 times and then re-
move all sessions with fewer than 2 items on both dataset-
s. Furthermore, for session-based recommendation, we set
the sessions data of last week as the test data, and the re-
maining for training. Similar to [Tan et al., 2016; Yuan
et al., 2019], for a session sequence S = {s1, s2, ..., sn},
we generate the input and corresponding labels ({s1}, s2),
({s1, s2}, s3)...({s1, ..., s(n−1)}, sn) for training and testing
on both datasets. After preprocessing, the statistics of the
datasets are shown in Table 2.

1http://cikm2016.cs.iupui.edu/cikm-cup/
2https://www.kaggle.com/retailrocket/ecommerce-dataset
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Datasets Diginetica Retailrocket

Measures HR@5 HR@10 MRR@5 MRR@10 NDCG@5 NDCG@10 HR@5 HR@10 MRR@5 MRR@10 NDCG@5 NDCG@10

Pop 0.0036 0.0077 0.0019 0.0025 0.0023 0.0037 0.0133 0.0208 0.0066 0.0076 0.0082 0.0107

BPR-MF 0.1060 0.1292 0.0789 0.0842 0.0586 0.0672 0.2106 0.2719 0.1356 0.1407 0.1138 0.1322

IKNN 0.1407 0.2083 0.0776 0.0867 0.0693 0.0902 0.1709 0.2248 0.0972 0.1043 0.0855 0.1020

FPMC 0.1855 0.2309 0.0875 0.0986 0.0811 0.1037 0.1732 0.2319 0.1013 0.1152 0.0901 0.1095

GRU4Rec 0.2577 0.3657 0.1434 0.1577 0.1276 0.1607 0.2196 0.2869 0.1286 0.1489 0.1076 0.1323

STAMP 0.3998 0.5014 0.2357 0.2469 0.2039 0.2394 0.3287 0.3972 0.2241 0.2334 0.1758 0.1970

SR-GNN 0.4082 0.5269 0.2439 0.2599 0.2078 0.2443 0.3502 0.4268 0.2422 0.2525 0.1885 0.2121

GC-SAN 0.4280 0.5351 0.2694 0.2838 0.2223 0.2552 0.3644 0.4380 0.2506 0.2604 0.1956 0.2181

Improv. 4.84% 1.56% 10.46% 9.20% 6.98% 4.44% 4.07% 2.62% 3.49% 3.15% 3.79% 2.85%

Table 1: The performance of different methods on the two datasets. We generate Top-5 and 10 items for recommendation. The best
performance in each column is boldfaced (the higher, the better). Improvements over the best baseline are shown in the last row.

Dataset # clicks # train # test # items avg.len

Diginetica 858,107 526,134 44,279 40,840 5.97

Retailrocket 710,856 433,648 15,132 36,968 5.43

Table 2: Statistics of datasets.

Evaluation Metrics. To evaluate the recommendation per-
formance of all models, we adopt three common metrics,
i.e., Hit Rate (HR@N), Mean Reciprocal Rank (MRR@N)
and Normalized Discounted Cumulative Gain (NDCG@N).
The former one is an evaluation of unranked retrieval results,
while the latter two are evaluations of ranked lists. Here, we
consider Top-N (N = {5, 10}) for recommendation.

4.2 Baselines

We consider the following compared methods for perfor-
mance comparisons:

• Pop is a simple baseline that recommends top rank items
based on popularity in training data.

• BPR-MF [Rendle et al., 2009] is the state-of-the-art
method for non-sequential recommendation, which opti-
mizes matrix factorization using a pairwise ranking loss.

• IKNN [Sarwar et al., 2001] is a traditional item-to-item
model, which recommends items similar to the candi-
date item within the session based on cosine similarity.

• FPMC3 [Rendle et al., 2010] is a classic hybrid mod-
el combing matrix factorization and first-order Markov
chain for next-basket recommendation. Note that in our
recommendation problem, each basket is a session.

• GRU4Rec4 [Hidasi et al., 2016] is a RNN-based deep
learning model for session-based recommendation. It u-
tilizes a session-parallel mini-batch training process to
model user action sequences.

• STAMP [Liu et al., 2018] is a novel short-term memory
priority model to capture the user’s long-term preference
from previous clicks and the current interest of the last-
clicks in a session.

• SR-GNN5 [Wu et al., 2018] is recently proposed
session-based recommendation model with graph neural

3http://github.com/khesui/FPMC
4http://github.com/hidasib/GRU4Rec
5http://github.com/CRIPAC-DIG/SR-GNN

network, which applies GNN to generate latent vectors
of items and then represent each session through tradi-
tional attention network.

4.3 Comparisons of Performance

To demonstrate the recommendation performance of our
model GC-SAN, we compare it with other state-of-the-art
methods (RQ1). The experimental results of all methods on
Diginetica and Retailrocket datasets are illustrated in Table1,
and we have the following observations.

The non-personalized Popularity-based methods (i.e.,
Pop) has the most unfavorable performance on both dataset-
s. By profiling users individually and optimizing the pair-
wise ranking loss function, BPR-MF performs better than
Pop. This suggests the importance of personalization in rec-
ommendation tasks. IKNN and FPMC achieve better perfor-
mance than BPR-MF on Diginetica dataset, while BPR-MF
outperforms IKNN and FPMC on Retailrocket dataset. In
fact, IKNN utilizes the similarity between items in the ses-
sion and FPMC is based on first-order Markov Chain.

All of the neural network methods, such as GRU4Rec
and STAMP, outperform the traditional baselines (e.g., F-
PMC and IKNN) in nearly all the cases, which verifies the
power of deep learning technology in this field. GRU4Rec
leverages the recurrent structure with GRU as a special for-
m of RNN to capture the user’s general preference, while
STAMP improves the short-term memory through the last
clicked item. Unsurprisingly, STAMP performs better than
GRU4Rec, which indicates the effectiveness of short-term
behavior for predicting the next item problem. On the oth-
er hand, by modeling every session as a graph and applying
graph neural network and the attention mechanism, SR-GNN
outperforms all other baselines on both datasets. This further
proves the power of neural network in recommender systems.

Compared to SR-GNN, our approach GC-SAN adopts the
self-attention mechanism to adaptively assign weights to pre-
vious items regardless of their distances in the current ses-
sion and captures long-range dependencies between items of
a session. We combine the long-range self-attention represen-
tation and the short-term interest of the last-click in a linear
way to generate the final session representation. As we can
see, our method achieves the best performance among all the
methods on both datasets in terms of HR, MRR, and NDCG.
These results demonstrate the efficacy and validity of GC-
SAN for session-based recommendation.
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Figure 3: Effects of the weight factor ω and effects of the number of
stacked self-attention blocks k on both datasets.

4.4 Model Analysis and Discussion

In this subsection, we take an in-depth model analysis s-
tudy, aiming to further understand the framework of GC-SAN
(RQ2). Due to the space limit, we only show the analysis re-
sults in terms of HR@10 and NDCG@10. We have obtained
similar experimental results in terms of other metrics.

Dataset Diginetica Retailrocket

Measures HR@10 NDCG@10 HR@10 NDCG@10

w/GC-SAN 0.5351 0.2552 0.4380 0.2181

w/o GC-SAN 0.4199 0.2060 0.4191 0.2065

Table 3: The performance of GC-SAN with and without graph neu-
ral network in terms of HR@10 and NDCG@10.

Impact of graph neural network. Although we can in-
fer the effectiveness of graph neural network implicitly from
Table 1, we would like to verify the contribution of graph
neural network in GC-SAN. We remove the graph neural net-
work module from GC-SAN, replace it with a randomly ini-
tialized item embedding, and feed into the self-attention layer.
Table 3 displays the comparisons between with and without
GNN. From Table 1 and Table 3, we find that even without
GNN, GC-SAN can still outperform STAMP on Retailrock-
et dataset, while it was beaten by GRU4Rec on Diginetica
dataset. In fact, the maximum session length of Retailrock-
et dataset is almost four times that of Diginetica dataset. A
possible reason is that short sequence lengths can construct
more dense session graphs that provide richer contextual in-
formation, while the self-attention mechanism performs bet-
ter with long sequence lengths. This further demonstrates that
the self-attention mechanism and graph neural network play
important roles in improving recommendation performance.

Impact of weight factor ω. The weight parameter ω con-
trols the contribution of self-attention representation and the
last-clicked action. Observing from Figure 3(a), taking only
global self-attention dependencies (ω = 1.0) as final session
embedding usually achieves a better performance than con-
sidering only current interests (ω = 0). Setting ω to a value
from 0.4 to 0.8 is more desirable. This indicates that while
the self-attention mechanism with graph neural network can
adaptively assign weights to focus on long-range dependen-
cies or more recent actions, the short-term interest is also in-
dispensable for improving the recommendation performance.
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Figure 4: The performance under different embedding sizes d.

Impact of the number of self-attention blocks k. As
aforementioned, we investigate which levels of self-attention
layers benefit most from GC-SAN. Figure 3(b) displays
the experimental results of applying different self-attention
blocks with k varying from 1 to 6. On both datasets, we can
observe that increasing k can boost the performance of GC-
SAN. However, it achieves the best performance when k is
chosen properly and gets worse for a larger k. This may be
because using more blocks (k ≥ 4) would make GC-SAN
easier to lose low-layer information.

Impact of the embedding size d. In Figure 4, we investi-
gate the effectiveness of the embedding size d ranging from
10 to 120 on both datasets. Among all the baselines, STAM-
P and SR-GNN perform well and stable. Hence, we use S-
TAMP and SR-GNN as two baselines for ease of compar-
isons. From figure 4, we can observe that our model GC-
SAN consistently outperforms STAMP on all latent dimen-
sions. When d is less than a certain value, SR-GNN performs
better than GC-SAN. Once this value is exceeded, the perfor-
mance of GC-SAN still grows and eventually stabilizes with
d ≥ 100, while the performance of SR-GNN slightly reduces.
This may be because that a relatively small d limits GC-SAN
to capture complex transitions between item latent factors,
while SR-GNN may suffer from overfitting with a larger d.

5 Conclusion

In this paper, we proposed a graph contextualized self-
attention network (GC-SAN) based on graph neural network
for session-based recommendation. Specifically, we first con-
structed directed graphs from anonymous session records and
then applied graph neural network to generate new latent vec-
tors for all items, which contained local contextual informa-
tion of sequences. Next, we used the self-attention network
to capture global dependencies between distant position. Fi-
nally, we combined the local short-term dynamics (i.e., the
last-clicked item) and global self-attended dependencies to
represent session sequences in a linear way. Extensive exper-
imental analysis verified that our proposed model GC-SAN
consistently outperformed the state-of-the-art methods.
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