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Abstract

Dependency trees help relation extraction

models capture long-range relations between

words. However, existing dependency-based

models either neglect crucial information (e.g.,

negation) by pruning the dependency trees

too aggressively, or are computationally inef-

ficient because it is difficult to parallelize over

different tree structures. We propose an ex-

tension of graph convolutional networks that

is tailored for relation extraction, which pools

information over arbitrary dependency struc-

tures efficiently in parallel. To incorporate rel-

evant information while maximally removing

irrelevant content, we further apply a novel

pruning strategy to the input trees by keeping

words immediately around the shortest path

between the two entities among which a rela-

tion might hold. The resulting model achieves

state-of-the-art performance on the large-scale

TACRED dataset, outperforming existing se-

quence and dependency-based neural models.

We also show through detailed analysis that

this model has complementary strengths to se-

quence models, and combining them further

improves the state of the art.

1 Introduction

Relation extraction involves discerning whether a

relation exists between two entities in a sentence

(often termed subject and object, respectively).

Successful relation extraction is the cornerstone of

applications requiring relational understanding of

unstructured text on a large scale, such as ques-

tion answering (Yu et al., 2017), knowledge base

population (Zhang et al., 2017), and biomedical

knowledge discovery (Quirk and Poon, 2017).

Models making use of dependency parses of

the input sentences, or dependency-based models,

∗Equal contribution. The order of authorship was decided
by a tossed coin.

I had an e-mail exchange with Benjamin Cane of 

Popular Mechanics which showed that he was not a 

relative of Mike Cane.

relative

that a Cane

Mikeof

he was not

…

Prediction from dependency path: per:other_family

Gold label: no_relation

Figure 1: An example modified from the TAC KBP

challenge corpus. A subtree of the original UD de-

pendency tree between the subject (“he”) and object

(“Mike Cane”) is also shown, where the shortest depen-

dency path between the entities is highlighted in bold.

Note that negation (“not”) is off the dependency path.

have proven to be very effective in relation ex-

traction, because they capture long-range syntac-

tic relations that are obscure from the surface form

alone (e.g., when long clauses or complex scop-

ing are present). Traditional feature-based models

are able to represent dependency information by

featurizing dependency trees as overlapping paths

along the trees (Kambhatla, 2004). However, these

models face the challenge of sparse feature spaces

and are brittle to lexical variations. More re-

cent neural models address this problem with dis-

tributed representations built from their computa-

tion graphs formed along parse trees. One com-

mon approach to leverage dependency information

is to perform bottom-up or top-down computation

along the parse tree or the subtree below the low-

est common ancestor (LCA) of the entities (Miwa

and Bansal, 2016). Another popular approach, in-

spired by Bunescu and Mooney (2005), is to re-

duce the parse tree to the shortest dependency path

between the entities (Xu et al., 2015a,b).

However, these models suffer from several
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drawbacks. Neural models operating directly on

parse trees are usually difficult to parallelize and

thus computationally inefficient, because aligning

trees for efficient batch training is usually non-

trivial. Models based on the shortest dependency

path between the subject and object are compu-

tationally more efficient, but this simplifying as-

sumption has major limitations as well. Figure 1

shows a real-world example where crucial infor-

mation (i.e., negation) would be excluded when

the model is restricted to only considering the de-

pendency path.

In this work, we propose a novel extension

of the graph convolutional network (Kipf and

Welling, 2017; Marcheggiani and Titov, 2017) that

is tailored for relation extraction. Our model

encodes the dependency structure over the input

sentence with efficient graph convolution opera-

tions, then extracts entity-centric representations

to make robust relation predictions. We also ap-

ply a novel path-centric pruning technique to re-

move irrelevant information from the tree while

maximally keeping relevant content, which further

improves the performance of several dependency-

based models including ours.

We test our model on the popular SemEval 2010

Task 8 dataset and the more recent, larger TAC-

RED dataset. On both datasets, our model not

only outperforms existing dependency-based neu-

ral models by a significant margin when combined

with the new pruning technique, but also achieves

a 10–100x speedup over existing tree-based mod-

els. On TACRED, our model further achieves the

state-of-the-art performance, surpassing a compet-

itive neural sequence model baseline. This model

also exhibits complementary strengths to sequence

models on TACRED, and combining these two

model types through simple prediction interpola-

tion further improves the state of the art.

To recap, our main contributions are: (i) we pro-

pose a neural model for relation extraction based

on graph convolutional networks, which allows it

to efficiently pool information over arbitrary de-

pendency structures; (ii) we present a new path-

centric pruning technique to help dependency-

based models maximally remove irrelevant infor-

mation without damaging crucial content to im-

prove their robustness; (iii) we present detailed

analysis on the model and the pruning technique,

and show that dependency-based models have

complementary strengths with sequence models.

2 Models

In this section, we first describe graph convo-

lutional networks (GCNs) over dependency tree

structures, and then we introduce an architecture

that uses GCNs at its core for relation extraction.

2.1 Graph Convolutional Networks over

Dependency Trees

The graph convolutional network (Kipf and

Welling, 2017) is an adaptation of the convolu-

tional neural network (LeCun et al., 1998) for en-

coding graphs. Given a graph with n nodes, we

can represent the graph structure with an n × n
adjacency matrix A where Aij = 1 if there is an

edge going from node i to node j. In an L-layer

GCN, if we denote by h
(l−1)
i the input vector and

h
(l)
i the output vector of node i at the l-th layer, a

graph convolution operation can be written as

h
(l)
i = σ

�

n
X

j=1

AijW
(l)h

(l−1)
j + b(l)

�

, (1)

where W (l) is a linear transformation, b(l) a bias

term, and σ a nonlinear function (e.g., ReLU).

Intuitively, during each graph convolution, each

node gathers and summarizes information from its

neighboring nodes in the graph.

We adapt the graph convolution operation to

model dependency trees by converting each tree

into its corresponding adjacency matrix A, where

Aij = 1 if there is a dependency edge between to-

kens i and j. However, naively applying the graph

convolution operation in Equation (1) could lead

to node representations with drastically different

magnitudes, since the degree of a token varies a

lot. This could bias our sentence representation

towards favoring high-degree nodes regardless of

the information carried in the node (see details

in Section 2.2). Furthermore, the information in

h
(l−1)
i is never carried over to h

(l)
i , since nodes

never connect to themselves in a dependency tree.

We resolve these issues by normalizing the acti-

vations in the graph convolution before feeding it

through the nonlinearity, and adding self-loops to

each node in the graph:

h
(l)
i =σ

�

n
X

j=1

ÃijW
(l)h

(l−1)
j /di + b(l)

�

, (2)

where Ã = A+ I with I being the n× n identity

matrix, and di =
Pn

j=1 Ãij is the degree of token

i in the resulting graph.
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He was not a relative of Mike Cane
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He was not a relative of Mike Cane
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Figure 2: Relation extraction with a graph convolutional network. The left side shows the overall architecture,

while on the right side, we only show the detailed graph convolution computation for the word “relative” for

clarity. A full unlabeled dependency parse of the sentence is also provided for reference.

Stacking this operation over L layers gives us

a deep GCN network, where we set h
(0)
1 , . . . , h

(0)
n

to be input word vectors, and use h
(L)
1 , . . . , h

(L)
n as

output word representations. All operations in this

network can be efficiently implemented with ma-

trix multiplications, making it ideal for batching

computation over examples and running on GPUs.

Moreover, the propagation of information between

tokens occurs in parallel, and the runtime does not

depend on the depth of the dependency tree.

Note that the GCN model presented above uses

the same parameters for all edges in the depen-

dency graph. We also experimented with: (1) us-

ing different transformation matrices W for top-

down, bottom-up, and self-loop edges; and (2)

adding dependency relation-specific parameters

for edge-wise gating, similar to (Marcheggiani and

Titov, 2017). We found that modeling directions

does not lead to improvement,1 and adding edge-

wise gating further hurts performance. We hypoth-

esize that this is because the presented GCN model

is usually already able to capture dependency edge

patterns that are informative for classifying rela-

tions, and modeling edge directions and types does

not offer additional discriminative power to the

network before it leads to overfitting. For exam-

ple, the relations entailed by “A’s son, B” and “B’s

son, A” can be readily distinguished with “’s” at-

tached to different entities, even when edge direc-

tionality is not considered.

1We therefore treat the dependency graph as undirected,
i.e. ∀i, j, Aij = Aji.

2.2 Encoding Relations with GCN

We now formally define the task of relation ex-

traction. Let X = [x1, ..., xn] denote a sentence,

where xi is the ith token. A subject entity and an

object entity are identified and correspond to two

spans in the sentence: Xs = [xs1 , . . . , xs2 ] and

Xo = [xo1 , . . . , xo2 ]. Given X , Xs, and Xo, the

goal of relation extraction is to predict a relation

r ∈ R (a predefined relation set) that holds be-

tween the entities or “no relation” otherwise.

After applying an L-layer GCN over word vec-

tors, we obtain hidden representations of each to-

ken that are directly influenced by its neighbors no

more than L edges apart in the dependency tree.

To make use of these word representations for re-

lation extraction, we first obtain a sentence repre-

sentation as follows (see also Figure 2 left):

hsent = f
�

h
(L)

�

= f
�

GCN(h(0))
�

, (3)

where h
(l) denotes the collective hidden represen-

tations at layer l of the GCN, and f : Rd×n
→ R

d

is a max pooling function that maps from n output

vectors to the sentence vector.

We also observe that information close to entity

tokens in the dependency tree is often central to

relation classification. Therefore, we also obtain a

subject representation hs from h
(L) as follows

hs = f
�

h
(L)
s1:s2

�

, (4)

as well as an object representation ho similarly.

Inspired by recent work on relational learning

between entities (Santoro et al., 2017; Lee et al.,

2017), we obtain the final representation used

for classification by concatenating the sentence

and the entity representations, and feeding them
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through a feed-forward neural network (FFNN):

hfinal = FFNN
�

[hsent;hs;ho]
�

. (5)

This hfinal representation is then fed into a linear

layer followed by a softmax operation to obtain a

probability distribution over relations.

2.3 Contextualized GCN

The network architecture introduced so far learns

effective representations for relation extraction,

but it also leaves a few issues inadequately ad-

dressed. First, the input word vectors do not con-

tain contextual information about word order or

disambiguation. Second, the GCN highly depends

on a correct parse tree to extract crucial informa-

tion from the sentence (especially when pruning

is performed), while existing parsing algorithms

produce imperfect trees in many cases.

To resolve these issues, we further apply a Con-

textualized GCN (C-GCN) model, where the input

word vectors are first fed into a bi-directional long

short-term memory (LSTM) network to gener-

ate contextualized representations, which are then

used as h
(0) in the original model. This BiL-

STM contextualization layer is trained jointly with

the rest of the network. We show empirically in

Section 5 that this augmentation substantially im-

proves the performance over the original model.

We note that this relation extraction model is

conceptually similar to graph kernel-based mod-

els (Zelenko et al., 2003), in that it aims to utilize

local dependency tree patterns to inform relation

classification. Our model also incorporates crucial

off-path information, which greatly improves its

robustness compared to shortest dependency path-

based approaches. Compared to tree-structured

models (e.g., Tree-LSTM (Tai et al., 2015)), it

not only is able to capture more global informa-

tion through the use of pooling functions, but also

achieves substantial speedup by not requiring re-

cursive operations that are difficult to parallelize.

For example, we observe that on a Titan Xp GPU,

training a Tree-LSTM model over a minibatch of

50 examples takes 6.54 seconds on average, while

training the original GCN model takes only 0.07

seconds, and the C-GCN model 0.08 seconds.

3 Incorporating Off-path Information

with Path-centric Pruning

Dependency trees provide rich structures that one

can exploit in relation extraction, but most of the

information pertinent to relations is usually con-

tained within the subtree rooted at the lowest com-

mon ancestor (LCA) of the two entities. Previous

studies (Xu et al., 2015b; Miwa and Bansal, 2016)

have shown that removing tokens outside this

scope helps relation extraction by eliminating ir-

relevant information from the sentence. It is there-

fore desirable to combine our GCN models with

tree pruning strategies to further improve perfor-

mance. However, pruning too aggressively (e.g.,

keeping only the dependency path) could lead to

loss of crucial information and conversely hurt ro-

bustness. For instance, the negation in Figure 1 is

neglected when a model is restricted to only look-

ing at the dependency path between the entities.

Similarly, in the sentence “She was diagnosed with

cancer last year, and succumbed this June”, the

dependency path She←diagnosed→cancer is not

sufficient to establish that cancer is the cause of

death for the subject unless the conjunction depen-

dency to succumbed is also present.

Motivated by these observations, we propose

path-centric pruning, a novel technique to incor-

porate information off the dependency path. This

is achieved by including tokens that are up to dis-

tance K away from the dependency path in the

LCA subtree. K = 0, corresponds to pruning

the tree down to the path, K = 1 keeps all nodes

that are directly attached to the path, and K = ∞

retains the entire LCA subtree. We combine this

pruning strategy with our GCN model, by directly

feeding the pruned trees into the graph convolu-

tional layers.2 We show that pruning with K = 1
achieves the best balance between including rele-

vant information (e.g., negation and conjunction)

and keeping irrelevant content out of the resulting

pruned tree as much as possible.

4 Related Work

At the core of fully-supervised and distantly-

supervised relation extraction approaches are sta-

tistical classifiers, many of which find syntac-

tic information beneficial. For example, Mintz

et al. (2009) explored adding syntactic features to

a statistical classifier and found them to be use-

ful when sentences are long. Various kernel-based

approaches also leverage syntactic information to

measure similarity between training and test ex-

amples to predict the relation, finding that tree-

2For our C-GCN model, the LSTM layer still operates on
the full sentence regardless of the pruning.
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based kernels (Zelenko et al., 2003) and depen-

dency path-based kernels (Bunescu and Mooney,

2005) are effective for this task.

Recent studies have found neural models ef-

fective in relation extraction. Zeng et al. (2014)

first applied a one-dimensional convolutional neu-

ral network (CNN) with manual features to encode

relations. Vu et al. (2016) showed that combin-

ing a CNN with a recurrent neural network (RNN)

through a voting scheme can further improve per-

formance. Zhou et al. (2016) and Wang et al.

(2016) proposed to use attention mechanisms over

RNN and CNN architectures for this task.

Apart from neural models over word sequences,

incorporating dependency trees into neural models

has also been shown to improve relation extrac-

tion performance by capturing long-distance rela-

tions. Xu et al. (2015b) generalized the idea of de-

pendency path kernels by applying a LSTM net-

work over the shortest dependency path between

entities. Liu et al. (2015) first applied a recur-

sive network over the subtrees rooted at the words

on the dependency path and then applied a CNN

over the path. Miwa and Bansal (2016) applied a

Tree-LSTM (Tai et al., 2015), a generalized form

of LSTM over dependency trees, in a joint entity

and relation extraction setting. They found it to be

most effective when applied to the subtree rooted

at the LCA of the two entities.

More recently, Adel et al. (2016) and Zhang

et al. (2017) have shown that relatively simple

neural models (CNN and augmented LSTM, re-

spectively) can achieve comparable or superior

performance to dependency-based models when

trained on larger datasets. In this paper, we study

dependency-based models in depth and show that

with a properly designed architecture, they can

outperform and have complementary advantages

to sequence models, even in a large-scale setting.

Finally, we note that a technique similar to path-

centric pruning has been applied to reduce the

space of possible arguments in semantic role la-

beling (He et al., 2018). The authors showed prun-

ing words too far away from the path between the

predicate and the root to be beneficial, but reported

the best pruning distance to be 10, which almost

always retains the entire tree. Our method differs

in that it is applied to the shortest dependency path

between entities, and we show that in our tech-

nique the best pruning distance is 1 for several

dependency-based relation extraction models.

5 Experiments

5.1 Baseline Models

We compare our models with several competitive

dependency-based and neural sequence models.

Dependency-based models. In our main ex-

periments we compare with three types of

dependency-based models. (1) A logistic regres-

sion (LR) classifier which combines dependency-

based features with other lexical features. (2)

Shortest Dependency Path LSTM (SDP-LSTM)

(Xu et al., 2015b), which applies a neural sequence

model on the shortest path between the subject

and object entities in the dependency tree. (3)

Tree-LSTM (Tai et al., 2015), which is a recursive

model that generalizes the LSTM to arbitrary tree

structures. We investigate the child-sum variant of

Tree-LSTM, and apply it to the dependency tree

(or part of it). In practice, we find that modifying

this model by concatenating dependency label em-

beddings to the input of forget gates improves its

performance on relation extraction, and therefore

use this variant in our experiments. Earlier, our

group compared (1) and (2) with sequence models

(Zhang et al., 2017), and we report these results;

for (3) we report results with our own implemen-

tation.

Neural sequence model. Our group presented

a competitive sequence model that employs a

position-aware attention mechanism over LSTM

outputs (PA-LSTM), and showed that it outper-

forms several CNN and dependency-based models

by a substantial margin (Zhang et al., 2017). We

compare with this strong baseline, and use its open

implementation in further analysis.3

5.2 Experimental Setup

We conduct experiments on two relation extrac-

tion datasets: (1) TACRED: Introduced in (Zhang

et al., 2017), TACRED contains over 106k men-

tion pairs drawn from the yearly TAC KBP4 chal-

lenge. It represents 41 relation types and a spe-

cial no relation class when the mention pair does

not have a relation between them within these cat-

egories. Mentions in TACRED are typed, with

subjects categorized into person and organization,

and objects into 16 fine-grained types (e.g., date

and location). We report micro-averaged F1 scores

on this dataset as is conventional. (2) SemEval

3https://github.com/yuhaozhang/tacred-relation
4https://tac.nist.gov/2017/KBP/index.html

https://github.com/yuhaozhang/tacred-relation
https://tac.nist.gov/2017/KBP/index.html
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System P R F1

LR† (Zhang+2017) 73.5 49.9 59.4

SDP-LSTM† (Xu+2015b) 66.3 52.7 58.7

Tree-LSTM‡ (Tai+2015) 66.0 59.2 62.4

PA-LSTM† (Zhang+2017) 65.7 64.5 65.1

GCN 69.8 59.0 64.0

C-GCN 69.9 63.3 66.4∗

GCN + PA-LSTM 71.7 63.0 67.1∗

C-GCN + PA-LSTM 71.3 65.4 68.2∗

Table 1: Results on TACRED. Underscore marks high-

est number among single models; bold marks highest

among all. † marks results reported in (Zhang et al.,

2017); ‡ marks results produced with our implemen-

tation. ∗ marks statistically significant improvements

over PA-LSTM with p < .01 under a bootstrap test.

2010 Task 8: The SemEval dataset is widely used

in recent work, but is significantly smaller with

8,000 examples for training and 2,717 for testing.

It contains 19 relation classes over untyped men-

tion pairs: 9 directed relations and a special Other

class. On SemEval, we follow the convention and

report the official macro-averaged F1 scores.

For fair comparisons on the TACRED dataset,

we follow the evaluation protocol used in (Zhang

et al., 2017) by selecting the model with the me-

dian dev F1 from 5 independent runs and report-

ing its test F1. We also use the same “entity mask”

strategy where we replace each subject (and ob-

ject similarly) entity with a special SUBJ-<NER>
token. For all models, we also adopt the “multi-

channel” strategy by concatenating the input word

embeddings with POS and NER embeddings.

Traditionally, evaluation on SemEval is con-

ducted without entity mentions masked. However,

as we will discuss in Section 6.4, this method en-

courages models to overfit to these mentions and

fails to test their actual ability to generalize. We

therefore report results with two evaluation proto-

cols: (1) with-mention, where mentions are kept

for comparison with previous work; and (2) mask-

mention, where they are masked to test the gener-

alization of our model in a more realistic setting.

Due to space limitations, we report model train-

ing details in the supplementary material.

5.3 Results on the TACRED Dataset

We present our main results on the TACRED test

set in Table 1. We observe that our GCN model

System with-m mask-m

SVM† (Rink+2010) 82.2 –

SDP-LSTM† (Xu+2015b) 83.7 –

SPTree† (Miwa+2016) 84.4 –

PA-LSTM‡ (Zhang+2017) 82.7 75.3

Our Model (C-GCN) 84.8∗ 76.5∗

Table 2: F1 scores on SemEval. † marks results re-

ported in the original papers; ‡ marks results pro-

duced by using the open implementation. The last two

columns show results from with-mention evaluation

and mask-mention evaluation, respectively. ∗ marks

statistically significant improvements over PA-LSTM

with p < .05 under a bootstrap test.

outperforms all dependency-based models by at

least 1.6 F1. By using contextualized word rep-

resentations, the C-GCN model further outper-

forms the strong PA-LSTM model by 1.3 F1, and

achieves a new state of the art. In addition, we

find our model improves upon other dependency-

based models in both precision and recall. Com-

paring the C-GCN model with the GCN model,

we find that the gain mainly comes from improved

recall. We hypothesize that this is because the C-

GCN is more robust to parse errors by capturing

local word patterns (see also Section 6.2).

As we will show in Section 6.2, we find that

our GCN models have complementary strengths

when compared to the PA-LSTM. To leverage this

result, we experiment with a simple interpolation

strategy to combine these models. Given the out-

put probabilities PG(r|x) from a GCN model and

PS(r|x) from the sequence model for any relation

r, we calculate the interpolated probability as

P (r|x) = α · PG(r|x) + (1− α) · PS(r|x)

where α ∈ [0, 1] is chosen on the dev set and set to

0.6. This simple interpolation between a GCN and

a PA-LSTM achieves an F1 score of 67.1, outper-

forming each model alone by at least 2.0 F1. An

interpolation between a C-GCN and a PA-LSTM

further improves the result to 68.2.

5.4 Results on the SemEval Dataset

To study the generalizability of our proposed

model, we also trained and evaluated our best C-

GCN model on the SemEval test set (Table 2). We

find that under the conventional with-entity eval-

uation, our C-GCN model outperforms all exist-

ing dependency-based neural models on this sep-
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Figure 3: Performance of dependency-based models

under different pruning strategies. For each model we

show the F1 score on the TACRED dev set averaged

over 5 runs, and error bars indicate standard deviation

of the mean estimate. K = ∞ is equivalent to using

the subtree rooted at the LCA.

arate dataset. Notably, by properly incorporating

off-path information, our model outperforms the

previous shortest dependency path-based model

(SDP-LSTM). Under the mask-entity evaluation,

our C-GCN model also outperforms PA-LSTM by

a substantial margin, suggesting its generalizabil-

ity even when entities are not seen.

5.5 Effect of Path-centric Pruning

To show the effectiveness of path-centric prun-

ing, we compare the two GCN models and the

Tree-LSTM when the pruning distance K is var-

ied. We experimented with K ∈ {0, 1, 2,∞}
on the TACRED dev set, and also include results

when the full tree is used. As shown in Figure 3,

the performance of all three models peaks when

K = 1, outperforming their respective depen-

dency path-based counterpart (K = 0). This con-

firms our hypothesis in Section 3 that incorporat-

ing off-path information is crucial to relation ex-

traction. Miwa and Bansal (2016) reported that

a Tree-LSTM achieves similar performance when

the dependency path and the LCA subtree are used

respectively. Our experiments confirm this, and

further show that the result can be improved by

path-centric pruning with K = 1.

We find that all three models are less effective

when the entire dependency tree is present, indi-

cating that including extra information hurts per-

formance. Finally, we note that contextualizing

the GCN makes it less sensitive to changes in the

tree structures provided, presumably because the

0-10 11-15 16-20 21-25 26-30 31-35 >36

40

50

60

70

Distance between Entities

D
ev

F
1

C-GCN

GCN

PA-LSTM

Figure 4: Dev set performance with regard to distance

between the entities in the sentence for C-GCN, GCN

and PA-LSTM. Error bars indicate standard deviation

of the mean estimate over 5 runs.

Model Dev F1

Best C-GCN 67.4

– hs, ho, and Feedforward (FF) 66.4

– LSTM Layer 65.5

– Dependency tree structure 64.2

– FF, LSTM, and Tree 57.1

– FF, LSTM, Tree, and Pruning 47.4

Table 3: An ablation study of the best C-GCN model.

Scores are median of 5 models.

model can use word sequence information in the

LSTM layer to recover any off-path information

that it needs for correct relation extraction.

6 Analysis & Discussion

6.1 Ablation Study

To study the contribution of each component in

the C-GCN model, we ran an ablation study on

the TACRED dev set (Table 3). We find that: (1)

The entity representations and feedforward layers

contribute 1.0 F1. (2) When we remove the de-

pendency structure (i.e., setting Ã to I), the score

drops by 3.2 F1. (3) F1 drops by 10.3 when we

remove the feedforward layers, the LSTM compo-

nent and the dependency structure altogether. (4)

Removing the pruning (i.e., using full trees as in-

put) further hurts the result by another 9.7 F1.

6.2 Complementary Strengths of GCNs and

PA-LSTMs

To understand what the GCN models are capturing

and how they differ from a sequence model such

as the PA-LSTM, we compared their performance
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Benoit B. Mandelbrot, a maverick 

mathematician who developed an innovative 

theory of roughness and applied it to physics, 

biology, finance and many other fields, died 

Thursday in Cambridge, Mass.

Anil Kumar, a former director at the consulting 

firm McKinsey & Co, pleaded guilty on 

Thursday to providing inside information to Raj 

Rajaratnam, the founder of the Galleon Group, 

in exchange for payments of at least $ 175 

million from 2004 through 2009.

died

Relation: org:founded_byRelation: per:city_of_death

Rajaratnam

Rajto founder

Groupthe

of the Galleon

Thursday Cambridge

in Mass

Mandelbrot

Benoit B.

In a career that spanned seven decades, Ginzburg

authored several groundbreaking studies in various 

fields -- such as quantum theory, astrophysics, 

radio-astronomy and diffusion of cosmic radiation 

in the Earth's atmosphere -- that were of “Nobel 

Prize caliber,” said Gennady Mesyats, the director 

of the Lebedev Physics Institute in Moscow, where 

Ginzburg worked . 

Institute

PhysicsLebedevtheof Moscow worked

Ginzburgwhere

Relation: per:employee_of

Figure 5: Examples and the pruned dependency trees where the C-GCN predicted correctly. Words are shaded by

the number of dimensions they contributed to hsent in the pooling operation, with punctuation omitted.

Relation Dependency Tree Edges

per:children S-PER← son son → O-PER S-PER← survived
per:other family S-PER← stepson niece → O-PER O-PER← stepdaughter
per:employee of a ← member S-PER← worked S-PER← played
per:schools attended S-PER← graduated S-PER← earned S-PER← attended
org:founded founded → O-DATE established → O-DATE was ← founded
org:number of employees S-ORG← has S-ORG→ employs O-NUMBER← employees
org:subsidiaries S-ORG← O-ORG S-ORG→ ’s O-ORG→ division
org:shareholders buffett ← O-PER shareholder → S-ORG largest ← shareholder

Table 4: The three dependency edges that contribute the most to the classification of different relations in the

TACRED dev set. For clarity, we removed edges which 1) connect to common punctuation (i.e., commas, periods,

and quotation marks), 2) connect to common prepositions (i.e., of, to, by), and 3) connect between tokens within

the same entity. We use PER, ORG for entity types of PERSON, ORGANIZATION. We use S- and O- to denote

subject and object entities, respectively. We also include edges for more relations in the supplementary material.

over examples in the TACRED dev set. Specifi-

cally, for each model, we trained it for 5 indepen-

dent runs with different seeds, and for each exam-

ple we evaluated the model’s accuracy over these

5 runs. For instance, if a model correctly classifies

an example for 3 out of 5 times, it achieves an ac-

curacy of 60% on this example. We observe that

on 847 (3.7%) dev examples, our C-GCN model

achieves an accuracy at least 60% higher than that

of the PA-LSTM, while on 629 (2.8%) examples

the PA-LSTM achieves 60% higher. This comple-

mentary performance explains the gain we see in

Table 1 when the two models are combined.

We further show that this difference is due to

each model’s competitive advantage (Figure 4):

dependency-based models are better at handling

sentences with entities farther apart, while se-

quence models can better leverage local word pat-

terns regardless of parsing quality (see also Fig-

ure 6). We include further analysis in the supple-

mentary material.

6.3 Understanding Model Behavior

To gain more insights into the C-GCN model’s be-

havior, we visualized the partial dependency tree

it is processing and how much each token’s final

representation contributed to hsent (Figure 5). We

find that the model often focuses on the depen-

dency path, but sometimes also incorporates off-

path information to help reinforce its prediction.

The model also learns to ignore determiners (e.g.,

“the”) as they rarely affect relation prediction.

To further understand what dependency edges

contribute most to the classification of different re-

lations, we scored each dependency edge by sum-

ming up the number of dimensions each of its con-

nected nodes contributed to hsent. We present the

top scoring edges in Table 4. As can be seen in

the table, most of these edges are associated with

indicative nouns or verbs of each relation.5

6.4 Entity Bias in the SemEval Dataset

In our study, we observed a high correlation be-

tween the entity mentions in a sentence and its

relation label in the SemEval dataset. We exper-

imented with PA-LSTM models to analyze this

5We do notice the effect of dataset bias as well: the name
“Buffett” is too often associated with contexts where share-
holder relations hold, and therefore ranks top in that relation.
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phenomenon.6 We started by simplifying every

sentence in the SemEval training and dev sets to

“subject and object”, where subject and object are

the actual entities in the sentence. Surprisingly,

a trained PA-LSTM model on this data is able to

achieve 65.1 F1 on the dev set if GloVe is used

to initialize word vectors, and 47.9 dev F1 even

without GloVe initialization. To further evaluate

the model in a more realistic setting, we trained

one model with the original SemEval training set

(unmasked) and one with mentions masked in the

training set, following what we have done for

TACRED (masked). While the unmasked model

achieves a 83.6 F1 on the original SemEval dev

set, F1 drops drastically to 62.4 if we replace dev

set entity mentions with a special <UNK> token

to simulate the presence of unseen entities. In con-

trast, the masked model is unaffected by unseen

entity mentions and achieves a stable dev F1 of

74.7. This suggests that models trained without

entities masked generalize poorly to new examples

with unseen entities. Our findings call for more

careful evaluation that takes dataset biases into ac-

count in future relation extraction studies.

7 Conclusion

We showed the success of a neural architecture

based on a graph convolutional network for re-

lation extraction. We also proposed path-centric

pruning to improve the robustness of dependency-

based models by removing irrelevant content with-

out ignoring crucial information. We showed

through detailed analysis that our model has com-

plementary strengths to sequence models, and that

the proposed pruning technique can be effectively

applied to other dependency-based models.
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