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Abstract

We propose a novel Bayesian nonparametric

method to learn translation-invariant relationships

on non-Euclidean domains. The resulting graph

convolutional Gaussian processes can be applied

to problems in machine learning for which the

input observations are functions with domains on

general graphs. The structure of these models al-

lows for high dimensional inputs while retaining

expressibility, as is the case with convolutional

neural networks. We present applications of graph

convolutional Gaussian processes to images and

triangular meshes, demonstrating their versatility

and effectiveness, comparing favorably to existing

methods, despite being relatively simple models.

1. Introduction

We present a new Gaussian process (GP) model called the

graph convolutional GP (GCGP) model. This model learns

translation-invariant relationships that mimic the behavior

of a convolutional layer on images, but extends this prop-

erty to general graphs. Since this is a GP model, the patch

response function learned will be nonlinear and nonparamet-

ric, which may aid in expressibility and make more efficient

use of small datasets. Additionally, since this is a Bayesian

technique, it allows for the rigorous treatment of uncertain-

ties for predictions, useful in many application domains, but

difficult for existing convolutional models.

The main point of attempting to utilize general convolutions

is to reduce the complexity of the model while maintain-

ing expressibility. Indeed, standard GP models can suffer

from the curse of dimensionality, making stable estimation

difficult on high-dimensional inputs (Rasmussen, 2004).

This work seeks to create a convolutional model for general

graphs, such as images, social networks, or 3D meshes, that

focuses attention on local patches to substantially reduce
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the dimensionality of the input in a principled manner, in-

spired by recent work in geometric deep learning (Bronstein

et al., 2017). In this way, GP models can be applied to high-

dimensional inputs that live on non-Euclidean domains. To

the best of our knowledge, this is the first work to propose

spatial graph convolutions with Gaussian processes.

We present applications of GCGPs to graphs which are Eu-

clidean sampling grids (images) and further demonstrate

the GCGP’s performance when learning on non-Euclidean

domains for classification tasks. We apply our method to tri-

angular meshes and to an MNIST superpixel dataset, where

each image is represented as a distinct graph. While graph

convolutional GPs are shallow, though wide, the results are

promising for such relatively terse models, and indicate that

GCGPs can provide a simple and effective foundation for

more complex models in the future.

2. Background

A comprehensive overview of related graph kernel methods

is given by Vishwanathan et al. (2010) with some recent

work by Neumann et al. (2016) proposing kernels for graphs

with node features and other work employing deep learning

(Zhang et al., 2018; Duvenaud et al., 2015).

We focus on the task of classifying signals that live on gen-

eral graphs, leaving regression tasks as a straightforward

extension of the methodology. We further constrain our

focus to domains which are the same size for each signal to

be classified. Thus, our datasets will comprise of general

graphs, which are composed of the same number of ver-

tices. However, they do not necessarily have the same edge

structures. This is an important difference to recent Graph

GPs (Ng et al., 2018) and other approaches (Venkitaraman

et al., 2018) operating in the spectral domain using the graph

Laplacian which requires all observations to lie on the same

graph (implying the same edge structure).

The dataset D = {G,Ψ, Y } comprises a collection of sig-

nals Ψ with associated labels Y , which live on a corre-

sponding domain in G. Let G ∈ G be one such domain.

This G = 〈V, E〉 is comprised of a set of V vertices and

E ⊆ V ×V edges. The corresponding signal ψ ∈ Ψ is some

function ψ : V → R
d on the vertices of the graph.

We wish to learn some function f which accepts ψ as input
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and produces an output which will be used for classification,

for example passed through a sigmoidal function. It is this

function f which we want to model using a Gaussian pro-

cess prior. Initially, we might view the function of interest

as f : R|V|×d → R and select a general covariance function

such as a radial basis function (RBF) kernel for the GP prior

on f . This produces an expressive model, but will suffer

from two major drawbacks. First, it completely ignores the

underlying graph structures of the inputs, which may con-

tain valuable information for the classification task and may

differ substantially between input signals. Second, as |V|
or d increase, a kernel such as the RBF will become more

difficult to estimate as it attempts to model the relationships

between every input dimension and every vertex, and thus

suffers from the curse of dimensionality, a problem common

to many expressive models with high-dimensional inputs.

To reduce the complexity of the problem while maintaining

expressibility, we will construct kernel functions that focus

only on subsets of the input dimensions. These subsets will

be defined to take into account the underlying structure of

the input graph on which the signal is defined. In particular,

we wish to model relationships between nearby vertices

while ignoring distant relations, the same intuition that is

the basis for convolutional models.

In the context of Gaussian processes, recent work by van der

Wilk et al. (2017) provides a framework for estimating a

convolutional GP for classification on Euclidean sampling

grids such as images. This work relies fundamentally on

additive GP models (Duvenaud et al., 2011). The basic

insight of these models is that if Ω defines a set of subsets

of the input dimensions, and we model our function of

interest as the sum of functions on these subsets f(x) =
∑

ω∈Ω gω(ω), where each gω defines some unique function

for each ω modelled using a GP prior gω ∼ GP(0, kω(·, ·)),
then f has an induced GP prior with a covariance function

defined by the sum of the respective covariance functions of

the constituent gωs.

If we focus on the case where G is the same Euclidean

sampling grid (image structure) for all observations and

constrain Ω to consist of all n-neighborhoods on the interior

of the image and gω to be the same g for all ω ∈ Ω, we

obtain the convolutional Gaussian process model proposed

by van der Wilk et al. (2017). To be more precise, the

subsets in the convolutional GP model when applied to

images are easily defined as the m×m pixel values around

each pixel p. These are referred to by x
[p] in their paper

with |x[p]| = m2. Image borders can be ignored by only

defining subgroups at pixels on the interior of the image,

yielding (w−m+ 1) · (h−m+ 1) number of pixels p for

which there is a x
[p] ⊂ x. We can restate this as follows:

let the image be represented by the collection of random

variables x = {x1, . . . ,xwh} arranged on an undirected

graph with edge weights γ : E → R defined as γ(e) = 1
for all e ∈ E . We can state the definition of x[p] as:

x
[p] = {xj ∈ x|d(xj ,xp) ≤ n} (1)

where d : V×V → R
+ denotes the distance metric between

two vertices defined as:

d(xi,xj) = min
π∈P

∑

e∈π

γ(e) (2)

where P is the set of all paths connecting xi and xj and e

is an edge in a given path.

If g is given a GP prior, a GP prior will be induced on f

g ∼ GP (0, kg (t, t
′)) , f(x) =

∑

p

g
(

x
[p]
)

,

=⇒ f ∼ GP



0,

P
∑

p=1

P
∑

p′=1

kg

(

x
[p],x′[p′]

)





(3)

where P is the set of pixels and x
[p] indicates the pth patch

of the vector x. (In this literature, what we refer to as ψ

is referred to as x). Since the subsets are constrained to

constitute the same neighborhoods across the image and

g is constrained to be the same function on every patch, g

becomes a nonlinear, nonparametric patch response function

that is translation-invariant. It is this property that mimics

the behavior of CNNs.

3. Graph Convolutional Gaussian Processes

We now generalize the convolutional GP model to general,

non-regular graphs in the spatial domain, so that the model

can be applied to a wider range of problems. As mentioned

in the previous section, we restrict our focus to a set of

graphs in D that have the same number of vertices. On an

arbitrary graph, we can define the same method for grouping

the random variables into subsets as set out in Eq. (1). The

only difference between the settings is that now the underly-

ing graphs do not have the same regular lattice structure as

in an image grid. This is a problem because it means that

there is no guarantee that |x[p]| is the same for all p, indeed,

there is no guarantee that |x[p]| = |x[p′]| for any v, v′ ∈ V
for an arbitrary undirected graph G. An additive GP model

could be applied to the set of subsets that are created

gp ∼ GP
(

0, kgp (xi,xj)
)

∀p,

f(x) =
∑

p

gp

(

x
[p]
)

(4)

We would get a GP prior over f , but this would require a

separate gp for every p, and would thus not represent a terse,

translation-invariant model. Hence, we need to devise a
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strategy to ensure that |x[p]| = |x[p′]| for all p, p′. One way

of doing this is to throw away all p such that |x[p]| 6= c for

some c, but on a general graph this may result in throwing

away almost all of the random variables. One could instead

find the minimum connectivity of the graph, m, and use

this to find the m-nearest neighbors for each p and then

associate these neighbours, along with p itself, to p as x[p].

However, this would also mean throwing away information

if the graph is sparsely connected in some areas, but densely

connected in others.

To overcome this challenge, we appeal to the literature

on graph convolutions (see Niepert et al. (2016), Kipf &

Welling (2016) or Bronstein et al. (2017) for a review of re-

cent work). Spatial-domain charting methods offer the most

direct way forward, as they focus on producing a convolu-

tion operator, which, when applied to signals on the graph,

produces a transformed output with the same dimensionality

for every vertex in the graph independent of its connected-

ness. For a continuous manifold X , the convolution operator

can be defined as:

Dj(x)f =

∫

X

f(x′)uj(x, x
′) dx′

∀x ∈ X , j = 1 . . . J

(5)

On a discrete graph this becomes:

Dj(v)f =
∑

V

f(v′)uj(v, v
′)

∀v ∈ V, j = 1 . . . J

(6)

where uj is some weighting function and J plays the role

of the number of bins selected manually. (In this literature,

what we refer to as ψ is referred to as f ). Several possible

weighting functions uj have been proposed in the literature

(Bronstein et al., 2017). For example, the geodesic polar

weighting function (Masci et al., 2015), which will be used

in subsequent sections for demonstration purposes, is:

uj,k(x, x
′) = e

−
(ρ(x′)−ρk)

2

2σ2
ρ e

−
(θ(x′)−θj)

2

2σ2
θ ,

j = 1 . . . J, k = 1 . . .K
(7)

where ρ(·) measures the intrinsic radial distance and θ(·)
measures the intrinsic angular distance from x to x′. This

collection of all ujk forms a system of polar coordinate bins.

There are many potential forms for the weighting functions,

however, such as a simpler diffusion function that solely

tracks the intrinsic radial distance, anisotropic weighting

functions that modify the spread of the weights in certain

directions, or general mixtures of Gaussians (Monti et al.,

2017). What these weighting functions all share is the use

of some type of coordinates or pseudo-coordinates for the

location of the vertices in the graph and some method for

Figure 1. (R) The geodesic polar weighting functions in Eq. (7)

on an Euclidean sampling grid, with the origin as x, and J =

8,K = 3. (L) shows the radial weights, equivalent to the diffusion

weighting function. (M) shows the angular weights.

finding a distance between these coordinates that is used

to create a pairwise importance weighting. How this is

implemented is discussed further in the subsequent section.

The GCGP model can be applied to general graphs by

appropriate selection of the weighting function uj found

in Eq. (6). Choice and design of this weighting func-

tion is one of the main research directions in geomet-

ric deep learning and some have been proposed for gen-

eral graphs. For example, Monti et al. (2017) use

uj = e−
1
2 (u(x,y)−µj)

⊤
Σ

−1
j (u(x,y)−µj) where, for a gen-

eral graph, one can use pseudo-coordinates u(x, y) =
(

1√
deg(x)

, 1√
deg(y)

)⊤

, where deg(·) denotes the degree

of a vertex. Selecting a different uj is valid for the under-

lying machinery of the GP model presented here, provided

that the transformation remains linear.

We can now state the GCGP model. Let ψ, ψ′ ∈ D be

|V|×d matrices, and let their respective discrete G,G′ have

|V| = |V ′|. A single uj,k(x, x
′) is a real value which is the

weighting between two vertices, x and x′, for a particular

set of hyperparameter values, ρk and θj , of which there

are K and J respectively. We then define the tensor U

to be (J · K) × |V| × |V|, where each element along the

first dimension is a |V| × |V| pairwise weight matrix for a

particular set of hyperparameter values. Each element of the

weighting matrix is uj,k given some set of hyperparameters.

Since the convolution operator is a summation, we can

rewrite it as a matrix of inner products we call the convolu-

tion patch matrix, Z. This will be |V| × (JK · d). To get a

single element of the Z matrix, we take one element along

the first dimension of U (|V| × |V|), and then take one row

of that (1 × |V|). From the signal matrix ψ (|V| × d), we

take one column (|V|×1). Taking the inner product of these

gets us a 1×1, which is a single element of Z (cf. Fig. 2).

We organize the columns of Z first by dimension of the

signal and then by hyperparameter values, so the first JK

columns correspond to the first signal dimension, the next

JK columns correspond to the second, and so on, append-

ing d JK-sized blocks. The size of each column is |V|.
Let z[i] be the ith row of the matrix Z. This represents the
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|V|

|V|

J ·K

|V|

J ·K · d

|V|

d

U Z

ψ

Figure 2. Diagram of the construction of patch matrix Z from

signal matrix ψ and the weight tensor U .

local geodesic polar patch for vertex i of the d-dimensional

signal ψ as a weighted average along each dimension at

each of the JK bin locations.

The function we aim to learn is f : R
|V|×d → R, with

input ψ, which will be used for classification. We can think

of f as a composition of h : R|V|×(JKd) → R and Z :
R

|V|×d → R
|V|×(JKd), for which ψ 7→ Z, thus f(ψ) =

h (Z (ψ)) = h (Z). To reduce the dimensionality of the

problem and to mimic the translation invariance property

we desire, we can now model this h as the summation of a

patch response function g : RJKd → R, which decomposes

as the application of this g to each row of Z, i.e. f(ψ) =
h(Z) =

∑

i∈V g(z
[i]). It is this g that we model using a

GP prior with mean zero and some kernel function kg , and

thanks to the properties of additive GPs, this will induce a

GP prior on f :

g ∼ GP (0, kg (t, t
′))

⇒ f ∼ GP



0,

|V|
∑

i=1

|V′|
∑

j=1

kg

(

z
[i], z′

[j]
)





(8)

The kg can be any valid kernel function, but for illustrative

purposes an RBF kernel is used. However, this is an inter-

esting choice point for the user since as the number of bins

grows and the number of signal dimensions grows, this may

suffer from the curse of dimensionality as well, so kernels

that further decompose on the patches may become neces-

sary. Since this formulation can be applied to signals on any

graphs of the same number of vertices, and g is constrained

to be the same patch response function on each extracted

local patch, Eq. (8) can be thought of as a graph convolu-

tional kernel. It is important to note that a similar kernel

was proposed for use with support vector machines, but its

application was limited to images (Mairal et al., 2014).

There are several benefits of our formulation. First, while

there are numerous potential choices for the weighting func-

tions, the convolution operator itself is linear in the variables

that make up the input space. Since the convolution oper-

ator is a linear transformation of the collection of random

variables, the machinery developed for efficient estimation

of the convolutional GP can be applied in our setting as

well. This efficient estimation technique relies on the use

of interdomain GPs to place inducing points in the space

of patches instead of in the input space (Lázaro-Gredilla &

Figueiras-Vidal, 2009).

Second, the weighting function makes the assumptions

about the shape of the convolution on the graph explicit.

The standard convolution that we think of on an image is

an indicator function that defines membership in a rectangu-

lar area the size of which is determined by the investigator.

With more general weighting functions, shapes can include

rings, ellipses, or more general shapes, making this another

interesting choice to explore, as different problems may re-

quire different formulations even in the Euclidean domain.

Finally, because the application of the convolution operator

is a transformation of the input prior to the application of a

valid kernel function, the parameters of the weighting func-

tions uj,k can be treated as hyperparameters of the kernel

function. This is because the GCGP forms a manifold GP

(Calandra et al., 2016), meaning that the hyperparameters

can also be learned at training time, allowing the data to

inform the shape of the convolution operator.

3.1. Estimation of GCGPs

In the experiments that follow, we estimate the GCGPs using

the same estimation technique as used in van der Wilk et al.

(2017). This method relies on the variational framework for

approximation of GPs as proposed in Hensman et al. (2015)

which has a computational complexity of O(NM2), where

N is the number of observations and M is the number of

inducing points, and M is chosen such that M ≪ N .

One may be concerned with the computational complexity

of GP methods in general. However, as the overarching

motivation is to learn effectively from few training examples,

this is not a major practical problem for many interesting

applications. Indeed, the often rather small size of datasets

that are comprised of objects like meshes is one of the

reasons why we think that Bayesian nonparametrics is a

promising way forward, even more so when equipped with

expressive convolutional feature learning.

4. Applications

In this section, we present applications of GCGPs to both

regular domains (images) and non-regular domains (general

graphs, meshes). In each application, we use an RBF kernel
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for the patch response function g and use the polar geodesic

weighting function in the construction of the patches. The

main challenge in applying GCGPs to different domains is

defining the ρ and θ functions, which measure the radial

and angular distance between vertices, respectively. The

construction of these will be discussed in more detail in

subsequent sections. All experiments were implemented

using the GPFlow package (Matthews et al., 2017).

4.1. MNIST Classification

We first consider classification of the standard MNIST

dataset in order to illustrate that while the proposed method

is general and can handle non-Euclidean domain inputs, it

can also be applied to standard datasets with regular sam-

pling grids like images. An image from MNIST is a 28×28
sampling grid of greyscale pixel values. These pixel values

play the role of the signal that lives on the vertices of the

graph. We consider the graph structure of an image to be the

standard eight-neighbour connectivity, with edge weights

equal to 1 everywhere. We define the ρ function in Eq. (7)

to be the same graph distance as in Eq. (2). We define the θ

function in Eq. (7) to be the arctangent of the vertical dif-

ference between vertex v and vertex v′ over the horizontal

difference between the two. Defining these two functions is

easy in this setting because we know the orientation of the

images, and the orientation remains stable across images.

The configuration of the pixels also does not change.

Our main intention here is to compare the performance of

our GCGPs to the closest existing Gaussian process model

in the literature, which is the convolutional GP model by

van der Wilk et al. (2017). We follow the same general set-

up as used in that paper. In their experiments on the MNIST

dataset, they use a 5× 5 patch operator, which produces a

25-dimensional patch response function, modeled using an

RBF kernel. To keep comparisons as fair as possible, we

use three radial bins and eight angular bins, for a total of a

24-dimensional patch response function. The input signals

ψ : V → R are the pixel values that constitute an image.

Note that the dimensionality of ψ here is one (d = 1) as

the input is simply a greyscale image. To demonstrate the

ability to learn the shape of the convolution, we treat the

hyperparameters ρk and σρ as hyperparameters of the kernel

function, while leaving the θj and σθ fixed. The ρks were

initialized to {0, 1, 2}, such that the radial bins would be

centered on a given pixel, plus the rings one and two pixels

away. The σρ was initialized to 1, so 68% of the weight is

within one pixel distance from the centeral vertex.

During training, mini-batches of size 200 were used along

with 750 inducing points and a learning rate of 0.001. The

error rate converges to 1.7%. This compares favorably to the

strictly translation-invariant convolutional GP, which attains

an error rate of 2.1%. An RBF kernel, which models all 784

Table 1. Error rates on MNIST classification

Method Error rate

MNIST

Conv. GP (25-dim) † 2.1%

RBF GP (784-dim) † 1.9%

GCGP (24-dim) 1.7%

MNIST Superpixel 75

ChebNet (Defferrard et al., 2016) 24.4%

MoNet (Monti et al., 2017) 8.9%

GCGP 4.2%

† (van der Wilk et al., 2017)

input dimensions, attains a 1.9% error rate (van der Wilk

et al., 2017). It is important to note that both the convolu-

tional GP and our GCGP are not hierarchical models, and

to increase expressibility, van der Wilk et al. (2017) include

learnable weights which multiply the patch response func-

tion for each patch. This increases classification accuracy

but means that it is no longer strictly translation-invariant.

Our GCGP model can similarly be extended, but this is left

for future work. The hyperparameters ρk and σρ converge

to {1.312, 2.331, 4.034} and 0.392.

4.2. MNIST Superpixels

To demonstrate the performance of GCGPs on general

graphs, we apply the model to the 75-vertex MNIST su-

perpixel dataset, following the methodology of Monti et al.

(2017). This dataset decomposes each MNIST image into a

75-vertex graph with a unique edge structure. This dataset is

constructed from the MNIST dataset as follows: for each im-

age, pixels are divided into ‘background’ and ‘foreground’,

denoting a pixel value of 0 and greater than 0 respectively.

Then, for each group, k-mean clustering is performed on

the pixel locations, the (x,y) index of the pixel, and pixel

values. The parameter k is chosen for each group such that

their sum is the desired number of superpixels, in this case

75, and so that the split is two thirds foreground and one

third background. The resulting centroids give the location

of the superpixel in Euclidean coordinates and the value of

the superpixel. The value of the superpixels serve as the

input signal ψ : V → R
d, with d = 1, which is to be classi-

fied. Finally, the graph structure is determined by choosing

a threshold value of the Euclidean distance between the

centroids and adding an edge if the distance is below the

threshold. This produces a unique graph structure for each

image. The resulting dataset follows the same training and

test set split as the standard MNIST dataset with 60,000 and

10,000 observations in each respectively. The GCGP is set

up and trained in precisely the same way as in Section 4.1.

The GCGP converges to an error rate of 4.2% on this task,

which is a substantial improvement over the ChebNet ar-

chitecture proposed by Defferrard et al. (2016) that obtains
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Table 2. Ablation study on Superpixel 75 error rates

Examples per class 100 500 1000

Error rate 13.7% 8.3% 6.3%

24.4%, and the MoNet architecture that obtains 8.9% on

this task (Monti et al. (2017)). The improvement against

ChebNet is to be expected, as ChebNet is based on learning

filters in the spectral domain, which means it will struggle

with a task that learns across graphs with different structure,

while the GCGP is based on spatial convolutions that can

handle such settings. The improvement over the MoNet

architecture is more surprising. MoNet can be applied to

such tasks and is a deep, hierarchical model in contrast to

the GCGP, which is not hierarchical. This may demonstrate

the advantage of using such a relatively terse model on a

problem of this scale.

One reason we may prefer a relatively terse Bayesian model

to a more complex model in applications to general graphs

is we might expect it to perform well even with fewer ob-

servations in the training set. To investigate this, we per-

formed an ablation study in which the size of the training

set was reduced such that it was composed of 100, 500, or

1000 examples per class, randomly selected from the origi-

nal training set, which produced new training sets of 1000,

5000, and 10000 examples respectively. The test set was

left unchanged. The results of this study are presented in

Table 2. Remarkably, our GCGP model using only a tenth

of the training examples outperforms MoNet trained on the

full training set. With only 5,000 training examples (500

per digit) GCGP achieves an error rate of 8.3% compared

to MoNet yielding an error rate of 8.9% when trained on all

60,000 samples, demonstrating the data efficiency of GCGP.

4.3. Triangular 3D Mesh Classification

For our next test, we classify triangular meshes. As before,

the number of vertices remains the same, but connectivity

and embedding in three-dimensional space may be different

for each graph.

The data is a collection of 100 meshes from the MPI Faust

dataset1 (Bogo et al., 2014). This includes ten different

poses for each of ten different individuals. We use a training

set of 70 meshes where we randomly select 7 poses for each

individual. The remaining three poses for each individual

comprise the test set (30 observations). Each mesh is com-

prised of 6800 vertices. These were downsampled to 2500,

1000, and 500 vertices using quadric edge collapse decima-

tion in MeshLab (Cignoni et al., 2008) to test the sensitivity

of the GCGP to the quality of the meshing.

1http://faust.is.tue.mpg.de/

Figure 3. Example meshes from the MPI Faust dataset where dif-

ferent people are shown in different poses.

Figure 4. MPI Faust meshes resampled to 2500, 1000, and 500

vertices being used in our experiment in Sec. 4.3 to investigate the

effect of resolution (cf. Tab. 3).

The goal is to learn the identity of the individual, making

this a 10-class classification task. To the best of the authors’

knowledge, Gaussian processes have not been employed in

a similar task with such types of data.

The input data is a geometric descriptor vector that describes

the intrinsic geometry of the mesh, as in Kokkinos et al.

(2012). For the purposes of this example, we use only the

first four descriptors. For each mesh we have an input signal

ψ : V → R
4 which is to be classified. We choose 16 angular

and 5 radial bins for a total of 80 geodesic polar bins. When

combined with the dimensionality of the input, this produces

a 320-dimensional patch for each vertex.

We must define the ρ(·) and θ(·) functions in Eq. (7). This is

a more difficult problem than in the Euclidean domain above.

http://faust.is.tue.mpg.de/
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We begin by discussing how to compute the ρ(·) function,

and subsequently discuss the construction of the θ(·) func-

tion, which is more involved. Any graph pre-processing

step in this section was implemented in C++ for efficiency.

4.3.1. RADIAL DISTANCE BETWEEN VERTICES

Computing the radial distance between two vertices on a

triangular mesh is relatively straightforward, and we follow

the same methodology laid out by Masci et al. (2015). We

find the intrinsic distance between two vertices on the trian-

gular mesh by using the Fast Marching Method on triangular

domains (Sethian, 1996; Kimmel & Sethian, 1998). This

method computes the time of arrival for a wave front travel-

ing outwards from a group of initial conditions at a constant

rate along the surface of the triangular mesh. By using each

vertex as a starting point for the wave front separately, we

are able to compute a measure of the intrinsic distance from

each vertex to every other vertex, which produces a |V|×|V|
matrix of intrinsic distances between the vertices. This can

be precomputed for each mesh and does not represent too

much of a computational overhead thanks to the O(n log n)
complexity of the Fast Marching Method. This matrix of

distances for each mesh will be used to look up the radial

component of the weighting function for each specific pair

of vertices in Eq. (7).

4.3.2. ANGULAR DISTANCE BETWEEN VERTICES

To compute θ(v, v′), we must first compute for each vertex

v a set of J geodesic rays emanating from v. By this we

mean a set of rays starting at the central vertex of interest

drawn along the surface of the mesh.

We begin by taking J rays emanating from a central point

and equally dividing 2π radians between them. We then take

these J rays and project them down onto the one-ring of

triangles that surround the central vertex v. This is done by

computing the total angle of the angles that are adjacent to

the central vertex, aligning one of the geodesic rays with one

of the existing edges of the mesh, and continuing around

the central vertex by equally-spaced increments that are

proportional to the total angle sum. In this way, each of the

J rays will now be a ray lying on one of the faces adjacent

to the central vertex. We will now focus on one specific ray

and explain how to continue it along adjacent triangles.

We extend the ray to find its intersection point with the edge

opposite the central vertex from which it emanates. We

now begin a process known as unfolding. This is done by

treating the original triangle as lying in a two-dimensional

“unfolding plane”. We then take the triangle from the mesh

that shares the edge that the geodesic ray intersects and

reconstruct a congruent triangle in the two-dimensional

unfolding plane. An alternative way to visualize this is

to rotate (around the shared edge) the adjacent triangle in

Table 3. Error rates on MPI Faust mesh classification

Number of vertices 500 1000 2500

MoNet 40.00% 33.33% 33.33%

GCGP 23.33% 10.00% 3.33%

three-dimensional space into the same plane as the starting

triangle. We then extend the ray and find the edge of this

unfolded triangle with which it intersects. We continue the

process of extending the ray along the mesh, unfolding each

successive triangle and keeping track of the vertex it passes

closest to with each intersection. This process continues

until it makes a complete circuit of the mesh, hits the mesh

boundary, if one exists, or stops after a designated length.

At this stage, for each of the J geodesic rays, there should

be a list of vertices which are the vertices to which the

geodesic passed the closest. To create the value of the θ

function from each vertex to every other vertex, we use this

list as the initial conditions for Fast Marching and compute

the time of arrival for every vertex from this starting point.

Once this process is complete, there will be a J × |V| × |V|
tensor that serves as a look-up table for the θ value for the

jth angular bin from a given vertex to every other vertex.

If the θj parameters are fixed by the investigator, this can

once again be precomputed for each mesh in the dataset. Not

fixing the parameters presents an implementation difficulty

because if the angular parameters are changed, then it is

necessary to recompute all of the geodesics at every update

step for the hyperparameters since the θ parameters control

the angles at which the geodesics emanate from the central

vertex. Note that this is not a problem for the radial bins

since the ρ function, which is simply the intrinsic distances

between the vertices on the mesh, remains fixed regardless

of the settings of the ρ parameters, which control the mid-

point of the radial bin along the surface of the mesh. In the

presentation of our results we keep all hyperparameters of

the weighting function fixed, which means that we can now

use the computed ρ and θ functions to compute the weight

tensors via Eq. (7). Using this, we can transform each signal

into a pseudo-image that is |V| × (JK · d), which will then

be used in the learning task.

4.3.3. RESULTS

The results of these experiments are presented in Table 3.

When performing a 10-way classification on the 2500-vertex

task, the graph convolutional GP converges to an error of

3.33%, which represents one misclassification. As expected,

reducing the resolution of the mesh decreases accuracy. It is

difficult to compare these results to a standard GP model as

these must be applied to high-dimensional inputs and few

examples per class. Without taking into account any spatial

information, these would have 10,000 input dimensions for

2500 vertices, which would be difficult for a standard RBF
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Figure 5. Individuals 4 and 8 from MPI Faust with full resolution

(left) and 500 vertices (right). GCGP consistently confuses the

identity of these two individuals at low resolution, which can be

explained by their remarkably high visual similarity.

model to estimate. Indeed, an RBF modeling all 10,000

input dimensions fails to stably learn anything in this case.

For these experiments we use a batch size of 30 along with

750 inducing points and a learning rate of 0.001. The results

provide some useful, albeit qualitative, insights about the

model. In particular, the GCGP model struggles to distin-

guish between individuals 4 and 8 (Figure 5), especially

at the 500-vertex resolution, where it misclassifies every

example of one as the other, which can be explained by the

high visual similarity of these two subjects.

We also attempted to compare the GCGP performance on

the mesh classification task with MoNet as a representative

of recent geometric deep learning methods. To this end, we

reimplemented MoNet to be able to directly apply it to the

3D mesh data. We initially tried to closely follow the setup

as described in (Monti et al., 2017), i.e., using three graph

convolutional layers but with the final layer replaced with

a 10 dimensional softmax layer to classify the individual

subjects. This model, however, overfitted immediately to

the training data of 70 meshes for each of the 10 individuals,

yielding a test accuracy close to random guessing. We also

explored a less complex MoNet with only one graph con-

volutional layer for which the best performance we could

obtain was an error rate of 33.33% on the 2500-vertex task.

We believe that the small amount of training data is insuffi-

cient to properly train this deep learning method, but further

investigation into this issue may be required.

5. Conclusion

Computer vision and imaging applications have led to signif-

icant progress with convolutional methods that excel when

data lives on Euclidean domains. The drawback of these

methods is that they require large amounts of training data

and provide little means of capturing uncertainty when mak-

ing predictions. Gaussian processes, on the other hand, are

an attractive Bayesian approach that can learn from few

data points on non-Euclidean domains and provide useful

uncertainty estimates. So far, we have seen links between

convolutional methods and GPs, leading to convolutional

GPs. We have also seen approaches that bring convolutional

methods to non-Euclidean domains in the form of graph

CNNs, an area also known as geometric deep learning. Here,

for the first time, we connect those three areas by combining

convolutional methods with GPs on non-Euclidean domains.

We believe that graph convolutional GPs provide a powerful

new framework enabling exciting new applications and av-

enues for future research. We believe that the results of the

experiments presented here support this, as they demonstrate

the GCGP can improve accuracy and make more efficient

use of smaller datasets relative to deep learning methods.

We envision augmenting GCGPs to become hierarchi-

cal models with recent work on deep GPs (Damianou &

Lawrence, 2013) as a main directions of future research.

This is because the strict translation invariance of the patch

response function may not be enough in all situations, which

may require combinations of responses across the graph. A

simple step is to weigh each response with a set of learnable

parameters as in (van der Wilk et al., 2017).

Another area for improving the model is relaxing the require-

ment for a fixed number of vertices. In the method presented

here, the function that is learned, f : R|V|×d → R, for clas-

sification, of the signals ψ : V → R
d is decomposed in a

principled manner into the sum of the responses of a patch

response function g across the graph. Modelling g with a

GP prior induces a GP prior on f , but if |V| is different for

different inputs this setup fails by definition. While there are

many situations in which the inputs are signals on graphs

with the same number of vertices with potentially different

structure, other problems may require the analysis of graphs

which have different structure and number of vertices, such

as classification of molecules. We hope the method pre-

sented here can serve as a foundation for GP models that

relax this requirement.

An interesting direction to explore further is the choice of

the coordinates/pseudo-coordinates that need not to be the

ones used in this paper, and many interesting alternatives

exist for meshes and for graphs more generally that are

worth investigating. Finally, a nice feature of the GCGP

that allows it to be easily tailored to different applications is

the selection for the kernel function that describes the patch

response function g. This is mentioned in the discussion

above, but not explored. For example, it may be the case

that modelling the patch response function in Section 4.3

with a 320 dimensional RBF kernel is too expressive for the

task and the number of observations resulting in suboptimal

performance. Performance may therefore be improved by

decomposing the patch response function to produce an

additive kernel whose components only utilise subsets of

the inputs, the same principle that underpins the GCGP.
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