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Abstract

Video anomaly detection under weak labels is formu-

lated as a typical multiple-instance learning problem in pre-

vious works. In this paper, we provide a new perspective,

i.e., a supervised learning task under noisy labels. In such

a viewpoint, as long as cleaning away label noise, we can

directly apply fully supervised action classifiers to weakly

supervised anomaly detection, and take maximum advan-

tage of these well-developed classifiers. For this purpose,

we devise a graph convolutional network to correct noisy

labels. Based upon feature similarity and temporal con-

sistency, our network propagates supervisory signals from

high-confidence snippets to low-confidence ones. In this

manner, the network is capable of providing cleaned su-

pervision for action classifiers. During the test phase, we

only need to obtain snippet-wise predictions from the action

classifier without any extra post-processing. Extensive ex-

periments on 3 datasets at different scales with 2 types of ac-

tion classifiers demonstrate the efficacy of our method. Re-

markably, we obtain the frame-level AUC score of 82.12%

on UCF-Crime.

1. Introduction

Anomaly detection in videos has been long studied for

its ubiquitous applications in real-world scenarios, e.g. in-

telligent surveillance, violence alerting, evidence investiga-

tion, etc. Since anomalous events are rarely seen in com-

mon environments, anomalies are often defined as behav-

ioral or appearance patterns different from usual patterns in

previous work [6, 1, 13]. Based on this definition, a pop-

ular paradigm for anomaly detection is one-class classifi-

cation [66, 11] (a.k.a. unary classification), i.e., to encode

the usual pattern with only normal training samples. Then

the distinctive encoded patterns are detected as anomalies.

However, it is impossible to collect all normal behaviors in

≥

Figure 1: The concept of alternate optimization mechanism.

Noisy labels predicted by the action classifier are utilized to

train the label noise cleaner and then they are refined. The

cleaned labels are reassigned to optimize the action classi-

fier. The two training processes are executed alternatively.

a dataset. Therefore some normal events might deviate from

the encoded patterns, and could cause false alarms. In re-

cent years, there has been some research [20, 22, 58] on an

emerging binary-classification paradigm: the training data

contain both anomalous and normal videos.

Following the binary-classification paradigm, we at-

tempt to address the weakly supervised anomaly detection

problem, on which only video-level anomaly labels are

available in the training data. In this problem, there are nei-

ther trimmed anomalous segments nor temporal annotations

for the consideration of the human-labor cost.

The weakly supervised anomaly detection problem is

viewed as a multiple-instance learning (MIL) task in prior

works [20, 22, 58]. They consider a video (or a set of snip-

pets) as a bag, which consists of the snippets (or frames)

deemed as instances, and learn instance-level anomaly la-

bels via bag-level annotations. In this paper, we address
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the problem from a new perspective, formulating it as a

supervised learning task under noise labels. The noise la-

bels refer to wrong annotations of normal snippets within

anomalous videos, since a video labeled as “anomaly” may

contain quite a few normal clips. In such a viewpoint, we

can directly train fully supervised action classifiers once the

noisy labels are cleaned.

There are noticeable advantages of our noise-labeled per-

spective in both the training and the test phase. Instead

of simply extracting offline features for MIL models, our

action classifier participates in the whole learning process.

During the training process, the only difference between ac-

tion classifiers and fully supervised updating is the input

labels. As a result, we preserve all strengths of theses ac-

tion classifiers, such as well-designed structures, transfer-

able pre-trained weights, ready-to-use source codes, etc. As

for testing, the trained classifier can directly make predic-

tions without any post-processing. It is extremely conve-

nient and highly efficient because the feature extraction and

the abnormality decision are seamlessly integrated into a

single model.

Intuitively, a well-trained classifier yields the predictions

with less noise, and the cleaned labels in turn help to train a

better classifier. To this end, we design an alternate training

procedure as Figure 1 illustrates. It consists of two alter-

nate stages, i.e., cleaning and classification. In the clean-

ing stage, we train a cleaner to correct the noisy predic-

tions obtained from the classifier, and the cleaner provides

refined labels with less noise. In the classification stage,

the action classifier is retrained with the cleaned labels and

generates more reliable predictions. Such a cyclic opera-

tion is executed several times until convergence. The main

idea of our cleaner is to eliminate noise of low-confidence

predictions via high-confidence ones. We devise a graph

convolutional network (GCN) to establish relationships be-

tween high-confidence snippets and low-confidence ones.

In the graph, snippets are abstracted into vertexes and the

anomaly information is propagated through edges. During

testing, we no longer require the cleaner and directly ob-

tain snippet-wise anomaly results from the trained classifier.

For verification of the general applicability of our model,

we carry out extensive experiments with two types of main-

stream action classifiers: a 3D-conv network C3D [59] and

a two-stream structure TSN [62]. In addition, we evalu-

ate the proposed approach on 3 different-scale datasets, i.e.,

UCF-Crime [58], ShanghaiTech [43] and UCSD-Peds [35].

The experimental results demonstrate that our model ad-

vances the state-of-the-art performance of weakly super-

vised anomaly detection.

In a nutshell, the contribution of this paper is three-fold:

• We formulate the problem of anomaly detection with

weak labels as a supervised learning task under noise

annotations, and put forward an alternate training

framework to optimize the action classifier.

• We propose a GCN to clean noise labels. To the best

of our knowledge, it is the first work to apply a GCN

to correct label noise in the area of video analytics.

• We conduct experiments on 3 different-scale anomaly

detection datasets with two types of action classifiers,

in which the state-of-the-art performance validates the

effectiveness of our approach. The source code is

available at https://github.com/jx-zhong-for-academic-

purpose/GCN-Anomaly-Detection.

2. Related Work

Anomaly detection. As one of the most challenging

problem, anomaly detection in videos has been extensively

studied for many years [30, 67, 65, 19, 34, 3, 47, 35] .

Most research addresses the problem under the assumption

that anomalies are rare or unseen, and behaviors deviating

from normal patterns are supposed to be anomalous. They

attempt to encode regular patterns via a variety of statis-

tic models, e.g. the social force model [45], the mixture

of dynamic models on texture [35], Hidden Markov Mod-

els on video volumes [21, 30], the Markov Random Field

upon spatial-temporal domain [28], Gaussian process mod-

eling [49, 11], and identify anomalies as outliers. Sparse

reconstruction [41, 31, 13, 67] is also another popular ap-

proach for usual pattern modeling. They utilize sparse rep-

resentation to construct a dictionary for normal behavior,

and detect anomalies as the ones with high reconstruction

error. Recently, with the great success of deep learning,

a few researchers design deep neural networks on abstrac-

tion feature learning [19, 12, 42] or video prediction learn-

ing [40] for anomaly detection. As opposed to the works

that built their detection models on normal behavior only,

there is research [2, 20, 58] employing both usual and un-

usual data for model building. Among them, MIL is used

for motion pattern modeling under weakly supervised set-

ting [20, 58]. Sultani et al. [58] propose an MIL-based clas-

sifier to detect anomalies, where a deep anomaly ranking

model predicts anomaly scores. Unlike them, we formulate

the anomaly detection problem with weak labels as a super-

vised learning under noise labels, and devise an alternate

training procedure to progressively promote the discrimina-

tion of action classifiers.

Action analysis. Action classification is a long standing

problem in the field of computer vision, and a large body of

research works [61, 59, 62, 10, 26, 63] have been presented.

A majority of modern approaches have introduced deep ar-

chitecture models [10, 59, 57, 62], including the most pre-

vailing two-stream networks [57], C3D [59] and their vari-

ants [62, 15, 53, 10]. Up to now, deep learning based

methods have achieved state-of-the-art performance. Be-

sides action classification, some researchers recently have
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focused on temporal action localization [68, 38, 69, 56, 16].

The performance metrics of temporal action detection and

anomaly detection are quite different: action detection aims

to find a temporal interval overlapped with the ground truth

as much as possible, whereas anomaly detection aims for

a robust frame-level performance under various discrimina-

tion thresholds. In this paper, we attempt to leverage the

powerful action classifiers to detect anomalies in a simple

and feasible way.

Learning under noisy labels. The research works [33,

48, 51, 17] addressing the noise label problem can be gen-

erally divided into two categories: noise reduction and loss

correction. In the case of noise reduction, they aim to

correct noisy labels via formulating the noise model ex-

plicitly or implicitly, such as Conditional Random Fields

(CRF) [60], knowledge graphs [37]. Approaches in the

latter group are developed for directly learning with la-

bel noise, utilizing correction methods for loss adjustment.

Azadi et al. [4] actively select training features via impos-

ing a regularization term on loss function. Different from

theses general approaches, our GCN is intended for videos

and take advantages of the video-based characteristics.

Graph convolutional neural network. In recent years,

a surge of graph convolutional networks [50, 29, 52, 36, 18]

have been proposed to tackle graph-structured data. An

important stream of these works is utilizing spectral graph

theory [8, 14], which decomposes the graph signal on the

spectral domain and defines a series of parameterized filters

for convolution. A number of researchers propose improve-

ments of spectral convolutions, leading to advanced perfor-

mances on tasks such as node classification and recommen-

dation system. The goal of our label noise cleaner is clas-

sifying nodes (video snippets) in a graph (the whole video)

under the supervision of high-confidence annotations.

3. Problem Statement

Given a video V = {vi}
N
i=1 with N snippets, the observ-

able label Y ∈ {1, 0} indicates whether this video contains

anomalous clips or not. Note that no temporal annotation is

provided in training data. The goal of anomaly detection is

to pinpoint the temporal position of abnormalities once they

occurs in test videos.

Sabato and Tishby [54] provide a theoretical analysis in

which MIL tasks can be viewed as learning under one-sided

label noise. In some prior works [20, 22, 58], anomaly de-

tection under the weak supervisory signal is described as a

typical MIL problem. Therefore, we naturally cast anomaly

detection from MIL formulation to noisy label setting.

MIL formulation. In this formulation, each clip vi is

considered as an instance, of which the anomaly label yi
is unavailable. These clips compose the positive/negative

bag according to the given video-level anomaly label Y : a

positive bag (Y = 1) includes at least one anomalous clip,

while a negative bag (Y = 0) is entirely comprised of nor-

mal snippets. Consequently, anomaly detection is modeled

as key instance detection [39] under MIL, in search of pos-

itive instances vi with yi = 1. This MIL setting allows

learning instance-level labels under bag-level supervision,

and a set of approaches [20, 22, 58] is derived from this.

Noisy-labeled learning formulation. It is evident that

the label Y = 0 is noiseless, since it means all snippets vi
in the video V are normal:

Y = 0 ⇒ yi = 0, ∀vi ∈ V . (1)

However, Y = 1 is noisy because in this case the video V

is partially made up of anomalous clips:

Y = 1 6⇒ yi = 1, ∀vi ∈ V . (2)

This is referred to as one-sided label noise [7, 9, 55], for the

noise only appears along with Y = 1. As long as appropri-

ately handling the label noise w.r.t. Y = 1, we are able to

readily apply a variety of well-developed action classifiers

to anomaly detection.

4. Graph Convolutional Label Noise Cleaner

Similar to many noisy-labeled learning approaches, our

method adopts an EM-like optimization mechanism: alter-

nately training the action classifier and the noise cleaner. At

each training step of the noise cleaner, we have obtained

rough snippet-wise anomaly probabilities from the action

classifier, and the target of our noise cleaner is to correct

low-confidence anomaly scores via high-confidence ones.

Unlike other general noise-labeled learning algorithms,

our cleaner is specifically designed for videos. To the best

of our knowledge, this is the first work to deploy a GCN in

noise-labeled videos. In the graph convolutional network,

we leverage two characteristics of a video to correct the la-

bel noise, i.e., feature similarity and temporal consistency.

Intuitively, feature similarity means the anomaly snippets

share some similar characteristics, while temporal consis-

tency means anomaly snippets probably appear in temporal

proximity of each other.

4.1. Feature Similarity Graph Module

As Figure 2 depicts, features from the action classifier

are first compressed with two fully connected layers to mit-

igate the curse of dimensionality [5]. We model the feature

similarly with an attributed graph [52] F = (V,E,X) ,

where V is the vertex set, E is the edge set, and X is the at-

tribute of vertexes. In particular, V is a video as defined in

Section 3, E describes the feature similarity amongst snip-

pets, and X ∈ R
N×d represents the d-dimensional feature

of these N snippets. The adjacency matrix A
F ∈ R

N×N of

F is defined as:

A
F
(i,j) = exp(Xi ·Xj −max(Xi ·X)) , (3)
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Figure 2: Overview of the training process of label noise cleaner. The action classifier extracts spatio-temporal features from

anomalous video snippets and outputs noisy snippet-level labels. Snippet-level features from the classifier are compressed

and fed into two graph modules to model the feature similarity and temporal consistency of snippets. In the two graph-

based modules, A darker node represents higher anomaly confidence of the snippet. The output of these two models are

fused and utilized to predict the snippet-level labels with less noise. The loss is updated to correct the predictive noise via

high-confidence snippets.

where the element AF
(i,j) measures the feature similarly

between the ith and jth snippets. Since an adjacency ma-

trix should be non-negative, we bound the similarity to the

range (0, 1] with a normalized exponential function. Based

on the graph F , snippets with similar features are closely

connected, and the label assignments are propagated differ-

ently in accordance with different adjacency values.

The nearby vertexes are driven to have the same anomaly

label via graph-Laplacian operations. Following Kipf and

Welling [29], we approximate the graph-Laplacian with a

renormalization trick:

Â
F = D̃

F−
1

2 Ã
F
D̃

F−
1

2 , (4)

where the self-loop adjacency matrix Ã
F = A

F + In, and

In ∈ R
N×N is the identity matrix; D̃F

(i,i) =
∑

j Ã
F

(i,j) is

the corresponding degree matrix. Finally, the output of a

feature similarity graph module layer is computed as:

H
F = σ(ÂF

XW) , (5)

where W is a trainable parametric matrix, and σ is an ac-

tivation function. Since the whole computational proce-

dure is differentiable, our feature similarity graph module

can be trained in an end-to-end fashion. Therefore, neural

networks are capable of seamlessly incorporating the sin-

gle or multiple stacked modules. Although the aforemen-

tioned procedure contains some element-wise calculations,

we provide a high-efficient vectorized implementation in

Appendix.

Recently, Wang and Gupta [63] also have established

similarity graphs to analyze a video. Nevertheless, both the

goal and the method are quite different from ours: they aim

to capture long-term dependencies with the similarity rela-

tions of correlated objects/regions, whereas we attempt to

propagate supervisory signals with the similarity levels of

entire snippets/frames.

4.2. Temporal Consistency Graph Module

As pointed out in [24, 46, 64], temporal consistency

is advantageous to many video-based tasks. The tempo-

ral consistency graph T is directly built upon the temporal

structure of a video. Its adjacency matrix A
T ∈ R

N×N

is only dependent on temporal positions of the ith and jth

snippets:

A
T
(i,j) = k(i, j) , (6)

where k is a non-negative kernel function. Consider that the

kernel is supposed to distinguish various temporal distances

and closely connect the snippets in vicinity. In practice, we

use an exponential kernel (a.k.a. Laplacian kernel) neatly

bounded in (0, 1]:

k(i, j) = exp(−||i− j||) . (7)

Likewise, we obtain the renormalized adjacency matrix

Â
T as Equation 4 for the graph-Laplacian approximation,

and the forward result of this module is computed as:

H
T = σ(ÂT

XW) , (8)

where W is a trainable parametric matrix, σ is an activation

function, and X is the input feature matrix. The stacked

temporal consistency graph layers also can be conveniently

included into neural networks.
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4.3. Loss Function

Finally, the outputs of the above two modules are fused

with an average pooling layer, and activated by a Sigmoid

function to make the probabilistic prediction pi of each ver-

tex in the graph, corresponding to the anomaly probability

of our noise cleaner w.r.t. the ith snippet. The loss function

L is based upon two types of supervision:

L = LD + LI , (9)

where LD and LI are computed under the direct and the

indirect supervision respectively. Given the rough snippet-

wise anomaly probabilities Ỹ = {ỹi}
N
i=1 from the action

classifier. The loss term under direct supervision is defined

as a cross-entropy error over the high-confidence snippets:

LD = −
1

|H|

∑

i∈H

[ỹi ln pi + (1− ỹi) ln (1− pi)] , (10)

where H is the set of high-confidence snippets. We over-

sample each video frame with the “10-crop” augment,1 and

calculate mean anomaly probabilities ỹi as well as predic-

tive variances of the action classifier. As pointed out by

Kendall and Gal [27], variance measures the uncertainty of

predictions. In other words, the smaller variance indicates

the higher confidence. This criterion of confidence is con-

ceptually simple yet practically effective.

The indirectly supervised term is a temporal-ensembling

strategy [32] to further harness a small number of labeled

data, because high-confidence predictions are only from a

portion of the entire video. Its main idea is to smooth

the network predictions of all snippets at different training

steps:

LI =
1

N

N∑

i=1

|pi − pi| , (11)

where pi is the discount-weighted average predictions of

our noise cleaner over various training epochs. There is a

major difference between the original “cool start” initial-

ization and our implementation as explained in Appendix,

since we have already obtained a set of rough predictions

from the action classifier.

4.4. Alternate Optimization

The training process of our noise cleaner is merely one

part of the alternate optimization. The other part, i.e., the

training process of our classifier, is exactly the same as com-

mon fully supervised updating, except that the labels are

snippet-wise predictions from our trained cleaner. After re-

peating such an alternate optimization several times, final

anomaly detection results are directly predicted by the last

1“10-crop” means cropping images into the center, four corners, and

their mirrored counterparts.

trained classifier. Obviously, almost no change in the action

classifier is required during the training or the test phase. As

a result, we can conveniently train the fully supervised ac-

tion classifier under weak labels, and directly deploy it for

anomaly detection without all the bells and whistles.

5. Experiments

5.1. Datasets and Evaluation Metric

We conduct the experiments upon three datasets of var-

ious scales, i.e., UCF-Crime [58], ShanghaiTech [43] and

UCSD-Peds [35].

UCF-Crime is a large-scale dataset of real-world

surveillance videos. It has 13 types of anomalies with 1,900

long untrimmed videos, which consist of 1,610 training

videos and 290 test videos.

ShanghaiTech is a medium-scale dataset of 437 videos,

including 130 abnormal events on 13 scenes. In the standard

protocol [43], all training videos are normal, and this setting

is inappropriate for the binary-classification task. Hence,

we reorganize the dataset by randomly selecting anomaly

testing videos into training data and vice versa. Mean-

while, both training videos and testing ones cover all of the

13 scenes. This new split of the dataset will be available

for follow-up comparisons. More details are given in Ap-

pendix.

UCSD-Peds is a small-scale dataset made up of two sub-

sets: Peds1 has 70 videos, and Peds2 has 28 videos. Since

the former is more frequently used for pixel-wise anomaly

detection [66], we only conduct experiments on the latter as

in [43]. Similarly, the default training set does not contain

anomaly videos. Following He et al. [20], 6 anomaly videos

and 4 normal ones on UCSD-Peds2 are randomly included

into training data, and the remaining videos constitute the

test set. We also repeat this process 10 times and report the

average performance.

Evaluation Metric. Following previous works [43, 20,

58], we plot the frame-level receiver operating character-

istics (ROC) curve and compute an area under the curve

(AUC) as the evaluation metric. In the task of temporal

anomaly detection, a larger frame-level AUC implies the

higher diagnostic ability, as well as the robuster perfor-

mance at various discrimination thresholds.

5.2. Implementation Details

Action classifiers. For verification of the general ap-

plicability of our model, we utilize two mainstream struc-

tures of action classifiers in the experiments. C3D [59] is

a 3D-convolutional network. The model is pre-trained on

the Sports-1M [26] dataset. In the training process, we in-

put features from its fc7 layer into our label noise cleaner.

Temporal Segment Network (TSN) [62] is a two-stream

architecture. We choose BN-Inception [23] pre-trained on
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Table 1: Ablation Studies on UCF-Crime.

Training Indirect Temporal Feature AUC

Stage Supervision Consistency Similarity (%)

Conv. Graph Conv. Graph

Step-2
√ √ √ √ √

74.60

Step-2
√ √ √ √

73.79

Step-2
√

67.57

Step-2
√ √

72.93

Step-2
√

67.23

Step-2
√ √

72.44

Step-1 – – – – – 70.87

Table 2: Quantitative comparison on UCF-Crime. †
and ‡ indicate the loss without and with constraints re-

spectively.

Method AUC (%) False Alarm (%)

SVM Baseline 50.0 –

Hasan et al. [19] 50.6 27.2

Lu et al. [41] 65.51 3.1

Sultani et al. † [58] 74.44 –

Sultani et al. ‡ [58] 75.41 1.9

Ours

C3D 81.08 2.8

TSNRGB 82.12 0.1

TSNOpticalF low 78.08 1.1

Kinetics-400 [10] as the backbone, and extract features

from its global pool layer to train our noise cleaner. The

action classifiers are both implemented upon the Caffe [25]

platform with the same settings of video sampling and data

augment as [62]. In all the experiments, we keep the default

settings if not specified particularly.

Label noise cleaner. After we add the author list and the

acknowledgement section into our camera-ready version,

this part has to be moved to Appendix because of limited

space. Please refer to our Github page and Appendix.

70

75

80

C3D TSN-RGB TSN-Optical Flow

A
U

C
 (

%
)

Step-1 Step-2 Step-3

Figure 3: Step-wise performance on UCF-Crime.

5.3. Experiments on UCF­Crime

Under the video-level supervision, we train C3D with

18,000 iterations. As for TSN, the initial iteration number

of both streams is 20,000. At each re-training step, we stop

the updating procedure at 4,000 iterations.

Step-wise results. As Figure 3 depicts, we report the

AUC performance at each step to evaluate the efficacy of

our alternate training mechanism. Even if only given video-

level labels, C3D and the RGB branch of TSN can achieve

a descent performance at the Step-1. It is a wise choice

for us to involve action classifiers in the training process.

However, the optical flow stream of TSN is far from sat-

isfaction, which reflects the necessity of our noise cleaner.

At the following steps, the proposed approach significantly

improves the detection performance of all the action clas-

sifiers. Faced with the most noise in initial predictions, the

AUC performance of our optical flow branch is still boosted

from 70.87% to 78.08% with a relative gain of 10.2%.

Indirect supervision. We conduct ablation studies upon

the optical flow modality of TSN. First, we exclude the in-

directly supervised term from the loss to verify its effective-

ness. As on the 2nd row of Table 1, the performance slightly

declines from 74.60% to 73.79%, but the gain on the result

of Step-1 remains considerable. In the following ablations,

we remove the indirect supervised term to eliminate inter-

ference.

Temporal consistency. We would like to explore two

questions: Is temporal information helpful? Can our graph

convolution utilize this information? By excluding the other

interference factors, there is only the temporal consistency

module. To remove the graph of temporal information, we

fill the A
T in Equation 6 with 0.5 (the mid-value of its

bounds) and reproduce the alternate training procedure. As

shown on the 3rd row of Table 1, the performance without

temporal graph is worse than that of Step-1, in which case

the GCN only memorizes the pattern of high-confidence

predictions but ignores other snippets. As for the ablation

on graph convolution, we observe that the independent tem-

poral consistency module boosts the AUC to 72.93% as on

the 4th row of Table 1, which demonstrates that our graph

convolution really capitalizes on the temporal information.

Feature similarity. Likewise, we only reserve the fea-

ture similarity module to investigate the efficacy of similar-

ity graphs and our convolutional operation. We first dam-

age the feature similarity graph by setting all elements of

the adjacency matrix as the mid-value. As on the 5th row of

Table 1, the AUC value falls to 67.23% without the graph.

After recovering the original feature similarity graph, the

single feature similarity module can increase the AUC value

from 70.87% to 72.44% as shown on the 6th row of Table 1.

This illustrates that both similarity graphs and the convolu-

tion are beneficial to clean the noisy labels.

Quantitative comparison. We compare our methods

with state-of-the-art models upon 3 indicators, i.e., ROC
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Figure 4: ROC curves on UCF-Crime.

Table 3: Step-wise AUC (%) on ShanghaiTech.

Action Classifier C3D TSNRGB TSNOptical Flow

Step-1 73.79 80.83 78.23

Step-2 76.16 82.17 84.19

Step-3 76.44 84.44 84.13

curves, AUC and false alarm rates. As Figure 4 shows,

our curves of all the action classifiers almost completely en-

close the others, which means they are consistently superior

to their competitors at various thresholds. The smoothness

of the three curves shows the high stability of our proposed

approach. As shown in Table 2, we boost the AUC value up

to 82.12% at most. As for false alarm rates at 0.5 detection

score, the C3D is slightly inferior to Sultani et al., whereas

the other two classifiers are fairly satisfactory as shown in

Table 2. Notably, the RGB branch of TSN reduces the false

alarm rate to 0.1%, nearly 1/20 of the best-so-far result.

Qualitative analysis on the test set. To observe the

influence of our model, we visualize the before-and-after

change in predictions of action classifiers. As presented in

Figure 5, our denoising process substantially alleviates the

predictive noise of action classifiers within both normal and

anomaly snippets. Intriguingly, the classifier fails to detect

the anomaly event in the “Arrest007” video from beginning

to end as Figure 5c depicts. After watching all videos of the

“Arrest” class, we finally discover the possible cause: the

similar scene in this testing video does not exist in train-

ing data. In this video, a man is arrested at the laundromat

for vandalism of washing machines as shown in Figure 5d,

while “Arrest” events occur on the highway or at the check-

out counter in training data. It implies that to detect anoma-

lous events in generic scenes is still a big challenge for the

limited generalization ability of current models.

5.4. Experiments on ShanghaiTech

Step-wise results. As illustrated in Table 3, the perfor-

mance is improved after the alternate training w.r.t. all the

action classifiers. The results of optical flow branch of TSN

Table 4: Quantitative comparison on UCSD-Peds2. Fol-

lowing the reviewer comment, we make more comparisons

as shown in Appendix.

Method AUC (%)

Adam [1] 63.0

MDT [44] 85.0

SRC [13] 86.1

AMDN [66] 90.8

AL [20] 90.1

Ours

TSNGray−scale 93.2 ± 2.3

TSNOpticalF low 92.8 ± 1.6

at Step-3 reflects that excessive iterations may deteriorates

on the detection performance. Nevertheless, our method

performs robustly as the AUC value only drops slightly.

Qualitative Analysis. Different from UCF-Crime, the

training data in the new split of ShanghaiTech have tem-

poral ground truths. Based on this, the working principle

of our GCN can be intuitively understood. The anomaly

event in Figure 6 is that a student jumps over the rail as

shown in Figure 7. The temporal consistency module (at

the upper right) is inclined to smooth the original high-

confidence predictions (orange points at the upper left).

Therefore, it correctly annotates the 150th − 200th frames

with dense high-confidence predictions, but neglects the re-

maining ground truth for insufficient high-confidence in-

puts. The feature similarity module (at the lower right)

tends to propagate information through a similar degree.

It labels a long interval of snippets including the student’s

previous run-up and subsequent slow-down actions, possi-

bly because they have the similar representation of “a fast

movement in the same direction” on the optical flow. The

entire GCN (at the lower left) combining these two modules

can make more precise labels.

5.5. Experiments on UCSD­Peds

In UCSD-Peds, some of the ground truths are only 4

frames, but the predictive unit of C3D reaches a length of

16 frames. Thus we conduct the experiments with TSN.

To match the input dimension with the RGB branch, the

original gray-scale frames are duplicated into the 3 primary-

color channels.

Step-wise results. After repeating experiments 10 times,

we obtain the box plots in Figure 8. The average results at

the first step are good enough, so we start with feeding top

90% high-confidence predictions into the GCN. We observe

that the proposed method not only increases the detection

performance, but also stabilize the predictions of the 10-

time repeated experiments.

Quantitative comparison. We report the “mean value
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Figure 5: Visualization of testing results on UCF-Crime. The blue curves are predictions of the action classifier trained under

video-level labels, and the orange curves are the results under cleaned supervision. The “GT” bars in green are ground truths.

Best viewed in Adobe Reader where (d) should play as a video.

Figure 6: Visualization of GCN outputs on ShanghaiTech

w.r.t. the video “05 0021”. The rough prediction at the up-

per left is from the optic flow branch, while the other three

are snippet-wise labels cleaned by the GCN modules.

(a) RGB (b) Flow-X (c) Flow-Y

Figure 7: Partial video of “05 0021” on ShanghaiTech.

Best viewed in Adobe Reader where (a)-(c) should play as

videos.

± standard deviation” of the AUC, and make comparisons

with other methods under the same splitting protocol as in

[20]. Our approach outperform others with both the input

modalities as shown in Table 4.

6. Conclusion

In this paper, we address weakly supervised anomaly de-

tection from a new perspective, by casting it as a supervised

Figure 8: Box-whisker plots of step-wise performance on

UCSD-Peds2.

learning task under noise labels. In contrast to MIL for-

mulation in previous works, such a perspective possesses

distinct merits in two aspects: a) it directly inherits all the

strengths of well-developed action classifiers; b) anomaly

detection is accomplished by an integral end-to-end model

with great convenience. Furthermore, we utilize a GCN

to clean labels for training an action classifier. During

the alternate optimization process, the GCN reduces noise

via propagating anomaly information from high-confidence

predictions to low-confidence ones. We validate the pro-

posed detection model on 3 different-scale datasets with 2

types of action classification networks, where the superior

performance proves its effectiveness and versatility.
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