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Introduction

Graphs naturally arise in many real-world applications, including social analysis [1], 

fraud detection [2, 3], traffic prediction [4], computer vision [5], and many more. By 

representing the data as graphs, the structural information can be encoded to model 

the relations among entities, and furnish more promising insights underlying the data. 

For example, in a transportation network, nodes are often the sensors and edges repre-

sent the spatial proximity among sensors. In addition to the temporal information pro-

vided by the sensors themselves, the graph structure modeled by the spatial correlations 

leads to a prominent improvement in the traffic prediction problem [4]. Moreover, by 
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modeling the transactions among people as a graph, the complex transaction patterns 

can be mined for synthetic identity detection [3] and money laundering detection [6].

However, the complex structure of graphs [7] often hampers the capability of gain-

ing the true insights underlying the graphs. Such complexity, for example, resides in 

the non-Euclidean nature of the graph-structured data. A potential solution to dealing 

with the complex patterns is to learn the graph representations in a low-dimensional 

Euclidean space via embedding techniques, including the traditional graph embedding 

methods [8–10], and the recent network embedding methods [11, 12]. Once the low-

dimensional representations are learned, many graph-related problems can be easily 

done, such as the classic node classification and link prediction [12]. There exist many 

thorough reviews on both traditional graph embedding and recent network embed-

ding methods. For example, Yan et al. review several well-established traditional graph 

embedding methods and discuss the general framework for graph dimensionality reduc-

tion [13]. Hamilton et  al. review the general graph representation learning methods, 

including node embedding and subgraph embedding [14]. Furthermore, Cui et al. dis-

cuss the differences between the traditional graph embedding and the recent network 

embedding methods [15]. One notable difference is that the recent network embedding 

is more suitable for the task-specific network inference. Other existing literature reviews 

on network embedding include [16, 17].

Despite some successes of these embedding methods, many of them suffer from the 

limitations of the shallow learning mechanisms [11, 12] and might fail to discover the 

more complex patterns behind the graphs. Deep learning models, on the other hand, 

have been demonstrated their power in many applications. For example, convolution 

neural networks (CNNs) achieve a promising performance in many computer vision [18] 

and natural language processing [19] applications. One key reason of such successes is 

that CNN models can highly exploit the stationarity and compositionality properties of 

certain types of data. In particular, due to the grid-like nature of images, the convolu-

tional layers in CNNs enable to take advantages of the hierarchical patterns and extract 

high-level features of the images to achieve a great expressive capability. The basic CNN 

models aim to learn a set of fixed-size trainable localized filters which scan every pixel 

in the images and combine the surrounding pixels. The core components include the 

convolutional and pooling layers that can be operated on the data with an Euclidean or 

grid-like structure.

However, the non-Euclidean characteristic of graphs (e.g., the irregular structure) 

makes the convolutions and filtering on graphs not as well-defined as on images. In the 

past decades, researchers have been working on how to conduct convolutional opera-

tions on graphs. One main research direction is to define graph convolutions from the 

spectral perspective, and thus, graph signal processing, such as graph filtering and graph 

wavelets, has attracted lots of research interests. Shuman et  al. give a comprehensive 

overview of graph signal processing, including the common operations and analyses 

on graphs [20]. Briefly speaking, spectral graph convolutions are defined in the spec-

tral domain based on graph Fourier transform, an analogy of 1-D signal Fourier trans-

form. In this way, the spectral-based graph convolutions can be computed by taking 

the inverse Fourier transform of the multiplication between two Fourier transformed 

graph signals. On the other hand, graph convolution can be also defined in the spatial 
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domain (i.e., vertex domain) as the aggregations of node representations from the node 

neighborhoods. The emergence of these operations opens a door to graph convolutional 

networks. Generally speaking, graph convolutional network models are a type of neural 

network architectures that can leverage the graph structure and aggregate node informa-

tion from the neighborhoods in a convolutional fashion. Graph convolutional networks 

have a great expressive power to learn the graph representations and have achieved a 

superior performance in a wide range of tasks and applications. Note that in the past few 

years, many other types of graph neural networks have been proposed, including (but 

are not limited to): (1) graph auto-encoder [21], (2) graph generative model [22, 23], (3) 

graph attention model [24, 25], and (4) graph recurrent neural networks [26, 27].

There exist several other related surveys on the topic of graph neural networks. Bron-

stein et  al. review the mathematical details and a number of early approaches of geo-

metric deep learning for both graphs and manifolds [28]. Zhang et al. present a detailed 

review that covers many existing graph neural networks beyond graph convolutional 

networks, such as graph attention networks and gated graph neural network [29]. In 

addition, Wu et al. also review the studies on graph generative models and neural net-

works for spatial-temporal networks [30]. Besides, Lee et  al. present an overview of 

graph neural networks with a special focus on graph attention networks [31]. However, 

since graph convolutional network is a very hot and fast developing research area, these 

existing surveys may not cover the most up-to-date models. In this survey, we focus spe-

cifically on reviewing the existing literature of the graph convolutional networks and 

cover the recent progress. The main contributions of this survey are summarized as 

follows:

1. We introduce two taxonomies to group the existing graph convolutional network 

models (Fig.  1). First, we categorize graph convolutional networks into spectral-

based and spatial-based models depending on the types of convolutions. Then, 

we introduce several graph convolutional networks according to their application 

domains.

2. We motivate each taxonomy by surveying and discussing the up-to-date graph con-

volutional network models.

Fig. 1 An overview of graph convolutional networks
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3. We discuss the challenges of the current models that need to be addressed and high-

light some promising directions for the future work.

The rest of the paper is organized as follows. We start by summarizing the notations and 

introducing some preliminaries of graph convolutional networks in “Notations and pre-

liminaries” section. Then, in “Spectral graph convolutional networks” and “Spatial graph 

convolutional networks” sections, we categorize the existing models into the spectral-

based methods and the spatial-based methods by the types of graph filtering with some 

detailed examples. “Applications of graph convolutional networks” section presents the 

methods from a view of applications. In “Challenges and future researches” section, we 

discuss some challenges of the existing graph convolutional network models and pro-

vide some directions for the future work. Finally, we conclude our survey in “Concluding 

remarks” section.

Notations and preliminaries

In this section, we present the notations and some preliminaries for the graph convolu-

tional networks. In general, we use bold uppercase letters for matrices, bold lowercase 

letters for vectors, and lowercase letters for scalars. For matrix indexing, we use A(i, j) to 

denote the entry at the intersection of the ith row and jth column. We denote the trans-

pose of a matrix A as AT .

Graphs and graph signals

In this survey, we are interested in the graph convolutional network models on an undi-

rected connected graph G = {V , E ,A} , which consists of a set of nodes V with |V| = n , 

a set of edges E with |E | = m and the adjacency matrix A . If there is an edge between 

node i and node j, the entry A(i, j) denotes the weight of the edge; otherwise, A(i, j) = 0 . 

For unweighted graphs, we simply set A(i, j) = 1 . We denote the degree matrix of A as 

a diagonal matrix D , where D(i, i) =

∑n
j=1A(i, j) . Then, the Laplacian matrix of A is 

denoted as L = D − A . The corresponding symmetrically normalized Laplacian matrix 

is L̃ = I − D
−

1

2AD
−

1

2 , where I is an identity matrix.

A graph signal defined on the nodes is represented as a vector x ∈ R
n , where x(i) is the 

signal value on the node i [20]. Node attributes, for instance, can be considered as the 

graph signals. Denote X ∈ R
n×d as the node attribute matrix of an attributed graph, and 

then, the columns of X are the d signals of the graph.

Graph Fourier transform

It is well-known that the classic Fourier transform of an 1-D signal f is computed by 

f̂ (ξ) = �f , e2π iξ t� , where ξ is the frequency of f̂  in the spectral domain and the complex 

exponential is the eigenfunction of the Laplace operator. Analogously, the graph Lapla-

cian matrix L is the Laplace operator defined on a graph. Hence, an eigenvector of L 

associated with its corresponding eigenvalue is an analog to the complex exponential at 

a certain frequency. Note that the symmetrically normalized Laplacian matrix L̃ and the 

random-walk transition matrix can be also used as the graph Laplace operator. In par-

ticular, denote the eigenvalue decomposition of L̃ as L̃ = U�U
T where the lth column 
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of U is the eigenvector ul and �(l, l) is the corresponding eigenvalue �l , and then, we can 

compute the Fourier transform of a graph signal x as:

The above equation represents in the spectral domain a graph signal defined in the ver-

tex domain. Then, the inverse graph Fourier transform can be written as:

Graph filtering

Graph filtering is a localized operation on graph signals. Analogous to the classic sig-

nal filtering in the time or spectral domain, one can localize a graph signal in its vertex 

domain or spectral domain, as well.

(1) Frequency filtering: Recall that the frequency filtering of a classic signal is often 

represented as the convolution with the filter signal in the time domain. However, due 

to the irregular structure of the graphs (e.g., different nodes having different numbers of 

neighbors), graph convolution in the vertex domain is not as straightforward as the clas-

sic signal convolution in the time domain. Note that for classic signals, the convolution 

in the time domain is equivalent to the inverse Fourier transform of the multiplication 

between the spectral representations of two signals. Therefore, the spectral graph convo-

lution is defined analogously as:

Note that x̂(�l)ŷ(�l) indicates the filtering in the spectral domain. Thus, the frequency 

filtering of a signal x on graph G with a filter y is exactly same as Eq. (3) and is further 

re-written as:

(2) Vertex filtering: The graph filtering of a signal x in the vertex domain is generally 

defined as a linear combination of the signal components in the nodes neighborhood. 

Mathematically, the vertex filtering of a signal x at node i is:

where N (i,K ) represents the K-hop neighborhood of node i in the graph and the 

parameters {wi,j} are the weights used for the combination. It can be shown that using 

a K-polynomial filter, the frequency filtering can be interpreted from the vertex filtering 

perspective [20].

(1)x̂(�l) = �x,ul� =

n∑

i=1

x(i)u∗
l
(i).

(2)x(i) =

n∑

l=1

x̂(�l)ul(i).

(3)(x ∗G y)(i) =

n∑

l=1

x̂(�l)ŷ(�l)ul(i).

(4)xout = x ∗G y = U







ŷ(�1) 0

. . .

0 ŷ(�n)






UTx.

(5)
xout(i) = wi,ix(i) +

∑

j∈N (i,K )

wi,jx(j),
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Spectral graph convolutional networks

In this section and the subsequent “Spatial graph convolutional networks” section, we cat-

egorize the graph convolutional neural networks into the spectral-based methods and the 

spatial-based methods, respectively. We consider the spectral-based methods to be those 

methods that start with constructing the frequency filtering.

The first notable spectral-based graph convolutional network is proposed by Bruna et al. 

[32]. Motivated by the classic CNN, this deep model on graphs contains several spectral 

convolutional layers that take a vector Xp of size n × dp as the input feature map of the pth 

layer and output a feature map Xp+1 of size n × dp+1 by:

where Xp(:, i) ( Xp+1(:, j) ) is the ith (jth) dimension of the input (output) feature map, 

respectively; θ
p
i,j denotes a vector of learnable parameters of the filter at the pth layers. 

Each column of V is the eigenvector of L and σ(·) is the activation function. However, 

there are several issues with this convolutional structure. First, the eigenvector matrix V 

requires the explicit computation of the eigenvalue decomposition of the graph Lapla-

cian matrix, and hence suffers from the O(n3) time complexity which is impractical for 

large-scale graphs. Second, though the eigenvectors can be pre-computed, the time 

complexity of Eq. (6) is still O(n2) . Third, there are O(n) parameters to be learned in 

each layer. Besides, these non-parametric filters are not localized in the vertex domain. 

To overcome the limitations, the authors also propose to use a rank-r approximation of 

eigenvalue decomposition. To be specific, they use the first r eigenvectors of V that carry 

the most smooth geometry of the graph and consequently reduce the number of param-

eters of each filter to O(1). Moreover, if the graph contains the clustering structure that 

can be explored via such a rank-r factorization, the filters are potentially localized. Build-

ing upon [32], Henaff et  al. propose to apply an input smoothing kernel (e.g., splines) 

and use the corresponding interpolated weights as the filter parameters for graph spec-

tral convolutions [33]. As claimed in [33], the spatial localization in the vertex domain 

can be somewhat achieved. However, the computational complexity and the localization 

power still hinder learning better representations of the graphs.

To address these limitations, Defferrard et al. propose the ChebNet that uses K-polyno-

mial filters in the convolutional layers for localization [34]. Such a K-polynomial filter is 

represented by ŷ(�l) =
∑

K

k=1
θk�

k

l
 . As mentioned in “Notations and preliminaries” section, 

the K-polynomial filters achieve a good localization in the vertex domain by integrating the 

node features within the K hop neighborhood [20], and the number of the trainable param-

eters decreases to O(K ) = O(1) . In addition, to further reduce the computational complex-

ity, the Chebyshev polynomial approximation [35] is used to compute the spectral graph 

convolution. Mathematically, the Chebyshev polynomial Tk(x) of order k can be recursively 

computed by Tk(x) = 2xTk−1(x) − Tk−2(x) with T0 = 1, T1(x) = x . Defferrard et al. nor-

malize the filters by �̃l = 2
�l

�max
− 1 to make the scaled eigenvalues lie within [−1, 1] . As a 

result, the convolutional layer is:

(6)X
p+1(:, j) = σ









dp
�

i=1

V









(θ
p
i,j)(1) 0

. . .

0 (θ
p
i,j)(n)









V
T
X
p(:, i)









, ∀j = 1, · · · , dp+1,
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where θ
p
i,j is a K-dimensional parameter vector for the ith column of input feature map 

and the jth column of output feature map at the −p th layer. The authors also design a 

max-pooling operation with the multilevel clustering method Graclus [36] which is 

quite efficient to uncover the hierarchical structure of the graphs.

As a special variant, the graph convolutional network proposed by Kipf et al. (named 

as GCN) aims at the semi-supervised node classification task on graphs [37]. In this 

model, the authors truncate the Chebyshev polynomial to first-order (i.e., K = 2 in Eq. 

(7)) and specifically set (θ)i,j(1) = −(θ)i,j(2) = θi,j . Besides, since the eigenvalues of L̃ are 

within [0, 2], relaxing �max = 2 still guarantees −1 ≤ �̃l ≤ 1, ∀l = 1, · · · , n . This leads to 

the simplified convolution layer as:

where Ã = I + A is equivalent to adding self-loops to the original graph and D̃ is the 

diagonal degree matrix of Ã , and �p is a dp+1 × dp parameter matrix. Besides, Eq. (8) 

has a close relationship with the Weisfeiler–Lehman isomorphism test [38]. In addition, 

since Eq. (8) is essentially equivalent to aggregating node representations from their 

direct neighborhood, GCN has a clear meaning of vertex localization and, thus, is often 

considered as bridging the gap between the spectral-based methods and spatial-based 

methods. However, the training process could be costly in terms of memory for large-

scale graphs. Moreover, the transduction of GCN interferes with the generalization, 

making the learning of representations of the unseen nodes in the same graph and the 

nodes in an entirely different graph more difficult [37].

To address the issues of GCN [37], FastGCN [39] improves the original GCN model by 

enabling the efficient minibatch training. It first assumes that the input graph G is an 

induced subgraph of a possibly infinite graph G′ , such that the nodes V of G are i.i.d. sam-

ples of the nodes of G′ (denoted as V ′ ) under some probability measure P . This way, the 

original convolution layer represented by Eq. (8) can be approximated by Monte Carlo 

sampling. Denote some i.i.d. samples u
p
1
, . . . ,u

p
tp

 at layer-p, the graph convolution can be 

estimated by:

Note that this Monte Carlo estimator of graph convolution could lead to a high variance 

of estimation. To reduce the variance, the authors formulate the variance and solve for 

an importance sampling distribution P of nodes. In addition, Chen et al. develop con-

trol variate-based algorithms to approximate GCN model [37] and propose an efficient 

sampling-based stochastic algorithm for training [40]. Besides, the authors theoretically 

prove the convergence of the algorithm regardless of the sampling size in the training 

phase [40]. Recently, Huang et  al. develop an adaptive layer-wise sampling method to 

(7)X
p+1(:, j) = σ





dp
�

i=1

K−1
�

k=0

(θ
p
i,j)(k + 1)Tk(L̃)Xp(:, i)



, ∀j = 1, . . . , dp+1,

(8)X
p+1

= σ

(

D̃
−

1
2 ÃD̃

−
1
2X

p
�

p
)

,

(9)X
p+1(v, :) = σ





1

tp

tp
�

i=1

Ã(v,u
p
i )X

p(u
p
i , :)�

p



.
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accelerate the training process in GCN models [41]. They first construct the layers in a 

graph convolutional network in a top-down way and then propose a layer-wise sampler 

to avoid the over-expansion of the neighborhoods due to the fixed-size sampling. To fur-

ther reduce the variance, an explicit importance sampling is derived.

In parallel to the above models built upon Chebyshev polynomial approximations, 

other localized polynomial filters and their corresponding graph convolutional network 

models have also been proposed. For example, Levie et al. propose to use a more com-

plex approximation method, namely Cayley polynomial, to approximate filters [42]. The 

proposed CayleyNet model is motivated by the fact that as the eigenvalues of the Lapla-

cian matrix used in Chebyshev polynomials are scaled to the band [−1, 1] , the narrow 

frequency bands (i.e., eigenvalues concentrated around one frequency) are hard to be 

detected. Given that this narrow-band characteristic often appears in the community-

structured graphs, ChebNet has limited flexibility and performance in a broader range 

of graph mining problems. Specifically, the Cayley filters of order K have the following 

form:1

where c = [c0, · · · , cK ] are the parameters to be learned and h > 0 is a spectral zoom 

parameter used to dilate graph spectrum, so that the Cayley filters can specialize differ-

ent frequency bands. The localization property as well as the linear complexity can be 

achieved by further using Jacobi approximation [42]. In addition, LanczosNet [43] is pro-

posed to encode the multi-scale characteristic naturally resided in graphs and penetrates 

the computation bottleneck of most existing models that involve the exponentiated 

graph Laplacian in the graph convolution operators to capture multi-scale information 

(e.g., [34]). In detail, the authors first compute the low rank approximation of matrix 

Ã by Lanczos algorithm, such that Ã ≈ VRV
T , where V = QB , Q ∈ R

n×K  contains the 

first K Lanczos vectors, and BRBT is the eigen-decomposition of a tridiagonal matrix T . 

In this way, the tth power of Ã can be simply approximated by Ãt
≈ VR

t
V
T . Based on 

this, the proposed spectral filter in LanczosNet is formulated as:

where R̂(k) = fk([R
0, . . . ,RK−1]) is a diagonal matrix and fk is a multi-layer perceptron 

(MLP). To leverage the multi-scale information, the above spectral filter is modified by 

adding short-scale parameters and long-scale parameters. A variant for node represen-

tation learning is also proposed in [43]. Beyond the Fourier transform-based spectral 

filters, Xu et al. propose to use the spectral wavelet transform on graphs, such that the 

consequent model can vary different scales of graphs to be captured [44].

Moreover, since many graph structures are manually constructed based upon the simi-

larities among data points (e.g., kNN graphs), these fixed graphs may not have the best 

learning capability for some specific tasks. To this end, Li et al. propose a spectral graph 

convolution layer that can simultaneously learn the graph Laplacian [45]. In particular, 

(10)ŷc,h(�l) = c0 + 2Re

{

K
∑

k=1

ck(h�l − i)j(h�l + i)−j

}

,

(11)X
p+1(:, j) = [Xp(:, i),VR̂(1)VT

X
p(:, i), . . . ,VR̂(K − 1)VT

X
p(:, i)]�i,j ,

1 The symbol i here represents an imaginary number, instead of an index using in other parts of this paper.
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instead of directly parameterizing the filter coefficients, the spectral graph convolu-

tion layer parameterizes a function over the graph Laplacian by introducing a notion of 

residual Laplacian. However, the main drawback of this method is the inevitable O(n2) 

complexity.

Spatial graph convolutional networks

As the spectral graph convolution relies on the specific eigenfunctions of Laplacian 

matrix, it is still nontrivial to transfer the spectral-based graph convolutional network 

models learned on one graph to another graph whose eigenfunctions are different. On 

the other hand, according to the graph filtering in vertex domain (i.e., Eq. (5)), graph 

convolution can be alternatively generalized to some aggregations of graph signals 

within the node neighborhood. In this section, we categorize the spatial graph con-

volutional networks into the classic CNN-based models, propagation-based models, 

and other related general frameworks.

Classic CNN‑based spatial graph convolutional networks

Classic CNN models on grid-like data, such as images, have been shown great suc-

cesses in many related applications, including images classification [46–48], object 

detection [18, 49], semantic segmentation [50, 51], etc. The basic properties of grid-

like data that are exploited by convolution architectures include: (1) the number of 

neighboring pixels for each pixel is fixed, and (2) the spatial order of scanning images 

is naturally determined, i.e., from left to right and from top to bottom. However, dif-

ferent from images, neither the number of neighboring units nor the spatial order 

among them is fixed in the arbitrary graph data.

To address these issues, many works have been proposed to build graph convolu-

tional networks directly upon the classic CNNs. Niepert et  al. propose to address 

the aforementioned challenges by extracting locally connected regions from graphs 

[52]. The proposed PATCHY-SAN model first determines the nodes ordering by a 

given graph labeling approach such as centrality-based methods (e.g., degree, Pag-

eRank, betweenness, etc.) and selects a fixed-length sequence of nodes. Second, to 

address the issue of arbitrary neighborhood size of nodes, a fixed-size neighborhood 

for each node is constructed. Finally, the neighborhood graph is normalized accord-

ing to graph labeling procedures, so that nodes of similar structural roles are assigned 

similar relative positions, followed by the representation learning with classic CNNs. 

However, as the spatial order of nodes is determined by the given graph labeling 

approach that is often solely based on graph structure, PATCHY-SAN lacks the learn-

ing flexibility and generality to a broader range of applications.

Different from PATCHY-SAN that order nodes by structural information [52], 

LGCN model [53] is proposed to transform the irregular graph data to grid-like data 

by using both structural information and input feature map of the p-th layer. In par-

ticular, for a node u ∈ V in G , it stacks the input feature map of the node u’s neighbors 

into a single matrix M ∈ R
|N (u)|×dp , where |N (u)| represents the number of 1-hop 

neighboring nodes of node u. For each column of M , the first r largest values are pre-

served and form a new matrix M̃ ∈ R
r×dp . In such a simple way, the input feature map 
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along with the structural information of the graph can be transformed to an 1-D grid-

like data X̃p ∈ R
n×(r+1)×dp . Then, the classic 1-D CNN can be applied to X̃p and learn 

new node representations Xp+1 . Note that a subgraph-based training method is also 

proposed to scale the model to large-scale graphs.

As the convolution in the classic CNNs can only manage the data with the same 

topological structures, another way to extend the classic CNNs to graph data is to 

develop a structure-aware convolution operation for both Euclidean and non-Euclid-

ean data. Chang et al. first build the connection between the classical filters and uni-

variate functions (i.e., functional filters) and then model the graph structure into the 

generalized functional filters to be structural aware [54]. Since this structure-aware 

convolution requires infinite parameters to be learned, the Chebyshev polynomial 

[35] is used for approximation. Another work [55] re-architects the classic CNN by 

designing a set of fixed-size learnable filters (e.g., size-1 up to size-K) and shows that 

these filters are adaptive to the topology of the graph.

Propagation‑based spatial graph convolutional networks

In this subsection, we focus on the spatial graph convolutions that propagate and aggre-

gate the node representations from neighboring nodes in the vertex domain. One nota-

ble work is [56] where the graph convolution for node u at the pth layer is designed as:

where �
p
|N (u)| is the weight matrix for nodes with the same degree as |N (u)| at the p-=th 

layer. However, for arbitrarily large graphs, the number of unique values of node degree 

is often a very large number. Consequently, there will be many weight matrices to be 

learned at each layer, possibly leading to the overfitting problem.

Atwood et  al. propose a diffusion-based graph convolutional network (named as 

DCNN) which evokes the propagations and aggregations of node representations by 

graph diffusion processes [57]. A k-step diffusion is conducted by the kth power of tran-

sition matrix Pk , where P = D
−1

A . Then, the diffusion–convolution operation is formu-

lated as:

where Z(u, k , i) is the ith output feature of node u aggregated based on Pk and the non-

linear activation function σ(·) is chosen as the hyperbolic tangent function. Suppose that 

K hops diffusion is considered, and then, the K-th power of transition matrix requires an 

O(n2K ) computational complexity which is prohibited especially for large-scale graphs.

Monti et  al. propose a generic graph convolution network framework named 

MoNet [5] by designing a universe patch operator which integrates the signals 

within the node neighborhood. In particular, for a node i and its neighboring node 

j ∈ N (i) , they define a d-dimensional pseudo-coordinates u(i, j) and feed it into P 

(12)
x
p
N (u) = X

p(u, :) +

∑

v∈N (u)

X
p(v, :)

(13)X
p+1(u, :) = σ

(

x
p
N (u)�

p
|N (u)|

)

,

(14)Z(u, k , i) = σ

(

�(k , i)

n
∑

v=1

P
k(u, v)X(v, i)

)

,
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learnable kernel functions (w1(u), . . . ,wP(u)) . Then, the patch operator is formulated as 

Dp(i) =

∑
j∈N (i) wp(u(i, j))x(j), p = 1, . . . ,P , where x(j) is the signal value at the node j. 

The graph convolution in the spatial domain is then based on the patch operator as:

It is shown that by carefully selection of u(i, j) and the kernel function wp(u) , many exist-

ing graph convolutional network models [37, 57] can be viewed as a specific case of 

MoNet. SplineCNN [58] follows the same framework [i.e., Eq. (15)], but uses a different 

convolution kernel based on B-splines.

For graphs accompanied with edge attribute information, the weight parameters of fil-

ters are often conditioned on the specific edge attributes in the neighborhood of a node. 

To exploit edge attributes, an edge-conditioned convolution (ECC) operation [59] is 

designed by borrowing the idea of dynamic filter network [60]. For the edge between 

node v and node u at the p-th ECC layer, with the corresponding filter-generating net-

work Fp
: R

s
→ R

dp+1×dp that generates edge-specific weights matrix �
p
v,u , the convolu-

tion operation is mathematically formalized as:

where bp is a learnable bias and the filtering–generating network Fp is implemented by 

multi-layer perceptrons.

In addition, Hamilton et  al. propose an aggregation-based inductive representation 

learning model, named GraphSAGE [61]. The full batch version of the algorithm is 

straightforward: for a node u, the convolution layer in GraphSAGE (1) aggregates the 

representation vectors of all its immediate neighbors in the current layer via some learn-

able aggregator, (2) concatenates the representation vector of node u with its aggregated 

representation, and then (3) feeds the concatenated vector to a fully connected layer with 

some nonlinear activation function σ(·) , followed by a normalization step. Formally, the 

p-th convolutional layer in GraphSAGE contains:

There are several choices of the aggregator functions, including the mean aggregator, 

LSTM aggregator, and the pooling aggregator. By using mean aggregators, Eq. (17) can 

be simplified to:

which approximately resembles the GCN model [37]. Besides, pooling aggregator is for-

mulated as:

(15)(x ∗s y)(i) =

P∑

l=1

g(p)Dp(i)x.

(16)X
p+1(u, :) =

1

|N (u)|

∑

v∈N (u)

�
p
v,uX

p(v, :) + b
p
,

(17)x
p
N (u) ← AGGREGATEp({X

p(v, :), ∀v ∈ N (u)});

(18)X
p+1(u, :) ← σ

(

CONCAT(Xp(u, :), x
p
N (u))�

p
)

.

X
p+1(u, :) ← σ

(

MEAN({Xp(u, :)} ∪ {Xp(v, :), ∀v ∈ N (u)})�p
)

,

AGGREGATEpoolp = max
(

{σ(Xp(v, :)�p + b
p), ∀v ∈ N (u)}

)

.
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To allow the minibatch training, the authors also provide a variant by uniformly sam-

pling a fixed size of the neighboring nodes for each node [61].

However, the performance in node representation learning is often degraded as the graph 

convolutional models become deeper. In practice, it has been shown that a two-layer graph 

convolution model often achieves the best performance in GCN [37] and GraphSAGE [61]. 

According to [62], the convolution in GCN [37] is related to Laplacian smoothing [63] and 

more convolution layers result in less distinguishable representations even for nodes from 

different clusters. From a different perspective, Xu et al. analyze different expansion behav-

iors for two types of nodes, including the nodes in an expander-like core part and nodes in 

the tree part of the graphs, and show that the same number of propagation steps can lead 

to different effects [64]. For example, for nodes within the core part, the influence of their 

features spreads much faster than the nodes in the tree part and thereby this rapid aver-

age causes the node representations indistinguishable. To mitigate this issue and make the 

graph convolutional models deeper, by borrowing the idea of the residual network [65] in 

computer vision, Xu et al. propose a skip connection architecture named Jumping Knowl-

edge Network [64]. The Jumping Knowledge Network can adaptively select the aggrega-

tions from the different convolution layers. In other words, the last layer of the model can 

selectively aggregate the intermediate representations for each node independently. The 

layer-wise aggregators include concatenation aggregator, max-pooling aggregator, and 

LSTM-attention aggregator. In addition, the Jumping Knowledge Network model admits 

the combination with the other existing graph neural network models, such as GCN [37], 

GraphSAGE [61], and GAT [24].

Related general graph neural networks

Graph convolutional networks that use convolutional aggregations are a special type of the 

general graph neural networks. Other variants of graph neural networks based on different 

types of aggregations also exist, such as gated graph neural networks [26] and graph atten-

tion networks [24]. In this subsection, we briefly cover some general graph neural network 

models of which graph convolutional networks can be viewed as special variants.

One of the earliest graph neural networks is [66] which defines the parametric local tran-

sition function f and local output function g. Denote X0(u, :) as the input attributes of node 

u and Eu as the edge attributes of the edges incident to node u. Then, the local transition 

function and local output function are formulated as:

where H(u, :) , X(u, :) are the hidden state and output representation of node u. Eq. (19) 

defines one general form of aggregations in graph neural network. In [66], the function 

f is restricted to a contraction mapping to ensure convergence and suggested by the 

Banach’s fixed point theorem [67]. In this way, a classic iterative scheme is applied to 

update the hidden states. However, it is inefficient and less effective to update the states 

in an iterative manner to obtain steady states. In contrast, SSE [68] aims to learn the 

steady states of node representations iteratively but in a stochastic way. Specifically, for a 

(19)H(u, :) = f
(

X
0(u, :),Eu,H(u, :),X0(N (u), :)

)

(20)X(u, :) = g
(

X
0(u, :),H(u, :)

)

,
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node u, SSE first samples a set of nodes Ṽ from V and updates the node representations 

for T iterations to be close to stability by:

where node u ∈ Ṽ and T� is the aggregation function defined by:

where X0(u, :) denotes the input attributes of node u.

Message-Passing Neural Networks (MPNNs) proposed in [69] generalize many vari-

ants of graph neural networks, such as graph convolutional networks (e.g., [37, 56, 61]) 

and gated graph neural networks [26]. MPNN can be viewed as a two-phase model, 

including message-passing phase and readout phase. In the message-passing phase, 

the model runs node aggregations for P steps and each step contains the following two 

functions:

where Mp,Up are the message function and the update function at the pth step, respec-

tively, and eu,v denotes the attributes of edge (u, v). Then, the readout phase computes 

the feature vector for the whole graph by:

where R denotes the readout function.

In addition, Xu et al. theoretically analyze the expressive power of the existing neigh-

borhood aggregation-based graph neural networks [70]. They analyze how powerful the 

existing graph neural networks are based on the close relationship between graph neu-

ral networks and the Weisfeiler–Lehman graph isomorphism test, and conclude that the 

existing neighborhood aggregation-based graph neural networks (e.g., [37, 61]) can be 

at most as powerful as the one-dimensional Weisfeiler–Lehman isomorphism test. To 

achieve the equal expressive power of Weisfeiler–Lehman test, Xu et al. propose a sim-

ple architecture named Graph Isomorphism Network [70].

Applications of graph convolutional networks

Graph convolutional networks can be also categorized according to their application 

domains. In this section, we mainly introduce the applications of graph convolutional 

networks in computer vision, natural language processing, science, and other domains.

Applications in computer vision

Computer vision has been one of the hottest research areas in the past decades. Many 

existing deep learning architectures used in computer vision problems are built upon 

the classic convolution neural networks (CNNs). Despite the great successes of CNNs, 

(21)X(u, :) ← (1 − α)X(u, :) + αT�[{X(v, :), ∀v ∈ N (u)}],

T�[{X(v, :), ∀v ∈ N (u)}] = σ







X
0(u, :),

�

v∈N (u)

[X(v, :),X0(v, :)]



�2



�1,

(22)
H

p+1(u, :) =

∑

v∈N (u)

Mp(Xp(u, :),Xp(v, :), eu,v)

(23)X
p+1(u, :) = Up(Xp(u, :),Hp+1(u, :)),

(24)ŷ = R

(

{XP(u, :)|u ∈ V}
)

,
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they are difficult to encode the intrinsic graph structures in the specific learning tasks. In 

contrast, the graph convolutional networks have been applied to solve some computer 

vision problems and shown a comparable or even better performance. In this subsec-

tion, we further categorize these applications based on the type of data.

Images

Image classification is of a great importance in many real-world applications. By some 

carefully hand-crafted graph construction methods (e.g., kNN similarity graphs) or other 

supervised approaches, the unstructured images can be converted to the structured 

graph data and thereby are able to be applied to graph convolutional networks. Existing 

models for image classification include, but are not limited to [5, 32, 34, 71, 72]. Another 

application on images is visual question answering that explores the answers to the ques-

tions on images. Narasimhan et al. propose a graph convolutional network-based deep 

learning model to use the information from multiple facts of the images from knowl-

edge bases to aid question answering, which relies less on retrieving the single correct 

fact of images [73]. In addition, as images often contain multiple objects, understanding 

the relationships (i.e., visual relationships) among the objects helps to characterize the 

interactions among them, which makes visual reasoning a hot topic in computer vision. 

For visual relationships detection, Cui et al. propose a graph convolutional network to 

leverage both the semantic graphs of words and spatial scene graph [74]. Besides, Yao 

et al. propose an architecture of graph convolutional networks and LSTM to explore the 

visual relationships for image captioning [75]. To generate scene graphs, despite some 

existing message-passing-based methods [76, 77], many of them may not handle the 

unreliable visual relationships. Yang et  al. propose an attentional graph convolutional 

model that can place attention on the reliable edges while dampening the influence of 

unlikely edges [78]. In the opposite direction, Johnson et al. use a graph convolutional 

network model to process the input scene graph and generate the images by a cascaded 

refinement network [79] trained adversarially [80].

Videos

One of the high-impact applications of videos is the action recognition which can help 

video understanding. In [81], a spatial-temporal graph convolutional model is designed 

to eliminate the need of hand-crafted part assignment and can achieve a greater expres-

sive power. Another skeleton-based method is [82], where a generalized graph con-

struction process is proposed to capture the variation in the skeleton sequences and the 

generalized graph is then fed to a graph convolutional network for variation learning. 

Wang and Gupta [83] represents the input video as a space-time region graph which 

builds two types of connections (i.e., appearance similarity and spatial-temporal proxim-

ity), and then recognizes actions by applying graph convolutional networks. Zhang et al. 

propose a tensor convolutional network for action recognition [84].

Point clouds

Point clouds provide a flexible geometric representation for many applications in com-

puter graphics and computer vision. Followed by the pioneering PointNet [85], the state-

of-the-art deep neural networks consider the local features of point clouds [85, 86]. 
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However, these works ignore the geometric relationships among points. EdgeConv [87], 

on the other hand, is proposed to capture the local geometric structure while maintain-

ing the permutation invariance property and outperforms other existing approaches in 

the point cloud segmentation task. A regularized graph convolutional network model 

has been proposed for segmentation on point clouds in [88] in which the graph Lapla-

cian is dynamically updated to capture the connectivity of the learned features. FeaStNet 

[89] built upon graph convolutional networks dynamically determines the association 

between filter weights and graph neighborhood, showing a comparable performance in 

part labeling. Wang et al. propose a local spectral graph convolutional network for both 

point cloud classification and segmentation [90]. For point cloud classification, other 

graph convolution-based methods include [45, 59]. Valsesia et  al. propose a localized 

generative model by using graph convolution to generate 3D point clouds [91].

Meshes

One application on meshes which we consider in this paper is the shape correspondence, 

i.e., to find correspondences between collections of 3D shapes. Beyond the classic CNN-

based methods (e.g., [92, 93]), several graph convolutional network-based approaches 

have been proposed, including [5, 89]. In addition, Litany et  al. propose to combine 

graph convolutional networks with variational auto-encoder for the shape completion 

task [94].

Applications in natural language processing

Text classification is one of the most classical problems in natural language processing. 

With the documents as nodes and the citation relationships among them as edges, the 

citation network can be constructed, in which node attributes are often modeled by the 

bag-of-words. In this scenario, the straightforward way to classify documents into differ-

ent categories is by node classification. Many graph convolutional network models have 

been proposed, to name a few, including [5, 37, 42, 61, 95]. Another way is to view the 

documents at the graph-level (i.e., each document is modeled as a graph) and classify 

the texts by graph classification [33, 34]. Besides, TextGCN [96] models a whole corpus 

to a heterogeneous graph and learn word embedding and document embedding simul-

taneously, followed by a softmax classifier for text classification. Gao et al. use a graph 

pooling layer and the hybrid convolutions of graph convolution and classic convolution 

to incorporate node ordering information, achieving a better performance over the tra-

ditional CNN-based and GCN-based methods [97]. When there are lots of labels at dif-

ferent topical granularities, these single-granularity methods may achieve a suboptimal 

performance. In [98], a graph-of-words is constructed to capture long-distance seman-

tics, and then, a recursively regularized graph convolution model is applied to leverage 

the hierarchy of labels.

Information extraction is often the cornerstone of many NLP-related applications 

and graph convolutional networks have been broadly applied in it and its variant prob-

lems. For example, GraphIE [99] first uses a recurrent neural network to generate local 

context-aware hidden representations of words or sentences and then learns non-local 

dependencies between textual units, followed by a decoder for labeling at the word 

level. GraphIE can be applied to information extraction such as named entity extraction. 
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Graph convolutional networks have been designed to the relation extraction between 

words [100, 101] and event extraction [102, 103].

In addition, Marcheggiani et  al. develop a syntactic graph convolutional network 

model that can be used on top of syntactic dependence trees, which is suitable for vari-

ous NLP applications such as semantic role labeling [104], and neural machine transla-

tion [105]. For semantic machine translation, graph convolutional networks can be used 

to inject a semantic bias into sentence encoders and achieve performance improvements 

[106]. Moreover, the dilated iterated graph convolutional network model is designed for 

dependence parsing [107].

Applications in science

Physics

In particle physics, jets are referred to the collimated sprays of energetic hadrons and 

many tasks are related to jets, including the classification and regression problems asso-

ciated with the progenitor particles giving rise to the jets. Recently, variants of the mes-

sage-passing neural network [69] have been designed to classify jets into two classes: 

quantum chromodynamics-based jets and W-boson-based jets [108]. ParticleNet, built 

upon edge convolutions [87], is a customized neural network architecture that operates 

directly on particle clouds for jet tagging [109]. Besides, graph convolutional network 

model has been also applied for IceCube signal classification [110]. Another interesting 

application is to predict the physical dynamics, e.g., how a cube deforms as it collides 

with the ground. Mrowca et al. propose a hierarchical graph-based object representation 

that decomposes an object into particles and connects particles within the same group, 

or to the ancestors and descendants [111]. They then propose a hierarchical graph con-

volutional network to learn the physics predictions.

Chemistry, biology, and materials science

Learning on molecules has attracted lots of attention in chemistry, drug discovery, and 

materials science. For example, graph convolutional networks have been used for molec-

ular fingerprints prediction [56, 112]. In drug discovery, DeepChemStable [113], an 

attention-based graph convolutional network mode, is used for chemical stability pre-

diction of a compound. Besides, by modeling the protein–protein interactions, drug–

protein target interactions into a multimodal graph, graph convolutions can be applied 

to predict polypharmacy side effects [114]. Another important application in chemistry 

is the molecular property prediction. Message-Passing Neural Networks (MPNNs) [69], 

a general graph neural network framework, can be used to predict the quantum prop-

erties of a molecular. PotentialNet [115] first entails graph convolutions over chemical 

bonds to learn the features of atoms, then entails both bond-based and spatial distance-

based propagation and finally conducts graph gathering over the ligand atoms, followed 

by a fully connected layer for molecular property predictions. Protein interface predic-

tion is a challenging problem with important applications in drug discovery. Fout et al. 

construct a graph where each residue in a protein is considered as a node and nodes 

are accompanied with features computed from amino acid sequence as well as structure 

[116]. To predict protein interface, graph convolution layers are used for different pro-

tein graphs, followed by one or more fully connected layers. In addition, [117] proposes 
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a so-called crystal graph convolutional neural network to directly learn material proper-

ties from the connection of atoms in the crystal.

Social network analysis

Beyond the applications in classical problems of social science, such as community 

detection [42, 118], and link prediction [21, 119, 120], graph convolutional networks 

have been applied in many other problems. DeepInf [121] aims to predict social influ-

ences by learning users latent features. Vijayan et al. propose to use graph convolutional 

networks for retweet count forcasting [122]. Moreover, fake news can be also detected 

by graph convolutions [123]. Graph convolutional networks have been widely used 

for social recommendation which aims to leverage the user–item interactions and/or 

user–user interactions to boost the recommendation performance. Wu et  al. propose 

a neural influence diffusion model that takes how users are influenced by their trusted 

friends into considerations for better social recommendations [124]. Ying et al. propose 

a very efficient graph convolutional network model PinSage[125] based on GraphSAGE 

[61] which exploits the interactions between pins and boards in Pinterest. Wang et al. 

propose a neural graph collaborative filtering framework that integrates the user–item 

interactions into the graph convolutional network and explicitly exploits the collabora-

tive signals [126].

Challenges and future researches

Deep graph convolutional networks

Although the initial objective of graph convolutional network models is to leverage the 

deep architecture for better representation learning, most of the current models still suf-

fer from their shallow structure. For example, GCN [37] in practice only uses two layers 

and using more graph convolution layers may even hurt the performance. This is also 

intuitive due to its simple propagation procedure. As deeper the architecture is, the rep-

resentations of nodes may become smoother even for those nodes that are distinct and 

far from each other. This issue violates the purpose of using deep models. Although few 

works have been proposed to address this issue (e.g., skip connection based models), 

how to build a deep architecture that can better adaptively exploits the deeper structural 

patterns of graphs is still an open challenge.

Graph convolutional networks for dynamic graphs

Most of the existing graph convolutional networks explicitly assume the input graphs are 

static. However, in the real cases, networks are often changing dynamically. For exam-

ple, social networks are essentially dynamic networks as users are joining/quiting the 

networks frequently and friendships among users are also changing dynamically. To this 

end, learning graph convolutional networks on static graphs may not provide an opti-

mal performance. Thus, the efficient dynamic graph convolutional network models are 

important to be studied.
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More powerful graph convolutional networks

Most of the existing spatial graph convolutional network models are based on neighbor-

hood aggregations. These models have been proved theoretically to be at most as pow-

erful as one-dimensional Weisfeiler–Lehman graph isomorphism test, and the graph 

isomorphism network has been proposed to reach the limit [70]. However, one natu-

ral question to be asked is: can we break the limit of 1-dimensional Weisfeiler–Lehman 

graph isomorphism test? A few works have studied the related questions such as [127–

129]. However, further researches on this problem are still quite challenging.

Multiple graph convolutional networks

As already mentioned before, the major drawback of the spectral graph convolutional 

networks is its inability of adaptation from one graph to another graph if two graphs 

have different Fourier basis (i.e., eigenfunctions of the Laplacian matrix). The existing 

work [130] alternatively learns the filter parameters by generalizing the eigenfunc-

tions of a single graph to the eigenfunctions of the Kronecker product graph of mul-

tiple input graphs. As a different track, inductive learning is possible for many spatial 

graph convolutional network models, such that one model learned on one or several 

graphs can be applied to other graphs. However, a drawback of these methods is that 

the interactions (e.g., anchor links, cross-network node similarities) or correlations 

(e.g., correlations among multiple views) across multiple graphs are not exploited. In 

fact, given multiple graphs, the representation learning of a unique node should be 

able to benefit from more information provided across graphs or views. However, to 

our best knowledge, there is no existing model aiming at the problems in this setting.

Concluding remarks

Graph convolutional network models, as one category of the graph neural network mod-

els, have become a very hot topic in both machine learning and other related areas, and 

a substantial amount of models have been proposed to solve different problems. In this 

survey, we conduct a comprehensive literature review on the emerging field of graph 

convolutional networks. Specifically, we introduce two intuitive taxonomies to group the 

existing works based on the types of graph filtering operations and also on the areas 

of applications. For each taxonomy, we highlight with some detailed examples from a 

unique standpoint. We also discuss some open challenges and potential issues of the 

existing graph convolutional networks and provide some future directions.
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