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Abstract

A novel method for robust estimation, called Graph-Cut

RANSAC1, GC-RANSAC in short, is introduced. To sepa-

rate inliers and outliers, it runs the graph-cut algorithm in

the local optimization (LO) step which is applied when a so-

far-the-best model is found. The proposed LO step is con-

ceptually simple, easy to implement, globally optimal and

efficient. GC-RANSAC is shown experimentally, both on

synthesized tests and real image pairs, to be more geomet-

rically accurate than state-of-the-art methods on a range of

problems, e.g. line fitting, homography, affine transforma-

tion, fundamental and essential matrix estimation. It runs

in real-time for many problems at a speed approximately

equal to that of the less accurate alternatives (in millisec-

onds on standard CPU).

1. Introduction

The RANSAC (RANdom SAmple Consensus) algo-

rithm proposed by Fischler and Bolles [7] in 1981 has be-

come the most widely used robust estimator in computer

vision. RANSAC and similar hypothesize-and-verify ap-

proaches have been successfully applied to many vision

tasks, e.g. to short baseline stereo [27, 29], wide baseline

stereo matching [22, 17, 18], motion segmentation [27], im-

age mosaicing [9], detection of geometric primitives [25],

multi-model fitting [31], or for initialization of multi-model

fitting algorithms [12, 21]. In brief, the RANSAC approach

repeatedly selects random subsets of the input data and fits

a model, e.g. a line to two points or a fundamental matrix to

seven point correspondences. In the second step, the model

support, i.e. the number of inliers, is obtained. The model

with the highest support, polished e.g. by a least squares fit

on inliers, is returned.

In the last three decades, many modifications of

RANSAC have been proposed. For instance, NAP-

SAC [20], PROSAC [4] or EVSAC [8] modify the sam-

pling strategy to increase the probability of selecting an all-

1Available at https://github.com/danini/graph-cut-ransac

inlier sample earlier. NAPSAC considers spatial coherence

in the sampling of input data points, PROSAC exploits the

ordering of the points by their predicted inlier probability,

EVSAC uses an estimate of the confidence in each point.

Modifications of the model support step has also been pro-

posed. In MLESAC [28] and MSAC [10], the model quality

is estimated by a maximum likelihood process, albeit under

certain assumptions, with all its beneficial properties. In

practice, MLESAC results are often superior to the inlier

counting of plain RANSAC and less sensitive to the user-

defined threshold. The termination of RANSAC is con-

trolled by a manually set confidence value η and the sam-

pling stops when the probability of finding a model with

higher support falls below η2.

Observing that RANSAC requires in practice more sam-

ples than theory predicts, Chum et al. [5] identified a prob-

lem that not all all-inlier samples are “good”, i.e. lead to a

model accurate enough to distinguish all inliers, e.g. due to

poor conditioning of the selected random all-inlier sample.

They address the problem by introducing the locally opti-

mized RANSAC (LO-RANSAC) that augments the origi-

nal approach with a local optimization step applied to the

so-far-the-best model. In the original paper [5], local op-

timization is implemented as an iterated least squares re-

fitting with a shrinking inlier-outlier threshold inside an

inner RANSAC applied only to the inliers of the current

model. In the reported experiments, LO-RANSAC outper-

forms standard RANSAC in both accuracy and the required

number of iterations. The number of LO runs is close to

the logarithm of the number of verifications, and it does not

create a significant overhead in the processing time in most

of the cases tested. However, it was shown by Lebeda et

al. [15] that for models with high inlier counts the local op-

timization step becomes a computational bottleneck due to

the iterated least squares model fitting. This is addressed

by using a 7m-sized subset of the inliers in each LO step,

where m is the size of a minimum sample; the factor of

7 was set by exhaustive experimentation. The idea of local

optimization has been included in state-of-the-art RANSAC

approaches like USAC [23]. Nevertheless, the LO proce-

2This interpretation of η holds for the standard cost function only.
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dure is ad hoc, complex and needs multiple parameters.

In this paper, we combine two strands of research to

obtain a state-of-the-art RANSAC. In the large body of

RANSAC-related literature, the inlier-outlier decision has

always been a function of the distance to the model, done

individually for each data point. Yet both inliers and out-

liers are spatially coherent, a point near an outlier or inlier

is more likely to be an outlier or inlier respectively. Spa-

tial coherence, leading to the Potts model [3], has been ex-

ploited in many vision problems, for instance, in segmenta-

tion [30], multi-model fitting [12, 21] or sampling [20]. In

RANSAC techniques, it has only been used to improve effi-

ciency of sampling in NAPSAC [20]. It is computationally

prohibitive to formulate the model verification in RANSAC

as a graph-cut problem. But when applied as the LO step in

[5] just to the so-far-the-best model, the number of graph-

cuts is only the logarithm of the number of sampled and

verified models, and can be achieved in real-time.

The proposed method, called Graph-Cut RANSAC (GC-

RANSAC), is a locally optimized RANSAC alternating

graph-cut and model re-fitting as the LO step. GC-

RANSAC is superior to LO-RANSAC in a number of as-

pects. First, it is capable of exploiting spatial coherence

of inliers and outliers. The LO step is conceptually a sim-

ple, easy to implement, globally optimal and computation-

ally efficient graph-cut with only a few intuitive and learn-

able parameters unlike the ad hoc, iterative and complex

LO steps [5]. Third, we show experimentally that GC-

RANSAC outperforms LO-RANSAC and its recent vari-

ants in both accuracy and the required number of iterations

on a wide range of publicly available datasets. On many

problems, it is faster than the competitors in terms of the

wall-clock time. Finally, we were surprised to observe that

GC-RANSAC terminates before the theoretically expected

number of iterations. The reason is that the local optimiza-

tion that takes spatial proximity into account is often ca-

pable of converging to a “good” model even when starting

from a sample that is not all-inlier, i.e. it contains outliers.

PEARL [12] introduced pair-wise energy to geometric

model fitting. However, it cannot be used for problems

solved by RANSAC – in PEARL, the user has to manu-

ally set the number of hypotheses tested to the worst-case,

i.e. corresponding to the lowest inlier ratio possible. The

α-expansion step just in the first iteration of PEARL exe-

cutes a graph-cut as many times as the number of hypothe-

ses tested. The number is calculated from the worst-case

scenario and is typically orders of magnitude higher than the

number of iterations determined by the RANSAC adaptive

termination criterion. Moreover, in GC-RANSAC, apply-

ing the local optimization to only the so-far-the-best models

ensures that the graph-cut is executed only very few times,

paying only a small penalty.

2. Local Optimization and Spatial Coherence

In this section, we formulate the inlier selection of

RANSAC as an energy minimization considering point-to-

point proximity. The proposed local optimization is seen as

an iterative energy minimization of a binary labeling (out-

lier – 0 and inlier – 1). For the sake of simplicity, we start

from the original RANSAC scheme and then formulate the

maximum likelihood estimation as an energy minimization.

The term considering the spatial coherence will be included

into the energy.

2.1. Formulation as Energy Minimization

Suppose that a point set P ⊆ R
n (n > 0), a model

represented by a parameter vector θ ∈ R
m (m > 0) and a

distance function φ : P ×R
m → R measuring the point-to-

model assignment cost are given.

For the standard RANSAC scheme which applies a top-

hat fitness function (1 – close, 0 – far), the implied unary

energy is as follows:

E{0;1}(L) =
∑

p∈P

||Lp||{0;1},

where

||Lp||{0;1} =











0 if (Lp = 1 ∧ φ(p, θ) < ǫ) ∨

(Lp = 0 ∧ φ(p, θ) ≥ ǫ)

1 otherwise.

Parameter L ∈ {0, 1}|P| is a labeling, ignored in standard

RANSAC, Lp ∈ L is the label of point p ∈ P , |P| is the

number of points, and ǫ is the inlier-outlier threshold. Using

energy E{0,1} we get the same result as RANSAC since it

does not penalize only two cases: (i) when p is labeled inlier

and it is closer to the model than the threshold, or (ii) when

p is labeled outlier and it is farther from the model than ǫ.
This is exactly what RANSAC does.

Since the publication of RANSAC, several papers dis-

cussed, e.g. [15], replacing the {0, 1} loss with a kernel

function K : R × R → [0, 1], e.g. the Gaussian-kernel.

Such choice is close to maximum likelihood estimation as

proposed in MLESAC [28]. This improves the accuracy

and reduces the sensitivity to threshold ǫ. Unary term EK

exploiting this continuous loss is as follows: EK(L) =
∑

p∈P ||Lp||K, where

||Lp||K =

{

1−K(φ(p, θ), ǫ) if Lp = 1

K(φ(p, θ), ǫ) if Lp = 0
(1)

and

K(δ, ǫ) = e−
δ
2

2ǫ2 , (2)

which equals to one if the distance is zero. In GC-

RANSAC, we use EK as the unary energy term in the graph-

cut-based verification.
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2.2. Spatial Coherence

Benefiting from a binary labeling energy minimization,

additional energy terms, e.g. to consider spatial coherence

of the points, can be included yet keep the problem solvable

efficiently and globally via the graph-cut algorithm.

Considering point proximity is a well-known approach

for sampling [20] or multi-model fitting [12, 21, 1]. To the

best of our knowledge, there is no paper exploiting it in the

local optimization step of methods like LO-RANSAC. Ap-

plying the Potts model which penalizes all neighbors having

different labels would be a justifiable choice to be the pair-

wise energy term. The problem arises when the data con-

tains significantly more outliers close to desired model than

inliers. In that case, penalizing differently labeled neigh-

bors using the same penalty for all classes many times leads

to the domination of outliers forcing all inliers to be labeled

outlier. To overcome this problem, we modified the Potts

model to use different penalties for each neighboring point

pair on the basis of their inlier probability. The proposed

pair-wise energy term is

ES(L) =
∑

(p,q)∈A











1 if Lp 6= Lq

1
2 (Kp +Kq) if Lp = Lq = 0

1− 1
2 (Kp +Kq) if Lp = Lq = 1

,

(3)

where Kp = K(φ(p, θ), ǫ), Kq = K(φ(q, θ), ǫ) and (p, q)
is an edge of neighborhood graph A between points p and

q. In ES, if both points are labeled as outliers the penalty

is 1
2 (Kp +Kq) thus “rewarding” label 0 if the neighboring

points are far from the model. The penalty of considering a

point as inlier is 1 − 1
2 (Kp +Kq) which rewards the label

if the points are close to the model.

The proposed overall energy measuring the fitness of

points to a model and considering spatial coherence is

E(L) = EK(L) + λES(L), where λ is a parameter bal-

ancing the terms. The globally optimal labeling L∗ =
argminL E(L) can easily be determined in polynomial

time using the graph-cut algorithm.

3. GC-RANSAC

In this section, we include the proposed energy

minimization-based local optimization into RANSAC. Ben-

efiting from this approach, the LO step is simpler and

cleaner than that of LO-RANSAC.

The main algorithm is shown in Alg.1. The first step is

the determination of neighborhood graph A for which we

use a sphere with a predefined radius r – this is a parameter

of the algorithm – and Fast Approximate Nearest Neighbors

algorithm [19]. In Alg. 1, function H is as follows [7]:

H(|L∗|, µ) =
log(µ)

log(1− PI)
, (4)

where PI =
(

|L∗|
m

)

/
(

|P |
m

)

. It calculates the required iteration

number of RANSAC on the basis of desired probability µ,

the size of the required minimal point set m and the inlier

number |L∗| regarding to the current so-far-the-best model.

Note that norm | · | applied to the labeling counts the inliers.

Every kth iteration draws a minimal sample using a sam-

pling strategy, e.g. PROSAC [4], then computes the param-

eters θk of the implied model and its support

wk =
∑

p∈P

K(φ(p, θk), ǫ) (5)

w.r.t. the data points, where function K is a Gaussian-kernel

as proposed in Eq. 2. If wk is higher than that of the so-far-

the-best model w∗, this model is considered the new so-far-

the-best, all parameters are updated, i.e. the labeling, model

parameters and support, and local optimization is applied

if needed. Note that the application criterion of the local

optimization step is discussed later.

The proposed local optimization is written in Alg. 2. The

main iteration can be considered as a grab-cut-like [24] al-

ternation consisting of two major steps: (i) graph-cut and

(ii) model re-fitting. The construction of problem graph G
using unary and pair-wise terms Eqs. 1, 3 is shown in Alg. 3.

Functions AddTerm1 and AddTerm2 add unary (Eq. 1) and

binary (Eq. 3) costs, respectively, to the problem graph.

Such graph construction is covered in depth in [13] (Section

4). Graph-cut is applied to G determining the optimal label-

ing L which considers the spatial coherence of the points

and their distances from the so-far-the-best model. Model

parameters θ are computed using a 7m-sized random subset

of the inliers in L, thus speeding up the process, similarly

to [15] does, where m is the size of a minimal sample, e.g.

m = 2 for lines. Note that 7m is set by exhaustive ex-

perimentation in [15] and this value also suited for us. Fi-

nally, the support w of θ is computed and the so-far-the-best

model is updated if the new one has higher support, other-

wise the process terminates. After the main algorithm, a lo-

cal optimization step is performed if it has not been yet ap-

plied to the obtained so-far-the-best model. Then the model

parameters are re-estimated using the whole inlier set simi-

larly to what plain RANSAC does.

Remark: Adding to the local optimization step a

RANSAC-like procedure selecting 7m-size samples is

straightforward. In our experiments, it had a high computa-

tional overhead without adding significantly to accuracy.

The criterion for applying the LO step was proposed

to be: (i) the model is so-far-the-best and (ii) after a user-

defined iteration limit, in [15]. However, in our experi-

ments, this approach still spends significant time on opti-

mizing models which are not promising enough. We intro-

duce a simple heuristic for replacing the iteration limit with

a data driven strategy which allows to apply LO only a few

times without deterioration in accuracy.
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Algorithm 1 The GC-RANSAC Algorithm.

Input: P – data points; r – sphere radius, ǫ – threshold

ǫconf – LO application threshold, µ – confidence;

Output: θ - model parameters; L – labeling

1: w∗, nLO ← 0, 0.

2: A ← Build neighborhood-graph using r.

3: for k = 1→ H(|L∗|, µ) do ⊲ Eq. 4

4: Sk ← Draw a minimal sample.

5: θk ← Estimate a model using Sk.

6: wk ← Compute the support of θk. ⊲ Eq. 5

7: if wk > w∗ then

8: θ∗, L∗, w∗ ← θk, Lk, wk

9: if µ12 > ǫconf then ⊲ Eq. 6

10: θLO, LLO, wLO ← Local opt. ⊲ Alg. 2

11: nLO ← nLO + 1.

12: if wLO > w∗ then

13: θ∗, L∗, w∗ ← θLO, LLO, wLO

14: if nLO = 0 then

15: θ∗, L∗, w∗ ← Local opt. ⊲ Alg. 2

16: θ∗ ← least squares model fitting using L∗.

Algorithm 2 Local optimization.

Input: P – data points, L∗ – labeling,

w∗ – support, θ∗ – model;

Output: L∗
LO – labeling, w∗

LO – support, θ∗LO – model;

1: w∗
LO, L

∗
LO, θ

∗
LO, changed← w∗, L∗, θ∗, 1.

2: while changed do

3: G← Build the problem graph. ⊲ Alg. 3

4: L← Apply graph-cut to G.

5: I7m ← Select a 7m-sized random inlier set.

6: θ ← Fit a model using labeling I7m.

7: w ← Compute the support of θ.

8: changed← 0.

9: if w > w∗
LO then

10: θ∗LO, L
∗
LO, w

∗
LO, changed← θ, L, w, 1.

Algorithm 3 Problem Graph Construction.

Input: P – data points, A – neighborhood-graph

θ – model parameters, θ∗ – model;

Output: G – problem graph;

1: G← EmptyGraph().

2: for p ∈ P do

3: c0, c1 ← K(φ(p, θ), 1− K(φ(p, θ), ǫ)
4: G← AddTerm1(G, p, c0, c1).

5: for (p, q) ∈ A do

6: c01, c10 ← 1, 1.

7: c00 ← 0.5(K(φ(q, θ) + K(φ(p, θ)).
8: c11 ← 1− 0.5(K(φ(q, θ) + K(φ(p, θ)).
9: G← AddTerm2(G, p, q, c00, c01, c10, c11).

As it is well-known for RANSAC, the required iteration

number k, w.r.t. the inlier ratio η, sample size m and con-

fidence µ, is calculated as k = log(1 − µ)/ log(1 − ηm).
Re-arranging this formula to µ leads to equation µ = 1 −
10k log(1−ηm) which determines the confidence of finding

the desired model in the kth iteration if the inlier ratio is η.

Suppose that the algorithm finds a new so-far-the-best

model with inlier ratio η2 in the k2th iteration, whilst the

previous best model was found in the k1th iteration with

inlier ratio η1 (k2 > k1, η2 > η1). The ratio of the confi-

dences µ12 in those two models is calculated as follows:

µ12 =
µ2

µ1
=

1− 10k2 log(1−ηm

2
)

1− 10k1 log(1−ηm

1
)
. (6)

In experiments, we observed that a model that leads to ter-

mination if optimized often shows a significant increase in

the confidence. Replacing the parameter blocking LO in

the first k iterations, we adopt a criterion µ12 > ǫconf, where

ǫconf is a user-defined parameter determining a significant

increase.

4. Experimental Results

In this section, GC-RANSAC is validated both on syn-

thesized and publicly available real world data and com-

pared with plain RANSAC [7], LO-RANSAC [5], LO+-

RANSAC, LO’-RANSAC [15], and EP-RANSAC [14]. For

EP-RANSAC, we tuned the threshold parameter to achieve

the lowest mean error and the other parameters were set

to the values reported by the authors. Note that the com-

parison of the processing time with this method is affected

by the availability of a Matlab implementation only. All

methods apply PROSAC [4] sampling and use MSAC-like

truncated quadratic distances with threshold set to ǫ = 0.3
pixels (similarly as in [15]). EP-RANSAC uses inlier max-

imization strategy since its cost function cannot be replaced

straightforwardly. The radius of the sphere to determine

neighboring points is 20 pixels and it is applied to the con-

catenated 4D coordinates of the correspondences. Parame-

ter λ for GC-RANSAC was set to 0.1 and ǫconf = 0.1.

Synthetic Tests on 2D Lines. To compare GC-RANSAC

with the state-of-the-art in a fully controlled environment,

we chose two simple tests: detection of a 2D straight or

dashed line. For each trial, a 600 × 600 window and a

random line was generated in its implicit form, sampled at

100 locations and zero-mean Gaussian-noise with σ stan-

dard deviation was added to the coordinates. For a straight

line, the points were generated using uniform distribution

(see Fig. 2a). For a dashed line, 10 knots were put ran-

domly into the window, then the line is sampled at 10 lo-

cations with uniform distribution around each knot, at most

10 pixels far (see Fig. 2b). Finally, k outliers were added to

the scene. 1000 tests were performed on every noise level.
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Figure 1: The mean angular error (in degrees) of the ob-

tained 2D lines plotted as the function of noise σ (in pixels).

On each noise σ, 1000 runs were performed. The line type

and outlier number is (a) straight line, 100%, (b) straight

line, 500% (c) dashed line, 100% and (c) dashed line, 500%.

LO LO+ LO’ GC

L 6% 5% 4% 15%

F 29% 30% 24% 32%

Table 1: Percentage of “not-all-inlier” minimal samples

leading to the correct solution during line (L) and funda-

mental matrix (F) fitting. For lines, the average over 1000
runs on three different outlier percentage (100%, 500%,

1000%) and noise levels 0.0−9.0 px is reported, thus 15000
runs were performed. For F, the mean of 1000 runs on the

AdelaideRMF dataset is shown.

Fig. 1 shows the mean angular error (in degrees) plot-

ted as the function of the noise σ. The first and second

rows report the results of the straight and dashed line cases.

For the two columns, 100 and 500 outliers were added, re-

spectively. According to Fig. 1, GC-RANSAC obtains more

accurate lines than the competitor algorithms.

Estimation of Fundamental Matrix. Evaluating the per-

formance of GC-RANSAC on fundamental matrix estima-

tion, we used kusvod2 (24 pairs)3, Multi-H4 (5 pairs),

and AdelaideRMF5 (19 pairs) datasets (see Fig. 3 for ex-

amples). Kusvod2 consists of 24 image pairs of different

sizes with point correspondences and fundamental matrices

3http://cmp.felk.cvut.cz/data/geometry2view/
4http://web.eee.sztaki.hu/ dbarath/
5cs.adelaide.edu.au/ hwong/doku.php?id=data

(a) (b)

Figure 2: An example input for (a) straight and (b) dashed

lines. The 1000 black points are outliers, the 100 red ones

are inliers. Best viewed in color.

estimated using manually selected inliers. AdelaideRMF

and Multi-H consist a total of 24 image pairs with point

correspondences, each assigned manually to a homography

(or the outlier class). For them, all points which are as-

signed to a homography were considered as inliers and oth-

ers as outliers. In total, the proposed method was tested

on 48 image pairs from three publicly available datasets for

fundamental matrix estimation. All methods applied the 7-

point method [10] to estimate F, thus drawing minimal sets

of size seven in each RANSAC iteration. For the model

re-estimation from a non-minimal sample in the LO step,

the normalized 8-point algorithm [11] is used. Note that all

fundamental matrices were discarded for which the oriented

epipolar constraint [6] did not hold.

The first three blocks of Table 2, each consisting of four

rows, report the quality of the epipolar geometry estima-

tion on each dataset as the average of 1000 runs on ev-

ery image pair. The first two columns show the name of

the tests and the investigated properties: (1) LO: the num-

ber of applied local optimization steps (graph-cut steps are

shown in brackets). (2) E is the geometric error (in pixels)

of the obtained model w.r.t. the manually annotated inliers.

For fundamental matrices and homographies, it is defined

as the average Sampson distance and re-projection error,

respectively. For essential matrices, it is the mean Samp-

son distance of the implied fundamental matrix and the cor-

respondences. (3) T is the mean processing time in mil-

liseconds. (4) S is the average number of minimal samples

have to be drawn until convergence, basically, the number

of RANSAC iterations.

It can be clearly seen that for fundamental matrix estima-

tion GC-RANSAC always obtains the most accurate model

using fewer samples than the competitive methods.
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(a) Homography; homogr dataset

(b) Homography; EVD dataset

(c) Fundamental matrix; kusvod2 dataset

(d) Fundamental matrix; AdelaideRMF dataset

(e) Essential matrix; Strecha dataset

(f) Affine transformation; SZTAKI dataset

Figure 3: Results of GC-RANSAC on example pairs from

each dataset and problem. Correspondences are drawn by

lines and circles, outliers by black lines and crosses, every

third correspondence is drawn.

Estimation of Homography. In order to test homography

estimation we downloaded homogr6 (16 pairs) and EVD7

(15 pairs) datasets (see Fig. 3 for examples). Each con-

sists of image pairs of different sizes from 329 × 278 up

to 1712 × 1712 with point correspondences and manually

selected inliers – correctly matched point pairs. Homogr

dataset consists of short baseline stereo pairs, whilst the

pairs of EVD undergo an extreme view change, i.e. wide

baseline. All methods apply the normalized four-point al-

gorithm [10] for homography estimation both in the model

generation and local optimization steps. Therefore, each

minimal sample consists of four correspondences.

The 4th and 5th blocks of Table 2 show the mean results

computed using all the image pairs of each dataset. It can be

seen that GC-RANSAC obtains the most accurate models

for all but one, i.e. EVD dataset with time limit, test cases.

Estimation of Essential Matrix. To estimate essential

matrices, we used the strecha dataset [26] consisting of

image sequences of buildings. All image sizes are 3072 ×
2048. The ground truth projection matrices are provided.

The methods were applied to all possible image pairs in

each sequence. The SIFT detector [16] was used to obtain

correspondences. For each image pair, a reference point

set with ground truth inliers was obtained by calculating

the fundamental matrix from the projection matrices [10].

Correspondences were considered as inliers if the symmet-

ric epipolar distance was smaller than 1.0 pixel. All image

pairs with less than 20 inliers found were discarded. In total,

467 image pairs were used in the evaluation.

The results are reported in the 6th block of Table 2. The

reason of the high processing time is that the mean inlier

ratio is relatively low (27%) and there are many correspon-

dences, 2323, on average. GC-RANSAC obtains the most

accurate essential matrices both in the wall-clock time lim-

ited and solution confidence above 95% experiments. A sig-

nificant drop can be seen in accuracy for all methods if a

time limit is given.

Estimation of Affine Transformation. The SZTAKI

Earth Observation dataset8 [2] (83 image pairs of size

320 × 240) was used to test affine transformation estima-

tion. The dataset contains images of busy road scenes taken

from a balloon. Due to the altitude of the balloon, the im-

age pair relation is well approximated by an affine transfor-

mation. Point correspondences were detected by the SIFT

detector. For ground truth, 20 inliers were selected manu-

ally. Point pairs with distance from the ground truth affine

transformation lower than 1.0 pixel were defined as inliers.

6http://cmp.felk.cvut.cz/data/geometry2view/
7http://cmp.felk.cvut.cz/wbs/
8http://mplab.sztaki.hu/remotesensing
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The estimation results are shown in the 7th block of Ta-

ble 2. The reported error is |Ap1 − p2|, where A is the es-

timated affine transformation and pk is the point in the kth

image (k ∈ {1, 2}). The methods obtained fairly similar re-

sults, however, GC-RANSAC is slightly more accurate. It

is marginally slower due to the neighborhood computation.

However, it is still faster than real time.

Convergence from a Not-All-Inlier Sample. Table 1 re-

ports the frequencies when a “not-all-inlier” sample led to

the correct model. For lines (L), it is computed using 1000
runs on each outlier (100, 500 and 1000) and noise level

(from 0.0 up to 9.0 pixels). Thus 15000 runs were per-

formed. A minimal sample is counted as a “not-all-inlier”

if it contains at least one point farther from the ground truth

model than the ground truth noise σ.

For fundamental matrices (F), the frequencies of success

from a “not-all-inlier” sample are computed as the mean of

1000 runs on all pairs of the AdelaideRMF dataset. In this

dataset, all inliers are labeled manually, thus it is easy to

check whether a sample point is inlier or not.

Evaluation of the λ setting. To evaluate the effect of the

λ parameter balancing the spatial coherence term, we ap-

plied GC-RANSAC to all problems with varying λ. The

evaluated values are: (i) λ = 0, which turns off the spatial

coherence term, (ii) λ = 0.1, (iii) λ = 1, (iv) λ = 10, and

(v) λ = 100. Fig. 4a shows the ratio of the geometric er-

rors for λ 6= 0 and λ = 0 (in percent). For all investigated

non-zero λ values, the error is lower than for λ = 0. Since

λ = 0.1 led to the most accurate results on average, we

chose this setting in the tests.

Evaluation of the criterion for the local optimization.

The proposed criterion (Eq. 6) ensuring that local optimiza-

tion is applied only to the most promising model candidates

is tested in this section. We applied GC-RANSAC to all

problems combined with the proposed and the standard ap-

proaches. The standard technique sets an iteration limit (de-

fault value: 50) and the LO procedure is afterwards applied

to all models that are so far the best. Fig. 4b reports the

ratio of each property (processing time – dark blue, LO –

light blue, and GC steps – yellow, geometric error – brown)

of the proposed and standard approaches. The new criterion

leads to significant improvement in the processing time with

no deterioration in accuracy.

Processing Time. Fig. 4c shows the breakdown of the

processing times of GC-RANSAC applied to each problem.

The time demand of the neighborhood computation (dark

blue) linearly depends on the point number. The light blue

one is the time demand of the sampling and model fitting
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Figure 4: (a) The effect of the λ choice weighting the spa-

tial term. The ratio of the geometric error (in percentage)

compared to the λ = 0 case (no spatial coherence) for each

problem (L – lines, F – fundamental matrix, E – essential

matrix, H – homography, A – affine transformation). (b)

The effect of replacing the iteration limit before the first LO

applied with the proposed criterion, i.e. the confidence rad-

ically increases. The ratios (in percentage) of each property

of the proposed and that of standard approaches. (c) The

breakdown of the processing times in percentage w.r.t. the

total runtime. All values were computed as the mean of all

tests. Best viewed in color.

step, the yellow and brown bars show the model verification

(support computation) and the proposed local optimization

step, respectively. The sampling and model fitting part dom-

inates the process.

5. Conclusion

GC-RANSAC was presented. It is more geometrically

accurate than state-of-the-art methods. It runs in real-time

for many problems at a speed approximately equal to the

less accurate alternatives. It is much simpler to imple-

ment in a reproducible manner than any of the competitors

(RANSAC’s with local optimization). Its local optimiza-
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Approx. 60 FPS (or 99% confidence) Confidence 95%

RSC LO LO+ LO’ GC RSC LO LO+ LO’ EP-RSC GC

k
u
s
v
o
d
2

F
,
#
2
4 LO – 2 2 2 1 (3) – 1 1 1 – 2 (3)

E 5.01 4.95 4.97 5.02 4.65 5.18 5.08 5.03 5.22 7.87 4.69

T 6.2 6.1 6.3 5.9 4.6 4.9 5.2 5.1 4.9 439.9 3.6

S 117 96 99 111 70 93 76 78 87 – 53

A
d
e
l
a
i
d
e

F
,
#
19

LO – 2 2 2 1 (3) – 2 2 3 – 2 (4)

E 0.55 0.53 0.52 0.55 0.50 0.44 0.45 0.43 0.44 0.71 0.43

T 14.2 14.8 14.9 14.1 18.9 262.7 194.2 210.9 237.1 2 121.9 227.1

S 124 113 113 122 116 1 363 1 126 1 205 1 305.00 – 1 115

M
u
l
t
i
-
H

F
,
#
4

LO – 1 1 1 1 (3) – 2 1 2 – 1 (3)

E 0.35 0.34 0.34 0.34 0.32 0.33 0.33 0.33 0.34 0.44 0.32

T 10.3 11.5 11.1 10.3 14.6 12.8 15.1 14.1 12.4 2 371.8 36.0

S 83 76 76 82 74 107 89 90 100 – 78

E
V
D

H
,
#
15

LO – 2 2 2 2 (2) – 4 4 4 – 3 (6)

E 1.53 1.63 1.51 1.58 1.53 0.96 0.95 0.95 0.96 1.17 0.92

T 16.8 18.3 18.0 16.8 19.2 247.3 248.0 251.3 247.0 > 104 249.9

S 320 298 301 318 301 4 303 4 203 4 248 4 291 – 4 204

h
o
m
o
g
r

H
,
#
16

LO – 2 2 2 1 (3) – 2 2 2 – 1 (4)

E 0.53 0.53 0.53 0.53 0.51 0.50 0.50 0.49 0.50 0.58 0.47

T 7.1 10.4 9.8 7.1 7.6 17.1 10.1 9.9 8.5 3 339.7 7.9

S 193 175 175 189 159 450 212 214 226 – 165

s
t
r
e
c
h
a

E
,
#
46

7 LO – 1 1 1 1 (1) – 7 7 7 – 7 (7)

E 11.81 12.34 12.07 12.12 11.6 3.03 2.95 2.94 2.87 3.32 2.83

T 11.6 17.3 17.2 17.2 17.3 3 581.9 3 638.5 3 648.4 3 570.0 > 106 3 466.4

S 31 30 31 31 30 3 654 3 646 3 634 3 653 – 3 651

S
Z
T
A
K
I

A
,
#
52

LO – 1 1 1 1 (3) – 1 1 1 – 1 (3)

E 0.41 0.41 0.41 0.41 0.40 0.45 0.46 0.44 0.45 0.48 0.41

T 3.5 3.2 3.2 3.2 10.3 1.7 1.7 1.7 1.7 4 718.2 10.2

S 26 26 26 26 26 9 9 9 9 – 9

Table 2: Fundamental matrix estimation applied to kusvod2 (24 pairs), AdelaideRMF (19 pairs) and Multi-H (4 pairs)

datasets, homography estimation on homogr (16 pairs) and EVD (15 pairs) datasets, essential matrix estimation on the

strecha dataset (467 pairs), and affine transformation estimation on the SZTAKI Earth Observation benchmark (52

pairs). Thus the methods were tested on total on 597 image pairs. The datasets, the problem (F/H/E/A), the number of

the image pairs (#) and the reported properties are shown in the first three columns. The next five report the results at 99%
confidence with a time limit set to 60 FPS, i.e. the run is interrupted after 1/60 secs (EP-RANSAC is removed since it cannot

be applied in real time). For the other columns, there was no time limit but the confidence was set to 95%. Values are the

means of 1000 runs. LO is the number of local optimizations and the number of graph-cut runs are shown in brackets. The

geometric error (E , in pixels) of the estimated model w.r.t. the manually selected inliers is written in each second row; the

mean processing time (T , in milliseconds) and the required number of samples (S) are written in every 3th and 4th rows.

The geometric error is the Sampson distance for F and E, and the projection error for H and A.

tion step is globally optimal for the so-far-the-best model

parameters. We also proposed a criterion for the applica-

tion of the local optimization step. This criterion leads to

a significant improvement in processing time with no dete-

rioration in accuracy. GC-RANSAC can be easily inserted

into USAC [23] and be combined with its ”bells and whis-

tles“ like PROSAC sampling, degeneracy testing and fast

evaluation with early termination.
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