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Abstract

In the last decade, graph-cut optimization has been pop-

ular for a variety of pixel labeling problems. Typically

graph-cut methods are used to incorporate a smoothness

prior on a labeling. Recently several methods incorporated

ordering constraints on labels for the application of object

segmentation. An example of an ordering constraint is pro-

hibiting a pixel with a ”car wheel” label to be above a

pixel with a ”car roof” label. We observe that the com-

monly used graph-cut based α-expansion is more likely to

get stuck in a local minimum when ordering constraints are

used. For certain models with ordering constraints, we de-

velop new graph-cut moves which we call order-preserving

moves. Order-preserving moves act on all labels, unlike α-

expansion. Although the global minimum is still not guar-

anteed, optimization with order-preserving moves performs

significantly better than α-expansion. We evaluate order-

preserving moves for the geometric class scene labeling

(introduced by Hoiem et al.) where the goal is to assign

each pixel a label such as “sky”, “ground”, etc., so order-

ing constraints arise naturally. In addition, we use order-

preserving moves for certain simple shape priors in graph-

cut segmentation, which is a novel contribution in itself.

1. Introduction

Pixel labeling problems involve assigning a label from a

finite set of possibilities to each image pixel. Pixel labeling

is often solved in a global optimization framework. An en-

ergy function on the labeling is formulated and minimized.

An energy function often incorporates coherence assump-

tion, that is most nearby pixels should have similar labels.

A frequently used special case is Potts model [2], which

corresponds to assuming that the majority of nearby pixels

have exactly the same label. For Potts model, the graph-cut

based α-expansion [2] performs best in terms of speed and

accuracy [30] when compared to other popular minimiza-

tion methods such as TRW [20] and BP [33]. In this paper,

we restrict our attention to graph-cut optimization.

Recently several authors [32, 16] used a new interesting

constraint in graph-cut object segmentation. The object is

divided into several parts, for example, roof, wheels, etc.

Each part corresponds to a label. In addition to smooth-

ness, there are ordering constraints on labels. For example,

the ”car wheel” label cannot be above the ”car roof” label,

etc. Ordering constraints rule out improbable segmentations

and therefore improve results. Optimization with ordering

constraints, however, is harder, and the commonly used α-

expansion is more likely to get stuck in a local minimum.

We propose new order-preserving moves for graph-

cut optimization with certain ordering constraints. These

moves are developed for a specific model suitable for our

applications. However, the construction behind the order-

preserving moves can be reused for other models, with dif-

ferent number of parts. The advantage of order-preserving

moves over α-expansion is that they act on all labels simul-

taneously, giving each pixel a larger choice of labels.

We assume that an image is to be segmented into five

parts, namely ”center”, ”left”, ”right”, ”top”, ”bottom”. The

ordering constraints between the labels are easy to read

from their names: a pixel labeled as ”left” cannot be to the

right of any pixel labeled as ”center”, etc. In addition, we

can enforce a more stringent set of constraints: if a pixel p

labeled as ”center” has a neighbor q with a different label,

then q must have label ”left”, ”right”, ”top”, ”bottom” if it is

to the left, right, above, or below p, respectively. These ad-

ditional constraints imply that the region labeled as ”center”

is a rectangle, see Figs. 3(a-d).

We first evaluate order-preserving moves on the applica-

tion of geometric class scene labeling, inspired by Hoiem et

al. [13, 12]. In [12], a rough 3D reconstruction of a scene

is constructed. They train a classifier, which assigns a scene

region its most likely geometric label, such as “vertical”,

“sky”, etc. A rough 3D scene description (unlike tradi-

tional 3D reconstruction [9]), is useful for scene visualiza-

tion [12], object recognition [14], etc. Like [12], we train

a classifier to find out individual label preferences for each

pixel. Unlike [12], we formulate the problem in a global

optimization framework, using our five part model. We

demonstrate the usefulness of the extracted 3D structure for



virtual scene walk-through. See also [26] for a related work

on 3D reconstruction from a single image.

Our second application is incorporating certain simple

shape priors in graph-cut segmentation of an object from

its background. Shape priors for segmentation in gen-

eral [22, 25, 4] and segmentation with a graph-cut [11, 21] is

an area much interest recently. General segmentation with

a shape prior is usually based on local optimization, and

therefore the solution is prone to getting stuck in a local

minimum. The graph-cut methods in [11, 21] have to regis-

ter the shape model with the image during the segmentation

process, which is a difficult task in itself.

Instead of shape priors specific to some object, like

in [11, 21], we investigate simple generic shapes such as

”rectangle”, ”trapezoid”, etc. We observe that by split-

ting an image into parts with ordering constraints between

them, we can enforce the ”center” region to be of a certain

shape, for example, a rectangle, as in Fig. 3. Usually the

object/background segmentation is formulated as a binary

labeling: the labels are the object and the background. We

use more than two labels to incorporate a shape prior: the

object corresponds to the ”center” label and the other la-

bels correspond to the background. This is a new approach

for incorporating shape priors. It is the relative order of the

parts that enforce a certain shape for the object. We use a

rectangular and a trapezoidal shape, although other simple

shapes can be implemented too. In [19], they use a similar

idea but only for rectangular shapes.

The paper is organized as follows. Sec. 2 reviews graph

cut optimization. Sec. 3 explains order-preserving moves.

Sec. 4 and 5 present order-preserving moves for the geo-

metric scene labeling and for simple shape priors.

2. Graph-Cut optimization

In this section we describe the graph-cut optimization

framework of [2]. Suppose we have a pixel labeling prob-

lem where the task is to assign to each image pixel p some

label from a finite label set L. Let P be the set of all pix-

els in an image, and fp be a label assigned to a pixel p (i.e.

p ∈ P , fp ∈ L). Let f = {fp|p ∈ P} be the collection of

all pixel/label assignments. The energy function is:

E(f) = λ
∑

p∈P

Dp(fp) +
∑

(p,q)∈N

Vpq(fp, fq) (1)

In Eq. (1), Dp(fp) and Vpq(fp, fq) are called the data and

the smoothness terms, respectively, and N is a neighbor-

hood system on P . Our N is the 4-connected grid, which

consists of ordered pixel pairs (p, q) s.t. p < q. Dp(fp)
is the penalty for p to have label fp, and thus it encourages

each pixel to be assigned the label of smallest penalty.

The smoothness term Vpq(fp, fq) encourages spatial

consistency by penalizing neighboring pixels p and q that

are not assigned the same label. For example for Potts

model, Vpq(fp, fq) = 0 if fp = fq and Vpq(fp, fq) = wpq

(a) p is the left neighbor of q (b) p is the top neighbor of q

Figure 1. Smoothness terms Vpq(fp, fq)

if fp 6= fq , where wpq is a positive coefficient that can

depend on the particular pixel pair (p, q). To encourage dis-

continuities to align with the image edges, typically wpq is

small if there is an intensity edge between pixels p and q.

For Potts model, in case of two labels, the energy in

Eq. (1) can be minimized exactly, and in the multi-label

case a solution that is optimal within a factor of two can

be found with the α-expansion [2]. The α-expansion finds

a local minimum with respect to expansion moves. Given

a labeling f and a label α, a move from f to fα is called

an α-expansion if fp 6= fα
p ⇒ fα

p = α, i.e the set of pixels

labeled as α ”expands” in fα. The optimal α-expansion can

be found efficiently using a min-cut/max-flow algorithm.

The α-expansion algorithm iterates over all labels α, find-

ing the best α-expansion, until convergence.

In addition to spatial consistency, Vpq can be used to in-

corporate ordering constraints on labels. For example, if p

is immediately to the left of q, to prohibit f(p) = ”center”
and f(q) = ”left”, we set Vpq(”center”, ”left”) = ∞.

After adding ordering constraints to Potts model, the factor

of 2 approximation no longer holds.

3. Order-Preserving Moves
In this section we explain order-preserving moves. For

compactness, we abbreviate label names with their first let-

ter, i.e. L, R, T , B, C, correspond, respectively, to ”left”,

”right”, ”top”,”bottom”,”center”. The smoothness terms

Vpq for horizontal neighbors are in Fig. 1(a), and for ver-

tical neighbors are in Fig. 1(b). Positive coefficient wpq is

chosen as discussed in Sec. 2. The model in Fig. 1 is Potts

plus the ordering constraints. Under this model, a labeling

has a finite energy only if the ”center” part is a rectangle,

and the ”left”, ”right”, ”top”, ”bottom” parts are to the left,

right, above, below the ”center” part, respectively. For ex-

ample, all labelings in Figs. 2 and 3 have finite energy.

To motivate order-preserving moves, we first illustrate

that with ordering constraints, it is easier for α-expansion

to get stuck in a local minimum. This problem is also re-

flected by the fact that the factor of 2 bound does not hold if

ordering constraints are added to the Potts model. Authors

in [32, 16] who used ordering constraints cannot achieve

good results with α-expansion alone.

Consider Fig. 2, which shows the results of α-expansion



(a) after one iteration (b) after two iterations

Figure 2. Results with α-expansion. Initial labeling, not shown, is

all pixels labeled as ”center”. Color scheme: green = “bottom”,

yellow = “left”, cyan = “center”, magenta = “right”, blue = ”top”.

This color scheme is consistent throughout the paper.

for an instance of a geometric class labeling problem.

Fig. 2(a) shows the labeling after one iteration, where

one iteration means one α-expansion for each label α ∈
{L,R, T,B,C}. Fig. 2(b) shows the labeling after two it-

erations. Only the B region expands from (a) to (b), and the

algorithm, in fact, converges after 2 iterations. However, the

labeling in Fig. 2(b), which has energy of 1, 590, 159, is far

from the optimum. Fig. 3(d) shows the labeling (found by

our algorithm) that has a much better energy of 1, 443, 150.

The problem with the local minimum in Fig. 2(b) is as fol-

lows. To get to a better labeling, a smaller C region is

needed. Labels B, T , L, and R need to expand, each one

separately, to obtain a smaller C region. However, each in-

dividual expansion on the B, T , L, R does not result in a

lower energy, and so the expansion algorithm gets stuck in a

local minimum. We also show experimentally in section 4.2

that the energies obtained by the order-preserving moves are

significantly better than those of α-expansion.

In order to improve on α-expansion moves in presence

of ordering constraints, we should allow a pixel to have a

choice of labels to switch to as opposed to just a single la-

bel α. Let Lp be a subset of labels that pixel p is allowed

to switch to in one move. Typically, graph-cut algorithms

use the same rule for choosing Lp for every pixel. For α-

expansion, Lp consists of α and the old label of pixel p.

For α-β swap [2], Lp = {α, β}. For global optimization

methods in [18, 27], Lp = L, but they can handle only a

restricted type of energies, and ours is not of that type.

Our insight is that by using different rules when select-

ing Lp for different pixels, we can have a larger Lp for

each pixel, as compared to α-expansion, that is there is

more labels to choose from for each pixel in a single move.

Notice that the choice of Lp precisely defines the allowed

moves. That is a move from f to f ′ is allowed if f ′
p ∈ Lp,

∀p ∈ P . We must, therefore, select Lp’s in such a way that

the allowed move of minimum energy can be computed ef-

ficiently. In addition, Lp must have the old label of pixel

p, so that the set of allowed moves contains the old label-

ing and therefore the best allowed move is not worse than

the old labeling. We found two such moves, we call them

horizontal order-preserving and vertical order-preserving.

(a) vertical move from the

initial labeling

(b) horizontal move from (a)

(c) vertical move from (b) (d) horizontal move from (c)

Figure 3. Results with order-preserving moves on the same prob-

lem as in Fig. 2. Initial labeling (not shown) was all ”center”.

Fig. 3 shows labelings for order-preserving moves on the

same example of geometric labeling as in Fig. 2. A horizon-

tal move (from Fig. 3 (a) to Fig. 3(b)) allows any change

in labels except the region labeled as C cannot change its

height. Either increase or decrease in width of the C region

is allowed. The name ”horizontal” reflects the fact that the

C region can change in the horizontal, but not in the ver-

tical direction. Similarly, a vertical move (from Fig. 3(b)

to Fig. 3(c)) allows any change in labels except the region

labeled as C cannot change its width.

Let f be a labeling, and xp the horizontal coordinate of

pixel p. Let x be the smallest x coordinate of any pixel that

has label C in f , that is x = min{xp|fp = C}. Similarly,

let x be the largest x coordinate of any pixel that has label C

in f , that is x = max{xp|fp = C}. Recall that Lp is the set

of allowed labels that p can switch to in a move. It is easy

to see that for a vertical move, the following rules apply. If

px < x, then Lp = {T,L,B}. If x ≤ px ≤ x, then Lp =
{T,C,B}. Finally, if px > x, then Lp = {T,R,B}. In

words, divide f into three rectangles with two vertical lines,

one passing through the border of the L and C regions, and

the other passing through the border of C and R regions.

Then pixels in the left rectangle can switch their labels to

T , or L, or B; pixels in the middle rectangle can switch

their labels to T , or C, or B, and, finally pixels in the right

rectangle can switch their labels to T , or R, or B.

To find an optimal vertical move, we use a very impor-

tant result from Schlesinger et.al. [27]. In [27], they define

a submodular energy in the case of multiple ordered labels,

and give a graph construction that can be used to optimize

a submodular energy globally with the minimum cut. An

energy is submodular [27] if every Vpq term is submodular.

In turn, Vpq is submodular, if for any α < β, and α′ < β′,

Vpq(α, α′)+Vpq(β, β′) ≤ Vpq(α, β′)+Vpq(β, α′). See also

[6] for an equivalent result.

It is easy (but tedious) to check that the vertical move



energy with Vpq’s in Fig. 1 and label order T < L < B,

T < C < B, and T < R < B is submodular. Notice that

we do not have to order labels L,C,R with respect to each

other because a single pixel under vertical move never has

to choose between L, C, and R. There is no way to order

all labels L,C,R,B, T so that our energy is submodular.

Thus the main idea behind our moves is choosing Lp’s for

each p in such a way that the energy function restricted to

the corresponding move is submodular.

Due to symmetry, horizontal moves are handled simi-

larly to vertical. In practice, we compute the optimal hor-

izontal move by transposing the image, swapping labels L

and T , R and F , and computing the optimal vertical move.

Thus an order-preserving move gives every pixel a

choice of 3 labels to switch to, while α-expansion gives a

choice of only 2 labels. In addition, α-expansion effectively

acts on only one label, since only α label is allowed to in-

crease its territory during the move. Our moves act on all

labels simultaneously, since any label has a chance to in-

crease (as well as shrink) its territory during a single move.

We compute a local minimum with respect to the order-

preserving moves. We start with an initial labeling and

alternate between the best vertical and horizontal order-

preserving moves until no move that would result in a lower

energy can be found. The initial labeling has to be order-

preserving. In practice, we start with all pixels labeled as

C. Fig. 3 shows the sequence of labelings that we obtain

under the order-preserving moves from the first one in (a)

to the one at the convergence after 4 steps in (d). For the

first move (in (a)), no L and R labels are allowed, since the

initial labeling has all pixels labeled as C. That is why the

labeling in (a) looks odd.

4. Geometric Class Scene Labeling

In this section, we apply the order-preserving moves to

the geometric class scene labeling, inspired by Hoiem et

al. [12]. In [12], the goal is to automatically extract a

coarse 3D scene structure from a single 2D image by as-

signing each image pixel its rough geometric label, such as

“sky”, “ground”, etc. Unlike traditional 3D reconstruction,

[12] extracts only an approximate 3D structure. Traditional

3D reconstruction [9] requires special equipment, such as

multiple cameras, or range scanners, etc. Furthermore, the

3D reconstruction methods that are based on pixel corre-

spondences between several images are often unreliable, es-

pecially for indoor scenes which tend to be low-textured.

Even though 3D description from geometric scene labeling

is coarse, it is useful for many applications. We use it for

virtual scene walk-through.

In addition to [13, 12], there are other single view ap-

proximate reconstruction methods. Most require user inter-

action, see [17, 7, 28, 5]. Some are automatic [8, 3], but

make relatively restrictive assumptions about the scene.

Unlike [12], we formulate the problem in a global op-

timization framework, using the five part model discussed

in Sec. 3, and optimizing the energy in Eq. (1) with order-

preserving moves. Our five-part model is a less general

model, compared to [12]. Nevertheless, it is still appropri-

ate for many indoor/outdoor environments.

Our label set is L = {bottom, left, center, right, top}.

The Vpq terms in Eq. (1) are as in Sec. 3. The set of or-

dering constraints from Sec. 3 ensures that the boundaries

between the parts agree with the directions caused by the

perspective effects under the standard camera orientation,

that is the boundary between the ”left” and ”bottom” parts

is a diagonal slanted down and to the left, etc. For the data

terms in Eq. (1), we train a classifier in a manner similar

to [12], the details are in Sec. 4.1.

In a later version, Hoiem et al. [15] tried global optimiza-

tion for geometric labeling, without improvement. Our im-

provement is probably due to the following factors. In [15],

optimization is performed on superpixel level, not on pixel

level as we do. Therefore in case when a superpixel con-

tains pixels with different true labels, [15] cannot assign the

true labels to all the pixels in that superpixel. By optimizing

on pixel level we are able to break apart any superpixel, as

needed. In particular, we are able to better align the bound-

aries between the geometric labels with the intensity edges

in the image, which also helps. In addition, our stringent set

of ordering constraints and better optimization with order-

preserving moves contributes to the improvement in results.

4.1. Data term

Ideally, we want to model the data term as Dp(fp) =
− log Pr(fp|Fp), where Fp is an observed feature vector at

pixel p. However, for the geometric labels image data at a

single pixel is not enough for a useful likelihood model.

We follow Hoiem et al. [12] who observe that an im-

age region frequently does contain enough data to reliably

classify it with a geometric label. We first partition images

into “superpixels”1 using the algorithm by Felzenszwalb et

al. [23]. Then for each superpixel we compute a large set of

features which are the statistics on location, color, geome-

try, texture and edges, similar to [12]. Finally, we train the

SVM classifier [31] on the extracted feature vectors. The

output of SVM is an uncalibrated value, not a probability

distribution. We use the method in [24] to convert to the

distribution Pr(S = l|FS) where l is a label, FS is a fea-

ture vector computed on superpixel S, and S = l is the

event that all pixels inside S have the same label l.

We apply the distributions learned on superpixels to the

pixel based data term. That is Dp(fp) = − log Pr(Sp =
fp|FSp), where Sp is the superpixel that contains p. This

makes sense since the energy in Eq. (1) does not require

the true log probabilities. It is sufficient to use a reasonable

penalty scheme for the Dp(fp) term, namely a scheme that

1A superpixel is a region returned by a segmentation algorithm.



imposes higher penalties for the less likely labels. It is rea-

sonable to assume that if Pr(S = l1) < Pr(S = l2), then

for most pixels p ∈ S, Pr(p = l1) < Pr(p = l2).

4.2. Results
We have collected 600 images from different indoor en-

vironments, and downloaded 84 outdoor street images from

the Web and PASCAL database. All images were manually

labeled. We used half of the images for training and half for

testing (separately for indoor/outdoor).

Fig. 4 shows some results of SVM classification in (b),

α-expansion without ordering constraints in (c), and the

order-preserving moves in (d). SVM labelings are not

nearly as spatially consistent as those obtained with graph-

cut optimization. In the bottom row of Fig. 4 (b) SVM fails

to label most of the floor correctly. The spatial smoothness

constraints help to correct this, see Fig. 4 (c,d). Comparing

graph-cut without and with ordering constraints, in columns

(c) and (d), respectively, implausible regions are frequent

in Fig. 4 (c): center patches appear in the middle of left

patches, etc. In the bottom row of Fig. 4(c), the center re-

gion is significantly distorted, compared to (d). Ordering

constraints clearly help to rule out implausible solutions.

(a) (b) (c) (d)

Figure 4. Results: (a) original images (b) SVM labeling, (c) α-

expansion, no ordering constraints (d) order-preserving moves.

In Fig. 5 we show some results of α-expansion (in (b))

and order-preserving moves (in (c)) when ordering con-

straints are used in the energy function. As expected, α-

expansion gets stuck in a local minimum easier. We also di-

rectly compare the energy values produced by the two algo-

rithms. The order-preserving moves always give a smaller

energy compared to α-expansion. On the 300 indoor im-

ages, on average, the energy is 27.3% smaller (σ = 9.8%).

On the 42 outdoor images, on average, the energy is 29.2 %

smaller (σ = 18.5%).

(a) (b) (c)

Figure 5. Results: (a) original images, (b) α-expansion with order-

ing constraints, (c) order-preserving moves.

When SVM gives reasonable label probabilities, our al-

gorithm can significantly improve SVM results. When

SVM results are far from reasonable, order-preserving

moves can worsen SVM results, trying to satisfy the or-

dering constraints that cannot be reasonably satisfied, see

Fig. 8. Therefore, the overall accuracy improvement over

SVM computed for all the images is not large. However,

when SVM results are not reasonable, they are hardly use-

ful for applications anyway, see section 4.3.

We put SVM results in 10 equal bins, ordered from least

accurate to most accurate. The higher the bin number, the

more accurate are the SVM labelings in that bin. Fig. 6
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Table 1. Performance Summary
Percentage of Successful Labelings (%)

SVM α-exp. no OC α-exp. with OC order-pres.

Indoor 29.3 61.0 72.3 74.3

Outdoor 16.7 40.5 38.1 61.9

Overall Accuracy Rate (%)

SVM α-exp. no OC α-exp. with OC order-pres.

Indoor 83.0 84.1 84.7 85.0

Outdoor 74.0 75.2 71.0 75.3

shows, for each group, the accuracy of the algorithms. For

the worst bin (unreliable SVM results), order-preserving

moves actually decrease SVM accuracy for outdoor im-

ages. For the best bins (very accurate SVM results), order-

preserving moves do not improve SVM results significantly,

because there is not much improvement do be done any-

way. However, in the middle range, from about 4th bin to

the 8th bin, there is significant improvement over SVM and

α-expansion, especially for the outdoor images. For exam-

ple, in the 6th bin, order-preserving moves have about 80%

accuracy, followed by approximately 75% accuracy for α-

expansion and SVM.

Fig. 7 shows the percentage of labelings that have the

at least the accuracy rate specified on the horizontal axis.

For example, for indoor images, 52% of order-preserving

labelings have the accuracy rate of at least 90%, whereas

only 33% and 46% of SVM and α-expansion labelings, re-

spectively, have this accuracy rate. Order-preserving moves

always have a higher percentage of images at any given ac-

curacy rate in the range between 75% and 100%.
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Figure 7. Accuracy rate vs. % of images

We also compute percentage of ”successful” labelings,

where a labeling is successful if it has at least 90% over-

all accuracy or at least 80% overall accuracy and the ”cen-

ter” region is at least 60% accurate. We found experimen-

tally that such labelings can be used successfully for vir-

tual scene walk-through. Table 1 summarizes, in this order,

the performance of SVM, α-expansion without and with or-

dering constraints, and the order-preserving moves. Order-

preserving algorithm is a clear winner when it comes to the

percentage of successful labelings, and also shows a modest

improvement for the overall accuracy rate.

Some failures are in Fig. 8. The ordering constraints are

not violated in Fig. 8(d), but the ”center” region between the

”left” and the ”right” regions it is too thin to see at this res-

olution. Most failures occur when the ”center” data terms

are far from reasonable, as in Fig. 8(b).

(a) (b) (c) (d)

Figure 8. Failure cases (a) original images (b) SVM generated la-

bel probabilities (c) SVM labeling, (d) Order-preserving moves.

Figs. 9, 10 show more results, illustrating the accuracy

the proposed method can achieve with no user interaction.

The average processing time for the order-preserving

moves is 62.3 (σ = 25.6) seconds, calculated on a personal

computer with 2.4GHz CPU and 2048MB memory. This

time includes segmentation, feature extraction, data terms

calculation, and energy minimization. We use the efficient

max-flow algorithm of [1] for min-cut computation.

4.3. Application: Virtual Scene Walk­Through

We now illustrate the use of the obtained 3D struc-

ture for automatic virtual scene walk-through. We use the

spidery mesh [17] to fit perspective projection and mimic

3D camera transformations to navigate through the scene.

Spidery mesh is composed of four parts (vanishing point,

radial lines, inner and outer rectangles), which partition

the 2D image into five regions (left wall, right wall, rear

wall, floor, and ceiling). Since we have already labeled

the indoor image into exactly these five regions, generat-

ing the spidery mesh is trivial. We fit the radial lines with

the RANSAC [10] based on the boundary between differ-

ently labeled regions. Vanishing point is calculated as the

weighted average of the intersection of the radial lines, the

inner rectangle is the ”center” region, and the rest are outer

rectangles. Parts of the virtual scene walk-through are in

Fig. 11 and the video results are in the supplemental ma-

terial. Fig. 12 shows that using SVM results directly fails

to produce satisfactory results. The room appears to have

crooked walls and floor. We applied the same algorithm as

above to a reasonable (93.4 % accuracy) SVM labeling.

5. Shape Prior for Segmentation

We now explain how to incorporate simple geometric

shape priors in graph-cut segmentation of an object from its

background. A recent related work is [29], who segment

rectangles using generalized eigenvectors.

By splitting an image into several parts with ordering

constraints between them, we can enforce the ”center” re-

gion to be of a certain shape, for example, a rectangle, as



(a) (b) (a) (b) (a) (b)

Figure 9. Some results on indoor images (a) original images, (b) order-preserving moves.

(a) (b) (a) (b) (a) (b)

Figure 10. Some results on outdoor images (a) original images, (b) order-preserving moves.

(a) (b) (c)

(d) (e) (f)

Figure 11. Virtual scene walk-through using order-preserving la-

beling (a) spidery mesh overlayed on image (b) walk forward (c)

look left (d) look right (e) look down (f) look up

(a) (b) (c)

Figure 12. Virtual scene walk-through using SVM labeling (a) spi-

dery mesh overlayed on image (b) walk forward (c) look left

in Fig. 3. This is a new approach for shape priors in seg-

mentation. It is the relative order of the parts that enforces

a certain shape for the object. Instead of being a binary (ob-

ject/background) labeling, we have a multi-label problem

now. The ”center” region is the object, and the rest are the

background. We evaluate a rectangular and trapezoid shape,

although other simple shapes can be implemented too.

For a rectangle, we use the same Vpq as in Fig. 1, except

now any Vpq not involving label C is set to 0, since a dis-

continuity between, say L and B labels does not correspond

to the border between the object and the background.

We consider a trapezoid with parallel sides in horizontal

orientation, and the shorter side on top (for other trapezoids,

an image just needs to be rotated). To get a trapezoid, we

relax the following constraints in Fig. 1: for vertical neigh-

bors, we set Vpq(L,C) = Vpq(R,C) = wpq, instead of ∞.

This change allows the borders between the L and C regions

and C and R regions to be diagonals, slanted to the left and

to the right, respectively. This shape prior is not, strictly

speaking, a true trapezoid, since we cannot enforce the bor-

ders between the L and C regions and C and R regions to

be straight lines. We still use ”trapezoid” for the lack of

a better name. We have to slightly change the horizontal

order-preserving move, the details are straightforward, we

omit them for the lack of space.

We can use object-specific data terms based on bright-

ness, user interaction, etc. However here, to study the ef-

fect of the shape prior in isolation from regional influences,

we opted to find regions with strong intensity edges on the

boundary and agreeing with the shape prior. An object-



Figure 13. Rectangle shape prior.

Figure 14. Trapezoid shape prior.

specific Dp can always be added. We do have to set Dp for

any p on the image border. We set each border p to strongly

prefer its own border, i.e. for p on the left border, Dp(L) =
0 and Dp(C) = Dp(R) = Dp(T ) = Dp(B) = ∞, etc.

Thus our cost function (ignoring the border data terms,

which are constant for finite energy labelings) is the sum of

the wpq on the boundary between the object and the other re-

gions. To avoid a trivial solution (the object of size 1 pixel),

we make wpq’s negative whenever there is a strong inten-

sity edge between pixels p and q, biasing towards a larger

boundary coinciding with intensity edges. In general, mak-

ing wpq < 0 is not always possible, but it is possible for

our vertical/horizontal moves, we omit the details due to the

lack of space. Figs. 13 and 14 show the results with rectan-

gular and trapezoid prior, illustrating the ability to pick out

interesting regions obeying the corresponding shape priors

without any knowledge of the object/background regional

properties. In both figures, the original images are in the

top row, and the results are in the second row. All results

were obtained with the same parameter settings.
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