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A b s t r a c t  

In this paper, we continue a study of secret sliaring schemes for access structures 
based on graphs. Given a graph zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG, we require that  a subset of participants can 
compnte a secret key if llley contain an edge of G; otherwise, they can obtain no 
information regarding the key. We study the information rate of such schemes, 
which mensiires how much information is being distributed as shares as compared 
to the size of the secret key, and the average information rate, which is the ratio 
between the secret size and the arithmetic mean of the size of the shares. We 
give both upper and lower bounds on the optimal information rate and average 
information rate that  can be obtained. Upper bounds arise by applying entropy 
arguments due to Capocelli e t  al [lo]. Lower bounds come from constructions that 
are based on graph decompositions. Application of these constructions requires 
solving a particular linear programming problem. We prove some general results 
concerning the information rate and avcrage iiiforniation rate for paths, cycles and 
trees. Also, we study the 30 (connected) graphs on a t  most five vertices, obtaining 
exact values for the optimal information rate in 26 of the 30 cases, and for the 
opt in id average information rate in 28 of the 30 cases. 

Introduction 

A secret sharing scheme is a method of dividing a secret S anlong a set P of participants 
in such a way that: if the participants in A 2 P are qualified to know the secret, then 
by pooling together their information, they can reconstruct the secret S; but any set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A E P ,  which is not qualified to know S, has absolutely 110 information 0 1 1  the secret. 

Secret sharing schemes are useful in any iniportant action that requires the con- 
currence of several designed people to be initiated, as launching a missile, opening a 
bank vault or even opening a safety deposit bos. Secret sharing schemes are also used 
in management of cryptographic keys and multi-party secure protocols (see [12], for 
example). 

The first secret sharing schemes considered were threshold schemes, introduced by 
Blakley [3] and  Shnniir [21]. A ( k ,  71) threshold scheme allows a secret to be shared 
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among zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn participants in such a way that any zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ;  of them can recover tlie secret, but any zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k -  1, or fewer, have absolutely no information on the secret (see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[26] for a compreherisive 
bibliography on ( k ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA71) tlireshold schemes). 

Ito, Saito, and Nisliizeki 1141 described the general method of secret sharing. An 
access structurc is a specificalion of all the subsets of participants who can recover the 
secret and it is said to be monotone if any set which contains a subset that can recover 
the secret can itself recover the secret. Ito, Saito, and Nishizeki gave zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa metliodology zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto 
realize secret sharing schemes for arbitrary inonotone access structures. Subsequently, 
Benaloh and Leichter 111 gave a simpler and more efficient way to realize secret sharing 
schemes for any given monotone access structure. Other general techniques handling 
arbitrary access structures are given by Siinnioiis, Jackson, and Martin [27] and Martin 

An important issue ir, the impIementation of secret sharing schemes is the size of 
shares since the security of a system degrades as the amount of the information that 
must be kept secrel increases. If one requires that non-qualified set of participants 
should have no information on the secret, then tlie size of the shares cannot be less than 
the size of the secret [Is]. In [ I ]  i t  is proved that there exists an access structure for 
which any secret sharing sclieme must give to some participant a share which is from a 
domain larger than that of the secret. This was improved by Brickell and Stinson [S], 
who showed that for the same access structure, the number of elements in the domain 
of the shares must be a t  least 2(SI - 1 if the cardiiiality of the domain of the secret 
is Is(. Finally, Capocelli, De Santis, Gargono, and Vaccaro [lo] proved, for the same 
access structure, that the number of elements in the domain of the shares must be at 
least ISI’ ‘, and they showed  hat the bound is tight. 

Ideal secret sharing schemes, that is, schemes where the shares are taken from the 
same domain as that of the secret, were characterized by Brickell and Davenport [GI in 
terms of matroids. The uniqueness of the associated rnatroid is established by Martin 
in [lS]. Brickell constructed some classcs of ideal schemes in [S] ,and an interesting 
non-existence result was proved by Seymour [20]. 

We also briefly mention some “extended capabilities” of secret sharing schemes that 
have been studied. The idea of protecting against cheating by one or more participants 
is addressed in [IS], (261, [19], [23] and [O ] .  €‘repositioned schemes are studied in [26]. 
Finally, the question of how to set up a secret sharing scheme in the absence of a trusted 
party is solved in [13]. 

Different mewures are possible for the amount of secret information that must be 
given to participants. When we are interested in the maximumsize of the shares, we can 
use the information ratc [7], which is tlie ratio between the secret size and the maximum 
size of the shares. When we are interested in the total size of all the shares (and not just 
the maximum one), it is preferable to use as a measure the average information rate, 
which is the ratio between the secret size and the arithmetic mean of the size of all the 
shares [4], [IS], [17]. 

In this papcr, we study secret sliariiig scheines in the case where the access structure 
consists of tlie closure of a (conneckl) graph. We consider all 30 coiinected graphs on 
at most five vertices, and determine the exact value of the optima1 information rate in 
all but four cases and optimal average information rate i n  all but two cases. For these 
remaining cases, we give quite good upper and lower bounds. For two infinite classes of 
graphs - cycles of even length ( 2  6) and paths of arbitrary length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2 3) - we prove 
that the value of optimal information rate is 2/3. For paths and for cycles of even length 
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(2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshow how to realize secret sharing schemes with optimal average information 
rate. For any tree, we present a secret sharing scheine with information rate at least 1/2, 
and a scheme with average information rate at least 2/3, both of which which improve 
previous results. 

The main tool for proving upper bounds on the information rate is the entropy 
approach of Capocelli, De Santis, Gargano and Vaccaro [lo]. Lower bounds are obtained 
by construclion methods based on graph decompositions. The main idea of our new 
method is to use different constructions for different bits of tlie secret and different 
subsets of participants. Application of these constructions requires solving a suitable 
linear programming problem. 

The paper is organized as follows. IJI Section 2, we give the formal definition of 
secret sharing schemes and recall some basic results. In Section 3, we give our general 
graph decomposition construction. In Sectiori 4,  we discuss the methods for bounding 
information rates and prove the results nientioned above concerning cycles, paths and 
trees. In Section 5, we discuss the methods for bounding average information rates and 
prove the results concerning paths, cycles and trees. Then, in Section 6, we investigate 
the information rate and the average information rate for the connected graphs on at 
most five vertices. 

2 Secret Sharing Schemes 

We recall some definitions and notation from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7].  Suppose that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP is the set of partic- 
ipants. Denote by I? the set of subsets of participants which we desire to be able to 
determine the key; hence I? c 2 p .  l? is called the access sirucivre of the secret shar- 
ing scheme. I t  seems reasonable to require that r be monotone, i,e. if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB E J? and 
B C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'P, then C E !?. 

For any ro C 2p, define the closure of ro to be 

Note tliat the closure of any set of subset,s is monotone. 
Let K be a set or q elements called keys. For every participant P E P ,  let S p  be a set 

of s p  elements. Elements of the sets S p  are called shares. Suppose a dealer D wants to 
a share the secret key K E h' among tlie participants in P (we will m u m e  that D 4 P ) .  
He does this by giving each participant P E P a share from S p .  We say that the scheme 
is a perfect scheme (with respect to access structure r) if the following two properties 
are satisfied: 

1. if a subset 0 of participants pool their shares, where 0 E r,  then they can deter- 
mine the value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK ,  

2. if a subset B of participants pool their shares, where B 4 r, then they can deter- 
mine nothing about the value of Ii' (in an information-theoretic sense), even with 
infinite computational resources. 

Remark: In [7], Brickell and Stiiison required every participant to have shares taken 
from the same set, say S. This can easily be done, if desired, by taking a set S of 
cardinality max{sp : P E P} and defining injections # p  : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASp -+ S for every P E P .  
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Throughout this paper, we confine our attention to perfect schemes, so the term 

“secret sharing scheme” can be taken to mean “perfect secret sharing scheme”. 
We will depict a secret sharing scheme zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM .  This matrix is not secret, but 

is known by all the participants. There will be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1 columns in M. The first column 
of M will be indexed by D, and the remaining columns are indexed by the members of 
’P. In any row of M ,  we place the key Ii in the column D ,  and a possible list of shares 
corresponding to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA‘ in the remaining columns. When zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD wants to d ishbu te  shares 
corresponding to a key K ,  he will choose uniformly at random a row r of M having 11’ 
in column D ,  and distribute the shares in that row to tlie participants (i.e. M(r ,P )  is 
given to participant P ,  for all P E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP ) .  

With this matrix representation, we can present combinatorial conditions on the 
matrix M that will ensure that the two properties above are satisfied. These conditions 
are equivalent to conditions presented i n  [7].  

1. if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB E I? and M ( r ,  P) = M(r ’ ,  P )  for all P E 13, then M ( r ,  D) = M(r ’ ,  D), 

2. if B $ I?, then for every possible assignment f of shares to the participants in L3, 
say f = ( f p  : P E B )  (where f p  E Sp for all P E a), there exists a non-negative 
integer X(f, 43) such that 

I{.: M(r,P) = fpVP E B,M(r ,D)  = K}l  = A(f,B), 

independent of the value of 11‘ 

An important issue in tlie iiriplrjiiieiiLation of secret sharing schemes is the size of 
shares, since the security of a system degrades as the amount of the information that 
must be kepl secret increases. Define s = max{s, : P E P } .  The inJoformahn ra fe  [7] of 
the secret sharing scheme is defined to be 

1% (I 

log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs 
p =  -. 

(We use the term “information rate” because llie concept is similar to that of the in- 
formation rate of an error-correcting code.) It is not difficult to see that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq 5 s in a 
perfect scheme, so the inforination rate satisfies p 5 1. If a secret sharing scheme is to 
be practical, we do not want to have to distribute too much secret information as shares. 
Consequently, we want to make the information rate as close to 1 as possible. A perfect 
secret sharing scheme with information rate p = 1 is called ideal. 

In many cases it is preferable to limit the sum of the size ofsliares over all participants. 
TO analyze such cases we use the overage i n foma l ion  ra te [4], [17] defined as 

In a perfect secret sharing scheme, q 5 s, €or all P E P, and thus is 5 1. Also, p = 1 
if and only if = 1. It is clear that the iiiformation rate is always no greater than the 
average information rate; that is, 2 p for any scheme. Equality holds if and only if 
sp = sp, for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP, P’ E P .  
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2.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABasic Results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
we present some basic terminology from graph theory. Graphs do not have loops zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
multiple cdgcs; a graph with mult,iple edges will be termed a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAniull igraph. If G is a 
graph, we denote the vertex set of G by V ( G )  and the edge set by E(G). We consider 
undirected graphs only. In an  undirected graph the pair of vertices representing any 
edge is unordered. Thus, the pairs ( 1 1 ,  D )  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( v ,  u)  represent the same edge. To avoid 
overburdening the notation we often describe a graph G by the list of all edges E(G) 
a d  each edge ( u ,  u )  E E(G)  will be represented by uv. G is connected if any two vertices 
are joined by a path. The complete graph is the graph on n vertices in which any 
two vertices are joined by an edge. The complete mult ipari i ie graph  I<,,l,n2,...,n, is a 

graph on cf=, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, vertices, in which the vertex set is partitioned into subsets of size ni 
(1 5 i 5 t) called par ts ,  such that zlw is an edge if and only if u and 20 are in different 
parts. An alternative way to characterize a complete multipartite graph is to say that 
the complementary graph is a vertex-disjoint union of cliques. Note that  the complete 
graph Ii, can be thought of as a complcle rnultipartite graph with n parts of size 1. 

V ( C )  such that no 
two vertices in A are joined by an edge in E(G) .  The stabi l i ty  number or independence 
number a(G) is defined to  be the maximum cardinality of a stable set of C. A ueriee 
couer of G is a subset of vertices A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC V ( G )  such that every edge in E(G) is incident 
with a t  least one vertex in -4. Tlic v c d e r  coueriicg number P(G) is defined to be the 
minimum cardinality of a vertex cover of C. 

The girth of a graph G is defined to be the length of the smallest cycle in G. If G is 
acyclic, the girth is defined to be m. A regular graph is a graph where each vertex has 
degree d ,  for a fised d. 

We will use the notation PS(G, p i  q )  to denote a perfect secret sharing scheme with 
access structure c l (E(G))  and information rate p for a set of q keys. Analogously, a 
perfect secret sharing scheme with access structure cI( E/G) )  and average information 
rate for a set of q keys will be denoted by Z ( G , F ,  q ) .  Tl~rougl~out  this paper, we 
will restrict our attention to connected graphs. If a graph is not connected, it suffices to 
find schemes for each of its connected components. The following theorem was proved 
for information rate in  [i’]; the proof for average information rate is similar. 

Theorem 2.1 Suppose G is a graph liaving as iis connected components G,, 1 5 i 5 1. 
Suppose ihal iliere i s  a PS(Gi,p,q), 1 5 i < 1. Tlien lbere is a PS(G,p,q) .  Simi lar ly ,  
tf fhere is a E(G, ,F ,q )  for  1s i 5 t ,  lhen there as a ‘PS(G,F, q ) .  

A stable set or independent set  of G is a subset of vertices A 

Ideal scheines for connected graphs were characterized by Brickell and Davenport 
161. 

Theorem 2.2 Suppose G is n connected graph. Then there exists a PS(G, 1, q )  (and 
equivalently, a E ( G ,  1,q))  fo r  sorne q if a n d  only if G is a complete mul i ipar t i te  graph. 

The following tesult from [7] specifies some values of IJ for which ideal schemes can 
be constructed. 

Corollary 2.3 Suppose q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 t I S  a yrinic power.  Their there i s  a PS(Iin,,na,...,nt, 1 ,q ) .  

Proof: Let Vl, . . . , V, be the parts of the graph li,,,,, ,,,., ,<. Let 21,.  . . ,z{ be distinct 

elements of GF(q). We will construct a matrix M having q 2  rows and 1 + ni 
t 
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columns. The rows of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIM will be indexed by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGF(q) x GF(q) ,  and the columns will be 
indexed by {D} U V1 U , .  u &. Define the entries of M by the following rule: 

M ( ( a , b ) ,  D )  = a 

M((a.b),w) = a x ,  + b ,  

where a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb E C F ( q )  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu E V,. 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Remark If we start with a complete graph Ki ,  then the matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas constructed 
above, is a structure from combinatorial design theory known as an orthogonal array 
OA(t+ 1,q) .  

We recall two basic results from [7]. The first result indicates that the inforrnation 
rate is an appropriate measure of the efficiency of a secret sharing scheme. I t  states that 
the existence of one sclieme with a specified rate immediately implies the existence of a 
scheme with the same rate handling as mairy keys as desired. The result zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwas proved for 
information rate in [7] and for average information rate in [17, Corollary 2.41. 

Theorem 2.4 Suppose there I S  a PS(G,p,q) .  Then, for any posiiive rnteger n, there 
is a PS(G,p,q"). Similarly, zJ lliere i s  a E ( G , p ' ,  q ) ,  then f o r  any posit ive integer n, 
there IS a z ( G ,  p, 9"). 

If G is a graph, then GI is said to be a subgraph of G if V(G1) C V ( G )  and E(G1) C 
E(G).  If VI s V(G), then we define the graph GIVl] to have vertex set Vl and edge set 
{UW E E(G) : u ,  v E V I } .  We say that CQ"] is an tnduced subgraph of G. The following 
theorem is obvious. 

Theorem 2.5 Suppose C IS a graph  and GI IS an induced subgraph of G. lf there IS (1 
PS(G,p, q ) ,  then there ex is ts  a PS(Cl ,p ,q ) .  

Observe that the statement of the above theorein is not true for average information 
rate. 

Let A be an access structure such tliat  here are four participants, A ,  B ,  C, D,  
such that { A , B } ,  { B , C } ,  { C , D }  E A but { A , C } ,  { A , U }  @ A. Capocelli, De Santis, 
Gargano and Vaccaro [lo] proved that for any secret sharing scheme for A the sum of 
the entropies of the two random variables defined hy the shares given to B and C cannot 
be less than three tiines the entropy of the secret. By taking all probability distributions 
to be uniform, the upper bound can be stated as follows: 

Theorem 2.13 Let A be an access structure. If there are fou r  participants, A ,  B ,  c, D, 
such that: 

{A ,  B ) ,  { B ,  C ) ,  {C, D} E A but {A ,  CI, (44, Dl $i -4 

log s, + log sc 2 3 log q.  

lhen any secret sharing scheme f o r  A satisfies 

Examples of access structures that satisfy the hypotheses of the above theorem are 
the closure of P3 (the path of length three), which is the graph having edge set 

{AB ,  BC, C D } ;  
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and the closure of H ,  the graph having edge set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

{ A B ,  BC,CD, B D } .  

Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.6 will be the main tool we use for proving upper bounds on information zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ra te and average information rate for paths, cycles and general graphs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 Graph Decomposition Constructions 

suppose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG is a graph and GI, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . , G, are subgraphs of G, such that each edge of G 
occurs in at least one of the (7;’s. Suppose also that each Gi is a complete multipartite 
graph. Then we say that II = {GI,. . . , G,} is a complefe multipartite covering (or CMC) 
of G. The following construction utilizing CMCs is a special case of [i’, Theorem 3.51. 
The extension to average information rate is straightforward. 

Theorem 3.1 (CMC Construction) Suppose G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis a graph and 11 = {GI,. . . , G,3)  is 

a complete rnullipariite cowering of G. For 1 5 i 5 n, denote by t ,  the number of parts 
in Gi, and lei t = max{li : 1 5 i 5 n}.  For every uertez u, define R,, = I{i : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw E Ci} l .  
Le f  R = max{R, : u E V(G) }  and let  p = I /R. Finally, let F =  I V ( G ) l / ~ u r V ( G )  R,,. 
Then fhere i s  Q PS(C,  p,  q )  and a E ( G ,  p’, (I) for any prime power q >_ f. 

Proof: Let q 2 1 ,  and for 1 5 i 5 n, let hf; be the matrix representing PS(Gi,  l , q ) ,  
which exists by Corollary 2.3. Let K denote a set of  q keys and let S denote a set of q 
shares (which we can assume are the same for all the schemes). Then, define a matrix A4 
as follows: for every key K ,  and for every n-tuple of rows (r, : 1 5 i 5 n) such that T i  

karowofMi  ( l < i I n ) a n d M , ( r i , D ) = K  ( l L i I n ) , d e f i u e a r o w ( r ,  : l s i s n )  
of M by the rule 

hf((rl,rz,. . .,rn),u) = (Abft(ri,u) : v E V(Ci)) 
M((rl ,rz,. .  . , r n ) ,D )  = I<. 

0 

Remark: It is not necessary to actually construct the matrix M of the above proof. 
When D wishes to share a secret I ( ,  it suffices for him to choose, for each i ,  1 5 i 5 n, a 
random row r, of Mi such that M;(P,, 0) = K .  Then, for 1 5 i 5 n and €or each v E Gi, 
D gives M,(ri, u )  to participant u .  Hence, each participant u gets a share corresponding 
to each Gi such that u E V(G,). 

The main result of this section is a generalization of the CMC construction. The 
idea is to use several decompositions, rather than just one. 

Theorem 3.2 (Multiple CMC Const ruc t ion)  Suppose G is a graph and for 1 5 
i 5 L,  suppose nj = {Gjl,. , . ,Gjn,} is a complete multipariite covering of G .  Denote 
by t j i  the number of paris in Gji (1 5 j 5 !, I 5 i 5 nj) and define t = m={lji : 1 5 
i e, 1 5 i 5 n,}. For every vertex u and f o r  1 5 j 5 t?, define Rjv = I { i  : 1) E Gji)I- 

Define R, = zfzl R,, and le i  R = m&x{R, : v E V(C)} .  Finally, let p = e /R .  Then 
there is a PS(G, p,  qL)  for any prime power q 2 t .  

Proof: Carry out the construction of Theorem 3.1 independently for each of I! keys. 
U The details are left to the reader. 



Remark: In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1, we recover the original CMC construction. Also, we observe 
that we cannot improve the lower bound on by taking -t > 1. 

Example 3.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARecall lhai P3, the path of length three, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhas edges AB, BC, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACD. US- 
ing one CMC, ihe best information rate iliat can be obtained for ihe (ICC~SS structure 
cl(E(P3)) is  112. However, using two ChlCs, we can gei zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 213 (a  result firsf obiained 
b y  Capocelli, De zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASaniis, Gargano and Vaccaro [lo]). The two CMCs are 

and 
BCII {CDII. 

Then  R1 = & = 2 and Rz = R3 = 3. Hence R = 3 and p = 213. A PS(P3,2/3,4)  can 
constructed. Noie that if we implement ihe scheme, we get precisely the scheme presented 
in  [lo]. Also, either of these two CMCs yields a scheme walk average injormalion rate 
p =  415. 

Example 3.2 The graph H has edges AB,  BC, C D ,  BD.  From the two CMCs 

{ { A B ) , I B C ,  BD,  C D ) }  

{IRB, BC, B D ) ,  {CD)}, 
and 

we can construct a P S ( H ,  2/3,9) .  Using Corollary 2.3, this scheme could be implemented 
as follows. Take Ec = G F ( 3 )  x C F ( 3 ) .  The dealer wall choose fou r  random elemenis 
(indegendenily) jrom GF(3), say b I 1 ,  612, b21,  and 6zz. Given a key (KL ,  K z ) ,  the dealer 
du lnbu tes  shares as follows: parf-ltcipani A receives (611 + iil, b21 + K z ) ;  pariacapanf B 
receives ( 6 1 1 ,  biz, b21); parficzpani C receiucs (612 + K 1 ,  b21+  K z ,  bZ2); and padic ipanf D 
receives (biz + 2K1, b z l  + K z , b 2 2  + 1\12). Hence, S1 = GF(3)  x GF(3) and Sz = S3 = 
Sq = GF(3)  x CF(3) x GF(3).  Finally, observe that the first CMC yields a scheme wtih 
average mjormation rate F = 4 /5 ,  while thz second CMC would give p' = 2/3. 

4 Optimal Information Rates 

For a positive integer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq and a graph C ,  define 

P'(G, q )  = m u { p  : 3PS(C, P,  qo) ,  qo 5 q ) .  

Then define p'(G) = limq+mp*(G,q). Note that this limit exists and is a t  most 1. 
Also, note that the defiuition does not require that there exist a PS(C,p*(G),q) for 
any integer q. However, in all cases where we know the value of p'(G), we can actually 
construct a scheme having that illformation rate. 

Of course, p*(G) 5 1 for all graphs, and p'(G) = 1 if G is a complete multipartite 
graph. The first non-trivial upper bounds on p* were proved by Capocelli et  a1 [lo]. 
Using Theorem 2.6, they proved that p*(Ps) = 2/3 and p*(H) 5 213. In view of the 
construction given in Example 3.2, we have the following theorem. 

Theorem 4.1 Lei P3 be the graph having edges AB,  BC, C D  and lei H be the graph 
having edges AB, BC, CD, BD. Then  p'(P3) = 213 a n d  p ' (H)  = 2/3. 
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We can also prove the following general upper bound. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASuppose G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIS a coniiecied graph ihat is troi a complefe multipartiie graph. 
Then p’(G) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 2/3. 

Proof: We will prove that any connected graph that is not a complete multipartite 
graph must contain four vertices zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ,  y, z such that the induced subgraph G[w, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt, y, 21 
ia isomorphic to either P3 or H (from Examples 3.1 and 3.2). The desircd result then 
follows from Theorem 2.5. 

Let GC denote the complement of G. Since G is not a complete multipartite graph, 
there must exist three vertices z, y, z such that t y ,  yz E E(Gc) and I Z  E E(G). Since G 
is connected, there is some vertex w such that wy E E(C). Now, if { w z ,  wy}nE(G) # 0, 
then C [ w ,  Z,  y, z] is isomorphic to P3 or H ,  and we are done. So, assume that w x ,  wz E 
E( Gc). Define 

where d c  denotes the length of a shortest path (in G) between two vertices. Then 
d 2 2. Without 10% of generality, we can assume that d = d C ( y , z )  by symmetry. Let 
y = yo, y1, . . . , Yd- 1,z be a path in G. Then {w ,  z }  n { yl,  . . . , yd-1) = 8. I t  follows that 

0 

d = mil1{dG(y, I), dG(y, 2 ) ,  &(w, t ) ,  d G ( W ,  z ) } ,  

G[yd--~, yd-1, I ,  Z ]  is isomorphic to either P3 or kf, as desired. 

Hence, p’(G) = 1 if and only if G is a complete multipartite graph; and p’[G) _< 2/3 
if and olily if G is not complete multipartite graph. Thus, there is a “gap” in the possible 
values for p* (G). 

4.1 A Linear Programming Probleiii 

We are also interested in the best possible information rate that can be obtained by 
applying the multiple CMC construction, Theorem 3.2. We define the quantity &(G) 
which will denote this optimal rate for graph G. In view of the nature of the construction, 
we can construct a PS(G,p>(G) ,q )  for all sufficiently large prime powers q .  Of course, 

Our main observation is that &(G) can be computed by solving a suitable linear 
programming problem. We describe how this can be done in the remainder of the section. 

Suppose G is a graph. We define a partial order on the CMCs of G ils follows. 
Suppose IIj = {G j l , .  . .,G,,,,}, j = 1,2 ,  are two CMCs of G. For every vertex u and 
for j = 1,2,  define R,, = I{; : u E Gj,}l. Then we define IIl 5 I l 2  if R1, 5 Rz, for all 
II E L‘(G). Define a CMC, II, to be minimal if ll 5 n‘ for all CMCs ll‘ of G. 

Now, suppose II, = { G j l ,  . ..,GI,,}, 1 5 j 5 L ,  comprise a complete enumeration 
of the minimal CMCs of G. For every vertex u and for 1 5 j 5 L, define Rjv = I{; : u E 
Gji}). Consider the followiiig optimization problem O(G): 

PaG) 5 P’(G). 

Minimize Ro = max{Cf=, ajRj, : u E V(G)}  subject to: 

aj 2 0, l < j < L  

c:=l aj = 1 
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Theorem 4.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALei zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR* be the optimal soluiion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA#(G). Then p;J(C) = l/R*. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Proof: Suppose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR' = ma.x{c,"=, a,R,, : u E V(G)), where a, (1 5 j 5 L )  satisfy the 
constraints of O(G). It is clear that the aj are rational, so denote a, = b j / C j l  where 
b j ,  cj E 2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 5 j 5 L. Let C denote the least common multiple of c1 , . . . , C L .  Then take 
Caj copies of n, for 1 5 j 5 L ,  and apply the: multiple CMC construction. We get a 
scheme with information rate l/R"; hence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&(G) 2 1/R". 

Conversely, suppose we start with an application of the multiple CMC construction 
that yields the information rate p;(G). We can m u m e  without loss of generality that 
only minimal CMCs are used. Suppose there are b, copies of Ilj, 1 5 j 5 L. Let 
B = EL=, b j ,  and define aj = b , /B ,  1 5 j 5 L, Then (al, . . . , UL) satisfy the constraints 

0 

The difficulty with the problem O(G) is thak the objective function is the maxi- 
mum of several linear functions. However, we can easily obtain an "equivalent" linear 
programming problem #'(C): 

1 

1 

1 

of O(GI, and yield Ro = l/p;(G). Hence, p;(G) 5 l /R* ,  and we're done. 

It is easy to see that O(G) and O'(G) have lhe same optimal solution. Hence, we 
obtain the following result. 

Theorem 4.4 Lei  T' be the opfimal soluiion to O'(G). Then p&(C) = l/T*. 

4.2 

We next establish some general results when C is a path or a cycle. Pn will denote a 
path of length n, that is, the graph with edges XlXZ,. . . , XnXn+l; and C,, will denote 
a cycle of length n, that is, the graph with edges X1X2,. . . , Xn-lXn, XnX1. 

Theorem 4.5 I fn  2 3, fhen p*(Pn) = 2/3. 

Proof: If n 2 3, p'(Pn) 5 2/3 by Theorem 4.2. First, suppose n + 1 is even. Then 
p'(Pn) 2 2/3 by using the following two CMCs: 

Information Rate for Paths and Cycles 

II1 = ({Xlxz, XZx3}, (x3x4, X~XJ} , .  . . , (Xn-lXn, XnXn+lll 

and 

n2 = {{XlXZ}, {X2X3, ~3x4)~. . ., {Xn-2Xn-1, Xn-lXn}, {XnXn+l)}. 
If n + 1 is odd, then p'(Pn) 2 2/3 by using 

II3 = ({xlx2, XZX;}, (Xd4, x4x5), . . . B {Xn--ZXn--ll Xn-lXn), {xt3Xn+1}} 

and 

n4 = {{xlxZ},{~Zx3, X3X4},...,{Xn-lXnr x-xn+l}}* 
0 
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Theorem 4.7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI f n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfhen p>(Czn+l) = (2n + 1)/(3n + 2). 

ProoE Here, we appeal to Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4.4. First, we enumerate the minimal CMCs for 
CZn+1. Take the vertices to be XI, X2,. . . , Xan+lr and perform all arithmetic operations 
on indices mod(2n + 1). Define 

For 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 j 5 2n, define zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIlj by “adding” j to iiidices of no and reducing mod(2n + 1) to 
the interval 1 ,2, ,  . . ,2n+ 1. Then IIj, 0 5 j 5 2n, are the 2n+ 1 minimal CMCs. We get 
a(Zn+l)x(Zn+I) matrixofvalues zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARjx, ,  where Rjx.  = 1 ifand onlyif v - j  mod (2n+l )  
is odd (where - j  is reduced mod (2n+ 1) to the interval 1 ,2, .  , . , 2n+ 1). For example, 
in the case 2n + 1 = 5, we get the matrix 

2 
2 
1 
2 
1 

2 

; 1 ) .. 
2 

The optimal solution to O’(C2n+l) is obtained when a1 = . . . = ugn+1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl/(h + 1); 
then T = (3n+2)/(2n+1) and &(Czn+1) = (2n+1)/(3n+2). In applying the multiple 

0 CMC construction, we take one copy of each nj. 

4.3 Illformation Rate for Trees 

Brickell and Stinson proved in [7, Theorem 3.81 that for any graph G of maximum degree 
4 a secret sharing scheme can be realized wi th  information rate 

This was proved using the CMC construction, by decomposing G into complete bipartite 
graphs ICl,,,, (such a decomposition is called a star decomposition, since Kl,,,, is often 
called a star). In the case where G is regular and has girth at least 5 ,  this result is the 
best that can be obtained using star decompositions [7, Theorem 3.91. However, we c a n  
improve the lower bound whenever G is acyclic. We use star decompositions to obtain 
information rate equal to 1/2 in this case. 
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We now describe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt he  algorithm used to obtain this decomposition. First, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwe need 
some definitions. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa connected graph and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV(C) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAInc(u)  denotes the set of 
edges incidenl with v: 

By Adj(u) we denote the set of vertices adjacent to v :  

I ? l C ( V )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{UU : UZ) E E(G)} .  

Adj(u) = {u E V ( G )  : utl E E(G)} .  

Finally, by degree-one(u) we denote the set of vertices adjacent to u having degree one: 

degree-one(u) = { u  E Adj(u) : Ilnc(u)l = l}. 

For any vertex u E V ( G ) ,  let G, = C[{u)  u Adj(u) ] ,  i.e. V ( G V )  = { v }  U Adj(v) and 

The algorithm Covering constructs a star decomposition of G by calling the recur- 
E( G") = Inc( u) .  

sive algorithm Cover. The algorithms are as follows: 

Covering( G) 
Let S E V ( C )  
l I C 0  
Covcr (X) 
Output the star decomposition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII 

Cover ( X  ) 
JJ + nutcx1 
B + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{Y E A d j ( X )  : IInc(Y)l = 1) 
E(G) 6 E(G) - Inc(,Y) 

V(G)  - V(G1 - (sup)) 
For dl x" E A d j ( X )  - B do Cover(S') 

I t  easy to see that the algorithm Covering always finds a complete multipartite 
covering of G. If G is acyclic then each of its vertices belongs to at most two different 
connected subgraphs of the covering as stated by next lemma. 

Lemma 4.8 Lei II be a compleie mullipariite couering of u iree G obtained by applying 
Covering to  G. Then euch verier X E V ( C )  belongs to at most two diflerenl subgraphs 
C' ,W E XI. 

Proof: If Ilnc(S)I = 1 and ( X , Y )  E E(G)  with Ilnc(Y)l > 1 then Cover is called 
on Y. The vertex Y belongs to two connected subgraphs, and the graph G" with set 

of edges E(G') = E(G) - Inc (S)  and set of vertices V(G')  = V(G)  - ( B U { S ) )  

is still connected. Since G is a tree, if I l~c(x') l  > 1 then the graph is disconnected. 
A11 connected components of the new graph are trees and Cover is cailsd on each 
Y E A d j ( X )  - B. Since each Y E Adj( S) - B belongs to different connected components 
of G, each Y belongs to a t  most two connected subgraphs in n. Thus the lemmais proved. 
0 



The following result zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis immediate from Lemma 4.8 and Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.1. 

Corollary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4.9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAany zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtree a secrei shariicy scherne zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAexists with informaiion rafe p 2 
1/2. 

There is only one case in which G is connected and Covering gives a secret sharing 
Bchcrne with information rate greater than 1/2. This case arises when G is itself a star 
graph and X is chosen to be the vertex of maximum degree in G. 

5 Optimal Average Information Rates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-.. 

Recall that we use the notation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPS(G,  F, q )  to denote 3. perfect secret sharing scheme 
with access structure c l (E(G) )  and average information rate for a set of q keys. 

For a positive integer q and a graph G, define 

T ( G ,  9 )  = Inax{; : 3 = ( ~ ,  PI q o ) ,  qa 5 q } .  

Then define F'(G) = limq-m F"(C, 9). Note that this limit exists and is a t  most 1. 
Also, note that the definition does nof require that there exist a Z ( G ,  F'(G), q )  for any 
integer q. 

The following lemma is the analogue of Theorem 4.2 for the average information 
rate. I t  is a generalization of [16, Lemma 4.3.51. 

Lcrnma 5.1 Let G be a connected graph witli n vertices. I fC  as a complete muliiparf'iie 
graph then F*(C) = 1; olherwise F'(C) 5 n / ( u  + 1). 

Proof: Assume G is a complete multipartite graph. By Theorem 2.2 an ideal scheme 
exists; this scheme has an average information rate equal to 1. If G is not a com- 
plete multipartite graph then, from Theorem 4.2 and Theorem 2.6, there exist two 
vertices in V(G) ,  X and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY will1 S Y  E E(G),  such that logs, f l o g s ,  2 3logq. 
Thus Cxzv(c) log sx >_ (n + 1) logq so the average information rate is not greater than 

./(n + 1). n 

5.1 A Linear Programming Problem 

With respect to the information rate p'(G), we solved a linear programming problem 
to obtain a lower bound. Now, for average information rate F'(C), we will obtain an 
upper bound by solving a linear programming problem. 

Let G be a graph, and define a subgraph GL of G as follows: xy E E(G1) if and only 
if there exist vertices w ,  z E V ( C )  such that C [ w ,  2 ,  y, z]  = {wi, ry, yz} or G [ w ,  i, Y, 4 = 
{WZ,  zy, yz, zz}. We will take V(G1) to consist of all vertices in V(G) that are incident 
with at least one edge in E(GI) (i.e. we delete all isolated vertices from GI). We say 
that G1 is the foundniioti of G. 

For example, the path P4, having edges { A B ) ,  {BC} ,  {CD}, { D E } ,  11s foundation 
consisting of the two edges (BC} ,  {CD). 

If zy  is an edge in the foundation of a graph G, then by Theorem 2.6, logsz + 
log sY 2 3 log q for any secret sharing sclieme with access structure cl(E(G)). Consider 
the following linear programming problem d(G): 
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I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

Then we have the following upper bound on the average information rate. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.2 Let G be a graph zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith joundation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGL. Let c' be the opiimal soluiion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIc 
ihe problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd(G). Then 

Proof: Consider any secret sharing scheme realizing the access structure cl(E(G)).  For 
every vertex v E V(G),  define 

logs, 
1% P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,=- -  

Suppose vw is an edge of the foundation GI. Now, from Theorem 2.6 we get logs, + 
logs, 2 3logp, or a,, fa, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1. For any v E V ( G ) ,  we have s,, >_ q ,  so a,, 2 0. Hence, 
the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,'s, as defined above, arc a feasible solution for the problem d(C). Hence, 

where C' is the optiirial solution to d(G). I t  follows that 

But then we have 

which is the bound to be proved. a 
Remark: Given a graph GI the foundation GI can be determined in polynomial time. 
One way to do this is to check all 4-subsets of V(C) .  Every time we get an induced 
subgraph isomorphic to P3, we can add one edge to the foundation; and every time we 
find an induced subgraph isomorphic to I I ,  we can add two edges to the foundation. 
This algorithm requires time O(nq), where n = IV(G)l. Since the linear programming 
problem d(G) can be solved in polynomial time, so too can the bound of Theorem 5.2 
be computed in polynomial time. 

We have a couple of general observations 011 the linear programming problem d(G). 
Let d be a positive integer. A d-fucior of a graph is a spanning subgraph that, is regular 
of degree d .  
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Lemma zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALei G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe a graph hauitrg foundation GI. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIf GI has a d-facior for some 
inieger d 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, then the opfimal solution t o  d(G) i s  C’ = IV(G1)1/2. 

Proof: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALet the edges in the d-factor be Z j R l  1 5 j _< dn/2, where V(G1) = ( I , ,  . ., n}. 
Then we obtain the following: 

n 

i=l 

Hence, C’ 2 n/2. To obtain C* 5 n/2, let aj = 1/2 for 1 5 i 5 n. 0 

Next, note that C* 5 /?(GI). To see this, let W be a minimum vertex cover of GI, 
and define a, = 1 if v E W; av = 0, otherwise. This gives a feasible solution for which 
‘&,(c) u, = P(G1). In the case where GI is bipartite, this will in fact be the optimal 
solution, as follows. 

Lemma 6.4 Let G be a graph having fouidaiion GI. If GI i s  bipartite, then ihe opiirnal 
solution f o  A(G) i s  C’ = @(GI) and the opiimal solution i5 given by cr, = 1 a f w  E W ,  
a, = 0,  otherwise, where W is a mieimum vetiet cover of GI. 

Proof; It is well-known that the incidence matrix of a bipartite graph is a totally 
unimodular matrix (that is, the determinant of any square submatrix is 0 , l  or -1). 
Hence, if GI is bipartite, the linear programming problem d(G) and the corresponding 
integer programming problem have the same optimal solution. But an optimal solution 
to the integer programming problem is obtained from a vertex cover, as deacribed above. 

0 

Hence, we have the following bound as an immediate consequence. 

Theorem 5.5 Lei G be a graph wiih foundation GI, and suppose GI is bapariiie. Then 

5.2 Vertex Covers and Secret Sharing Schemes 

From Theorem 3.1, there exists a secret sharing scheme for a graph G with average 
information rate = ~ V ( G ) ~ / ~ , ~ v ~ G  R,,. Suppose we construct a scheme by using a 

in the decomposition. Then W must be a vertex cover of G. Conversely, if W is a vertex 
cover of G,  then we can use it to construct a star decomposition of G and hence a secret 
sharing scheme. The algorithm to do this is as follows: 

star decomposition, as in Section 4.3. L et W denote the set of centers of the stars used 

Algorithm 
Let W =  {ui ,..., wn] beavextexcoverofG 
I l - 0  
For i + 1 to n do 
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x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n: + n u t c x )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D - {Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA d j ( S )  : l Inc(Y) l  = 1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E(G) - E(G)  - I n c ( S )  

V ( C )  - V(G)  - (.Ut.)) 
Output the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstar decompositioii II 

We now show that if we construct a scheme from the star decomposition rI, then we 
can express as a function of IV(G)l, IE(G)I and IWI. Let II = {GI,. . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG,,}, where 
n = IW]. Consider a star G, = Kl,m in the decomposition. The Lotal number of shares 
in the scheme PS(Gi ,  1, q )  is m +  1 = IE(G,)l+ 1. Hence, tlie total number of shares in 
the scheme for G is: 

" 

Hence, applying Theorem 3.1, we have the following result. 

Theorem 5.6 Lei G be a graph arid W C_ V(G)  be a ver fez covering. Then a secrel 
sharing scheme for  G exists wiilr average information raie 

Since depends only on IWl, finding the maxiriiurri rale among all vertex coverings 
is equivalent to minimizing lWl, i.e. determining the vertex covering number P(G).  
Unfortunately, the problem of computing D(C) is NP-hard [ll]. However, for certain 
classes of graphs, such as bipartite graphs and chordal graphs, P(G) can be computed 
in polynomial time (see [Ill). We will return to this in Section 5.4. 

Let us mention a couple of general bounds that can be proved by this technique. It 
is obvious that W C V(G) is a vertex covering of G if and only if V - W is a stable 
set of G. Hence, P(G) = IV(C)l - a(C) .  Using known lower bounds on the stability 
number of a graph, we can obtain the following corollaries to Theorem 5.6.  

Corollary 5.7 Lei  G be a graph wi fh  IV(G)l= n and IE(G)I = m. Then 

Proof: Use Theorem 5.6 and the bound a(G) 2 n2/(2m + n) ([2, Corollary 2, p. 2791). 
0 

Corollary 5.8 Lel 0 be a graph wt ih  IV(G)l = n and mazitnuin degree d .  Then 

Proof: Use Theorem 5.G and tlie bound a(G) 2 ([2, Corollary 2, p. 27G1). 0 

Note that the bound on average information rate given by Corollary 5.8 exceeds the 
bound on iiiforrnatioii rate proved in [7, Theorem 3.81. 
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5.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAverage Information Rate for Paths and Cycles 

In this section we give an upper bound for average iiiformation rate for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP,,, the path of 
length n. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThen we show how to construct secret sharing schemes with optimal average 
information rate. 

If n is equal either to 1 01 to 2, then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP,, is a complete iiiultipartite graph and a secret 
sharing scheme with an average information rate equal to 1 exists. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn is greater than 
2, then the next theorem provides the optimal average information rate. 

Theorem 5.9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe optimal average tiiformalion rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof. secret shar ing scheme for  P,,, 
where n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 3, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis given by 

i j n  i s  even 

i fn  i s  odd 
F'(Pn) = 

Proof: It is easy to see that the foundation of P,, consists of the edges 

so it is isomorphic to Pn-2. P,,-a is bipartite, and p(Pn-,) = L?]. 
First suppose n even and n 2 4. By applying Theorem 5.5 we know that F'(Pn) 5 
2(n+ 1)/3n. We have P'(P,,) 2 2(n + l ) /3n by using the CMC I11 from Theorem 4.5. 
If n is odd and n 2 3, p"*(Pn) 5 2 ( n  + 1)/(3n + 1) by Theorem 5.5. We obtain a secret 
sharing scheme with average information rate equal to 2(n + 1)/(3n + 1) by using the 
CMC II3 from Theorem 4.5. n 

We now consider average information rate for cycles. If n is equal either to 3 or to 
4, then C, is a complete multipartite graph and a secret sharing scheme exists with an 
average information rate equal to 1. If n is greater than 4, then the next theorem gives 
the optimal average information rate for even length cycles, while for odd length cycles 
it gives upper and lower bounds. 

Theorem 5.10 The optimal average infornrufiun role of a secret sharing scheme for  
Cn, where n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 5, satisf ies 

F'(Gn) = 2/3 if n i s  even 

Zn 
< p'(C,,) 5 if n i s  odd. 

3nf1 - 

proof: I t  is easy to see that the foundation of C,, is again C,,. C,, is a 2-factor of itself, 
so c' = n/2, by Lemma 5.3. Applying Theorem 5.2, we get p'(Cn) 5 2/3. 
First, suppose n is even, n >_ 6 .  We have already shown in Theorem 4.6 that p'(Cn) = 
2/3. Since p"(C,,) 2 p*(C,,) and since F'(Cn) 2/3, we obtain p*(C,,) = 2/3. Next, 
let n be odd, n 2 5. From Theorem 4.7, we have p'(C,,) 2 2n/(3n + 1). Since 

0 F'(Cn) 2 p'(Cn) and since F'(Cn) 5 2/3, the stated bounds follow. 



18 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAverage Information Rate for Dees 

In this section, we discuss upper and lower bounds on the average information rate of 
secret sharing schemes for trees. 

For a graph zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdegree-one(G) denote the vertices in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV ( G )  having degree one. 
Our first observation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis that the foundation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof a tree T can be constructed by deleting 
all degree one vertices from T .  

Lemma 5.11 Let T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe a free; lhen ilre fovndaiion of T is 

TI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= T[V(T)  - degree-one(T)]. 

Proof: Let xy be an edge of T.  If {z, y} ndegree-one(T) # 0, then clearly, xy 6 E(T1). 
So assume (2, y) n degree-one(T) = (b. Let W L ,  yr E E(T) ,  where w # y, z # 2. Since 
T is a tree, wy,  w z ,  zz $ E(T) .  Hence, T [ w ,  2 ,  y, z ]  = { w c ,  zy, yz} and zy E E(T1). 0 

Remark: I t  is not difficult to see that the conclusion remains true if T is any bipartite 
graph having girth at  least six. 

Here now are our upper and lower bounds on the average information rate for trees. 

Theorem 5.12 Let T be a tree arid lef 'r; = T[V(T )  - degree-one(T)] .  Then  we have 

Proof: By Lemma5.11, T1 is the foundation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. Hence, the upper bound on ?* follows 
from Theorem 5.5. The lower bound followsfrom Theorem 5.6, since IE(T)J = lV(T)I - 1 
for any tree T.  0 

Remarks: 

1. Since T and TI are bipartite graphs, the vertex covering numbers can be computed 
in polynomial time. In fact, by IConig's Theorem, the vertex covering number of 
a biparitite graph equals the size of a maximum matching. 

2. The reader can check that, in the special case wliere T is a path, the upper and 
lower bounds of Theorem 5.12 coincide, and they agree with Theorem 5.9. 

Now, we give a general lower bound on the average information rate for trees. 

Theorem 5.13 Let T be a tree wiih n vertices. Then 

Proof: In a bipartite graph G with vertex bipartition Vl, Vz, both V, and Vz are vertex 
covers. Hence, P(G) L min{lVll, IVzI} 5 (IVll + IV21)/2. A tree is bipartite! so P(T) 5 

[I n/2. Apply Theorem 5.12 to obtain the stated result. 
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Graph zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Gi,...,Gg 
Gio, Gii zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

G 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
G13 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
G14 

Gl5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

6 The Connected Graphs on at Most Five Vertices 
this section, we give upper and lower bounds on the information rate and average 

information rate for the connected graphs on a t  most five vertices. First, there are nine 
connected graphs on at most four vertices. Seven of these are complete multipartite 
gaphs and admit ideal schemes: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK Z ,  K 3 ,  K l , 2 ,  K 4 ,  K 1 , 3 ,  Kl , l , z .  The remaining 
two graphs are P3 (the path of length 3) and the graph zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW (from Example 3.2). We 
have already shown that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp*(P3) = 2/3 (Theorem 4.5) and P'(P3) = 213 (Theorem 5.9). 
With regard to 11, we have ~'(11) = 2/3 (Theorem 4.1) and p * ( H )  = 4/5 (Example 3.2 
m d  Theorem 5.1). 

Thcre are 21 non- 
isomorphic connected graphs on five vertices. Of these 21 graphs, six are complete 
multipartite graphs and admit ideal schemes. These graphs are K 1 . 4 ,  1<2,3, K I , I , ~ ,  
K 1 , 2 , 2 ,  K ~ , ~ , I , Z  and Ic5. The remaining 15 graphs are depicted in Appendix A ,  where 
we also show the minimal C M  Cs for each graph. 

The bounds on information rate and average information rate are summarized in 
Table 1. The lower bounds are obtained by making use of CMC constructions. Upper 
bounds on information rate are given by Theorem 4.2, whereas upper bounds o n  average 
information rate are given by application of Theorem 5.2. 

So, let's move on to the connected graphs on five vertices. 

Inforination Rate Average information Rate 

p* = 2/3 j7* = 516 
p* = 2/3 

315 5 p* 5 2/3 

p* = 5/7 

F 8  = 5/7 

518 5 p' _< 2/3 5/8 j5* _< 2/3 
3/5 5 p* 5 2/3 

417 5 p* 5 2/3 

517 5 F *  5 10/13 

p* = 517 

The first G M C  for each graph in Appendix A gives rise to the scheme that attains 
the given lower bound for the average information rate. For the graphs GI, . . . ,GI], 
the schemes with information rate equal to 2/3 are obtained by taking one copy of each 
CMC shown in Appendix A.  We nest consider the lower bounds on p* for the remaining 
four graphs, GIZ, .  . . , GI5. 

First, let E(G12) = ( A B ,  BC, CD, DE, A E } .  Then Glz  is the cycle C5 and 

Let E(G13) = { A B ,  BC, BE, EC, CD}. p>(G13) = 3/5 is realized by using the 

Let E(G14) = { A B ,  A D ,  BD, BC, D E ,  C E } .  p;(G14) = 3/5 is realized by 

Finally we consider The four minimal CMCs of Gl5 are depicted in Appendix A.  

pZf(G12) = 5 / 8  from Theorem 4.7. 

three CMCs shown in Appendix A .  

using the three CMCs shown in Appendix A.  
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T h e  matr ix  of entries zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARjV is 

Hence the  linear programming problem to be solved is the following: 

Minimize T subject t o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
aj 2 0,1sj<4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 

Tlie opt imal solution is 

(a l ra23a31~41T) = (1/4,1/2,1/4,0,7/4) 

Hence, & ( G L ~ )  = 4/7, and this rate can be attained by taking one copy of I I i ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
two copies of nz, and one copy of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII,. 

NOW we turn to the upper bouiids on average information rate. Theorem 5.1 gives 
t h e  upper bound j5" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 5/6 for GI,  . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGg. So, there remain the six graphs Glo . . . , Cis 
to consider. 

Consider the graph Glo. The foundation of Glo consists of the lour edges BC, LIE, DC,  DE. 
This foundation is a 2-regular graph on four vertices, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso C' = 2 (Theorem 5.3). 
Hence, by Theorem 5.2, 7' 5 5/7. 

Consider the graph GI1. The foulidation of GI1 consists oC the four edgea BC, B E ,  DC, DE.  
As with (210, we obtain p" 5 5/7. 

G ~ z  is the cycle of length five, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA80 p" 5 2/3 (Theorem 5.10). 

Consider the graph Gl3. Tlie Foundat.ion of G13 consists of the three edges 
BC, BE, CE. This fouudation is B 2-regular graph on three vertices, so C' = 3/2 
(Theorem 5.3). IIence, by Theorem 5.2, p"' 5 10/13. 

Consider the graph Gl4. The Coundation of CIS consists of Ihe five edgea AB, A D ,  BC, BD,  DE. 
The optimal solution to h e  linear programming problein is C' = 2 .  llence, by 
Theorem 5.2, p' -< 5/7. 

Consider the graph GIa. The rouiidation of CIS consists of the five edges A B ,  AC, BC, C D ,  CE 
and is isomorphic to the foundation of Glr. As before, we get 6' I: 5/7. 
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Appendix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 

Minimal CMCs for llie Coiiriected Graphs on Five Vertices 
which are not Complete Multipartite zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c.-.-- 
A B  B C D  D E  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

E E 

A B  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 

A B C  

D 
D D 

D E  D D E  

L-l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc3 
A D  C A D D  C A B C  C 

E E E E  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 

A B C  D 
G4 

A B C C  D A B B C D D  

D E  

- T7 
A B C B  

D E  - 
AL D E  
A B C  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG5 

A B c  

E E 
E E  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

./n A B C D  A E B C D  A B C C D  

D E D E 

G7 M n o  A B C  
A A  B C C  A B B  C 

E 
E 

Ga 

C 

c. A B  B b D  

C 

D E  

A B D C  

A<D 

E B c  

D E  D E E  

A a  B c c  i 
B C  
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D E  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

G11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 
B C  

E D  

Gl2 Ay-J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T J c  

n B  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc 

E D D  

D E  D El E E  

G14 A a  A<D 

A< A/-. [ 
B C  C B C  B B  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC! 

A+< r" 
B c c  

n 3  

E E D  D 

E E  

/t 
A B c C D  

n3 

D E  E 
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