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Abstract

In this paper, we continue a study of secret sharing schemes for access structures
based on graphs. Given a graph G, we require that a subset of participants can
compute a secret key if they contain an edge of G; otherwise, they can obtain no
information regarding the key. We study the information rate of such schemes,
which measnres how much information is being disiributed as shares as compared
to the size of the secret key, and the average information rate, which is the ratio
between the secrel size and the arithinetic mean of the size of the shares. We
give both upper and lower bounds on the optimal information rate and average
information rate that can be obtained. Upper bounds arise by applying entropy
arguments due to Capocelli et al {10]. Lower bounds come {rom constructions that
are based on graph decompositions. Application of these constructions requires
solving a particular linear programming problem. We prove some general results
concerning the information rate and average information rate for paths, cycles and
trees. Also, we study the 30 (connected) graphs on at most five vertices, obtaining
exact values for the optimal information rate in 26 of the 30 cases, and for the
optimal average information rate in 28 of the 30 cases.

1 Introduction

A secret sharing scheme is a method of dividing a secret S among a set P of participants
in such a way that: if the participants in 4 C P are qualified to know the secret, then
by pooling together their information, they can reconstruct the secret S; but any set
A C P, which is not qualified to know S, has absolutely no information on the secret.

Secret sharing schemes are useful in any important action that requires the con-
currence of several designed people to be initiated, as launching a missile, opening a
bank vault or even opening a safety deposit box. Secret sharing schemes are also used
in management of cryptographic keys and multi-party secure protocols (see [12], for
example).

The first secret sharing schemes considered were threshold schemes, introduced by
Blakley [3] and Shamir [21]. A (k,n) threshold scheme allows a secret to be shared
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among n participants in such a way that any k of them can recover the secret, but any
k—1, or fewer, have absolutely no information on the secret (see {26] for a comprehensive
bibliography on (k, n) threshold scliemes).

Ito, Saito, and Nishizeki [14] described the general method of secret sharing. An
access structurc is a specification of all the subsets of participants who can recover the
secret and it is said to be monotone if any set which contains a subset that can recover
the secret can itself recover the secret. lto, Saito, and Nishizeki gave a methodology to
realize secret sharing schemes for arbitrary monotone access structures. Subsequently,
Benaloh and Leichter {1] gave a simpler and more efficient way to realize secret sharing
schemes for any given monotone access structure. Other general techuniques handling
arb}itrary access structures are given by Simmons, Jackson, and Martin [27) and Martin
(17].

An important issue i the implementation of secret sharing schemes is the size of
shares since the security of a system degrades as the amount of the information that
must be kept secrel increases. If one requires that non-qualified set of participants
should have no information on the secret, then the size of the shares cannot be less than
the size of the secret [15]. In [1] it is proved that there exists an access structure for
which any secret sharing scheme must give to some participant a share which is from a
domain larger than that of the secret. This was improved by Brickell and Stinson [8],
who showed that for the same access structure, the number of elements in the domain
of the shares must be at least 2|S| — 1 if the cardinality of the domain of the secret
is |S|. Finally, Capocelli, De Santis, Gargano, aud Vaccaro [10] proved, for the same
access structure, that the number of elements in the domain of the shares must be at
least |S|'5, and they showed that the bound is tight.

Ideal secret sharing schemes, that is, schemes where the shares are taken from the
same domain as that of the secret, were characterized by Brickell and Davenport [6] in
terms of matroids. The uniqueness of the associated matroid is established by Martin
in [16]. Brickell constructed some classes of ideal schemes in [5] ,and an interesting
non-existence result was proved by Seymour [20].

We also briefly mention some “extended capabilities” of secret sharing schemes that
have been studied. The idea of protecting against cheating by one or more participants
is addressed in [18], {28], [19], [23] and [9]. Prepositioned schemes are studied in [26}.
Finally, the question of how to set up a secret sharing scheme in the absence of a trusted
party is solved in [13].

Different measures are possible for the amount of secret information that must be
given to participants. When we are interested in the maximum size of the shares, we can
use the information rate [7], which is the ratio between the secret size and the maximum
size of the shares. When we are interested in the total size of all the shares (and not just
the maximum one), it is preferable to use as a measure the average information rate,
which is the ratio between the secret size and the arithmetic mean of the size of all the
shares [4], [16], [17].

In this paper, we study secret sharing schewes in the case where the access structure
consists of the closure of a (connected) graph. We consider all 30 connected graphs on
at most five vertices, and determine the exact value of the optimal information rate in
all but four cases and optimal average information rate in all but two cases. For these
remaining cases, we give quite good upper and lower bounds. For two infinite classes of
graphs — cycles of even length (> 6) and paths of arbitrary length (> 3) — we prove
that the value of optimal information rate is 2/3. For paths and for cycles of even length




(> 4), we show how to realize secret sharing schemes with optimal average information
rate. For any tree, we present a secret sharing scheme with information rate at least 1/2,
and a scheme with average information rate at least 2/3, both of which which improve
previous results.

The main tool for proving upper bounds on the information rate is the entropy
approach of Capocelli, De Santis, Gargano and Vaccaro [10]. Lower bounds are obtained
by construction methods based on graph decompositions. The main idea of our new
method is to use different constructions for different bits of the secret and different
subsets of participants. Application of these constructions requires solving a suitable
linear programming problem.

The paper is organized as follows. In Section 2, we give the formal definition of
secret sharing schemes and recall some basic results. In Section 3, we give our general
graph decomposition construction. In Section 4, we discuss the methods for bounding
information rates and prove the results mentioned above concerning cycles, paths and
trees. In Section 5, we discuss the methods for bounding average information rates and
prove the results concerning paths, cycles and trees. Then, in Section 6, we investigate

the information rate and the average information rate for the connected graphs on at
most five vertices.

2 Secret Sharing Schemes

We recall some definitions and notation from [7]. Suppose that P is the set of partic-
ipants. Denote by T the set of subscts of participants which we desire to be able to
determine the key; hence I' C 27. T is called the access structure of the secret shar-
ing scheme. It secems reasonable to require that T' be monotone, le. if B € I' and
BCCCP,then Cel.

For any Ty C 2P, define the closure of Ty to be

cl(Tg) = {C:3BC Ty, BC CC P}

Note that the closure of any set of subsels is monotone.

Let K be a set of q elements called keys, For every participant P € P, let Sp be a set
of 5p elements. Elements of the sets Sp are called shares. Suppose a dealer D wants to
a share the secret key K € K among the participants in P (we will assume that D ¢ P).
He does this by giving each participant P € P a share from Sp. We say that the scheme

Is a perfect scheme (with respect to access structure T') if the following two properties
are satisfied:

1. if a subset B of participants pocl their shares, where B € T, then they can deter-
mine the value of K,

2. if a subset B of participants pool their shares, where B ¢ T, then they can deter-
mine nothing about the value of KX (in an information-theoretic sense), even with
infinite computational resources.

Remark: In 7], Brickell and Stinson required every participant to have shares taken
from the same set, say §. This can easily be done, if desired, by taking a set S of
cardinality max{sp : P € P} and defining injections ¢p : Sp — & for every P € P.



Throughout this paper, we confine our attention to perfect schemes, so the term
“secret sharing scheme” can be taken to mean “perfect secret sharing scheme”.

We will depict a secret sharing scheme as a matrix M, This matrix is not secret, but
is known by all the participants. There will be {P} + 1 columns in M. The first column
of M will be indexed by D, and the remaining columns are indexed by the members of
‘P. In any row of M, we place the key /' in the column D, and a possible list of shares
corresponding to K in the remaining cclumns. When D wants to distribute shares
corresponding to a key K, he will choose uniformly at random a row r of M having K
in column D, and distribute the shares in that row to the participants (i.e. M(r, P) is
given to participant P, for all P € P).

With this matrix representation, we can present combinatorial conditions on the
matrix M that will ensure that the two properties above are satisfied. These conditions
are equivalent to conditions presented in [7).

1.if BeT and M(r, P)= M(r', P) for all P € B, then M(r,D) = M(+', D),

2. if B € I, then for every possible assignment f of shares to the participants in ‘B,
say f = (fp : P € B) (where fp € Sp for all P € B), there exists a non-negative
integer A(f, B) such that

[{r: M{r,P)= fpVP e B, M(r,D)= K}| = X/, B),
independent of the value of & .

An important issue in the unplementation of secret sharing schemes is the size of
shares, since the security of a system degrades as the amount of the information that
must be kepl secret increases. Define s = max{s, : P € P}. The information rate 7] of
the secret sharing scheme is defined to be

_ logq
p= logs’

{We use the term “information rate” because the concept is similar to that of the in-
formation rate of an error-correcting code.) It is not difficult to see that ¢ < sin a
perfect scheme, so the information rate satisfies p < 1. If a secret sharing scheme is to
be practical, we do not want to have to distribute too much secret information as shares.
Consequently, we want to make the information rate as close to 1 as possible. A perfect
secret sharing scheme with information rate p = 1 is called ideal.

In many cases it is preferable to limit the sum of the size of shares over all participants.
To analyze such cases we use the average information rate [4], [17] defined as

|P|logq

==
ZPe‘P log 5,

In a perfect secret sharing scheme, g < s, forall P € P, and thus < 1. Also, p =1
if and only if p = 1. It is clear that the information rate is always no greater than the

average information rate; that is, 5 > p for any scheme. Equality holds if and only if
5p =8, for all P, P' € P.



2.1 Basic Results

We present some basic terminology from graph theory. Graphs do not have loops or
multiple edges; a graph with multiple edges will be termed a multigraph. If G is a
graph, we denote the vertex set of G by V(G) and the edge set by E(G). We consider
undirected graphs only. In an undirected graph the pair of vertices representing any
edge is unordeted. Thus, the pairs (u,v) and (v, u) represent the same edge. To avoid
overburdening the notation we often describe a graph G by the list of all edges E(G)
and each edge (u,v) € E(G) will be represented by uv. G is connected if any two vertices
are joined by a path. The complete graph K, is the graph on n vertices in which any
two vertices are joined by an edge. The complete mullipartile graph Knp, n,,...n, 15 3
graph on Yi_, ni vertices, in which the vertex set is partitioned into subsets of size n;
(1 €1 < t) called parts, such that vw is an edge if and only if v and w are in different
parts. An alternative way to characterize a complete multipartite graph is to say that
the complementary graph is a vertex-disjoint union of cliques. Note that the complete
graph K, can be thought of as a complete multipartite graph with n parts of size 1.

A stable set or independent sef of G is a subset of vertices A C V(G) such that no
two vertices in A are joined by an edge in E(G). The stability number or independence
number a(G) is defined to be the maximum cardinality of a stable set of G. A vertex
cover of G is a subset of vertices A C V(G) such that every edge in F(G) is incident
with at least one vertex in 4. The veriez covering number F(G) is defined to be the
minimum cardinality of a vertex cover of G.

The girth of a graph G is defined to be the length of the smallest cycle in G. If G is
acyclic, the girth is defined to be oo. A regular graph is a graph where each vertex has
degree d, for a fixed d.

We will use the notation PS((, p, q) to denote a perfect secret sharing scheme with
access structure cl(E£(G)) and information rate p for a set of ¢ keys. Analogously, a
perfect secret sharing scheme with access structure ¢{(£(G)) and average information
rate p for a set of q keys will be denoted by ﬁ‘g(G,ﬁ, 7). Throughout this paper, we
will restrict our attention to connected graphs. If a graph is not connected, it suffices to
find schemes for each of ils connected components. The following theorem was proved
for information rate in [7]; the proof for average information rate is similar.

Theorem 2.1 Suppose G is a graph having as ils connected components G;, 1 <i < 1.
Suppose thatllicre is a PS(Gi,p,q), 1 €£i<t. Then there is a PS(G,p,q). Similarly,
tf there is a PS(Gy,7,q) for 1 < i <t, then there 1s a PS(G, 7, q).

Ideal schemes for connected graphs were characterized by Brickell and Davenport

(6].

Theorem 2.2 Suppose G is a connected graph. Then there exists @ PS(G,1,q) (end
equivalently, a PS(G,1,q)) for some q if and only if G is a complete mullipartite graph,

The following result from (7] specifies some values of ¢ for which ideal schemes can
be constructed.

Corollary 2.3 Suppose q >t is a prime power. Then there is a PS(Kn, nay..ne 1,4).

Proof: Let V,..., Vi be the parts of the graph Kn, n,.. n.. Let zy,...,2, be distinct
elements of GF(q). We will construct a matrix M having ¢ rows and 1 + Z:zl ng



columns. The rows of M will be indexed by GF(q) x GF(q), and the columns will be
indexed by {D}U Vi U...UV;. Define the entries of M by the following rule:

M({(a,0),D) = «a
M((a.b),v) = az;+8,

where a,b € GF(q) and v € V;. 0

Remark: If we start with a complete graph K, then the matrix M, as constructed
above, is a structure from combinatorial design theory known as an orthogonal array

OA(t+1,q).

We recall two basic results from [7]. The first result indicates that the information
rate is an appropriate measure of the efficiency of a secret sharing scheme. It states that
the existence of one scheme with a specified rate immediately implies the existence of a
scheme with the same rate handling as many keys as desired. The result was proved for
information rate in [7) and for average information rate in [17, Corollary 2.4].

Theorem 2.4 Suppose there is a PS(G,p,q). Then, for any positive inleger n, there
is a PS(G,p,q"). Similarly, if there is a PS(G,p,q), then for any posilive inieger n,
there is a PS(G, p, 7).

If G is a graph, then G is said to be a subgraph of G if V(G,) C V(G) and £(G1) C
E(G). I V; C V(G), then we define the graph G[V,] to have vertex set Vy and edge set
{uv € E(G) : u,v € V1}. We say that G[V1] is an induced subgraph of G. The following

theorem 1s abvious.

Theorem 2.5 Suppose GG is a graph and Gy is an induced subgraph of G. If there 15 a
PS(G,p,q), then there exists a PS(Gy,p,q).

Observe that the statement of the above theorem is not true for average information
rate.

Let A be an access structure such that there are four participants, 4, B, C, D,
such that {4, B}, {B,C}, {C,D} € A but {A,C}, {A, D} ¢ A. Capocelli, De Santis,
Gargano and Vaccaro [10] proved that for any secret sharing scheme for A the sum of
the entropies of the two random variables defined by the shares given to B and C cannot
be less than three times the entropy of the secret. By taking all probability distributions
to be uniform, the upper bound can be stated as follows:

Theorem 2.6 Let A be an access structure. If there are four participants, A, B, C, D,
such that:

{A, B}, {B,C}, {C,D} e Abut {A,C}, {A,D} ¢ A,

then any secret sharing scheme for A salisfies
logs, +logs, > 3logyg.

Examples of access structures that satisfy the hypotheses of the above theorem are
the closure of P; (the path of length three), which is the graph having edge set

{AB, BC,CD};



and the closure of H, the graph having edge set
{AB,BC,CD,BD}.

Theorem 2.6 will be the main tool we use for proving upper bounds on information
rate and average information rate for paths, cycles and general graphs.

3 Graph Decomposition Constructions

Suppose G is a graph and G, ..., G, are subgraphs of G, such that each edge of G
oceurs in at least one of the G;’s. Suppose also that each G; is a complete multipartite
graph. Then we say that I = {G|, ..., G} is a complete multipartite covering (or CMC)
of G. The following construction utilizing CMCs is a special case of [7, Theorem 3.5].
The extension to average information rate is straightforward.

Theorem 3.1 (CMC Construction) Suppose G is a graph and I = {Gy,...,Gn} is
a complete mullipartite covering of G. For 1 < i < n, denole by t; the number of paris
in Gi, and let t = max{t; : 1 < i < n}. For every verlez v, define R, = |[{i : v € Gi}|.
Let R = max{R, : v € V(G)} and let p = 1/R. Finally, let 5 = |V(G)|/ Xyev(c) Ro-

Then there is a PS(G,p,q) and a E(G,ﬁ,q) for any prime power ¢ > 1.

Proof: Let ¢ > ¢, and for 1 < i < n, let M; be the matrix representing PS(Gi,1,q),
which exists by Corollary 2.3. Let X denote a set of ¢ keys and let S denote a set of ¢
shares (which we can assume are the same for all the schemes). Then, define a matrix M
as follows: for every key K, and for every n—tuple of rows (r; : 1 € i < n) such that r;
isarowofl M; (1 <i<n)and Mi(r;, D) = K (1 <i<n), definearow (rj: 1 <i<n)
of M by the rule

M({(ri,r2,...,m),v) = (Mi(ri,v):veV(G)))
M((ri,r2,...,70), D) = K.

g

Remark: It is not necessary to actually construct the matrix M of the above proof.
When D wishes to share a secret K, it suffices for him to choose, foreach 7,1 <i<n,a
random row r; of M; such that M;(r;, D) = K. Then, for 1 < i < n and for each v € G;,
D gives M;(r;,v) to participant v. Hence, each participant v gets a share corresponding
to each G; such that v € V(G;).

The main result of this section is a generalization of the CMC construction. The
idea is to use several decompositions, rather than just one.

Theorem 3.2 (Multiple CMC Construction) Suppese G is a graph and for 1 <
i £ ¢, suppose I; = {Gj1,...,Gjn,} is a complete multipariile covering of G. Denole
by t;; the number of parts in G;; (1 < j < £,1 < i < n;) and define t = max{tj; : 1 <
3 <41 < i< nj}. For every vertex v and for 1 < j < £, define R;j, = [{i : v € Gji}|-
Define R, = E§=1 Rjy and let R = max{R, : v € V(G)}. Finally, let p = ¢/R. Then
there is a PS(G,p,q%) for any prime power g > t.

Proof: Carry out the construction of Theorem 3.1 independently for each of £ keys.
The details are left to the reader. 0



Remark: In the case £ = 1, we recover the original CMC construction. Also, we observe
that we cannot improve the lower bound on g by taking £ > 1.

Example 3.1 Recall that P3, the path of length three, has edges AB, BC, CD. Us-
ing one CMC, the best information ralc that can be oblained for lhe access structure
cl(E(P3)) is 1/2. However, using two CMCs, we can gel p = 2/3 (a resull first oblained
by Capocelli, De Santis, Gargano and Vaccaro [10]). The two CMCs are

{{AB},{BC, CD}}

and

{{AB, BC},{CD}}.

Then Ry = Ry =2 and Ry = R3 = 3. Hence R=3 and p=2/3. A PS(P3,2/3,4) can
constructed. Note that if we implement the scheme, we get precisely the scheme presented
in [10]. Also, either of these two CMCs yields a scheme with average information rale

p=4/5.
Example 3.2 The graph H has edges AB, BC,CD,BD. From the two CMCs

{{4B},{BC, BD, CD}}

and
{{AB, BC, BD},{CD}},

we can cansiruct a PS(H,2/3,9). Using Corollary 2.3, this scheme could be implemenied
as follows. Take K = GF(3) x GF(3). The dealer will choose four random elements
(independenily) from GF(3), say b1y, br2, b1, and bag. Given a key (K1, K3), the dealer
distribules shares as follows: participant A receives (byy + K1, bay + K3); participant B
receives (byy, 812, b21); participant C receives {(b1a + K1, bay + K2, ba2); and participant D
receives (bia + 2Ky, byy + Ka,boa + K3). Hence, $; = GF(3) x GF(3) and Sz = S3 =
S4=GF3)xGF(3)x GF(3). Finally, vbserve that the first CMC yields a scheme with
average information rate p = 4/5, while the second CMC would give g = 2/3.

4 Optimal Information Rates
For a positive integer q and a graph G, deline

p*(G,q) = max{p: IPS(G,p, q0), o < q}.

Then define p*(G) = limy_o p*(G,¢). Note that this limit exists and is at most 1.
Also, note that the definition does not require that there exist a PS(G, p*(G), q) for
any integer q. However, in all cases where we know the value of g*(G), we can actually
construct a scheme having that information rate.

Of course, p*(G) < 1 for all graphs, and p*{G) = 1 if G is a complete multipartite
graph. The first non-trivial upper bounds on p* were proved by Capocelli et al [10].
Using Theorem 2.6, they proved that p*(P;3) = 2/3 and p*(H) < 2/3. In view of the
construction given in Example 3.2, we have the following theorem.

Theorem 4.1 Let P; be the graph having edges AB, BC, CD and let H be the graph
having edges AB, BC, CD, BD. Then p*(P3) =2/3 and p*(H) = 2/3.



We can also prove the following general upper bound.

Theorem 4.2 Suppose G is a cannecled graph that is nol a complete multipartite graph.
Then p*(G) < 2/3.

Proof: We will prove that any connected graph that is not a complete multipartite
graph must contain four vertices w, z,y, z such that the induced subgraph Glw, z,y, 7|
is isomorphic to either P; or H (from Examples 3.1 and 3.2). The desired result then
follows from Theorem 2.5.

Let GC denote the complement of G. Since G is not a complete multipartite graph,
there must exist three vertices z,y, z such that zy, yz € E(G) and zz € E(G). Since G
is connected, there is some vertex w such that wy € E(G). Now, if {wz, wz}NE(G) # 0,
then G[w, z,y, 2] is isomorphic to P; or H, and we are done. So, assume thal wz, wz €

E(G®). Define
d = min{dg(y, z),ds(y, z),dc(w, z),dg(w, 2)},

where dg denotes the length of a shortest path (in G) between two vertices. Then
d > 2. Without loss of generality, we can assume that d = dg(y, z) by symmetry. Let
Y=7%0,¥, - -.¥i-1,% be a pathin G. Then {w,z} N {y,...,ya—1} = 0. It follows that
Glyd—2, yi-1, %, 2] is isomorphic to either Ps or H, as desired. B

Hence, p*(G) = 1 if and only if G is a complete multipartite graph; and p*(G) <2/3
if and only if G is not complete multipartite graph. Thus, there is a “gap” in the possible
values for p*(G).

4.1 A Linear Programming Problem

We are also interested in the best possible information rate that can be obtained by
applying the multiple CMC construction, Theorem 3.2. We define the quantity p%(G)
which will denote this optimal rate for graph G. In view of the nature of the construction,
we can construct a PS(G, pu{G), q) for all sufficiently large prime powers q. Of course,
5:(G) < 9*(G).

Our main observation is that pi(G) can be computed by solving a suitable lincar
programming problem. We describe how this can be done in the remainder of the section.

Suppose G is a graph. We define a partial order on the CMCs of G as follows.
Suppose II; = {Gj1, <+,Gjn,}, § = 1,2, are two CMCs of G. For every vertex v and
forj =1,2,define Rj, =|{i:ve Gji}|. Then we define I < I3 if Ry, < Ry, for all
v € V(G). Define a CMC, I, to be minimalif I < II' for all CMCs II’ of G.

Now, suppose II; = {G|;, ..+Gjn,}, 1 £j € L, comprise a complete enumeration
of the minimal CMCs of G. For every vertex v and for 1 < j < L, define Rj, = |{i:v €
G;ji}l. Consider the following optimization problem @(G):

Minimize Ro

max{‘.»:,il ajRjy : v € V(G)} subject to:
ai > 0,1<;<”L

L
Zj:l aj 1
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Theorem 4.3 Let R* be the optimal solution to O(G). Then p(G) = 1/R".

Proof: Suppose R* = max{Ef;l ajRjv : v € V(G)}, where a; (1 < j < L) satisfy the
constraints of O(G). It is clear that the a; are rational, so denote a; = bj/c;, where
bj,c; €Z,1<j < L. Let C denote the least common multiple of ¢;,...,¢z. Then take
Ca; copies of II; for 1 < j < L, and apply the multiple CMC construction. We get a
scheme with information rate 1/R"; hence pi.(G) > 1/R*.

Conversely, suppose we start with an application of the multiple CMC construction
that yields the information rate pi.(G): We can assume without loss of generality that
only minimal CMCs are used. Suppose there are b; copies of II;, 1 < j < L. Let
B =3 _1b;,and definea; = b;/B, 1 < j < L. Then (a1,...,az) satisfy the constraints
of O(Gia and yield Ro = 1/p%(G). Hence, p;.(G) < 1/R", and we're done. 0

The difficulty with the problem O(G) is that the objective function is the maxi-
mum of several linear functions. However, we can easily obtain an “equivalent” linear
programming problem '(G):

Minimize T subject to:
a;
L _
Zj:l a; = 1

T 2 Zf:xaiRJ'v’ veV(G)

v

0, 1<j<L

It is easy to see that O(G) and O'(G) have the same optimal solution. Hence, we
obtain the following result.

Theorem 4.4 Let T" be the optimal solution to O'(G). Then p(G) = 1/T".

4.2 Information Rate for Paths and Cycles

We next establish some general results when G is a path or a cycle. P, will denote a
path of length n, that is, the graph with edges X1X3,..., X, Xn41; and C,, will denote
a cycle of length n, that is, the graph with edges X X2, ..., Xn-1Xn, XnX1.

Theorem 4.5 Ifn > 3, then p*(P,) = 2/3.

Proof: If n > 3, p*(P,) < 2/3 by Theorem 4.2. First, suppose n + 1 is even. Then
p*(Pn) > 2/3 by using the following two CMCs:

Hx = {{X1Xz, X2X3}, {X3X4, X4X5}, ey {Xn—],Xn, ann+1}}
and
Hz = {{X]Xg}, {XgXa, X3X4}, caey {X,,_gX,,_l, X,,_]Xn}, {XﬂXn.H}}.
If n 4118 odd, then p*(P,) > 2/3 by using
Oa = {{X1 X2, X2X3}, {X3X4, XaXs},..., {Xn=2Xn-1, Xn1Xn}, {XaXns1}}

and
My = {{X1 X2}, {X2X5, XaXu}, o {Xno1Xn, XnXns1})

R p————— E g
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Theorem 4.6 If n > 3, then p*(Con) = 2/3.

Proof: If n 2 3, p"(C2a) < 2/3 by Theorem 4.2. p™(C2,) > 2/3 by using the following
two CMCs:

{X1 X2, Xo X3}, {(XaXy, XaXs}, ..o {Xono1X2n, X2 X1}}

{{XQX:}, X3X4},{X4X5, )£P5X5},...,{X2nxl, XIXZ}}.

Theorem 4.7 Ifn > 2, then pi.(Cong1) = (2n + 1)/(3n + 2).

Proof: Here, we appeal to Theorem 4.4. First, we enumerate the minimal CMCs for
Can41. Take the vertices to be X, X»,..., X2,41, and perform all arithmetic operations
on indices mod(2n + 1). Define

Mo = {{(X1X2, X2X3}, ..., {Xon-1X2m, X2nXonp1 } {X2n41. X1} )

For 0 £ j £ 2n, define 1I; by “adding” j to indices of [Iy and reducing mod(2n + 1) to
the interval 1,2,...,2n+1. Then II;, 0 < j < 2n, are the 2n+ 1 minimal CMCs. We get
a (2n+1)x(2n+1) matrix of values R; x,, where R;x, = 1if and only if v—j mod (2n+1)
is odd (where v~ j is reduced mod (2n+1) to the interval 1,2,...,2n+1). For example,
in the case 2n + 1 = 5, we get the matrix

21 2 1 2

2 21 21

1 2 2 1 2

21 2 21

1 2 1 2 2
The optimal solution to O'(Cany1) is obtained when a; = ... = agnq1 = 1/(2n + 1);
then T = (3n+2)/(2n+1) and p&(Czn+1) = (2n+1)/(3n+2). In applying the multiple
CMC construction, we take one copy of each II;. a

4.3 Information Rate for Trees

Brickell and Stinson proved in [7, Theorem 3.8] that for any graph G of maximum degree
d, a secret sharing scheme can be realized with information rate

1
[41+1

P2

This was proved using the CMC construction, by decomposing G into complete bipartite
graphs K ,, (such a decomposition is called a star decomposition, since Ky, is often
called a star). In the case where G is regular and has girth at least 5, this result is the
best that can be obtained using star decompositions (7, Theorem 3.9]. However, we can
improve the lower bound whenever G is acyclic. We use star decompositions to obtain
information rate equal to 1/2 in this case.
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We now describe the algorithm used to obtain this decomposition. First, we need
some definitions. Let G be a connected graph and v € V(G). Inc(v) denotes the set of
edges incident with v:

Inc(v) = {uv: uwv € E(G)}.
By Adj(v) we denote the set of vertices adjacent to v:

Adj(v) = {u € V{G) : wv € E(G)}.
Finally, by degree_one(v) we denote the set of vertices adjacent to v having degree one:
degree_one(v) = {u € Adj(v) : {Inc(u)} = 1}.

For any vertex v € V(G), let G, = G[{v} U Adj(v)], ie. V(Gy) = {v} U Adj(v) and
E(Gy) = Inc(v).

The algorithm Covering constructs a star decomposition of G by calling the recur-
sive algorithm Cover. The algorithms are as follows:

Covering(G)
Let X € V(G)
H—¢
Cover(X)
OQutput the star decomposition 11

Cover(X)
0 O }{Gx}
B —{Y € Adj(X) : |Inc(Y)} = 1)
E(G) — E(G) - Ince(X)
V(G) - V(G) - (BUX))
For all X' € Adf(X) - B do Cover(X’)

It easy to see that the algorithm Covering always finds a complete multipartite
covering of GG. If G is acyclic then each of its vertices belongs to at most two different
connected subgraphs of the covering as stated by next lemma.

Lemma 4.8 Let II be a complete mullipartite covering of a tree G oblained by applying

Covering to G. Then each vertezr X € V(G) belongs to at most two different subgraphs
G, G" el

Proof: If [Inc(X)| = 1 and (X,Y) € E(G) with |{Ine(Y)| > 1 then Cover is called
on Y. The vertex Y belongs to two connected subgraphs, and the graph G’ with set
of edges E(G') = E(G) ~ Inc(X) and set of vertices V(G') = V(G) — (B U{X})
18 still connected. Since G is a tree, if [Inc{X)}] > 1 then the graph is disconnected.
All connected components of the new graph are trees and Cover is called on each
Y € Adj(X)—B. Since each Y € Adj(X)— B belongs to different connected components
of ¢, each Y belongs to at most two connected subgraphs in II. Thus the lemma is proved.

0



13

The {ollowing result is immediate from Lemma 4.8 and Theorem 3.1.

Corollary 4.9 For any irec a secrel sharing scheme exisis with information reie p 2>

1/2.

There is only one case in which G is connected and Covering gives a secret sharing
scheme with information rate greater than 1/2. This case arises when G is itself a star
graph and X is chosen to be the vertex of maximum degree in G.

5 Optimal Average Information Rates

Recall that we use the notation PS(G,5,¢) to denote a perfect secret sharing scheme
with access structure ci{ £(G)) and average information rate p for a set of ¢ keys.
For a positive integer ¢ and a graph G, define

57(G,q) = max{5: 3PS(G. 5,10}, 90 < q}-

Then define p°(G) = limy_o p*(G, q). Note that this limit exists and is at most 1.
Also, note that the definition does nof require that there exist a PS(G,5"(G), q) for any
integer ¢.

The following lemma is the analogue of Theorem 4.2 for the average information
rate. It is a generalization of 18, Lemma 4.3.5].

Lemma 3.1 Let G be @ connecled graph with n vertices. If G is a complete mullipartite
graph then p*(C) = 1; otherwise p*(G) < n/(n+1).

Proof: Assume G is a complete multipartite graph. By Theorem 2.2 an ideal scheme
exists; this scheme has an average information rate equal to 1. If G is not a com-
plete multipartite graph then, from Theorem 4.2 and Theorem 2.6, there exist two
vertices in V(G), X and Y with XY € E(G), such that logs, + logs, > 3logg.
Thus 3 xev(g) 0B sy 2 (n+1)logg so the average information rate is not greater than

nf(n+1). g

5.1 A Linear Programming Problem

With respect to the information rate p*(G), we solved a linear programming problem
to obtain a lower bound. Now, for average information rate 5*(G), we will obtain an
upper bound by solving a linear programming problem.

Let G be a graph, and define a subgraph G; of G as follows: zy € E(G,) if and only
if there exist vertices w, z € V(G) such that G[w, z,y, 2] = {wz, zy,yz} or Glw, T, y, 2] =
{wz, zy,yz,22}. We will take V(G,) to consist of all vertices in V(G) that are incident
with at least one edge in E(G)) (i.e. we delete all isolated vertices from G,). We say
that G, is the foundation of G.

For example, the path Py, having edges {AB}, {BC}, {CD}, {DE}, has foundation
consisting of the two edges {BC}, {CD}.

If zy is an edge in the foundation of a graph G, then by Theorem 2.6, logs, +
logs, > 3loggq for any secret sharing scheme with access structure cl( E(G)). Consider
the following linear programming probiem A(G):



Minimize C

Z,ev(c)au subject to:
> 0, ve V(G)
aytay = 1, vwée E(G)

Qay

Then we have the following upper bound on the average information rate.

Theorem 5.2 Let G be a graph with foundation G|. Let C* be the oplimal solution tc
the problem A(G). Then

V(G)|
C*+ V(G

Proof: Consider any secret sharing scheme realizing the access structure cl{ E(G)). For
every vertex v € V((G), define

P (G) <

1
a, = 285 _
log g
Suppose vw is an edge of the foundation G;. Now, from Theorem 2.6 we get logs, +
logsy > 3logg, or ay +ay > 1. For any v € V(G), we have s, > ¢, 50 a, > 0. Hence,
the a,’s, as defined above, arc a feasible solution for the problem A(G). Hence,

C-S Z Gy,
veV(G)

where C* is the optimal solution to A(G). 1t follows that

v log s,
o g Toerio 8% S - V(G).
. 0g4q
But then we have
- [V(G)|loggq
G —_—
p(S) ZUEV(G)IOS Sy
. _vo)
= C+ V(G
which is the bound to be proved. 0

Remark: Given a graph G, the foundation G, can be determined in polynomial time.
One way to do this is to check all 4—subsets of V(G). Every time we get an induced
subgraph isomorphic to Pj, we can add one edge to the foundation; and every time we
find an induced subgraph isomorphic to H, we can add two edges to the foundation.
This algorithm requires time O(n*), where n = |V(G)|. Since the linear programming

problem A(G) can be solved in polynomial time, so too can the bound of Theorem 5.2
be computed in polynomial time.

We have a couple of general observations on the linear programming problem A(G).

Let d be a positive integer. A d—factor of a graphis a spanning subgraph that is regular
of degree d.
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Lemma 5.3 Lel G be a graph having foundation Gy. If Gy has a d—factor for some
integer d > 1, then the optimal solution to A(G) is C* = |V(G1)|/2.

Proof: Let the edges in the d—factor be zjy;, 1 < j < dn/2, where V(G1) = {1,...,n}.
Then we obtain the following:

dn dn/2
) < Z(“=i +ay;)
i=1
= dzﬂ;.
t=
Hence, C* > n/2. To obtain C* < nf2,lete; =1/2for1<i< n. 1}

Next, note that C* < B(G,). To see this, let W be a minimum vertex cover of G,
and define a, = 1 if v € W; a, = 0, otherwise. This gives a feasible solution for which
Y vev(G) % = B(G1). In the case where G is bipartite, this will in fact be the optimal
solution, as follows.

Lemma 5.4 Let G be a graph having foundation G). If Gy is bipartite, then the optimal
solution 10 A(G) is C* = B(G1) and the oplimal solulion is given by a, =1 ifvE W,
a, = 0, otherwise, where W is a minimum vertex cover of Gy.

Proof: It is well-known that the incidence matrix of a bipartite graph is a totally
unimodular matrix (that is, the determinant of any square submatrix is 0,1 or —1).
Hence, if G is bipartite, the linear programming problem A(G) and the corresponding
integer programming problem have the same optimal solution. But an optimal solution
to the integer programming problem is obtained from a vertex cover, as described above.

a

Hence, we have the following bound as an immediate consequence.

Theorem 5.5 Let G be a graph with foundation G1, and suppose G is bipartite. Then

. V(G
O < gEy+ Vo

5.2 Vertex Covers and Secret Sharing Schemes

From Theorem 3.1, there exists a secret sharing scheme for a graph G with average
information rate p = |V(G)l/ ¥ i.v(g) Rv- Suppose we construct a scheme by using a
star decomposition, as in Section 4.3. Let W denote the set of centers of the stars used
in the decomposition. Then W must be a vertex cover of G. Conversely, if W is a vertex
cover of G, then we can use it to construct a star decomposition of G and hence a secret
sharing scheme. The algorithm to do this is as follows:

Algorithm
Let W = {v1,...,va]} be a veriex cover of G
D9
Fori~—1tondo



X —u

I—TU{Gx}

B~ {Y € Adj(X) : |[Inc(Y)| = 1}

E(G) — E(G) — Inc(X)

V() — V() - (BUX})
Output the star decomposition [T

We now show that if we construct a scheme from the star decomposition II, then we
can express p as a function of |V{G)|, |E(G)| and |W|. Let Il = {Gy,...,Gy}, where
n = |W]. Consider a star G; = K m in the decomposition. The total number of shares
in the scheme PS(Gi,1,q) is m+ 1 = |E(G;)| + 1. Hence, the total number of shares in
the scheme for G is:

n

> R, Z(]E(G.-)l +1)

veV(G) i=1
E(G) + ).

Hence, applying Theorem 3.1, we have the following result.

Theorcm 5.6 Let G be a graph and W C V(G) be a verter covering. Then a secrel
sharing scheme for G ezists with average information rale

V(G)]
IE(G) + W]

Since 7 depends only on |W/|, finding the maxiuwuin rale among all vertex coverings
is equivalent to minimizing |W], i.e. determining the vertex covering number 3(G).
Unfortunately, the problem of computing 3(G) is NP-hard [11]. However, for certain
classes of graphs, such as bipartite graphs and chordal graphs, (G) can be computed
in polynomial time (see {11]). We will return to this in Section 5.4.

Let us mention a couple of general bounds that can be proved by this technique. It
is obvious that W C V(G) is a vertex covering of G if and only if V — W is a stable
set of G. Hence, B(G) = |V(G)| — o(G). Using known lower bounds on the stability
number of a graph, we can obtain the following corollaries to Theorem 5.6.

5=

Corollary 5.7 Let G be a graph with |V(G)| = n and |[E(G)| = m. Then

n(2m +n)

7G) 2 )

Proof: Use Theorem 5.6 and the bound a(G) > n?/(2m + n) ([2, Corollary 2, p. 279]).
1]

Corollary 5.8 Let G be a graph with |V(G)| = n and mazimum degree d. Then

—

5°(G) 2 o
2

S|

Fral
Proof: Use Theorem 5.6 and the bound (G) > {11 ([2, Corollary 2, p. 276]). D

Note that the bound on average information rate given by Corollary 5.8 exceeds the
bound on information rate proved in [7, Theorem 3.8].
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5.3 Average Information Rate for Paths and Cycles

In this section we give an upper bound for average information rate for P,, the path of
length n. Then we show how to construct secret sharing schemes with optimal average
information rate.

If n is equal either to 1 or to 2, then P, is a complete multipartite graph and a secret
sharing scheme with an average information rate equal to 1 exists. If n is greater than
2, then the next theorem provides the optimal average information rate.

Theorem 5.9 The oplimal average information rale of a secrel sharing scheme for Py,
where n > 3, is given by

Z('QT“J tfn ts even

PP =
Ao+l ifp s odd

3n+1

Proof: [t is easy to see that the foundation of P, consists of the edges
4¥2X31 RS Xn—lxm

so it is isomorphic to Pr_3. P,_; is bipartite, and f(Pn-2) = | 252 ].

First suppose n even and n > 4. By applying Theorem 5.5 we know that p*(Fn) <
2(n+1)/3n. We have p*(P,) > 2(n + 1)/3n by using the CMC II; from Theorem 4.5.
fnisodd and n > 3, 5*(Pa) € 2(n +1)/(3n + 1) by Theorem 5.5. We obtain a secret
sharing scheme with average information rate equal to 2(n + 1)/(3n + 1) by using the
CMC II3 from Theorem 4.5. a

We now consider average information rate for cycles. If n is equal either to 3 or to
4, then C, is a complete multipartite graph and a secret sharing scheme exists with an
average information rate equal to 1. If n is greater than 4, then the next theorem gives
the optimal average information rate for even length cycles, while for odd length cycles
it gives upper and lower bounds.

Theorem 5.10 The optimal average information rale of a secrel sharing scheme for
Cn, where n > 5, satisfies

PCa)=2/34f nis cven

2n . .2
<p Gy i s odd.
3n+1_p(C)_3zfnzso

Proof: It is easy to sce that the foundation of C, is again C,,. C,, is a 2—factor of itself,
so C* = n/2, by Lemma 5.3. Applying Theorem 5.2, we get 5*(Cy) < 2/3.

First, suppose n is even, n > 6. We have already shown in Theorem 4.6 that p*{C,n) =
2/3. Since 5*(Cn) > p*(C,) and since 5*(C,) < 2/3, we obtain 5*(Cy) = 2/3. Next,
Eft n be odd, n > 5. From Theorem 4.7, we have p*(C,) > 2n/(3n + 1). Since
P*(Cn) > p*(Cy) and since 7°(Cy) < 2/3, the stated bounds follow. g
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5.4 Average Information Rate for Trees

In this section, we discuss upper and lower bounds on the average information rate of
secret sharing schemes for trees.

For a graph O, let degree_one((G) denote the vertices in V(G) having degree one.
Qur first observation is that the foundation of a tree T' can be constructed by deleting
all degree one vertices from T

Lemma 5.11 Let T be a tree; then the foundation of T is
Ty = T[V(T) ~ degrec_one(T)).

Proof: Let zy be an edge of T. If {z,y} Ndegree_one(T) # 0, then clearly, zy ¢ E‘(T;).
So assume {z,y} Ndegree_one(T) = B. Let wz, yz € E(T), where w # y,z # z. Since
T is a tree, wy, wz,zz ¢ E(T). Hence, T(w,z,y, z] = {wr,zy,yz} and zy € E(T1). 10

Remark: It is not difficult to see that the conclusion remains true if T is any bipartite
graph having girth at least six.

Here now are our upper and lower bounds on the average information rate for trees.
Theorem 5.12 Let T be a tree and let [y = T[V(T) — degree_one(T)]. Then we have

V(D) i v(T)|
A+ v =157 D sy v

Proof: By Lemmab.11, T} is the foundation of T. Hence, the upper bound on g* follows

from Theorem 5.5. The lower bound follows from Theorem 5.6, since |E(T)} = {V(T){-1
for any tree T. a

Remarks:

1. Since T and T} are bipartite graphs, the vertex covering numbers can be computed
in polynomial time. In fact, by Konig’s Theorem, the vertex covering number of
a biparitite graph equals the size of a maximum matching.

2. The reader can check that, in the special case where T is a path, the upper and
lower bounds of Theorem 5.12 coincide, and they agree with Theorem 5.9.

Now, we give a general lower bound on the average information rate for trees.

Theorem 5.13 Let T be a tree with n vertices. Then

2n
In-2

T2

Proof: In a bipartite graph G with vertex bipartition Vy, V3, both V; and V2 are vertex
covers. Hence, 8(G) < min{|V4}, |Va|} < (|Vi] + [Va])/2. A tree is bipartite, so 3(T) <
n/2. Apply Theorem 5.12 to obtain the stated result. 0
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6 The Connected Graphs on at Most Five Vertices

In this section, we give upper and lower bounds on the information rate and average
information rate for the connected graphs on at most five vertices. First, there are nine
connected graphs on at most four vertices. Seven of these are complete multipartite
graphs and admit ideal schemes: Iy, K3, K1 2, K4, K13, K2,2, K1,1,2. The remaining
two graphs are P3 (the path of length 3) and the graph # (from Example 3.2). We
have already shown that p*(P3)} = 2/3 (Theorem 4.5) and p*(P3) = 2/3 (Theorem 5.9).
With regard to /I, we have p*(H) = 2/3 (Theorem 4.1) and 5*(H) = 4/5 (Example 3.2
and Theorem 5.1).

So, let’s move on to the connected graphs on five vertices. There are 21 non-
isomorphic connected graphs on five vertices. Of these 21 graphs, six are complete
multipartite graphs and admit ideal schemes. These graphs are K4, K23, K113,
K122, K1,1,1,2 and K5. The remaining 15 graphs are depicted in Appendix A, where
we also show the minimal CMC's for each graph.

The bounds on information rate and average information rate are suminarized in
Table 1. The lower bounds are obtained by making use of CM C constructions. Upper
bounds on information rate are given by Theorem 4.2, whereas upper bounds on average
information rate are given by application of Theorem 5.2.

Table 1: Information Rate and Average Information Rate

{__Graph [ Inforimation Rate | Average information Rale |

Gy,...,Go pt=2/3 p*=5/6

Gio, G pt=2/3 P =5/7
Gia 5/8<p"<2/3 5/8<p" <2/3
Cis | 3/5<p,r <23 | B/1<5 < 10/13
Cu_ [ 3627 <3 5 =577
Gis 4/7<p" <2/3 g =5/7

The first CMC for each graph in Appendix A gives rise to the scheme that attains
the given lower bound for the average information rate. For the graphs Gi,...,Gui,
the schemes with information rate equal to 2/3 are obtained by taking one copy of each
CMC shown in Appendix A. We next cousider the lower bounds on p* for the remaining
four graphs, Gy, ..., Gis.

e First, let E(G2) = {AB, BC, CD, DE, AE}. Then G, is the cycle Cs and
p5(G12) = 5/8 from Theorem 4.7.

o Let E(Gy3) = {AB, BC, BE, EC, CD}. p&(G13) = 3/5 is realized by using the
three CMCs shown in Appendix A.

® Let E(Gi4) = {AB, AD, BD, BC, DE, CE}. p(Gia) = 3/5 is realized by
using the three CMCs shown in Appendix A.

¢ Finally we consider The four minimal CMCs of G5 are depicted in Appendix A.
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The matrix of entries R;, is

NN =
B2 QO — D
—_— R R
B DD e
B B =

Hence the linear programming problem to be solved is the following:

Minimize T subject to

g > 0,1<j<4

4

e =1

i=1
T > ap + 2a, + 2a3 + 3a4
T > 2a;+ ay+3az+ 2a4
T 2> 2a1+2a;+ a3+ 04
T 2 a1+az+2a3+204.

The optimal solution i3

(alx az,as, 0'41T) = (1/4v 1/21 1/41 O|7/4)

Hence, p5(G1s) = 4/7, and this rale can be attained by taking one copy of II;,
two copies of I13, and one copy of 3.

Now we turn to the upper bounds on average information rate. Theorem 5.1 gives
the upper bound 5* < 5/6 for G;,...,Gs. So, there remain the six graphs Gio...,Gys
to consider.

e Consider the graph Go. The foundation of G consists of the four edges BC, BE, DC, DE.
This foundation is a 2—regular graph on four vertices, so C* = 2 (Theorem 5.3).
Hence, by Theorem 5.2, 5* < 5/7.

e Consider the graph Gy,;. The foundation of G;; consists of the four edges BC, BE, DC, DE.
As with Gy, we obtain p* < 5/7.

e Gz is the cycle of length five, so * < 2/3 (Theorem 5.10}.

e Consider the graph G;3. The foundation of Gi3 consists of the three edges
BC, BE,CE. This foundation is a 2—regular graph on three vertices, so C* = 3/2
(Theorem 5.3). Hence, by Theorem 5.2, 5* < 10/13.

e Consider the graph Gy4. The foundation of G14 consists of the five edges AB, AD, BC, BD, DE.
The optimal solution to the linear programming problem is C* = 2. llence, by
Theorem 5.2, 5* < 5/7.

o Consider the graph Gy5. The foundation of G5 consists of the five edges AB, AC, BC,CD,CE
and is isomorphic to the foundation of G14. As before, we get p* < 5/7.
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Minimal CMCs for the Connected Graphs on Five Vertices
which are not Complete Multipartite
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