Graph Decompositions without Isolates

Nathan Linial*
University of California, Los Angeles, California 90024
Communicated by the Editors

Received May 21, 1981

Abstract

A. Frank (Problem session of the Fifth British Combinatorial Conference, Aberdeen, Scotland, 1975) conjectured that if $G=(V, E)$ is a connected graph with all valencies $\geqslant k$ and $a_{1}, \ldots, a_{k} \geqslant 2$ are integers with $\sum a_{i}=|V|$, then V may be decomposed into subsets A_{i}, \ldots, A_{k} so that $\left|A_{i}\right|=a_{i}$ and the subgraph spanned by A_{i} in G has no isolated vertices $(i=1, \ldots, k)$. The case $k=2$ is proved in Maurer (J. Combin. Theory Ser. B 27 (1979), 294-319) along with some extensions. The conjecture for $k=3$ and a result stronger than Maurer's extension for $k=2$ are proved. A related characterization of a k-connected graph is also included in the paper, and a proof of the conjecture for the case $a_{1}=a_{2}=\cdots=a_{k-1}=2$.

Introduction

Graph theoretic terminology is standard; see [1,2] for definitions. A graph $G=(V, E)$ has order $v=|V|$. For $A, B \subseteq V$ we let

$$
\begin{aligned}
E(A, B) & =\{[x, y] \in E \mid x \in A, y \in B\}, \\
E(A) & =E(A, A), \\
e(A, B) & =|E(A, B)|, \quad e(A)=|E(A)| .
\end{aligned}
$$

Also $\langle A\rangle_{G}=\langle A\rangle$ is the subgraph of G spanned by A. We let $\delta(G)$ be the smallest valence of vertices in G.

In [3] A. Frank made the following:
Conjecture. Let $G=(V, E)$ be a connected graph, with $\delta(G) \geqslant k$. Let $a_{1}, \ldots, a_{k} \geqslant 2$ be integers with $\sum_{1}^{k} a_{i}=v=|V|$. Then V may be decomposed into A_{1}, \ldots, A_{k} so that $\left|A_{i}\right|=a_{i}$ and $\left\langle A_{i}\right\rangle$ has no isolated vertices $(i=1, \ldots, k)$.

A graph for which the conclusion of the conjecture holds is said to be k decomposable, so the conjecture says that a connected graph with $\delta \geqslant k$ is k decomposable.

[^0]This problem for $k=2$ was discussed by Maurer [6] who also considers the computational complexity of finding these, and related, decompositions of graphs. Maurer proved Frank's conjecture for $k-2$ and proved some extensions of this case. Among others he proves

Theorem M [6]. Let $G=(V, E)$ be a connected graph, $\delta(G) \geqslant 2$. Let $a_{1}, a_{2} \geqslant 2$ be integers with $a_{1}+a_{2}=v=|V|$. Then V may be decomposed into A_{1}, A_{2} so that $\left|A_{i}\right|=a_{i}(i=1,2)$ one of the $\left\langle A_{i}\right\rangle$ is connected and the other one has no isolated vertices.

The results of this paper are: a proof of the conjecture for $k=3$ (Theorem 2), a theorem which contains Theorem M , a related characterization of k-connected graphs (Theorem 3), and a proof of the conjecture for $a_{1}=a_{2}=\cdots=a_{k-1}=2$.

Our first theorem contains Theorem M. To state it we define a friendship graph $F_{n}=\left(V_{n}, E_{n}\right)$, where $V_{n}=\{p\} \cup\left\{x_{i} \mid n \geqslant i \geqslant 1\right\} \cup\left\{y_{i} \mid n \geqslant i \geqslant 1\right\}$, $E_{n}=\left\{\left[x_{i}, y_{i}\right] \mid n \geqslant i \geqslant 1\right\} \cup\left\{\left[p, x_{i}\right] \mid n \geqslant i \geqslant 1\right\} \cup\left\{\left[p, y_{i}\right] \mid n \geqslant i \geqslant 1\right\}$. In other words $F_{n}=K_{1}+n K_{2}$. Now we state

Theorem 1. Let $G=(V, E)$ be a connected graph, $\delta(G) \geqslant 2$, and let $a_{1}, a_{2} \geqslant 2$ be integers such that $|V|=v \geqslant a_{1}+a_{2}$. Then unless G is a friendship graph and both a_{1}, a_{2} are odd, there exist $A_{1}, A_{2} \subseteq V$ so that $A_{1} \cap A_{2}=\phi,\left|A_{i}\right|=a_{i}(i=1,2)$, one of $\left\langle A_{i}\right\rangle$ is connected and the other one has no isolated vertices.

Proof. Note first that if G is a friendship graph and a_{1}, a_{2} are odd then at least one of the $\left\langle A_{i}\right\rangle$ must have an isolated vertex. We need

Lemma 1. Let $G=(V, E)$ be a connected graph, $\delta(G) \geqslant 2$, which is not a friendship graph. Then there are two adjacent vertices $x, y \in V$ so that $\delta\left(G_{x y}\right) \geqslant 2$, where $G_{x y}$ is the graph obtained from G by contracting x, y to a single vertex.

Proof. Let us consider the vertices of degree $\geqslant 3$. If there are none G must be a circuit and the lemma holds unless $G=K_{3}$ which is the friendship graph F_{1}. If there is just one vertex of degree $\geqslant 3, G$ is a collection of circuits having exactly one vertex in common. For such graphs the conclusion of the lemma holds except if all circuits are triangles and the graph is a friendship graph.

If there are two adjacent vertices p, q with $d(p), d(q) \geqslant 3$, then either $\delta\left(G_{p q}\right) \geqslant 2$ and we let $x=p, y=q$, or $\delta\left(G_{p q}\right)=1$. In the latter case there must be a vertex w with $\Gamma(w)=\{p, q\}$. Let $x=p, y=w$ to achieve $\delta\left(G_{x y}\right) \geqslant 2$.

In the remaining case we can assume that there exist vertices p, q with $d(p), d(q) \geqslant 3$ and such vertices must be nonadjacent. Now let $p=x_{0}, x_{1}, \ldots$,
$x_{n}=q$ be a shortest path between them. We claim that for $x=p, y=x_{1}$ we have $\delta\left(G_{x y}\right) \geqslant 2$. Otherwise p and x_{1} must have a common neighbour, but since $d\left(x_{1}\right)=2, \Gamma\left(x_{1}\right)=\left\{p, x_{2}\right\}$ and if $p, x_{2} \in E$, there is a shorter path from p to q.

We go back to prove the theorem by induction on $c=v-\left(a_{1}+a_{2}\right)$. The case $c=0$ is Theorem M above. So assume $c \geqslant 1$ and G is not a friendship graph. Find x, y which satisfy the lemma and consider $G^{\prime}=G_{x y}$. If G^{\prime} is a friendship graph then it is easy to check that the theorem holds. If G^{\prime} is not a friendship graph we may apply induction:

Let p be the vertex in G^{\prime} which represents $\{x, y\}$. By the induction hypothesis we may find disjoint subsets $A_{1}^{\prime}, A_{2}^{\prime}$ of $V\{x, y\} \cup\{p\}$ so that $\left|A_{i}^{\prime}\right|=a_{i}(i=1,2)$, one of $\left\langle A_{i}^{\prime}\right\rangle_{G^{\prime}}$ is connected and the other one has no isolated vertices. If $p \notin A_{1}^{\prime} \cup A_{2}^{\prime}$, let $A_{i}=A_{i}^{\prime}(i=1,2)$ and this satisfies the theorem.

Assume, then, that $p \in A_{1}^{\prime}$ and let $A_{1}^{\prime \prime}=A_{1}^{\prime} \backslash\{p\} \cup\{x, y\}, A_{2}=A_{2}^{\prime}$ be sets of vertices in G. They fail to satisfy the theorem only in that $\left|A_{1}^{\prime \prime}\right|=a_{1}+1$. Since p belongs to a component of $\left\langle A_{1}^{\prime}\right\rangle_{G}$ of order $\geqslant 2, x, y$ belong to a component of $\left\langle A_{1}^{\prime \prime}\right\rangle_{G}$ of order $\geqslant 3$. Omitting a non-cut vertex of this component A_{1} is obtained and the theorem follows.

Let us state and prove now the main result. We prove the conjecture for $k=3$.

Theorem 2. Let $G=(V, E)$ be a connected graph with all valencies $\geqslant 3$. Let $a_{1}, a_{2}, a_{3} \geqslant 2$ be integers with $a_{1}+a_{2}+a_{3}=v=|V|$. Then there is a decomposition A_{1}, A_{2}, A_{3} of V so that $\left|A_{i}\right|=a_{i}$ and $\left\langle A_{i}\right\rangle$ has no isolated vertices ($i=1,2,3$).

First we need two technical lemmas:
Lemma M. Let G be a graph with $\delta(G) \geqslant 2$. If all components of G are of order $\geqslant 5$ then G is 2-decomposable.

Proof. Contained in [6, Theorem 4.21].
Lemma 2. Assume $\delta(G) \geqslant 3$ implies 3-decomposability for connected graphs G of order $\leqslant v$. Then it implies 3-decomposability also for graphs of order $\leqslant v$ having all components of order $\geqslant 6$.

Proof. By induction on the order of the graph. Let $c_{1} \geqslant \cdots \geqslant c_{k} \geqslant 6$ be the orders of the components of G and let $a_{1} \geqslant a_{2} \geqslant a_{3} \geqslant 2$ satisfy $a_{1}+a_{2}+a_{3}=v$. If $c_{k} \leqslant a_{1}-2$ we may continue by induction so assume $c_{k} \geqslant a_{1}-1$ which readily implies $k \leqslant 3$, and since $k>1$ we have to check only $k=2,3$.

Let $k=3$ first. Of course $c_{3} \leqslant a_{1}$ but in case of equality we may proceed
by induction. So we may assume $c_{3}=a_{1}-1$. Similarly $c_{2} \geqslant a_{2}-1$ and $c_{2} \neq a_{2}$ imply $c_{2}=a_{2}-1\left(c_{2} \geqslant a_{2}+1\right.$ is impossible since $a_{1}+a_{2}+a_{3}=$ $\left.c_{1}+c_{2}+c_{3}, a_{1} \geqslant a_{2} \geqslant a_{3}, c_{1} \geqslant c_{2} \geqslant c_{3}\right)$. Using the same arguments we remain with two cases:

c_{1}	c_{2}	c_{3}	a_{1}	a_{2}	a_{3}
$a+3$	a	a	$a+1$	$a+1$	$a+1$
a	a	a	$a+1$	$a+1$	$a-2$

with $a \geqslant 6$. Each of these can be handled easily and the details are omitted.
For $k=2$ we find integers q_{1}, q_{2}, q_{3} with $a_{i}-2 \geqslant q_{i} \geqslant 2$, or $q_{i}=a_{i}$ ($i=1,2,3$) and $\sum q_{i}=c_{1}$. Then we decompose c_{1} with parameters q_{1}, q_{2}, q_{3} and c_{2} with $a_{1}-q_{1}, a_{2}-q_{2}, a_{3}-q_{3}$. This yields a solution unless $c_{1}=7$, $a_{2}=a_{3}=3$, which can be easily handled.

Proof of Theorem 2. First we show that G may be decomposed into nontrivial stars. Namely, we want to find a set of vertices $R=\left\{r_{1}, \ldots, r_{m}\right\}$ and nonempty subsets L_{1}, \ldots, L_{m} of V with $\Gamma\left(r_{i}\right) \supseteq L_{i}(1 \leqslant i \leqslant m)$ so that R, $L_{1} \ldots . . L_{m}$ is a decomposition of V.

Let R, L_{1}, \ldots, L_{m} satisfy the above conditions except that $R \cup\left(\bigcup_{1}^{m} I_{i}\right) \neq V$ and let $\mid R \cup\left(\cup_{1}^{m} L_{i}\right)$ be largest possible. Since G is connected there is an $x \in V \backslash\left(R \cup\left(\cup_{1}^{m} L_{i}\right)\right)$ with a neighbour in $R \cup\left(\cup_{1}^{m} L_{i}\right)$. By maximality this neighbour cannot be in R. If $|x, y| \in E, y \in L_{i}$ and $\left|L_{i}\right| \geqslant 2$ we let $L_{i}^{\prime}=L_{i} \backslash y, r_{m+1}=y, L_{m+1}=\{x\}$ contradicting the maximality. If $L_{i}=\{y\}$, let $r_{i}^{\prime}=y, L_{i}^{\prime}=\left\{r_{i}, x\right\}$ again contradicting maximality.

Define $S_{i}=\left\{r_{i}\right\} \cup L_{i}, s_{i}=\left|S_{i}\right|(m \geqslant i \geqslant 1)$ and assume $s_{1} \geqslant \cdots \geqslant s_{m}$. Among all decompositions into starts (R, L_{1}, \ldots, L_{m}) choose one with largest m and among those, choose one with (s_{1}, \ldots, s_{m}) lexicographically minimal. These assumptions imply

$$
\begin{align*}
& \text { if } s_{i} \geqslant 4, \quad \text { then } \quad e\left(L_{i}\right)=0 \text {; } \tag{1}\\
& \text { if } s_{i}+s_{j} \geqslant 6, i \neq j, \quad \text { then } e\left(L_{i}, L_{j}\right)=0 . \tag{2}
\end{align*}
$$

Besides, if $e\left(L_{i}, r_{j}\right) \neq 0$, then $s_{j} \geqslant s_{i}-1$. We say that S_{j} can be reached from S_{i} if there is a sequence $i=i_{0}, \ldots, i_{t}=j(t \geqslant 0)$ without repetitions such that $e\left(L_{i_{v}}, r_{i_{v}, 1}\right) \neq 0(v=0, \ldots ., t-1)$. The last observation extends to
if S_{j} can be reached from S_{i}, then $s_{j} \geqslant s_{i}-1$.
In the following section we assume $s_{1} \geqslant 4$. Consider now all stars S_{1}, \ldots, S_{p} with $s_{i}=s_{1}(p \geqslant i \geqslant 1)$, and let $P=\left\{m \geqslant i \geqslant 1 \mid S_{i}\right.$ can be reached from one of $\left.S_{1}, \ldots, S_{p}\right\}$. Let $H=\left\langle\bigcup_{i \in P} S_{i}\right\rangle$. We claim that H is 3-decomposable. Referring to Lemma 2 we note that all components of H have order $\geqslant 6$. Also all valencies in H are $\geqslant 3$, this can fail for a vertex $x \in L_{i}(i \in P)$ only if x
has a neighbour in $\bigcup_{i \notin P} L_{i}$ which by (2) is possible only if $s_{1}=4, s_{i}=3$, and $[x, y] \in E, y \in L_{j}, s_{j}=2$. But then we can replace a $4,3,2$ subsequence of s_{1}, \ldots, s_{m} by the lexicographically smaller $3,3,3$. For $r_{j}, j \in P$, the condition $d_{H}\left(r_{j}\right) \geqslant 3$ can fail only if $s_{j}=3$, but since $s_{1} \geqslant 4$, the edge by which S_{j} was reached from a larger star ensures that indeed $d_{H}\left(r_{j}\right) \geqslant 3$.

We want to reduce the proof to the case where $P=\{1, \ldots, m\}$. If $P \varsubsetneqq\{1, \ldots, m\} \quad$ let $t=\max \left\{s_{j} \mid j \notin P\right\}$. We already know that $|P| \geqslant 3$, $s_{i} \geqslant s_{1}-1(i \in P)$ and so $\sum_{i \in P} s_{i} \geqslant 3 s_{1}-2$.

If $t \leqslant a_{1}-2$ we can replace a_{1}, a_{2}, a_{3}, the parameters for decomposing, by $a_{1}-t, a_{2}, a_{3}$, and move to the next largest $S_{j}(j \notin P)$. If this process can be carried out until all stars not in P are used we finally have to 3decompose H with parameters $a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime} \geqslant 2$, which can be donc by induction on v. So consider the first case where it fails. Assume, then, $t \geqslant a_{1}-1$ and use $a_{1} \geqslant a_{2} \geqslant a_{3}, s_{1} \geqslant t+1, \sum_{i \in P} s_{i} \geqslant 3 s_{1}-2$ to write

$$
\begin{aligned}
2 s_{1}+t+1 & \geqslant 3 t+3 \geqslant 3 a_{1} \geqslant a_{1}+a_{2}+a_{3}=v \\
& \geqslant t+\sum_{i \in P} s_{i} \geqslant t+3 s_{1}-2
\end{aligned}
$$

which implies $3 \geqslant s_{1}$, a contradiction.
This allows us to assume from now on that $s_{m} \geqslant s_{1}-1$. Moreover we may assume that $\bigcup_{1}^{m} L_{i}$ is an independent set of vertices, if $s_{1} \geqslant 4$. If $s_{1} \geqslant 5$ this follows immediately from (1), (2). If $s_{1}=4$, (2) reduces the discussion to a case where some $s_{i}=3, L_{i}=\{x, y\}$ and $[x, y] \in E$. But since S_{i} can be reached from a star on 4 vertices we may transfer vertices and transform S_{i} to a star on 4 vertices which violates (1).

Besides, we are allowed to assume that $e\left(r_{j}, \cup_{1}^{m} L_{i}\right) \geqslant 3(m \geqslant j \geqslant 1)$. Again if $s_{1} \geqslant 5$ this is clear and if $s_{1}=4$ and $s_{j}=3, r_{j}$ has a neighbour in $\bigcup_{i \neq j} L_{i}$, since S_{j} can be reached from other stars.

We claim that we may assume $e(R)=0$. Otherwise start deleting edges from $E(R)$. On deleting such an edge all valencies in G remain $\geqslant 3$ but it may possibly disconnect. So assume that one of these edges is a bridge. By Lemma 2 we may assume that at least one of the components of the graph resulting when this edge is deleted is of order $\leqslant 5$. This leads to a short list of possible cases

Sizes of Components	$a_{1} a_{2} a_{3}$
4,4	$3,3,2$
5,4	$3,3,3$
5,5	$4,4,2$
7,4	$5,3,3$
7,5	$4,4,4$

Each one of these may be handled separately. So we may assume

$$
\begin{equation*}
E=E\left(R, \bigcup_{1}^{m} L_{i}\right), \quad d(x)=3 \quad\left(x \in \bigcup L_{i}\right) \tag{3}
\end{equation*}
$$

Consider now the graphs $G_{i}=G \backslash\left(\left\{r_{i}\right\} \cup \Gamma\left(r_{i}\right)\right)(m \geqslant i \geqslant 1)$. We want to show that each of them contains a vertex of valence $\leqslant 2$. If $\delta\left(G_{i}\right) \geqslant 3$ for some i, we claim that all components of G_{i} have order $\geqslant 6$. This follows easily, since G is bipartite and has all valencies $\geqslant 3$. This means that Lemma 2 will be applicable. Let $q=d\left(r_{i}\right)+1$, if $q \leqslant a_{1}-2$, decompose G_{i} with parameters $a_{1}-q, a_{2}, a_{3}$. If $q \geqslant a_{3}$, consider G_{i}^{\prime} which is a graph obtained by adding to $G_{i} q-a_{3}$ of the vertices in $\Gamma\left(r_{i}\right) . \delta\left(G_{i}^{\prime}\right) \geqslant 2$ and by Lemma M may be decomposed with parameters a_{1}, a_{2}.

Assume, then, that the remaining possibility holds, where $a_{1}=a_{2}=a_{3}=$ $q+1$. Let r_{j} have neighbours in $\Gamma\left(r_{i}\right)$ and let $A_{1}=\left\{r_{i}, r_{j}\right\} \cup \Gamma\left(r_{i}\right)$. In $G \backslash A_{1}$ all components are of order $\geqslant 5$ and by Lemma M it can be decomposed with parameters a_{2}, a_{3}.

We may put the conclusion of the above paragraph in the form

$$
\begin{equation*}
\forall m \geqslant i \geqslant 1, \quad \exists 1 \leqslant j \neq i \leqslant m \ni\left|\Gamma\left(r_{j}\right) \backslash \Gamma\left(r_{i}\right)\right| \leqslant 2, \tag{4}
\end{equation*}
$$

in which case we say that r_{i} hits r_{j}. In what follows Γ_{i} stands for $\Gamma\left(r_{i}\right)$. We want to show that there are 4 distinct indices $m \geqslant i_{1}, i_{2}, j_{1}, j_{2} \geqslant 1$ so that $r_{i_{1}}$ hits $r_{j_{1}}, r_{i_{2}}$ hits $r_{j_{2}}$. By (4) this is not the case only if there is a $m \geqslant t \geqslant 1$ so that all $r_{i}(m \geqslant i \neq t \geqslant 1)$ hit r_{t} and only r_{t}. Let r_{t} hit r_{s}. So

$$
1 \leqslant\left|\Gamma_{s} \backslash \Gamma_{t}\right| \leqslant 2, \quad\left|\Gamma_{t} \backslash \Gamma_{s}\right| \leqslant 2
$$

Let r_{i} have a neighbour in $\Gamma_{s} \backslash \Gamma_{t}$. Since r_{i} hits r_{t} but does not hit r_{s} it follows that $\left|\Gamma_{t} \backslash \Gamma_{s}\right|=2$ and r_{i} is a neighbour of both vertices in $\Gamma_{t} \backslash \Gamma_{s}$. It also follows that $\left|\Gamma_{s} \backslash \Gamma_{t}\right|-2$ and r_{i} is a neighbour of exactly one vertex in $\Gamma_{s} \backslash \Gamma_{i}$. But since the vertices in $\left(\Gamma_{s} \backslash \Gamma_{t}\right) \cup\left(\Gamma_{t} \backslash \Gamma_{s}\right)$ all have valence 3 (by (3)) this is impossible.

So we have 4 distinct indices $1 \leqslant \alpha, \beta, \gamma, \delta \leqslant m$ so that

$$
\begin{equation*}
\left|\Gamma_{\alpha} \backslash \Gamma_{\beta}\right| \leqslant 2, \quad\left|\Gamma_{\gamma}-\Gamma_{\delta}\right| \leqslant 2 . \tag{5}
\end{equation*}
$$

Now represent the a_{i} 's as

$$
a_{i}=f_{i} s+g_{i}(s-1)+h_{i} \quad(i=1,2,3)
$$

where $\sum f_{i}=f-2, f$ being the number of s_{i} 's which are $=s$, and $\sum g_{i}=g=$ $m-f=$ number of s_{i} 's which are $=s-1, \sum h_{i}=2 s, h_{i} \geqslant 0$. (If $f=1$, change the roles of s and $s-1$.)

We assign now stars to classes as dictated by these parameters, namely, f_{1} s-stars to A_{1}, etc. Let us say that $h_{1}, h_{2} \leqslant s / 2$. Assign S_{β} to A_{1} and S_{δ} to A_{2}, only S_{α}, S_{γ} are unassigned yet. Now by (5) we transfer h_{1} vertices of L_{α} to A_{1} and h_{2} vertices of L_{γ} to A_{2}. The rests of S_{α}, S_{γ} are assigned to A_{3} to complete the decomposition.

If $h_{1}, h_{2} \geqslant s / 2$, assign S_{B}, S_{δ} to A_{3} and transfer $s-h_{1}, s-h_{2}$ vertices from S_{α}, S_{γ} respectively to A_{3}. The remains of S_{α}, S_{γ} are assigned to A_{1}, A_{2}, respectively.

The only case which needs settling yet is the one where $s_{1} \leqslant 3$. Let us say that we have αs_{i} 's equal 2 and β of them equal 3 . It is easy to check that if $\alpha \geqslant 4$ and $\beta \geqslant 2$ then a decomposition exists regardless of the values of a_{1}, a_{2}, a_{3}.

So we may assume $\alpha \leqslant 3$ or $\beta \leqslant 2$. The cases are

$$
\begin{array}{ll}
\alpha=0 & \left(a_{1}, a_{2}, a_{3}\right) \equiv(1,1,1) \text { or }(0,1,2) \text { or }(2,2,2) \bmod 3, \\
\alpha=1 & \left(a_{1}, a_{2}, a_{3}\right) \equiv(0,1,1) \text { or }(1,2,2) \bmod 3, \\
\alpha=2 & \left(a_{1}, a_{2}, a_{3}\right) \equiv(2,1,1) \bmod 3, \\
\alpha=3 & \left(a_{1}, a_{2}, a_{3}\right) \equiv(1,1,1) \bmod 3 \\
\beta=0 & \left(a_{1}, a_{2}, a_{3}\right) \equiv(0,1,1) \bmod 2 \\
\beta=1 & \left(a_{1}, a_{2}, a_{3}\right) \equiv(1,1,1) \bmod 2
\end{array}
$$

of any of their permutations.
If $\beta \leqslant 1$ we can find three 2 -stars which can be transformed into two 3stars, taking care of $\beta \leqslant 1$. If $\alpha \leqslant 3$ we can find two neighbouring 3 -stars and transform them into a 4 -star and a 2 -star, or else transform four 3 -stars into two 4 -stars and two 2 -stars. It is a routine check to validate that the decomposition is achieved in any of these cases.

Together with the conjecture discussed in the present paper Frank made in [3] another conjecture, later proved by Lovász [5] and Györi [4]:

Theorem LG. A graph $G=(V, E)$ of order $\geqslant k+1$ is k-connected iff for any k integers $a_{1}, \ldots, a_{k} \geqslant 1$ and any k distinct vertices $x_{1}, \ldots, x_{k} \in V$, it is possible to decompose V into A_{1}, \ldots, A_{k} so that $\left|A_{i}\right|=a_{i}, x_{i} \in A_{i},\left\langle A_{i}\right\rangle$ is connected ($i=1, \ldots, k$).

This brings to mind the idea that one should try to prove a stronger conjecture than the one discussed in the present paper in which not only a_{1}, \ldots, a_{k} are specified but also some vertices x_{1}, \ldots, x_{k} in a manner similar to Theorem LG. However, even for the case $a_{1}=\cdots=a_{k-1}=2$ the specification x_{1}, \ldots, x_{k} already implies k-connectivity as Theorem 3 shows. The harder part of the theorem is contained in Theorem LG but it seems
worth mentioning as it supplies an independent characterization of k connectivity.

Theorem 3. A graph $G=(V, E)$ of order $\geqslant 2 k-1$ is k-connected iff for every set $\left\{x_{1}, \ldots, x_{k}\right\} \subseteq V$, there is a matching of x_{1}, \ldots, x_{k-1} within $G \backslash\left\{x_{k}\right\}$ so that the vertices which are not in the matching span a connected subgraph of G.

Proof. The crucial step in the proof is an application of alternating paths, a method which is fundamental in matching theory. See Berge $\mid 1$, Chap. 8| for several examples of this method.

We assume G to be k-connected, and start by showing that it is possible to match $T=\left\{x_{1}, \ldots, x_{k-1}\right\}$ within $G \backslash x_{k}$. To show this we employ Hall's theorem $\{1$, p. 134 $\}$. Let $X=\left\{x_{1}, \ldots, x_{k}\right\}$, and for $S \subset T$ let $N(S)$ be the set of those vertices in $V \backslash x_{k}$ which have a neighbour in S. If T cannot be matched within $G \backslash x_{k}$, then, by Hall's theorem, $|N(S)|<|S|$ for some $S \subseteq T$. But then the set $W=N(S) \cup(X \backslash S)$ separates S from the rest of the vertices in V. Note that the sets S and W do not exhaust all of V, because together they contain at most $2 k-2$ vertices whereas $|V| \geqslant 2 k-1$. Therefore W disconnects G, but this is impossible, since

$$
|W|=|N(S)|+|X|-|S|<|X|=k
$$

Among all sets Y that can be matched with T in $G \backslash x_{k}$ we choose one for which the component of x_{k} in $G \backslash(T \cup Y)$ contains as many vertices as possible. Assume $Y=\left\{y_{1}, \ldots, y_{k-1}\right\}$ and $\left|x_{i}, y_{i}\right| \in E$ for $i=1, \ldots, k-1$. If $G \backslash(T \cup Y)$ is connected, then the proof is finished, so we assume that it is disconnected.

Let C_{1}, \ldots, C_{r} be the components of $G \backslash(T \cup Y)$ and let A_{i} be the vertex set of C_{i}. We assume that $r \geqslant 2, x_{k} \in A_{1}$, and that $\left|A_{1}\right|$ is as large as possible. First we note that $E\left(A_{1}, Y\right) \neq \varnothing$, since otherwise T separates A_{1} from Y and therefore from $Y \cup A_{2} \cup \cdots \cup A_{r}$, although $|T|=k-1$. Let $Y_{1} \neq \varnothing$ be the set of those vertices in Y which have a neighbour in A_{1}. Define

$$
\begin{align*}
S= & \left\{x \in T \mid \text { There is a sequence } x_{\alpha_{1}}, \ldots, x_{a_{l}}=x\right. \text { of } \\
& \text { distinct vertices in } T(l \geqslant 1) \text { so that } y_{\alpha_{1}} \in Y_{1} \text { and } \tag{6}\\
& \left.\left|x_{\alpha_{i}}, y_{a_{i+1}}\right| \in E \text { for } i=1, \ldots, l-1\right\} .
\end{align*}
$$

We show that

$$
\begin{equation*}
E\left(S, A_{i}\right)=\varnothing \quad \text { for } \quad i=2, \ldots, r \tag{7}
\end{equation*}
$$

Suppose on the contrary that for some $x \in S$ there is a $y \in \bigcup_{i=2}^{r} A_{i}$ such that $|x, y| \in E$. Let $x_{a_{1}}, \ldots, x_{a_{l}}=x$ be a sequence as in the definition (6). We
define $Y^{\prime}=Y \backslash y_{\alpha_{1}} \cup y$, and show that T can be matched with Y^{\prime} in $G \backslash x_{k}$. For $i \notin\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ we leave x_{i} and y_{i} matched. For $j=1, \ldots, l-1$ we match $x_{\alpha_{j}}$ with $y_{\alpha_{j}+1}$. Note that $\left\{x_{\alpha_{j}}, y_{\alpha_{j}+1}\right\} \in E$ by definition (6); $x=x_{\alpha_{j}}$ is matched with y. However, the component of $G \backslash\left(T \cup Y^{\prime}\right)$ which contains x_{k} includes $A_{1} \cup y_{\alpha_{1}}$, and therefore contains more vertices than the component C_{1} of $G \backslash(T \cup Y)$. This contradicts the maximality of $\left|A_{1}\right|$ and proves (7). Denote $S^{\prime}=\left\{y_{i} \mid x_{i} \in S\right\}$. We show that $(T \backslash S) \cup S^{\prime}$ separates $S \cup A_{1}$ from $\left(Y \backslash S^{\prime}\right) \cup \bigcup_{i=2}^{r} A_{i}$. Since $\left|(T \backslash S) \cup S^{\prime}\right|=k-1$ this is a contradiction which proves the "only if" part of the theorem. Consider A_{1} first: cvidently, $E\left(A_{1}, A_{i}\right)=\varnothing$ for $i=2, \ldots, r$. Also $E\left(A_{1}, Y \backslash S^{\prime}\right)=\varnothing$, since $Y_{1} \subseteq S^{\prime}$. As for S, we have (7). By definition of S we have $E(S, Y)=E\left(S, S^{\prime}\right)$ and this part of Theorem 3 is proven.

The "if" part of the theorem is proved as follows: Suppose $S \subseteq V$ is such that $|S|=k-1$ and $G \backslash S$ is disconnected. Let $A_{1}, \ldots, A_{r}(r \geqslant 2)$ be the vertex sets of the components of $G \backslash S$. Suppose first that $\left|A_{i}\right| \leqslant k-1$ for some i, and let U be a subset of S having $k-1-\left|A_{i}\right|$ vertices. Define x_{1}, \ldots, x_{k-1} to be the vertices in $A_{i} \cup U$. Also, let x_{k} be a vertex in $S \backslash U$. No vertex outside $A_{i} \cup S$ is adjacent to a vertex of A_{i}. Therefore, at most $\left|S \backslash\left(U \cup x_{k}\right)\right|=$ $\left|A_{i}\right|-1$ vertices in $V \backslash\left(A_{i} \cup U \cup x_{k}\right)$ may have a neighbour in A_{i}. Thus it is impossible to match $A_{i} \cup U=\left\{x_{1}, \ldots, x_{k-1}\right\}$ within $G \backslash x_{k}$.

We may assume, then, that $\left|A_{i}\right| \geqslant k$ for $1 \leqslant i \leqslant r$. Now let x_{1}, \ldots, x_{k-1} be the vertices of S, and x_{k} a vertex not in S. From the assumption that every component of $G \backslash S$ has $\geqslant k$ vertices it follows that for every matching of S in G (if any), the remaining vertices span a disconnected subgraph of G, a contradiction.

Let us show now that the conjecture holds for the case $a_{1}=\cdots=a_{k-1}=2$. This case is of course a problem on the existence of matchings as was also noted by Frank and Maurer.

Theorem 4. Let G be a connected graph of order $\geqslant 2 k$ with $\delta(G) \geqslant k$. Then there is a matching $\left.\left[x_{i}, y_{i}\right](i=1, \ldots, k-1\}\right)$ so that the graph $G \backslash\left(\left\{x_{i} \mid i=1, \ldots,-1\right\} \cup\left\{y_{i} \mid i=1, \ldots, k-1\right\}\right)$ has no isolated vertices.

Proof. That G contains a $(k-1)$ matching is known (see, e.g., [2, Theorem 2.4.2]). Consider a matching $\left\lfloor x_{i}, y_{i} \mid(i=1, \ldots, k-1)\right.$ for which $G \backslash\left(\left\{x_{i} \mid i=1, \ldots, k-1\right\} \cup\{y \mid i=1, \ldots, k-1\}\right.$ has as few isolated vertices as possible. Let p be an isolated vertex in this subgraph. Identify $V \backslash(\{p\} \cup$ $\left\{x_{i} \mid i=1, \ldots, k-1\right\} \cup\left\{y_{i} \mid i=1, \ldots, k-1\right\}$) to a single vertex q. Let H be the resulting graph with vertex set $\{p, q\} \cup\left\{x_{i} \mid i=1, \ldots, k-1\right\} \cup\left\{y_{i} \mid i=1, \ldots\right.$, $k-1\}$, and $E=E(H)$. If we can find a perfect matching in H we can translate this back into a $(k-1)$ matching in G with fewer isolated vertices among the vertices which are not in the matching.

We prove that H has a perfect matching by contradiction. If $\left[p, x_{i}\right] \in E$, $\left|q, y_{i}\right| \in E$ for some $k-1 \geqslant i \geqslant 1$, then a perfect matching is obtained by matching $\left[p, x_{t}\right],\left[q, y_{i}\right]$, and $\left[x_{j}, y_{j}\right], k-1 \geqslant j \neq i \geqslant 1$. Notice that x_{i}, y_{i} play exactly the same roles so whenever an assumption on x_{i}, y_{i} can be made without loss of generality we will make it with no further comment. We want to show that for $k-1 \geqslant i \geqslant 1$ either $\left[q, x_{i}\right],\left[q, y_{i}\right] \in E$ or $\left[q, x_{i}\right]$, $\left[q, y_{i}\right] \notin E$. Assume that $\left[q, x_{i}\right] \notin E,\left[q, y_{i}\right] \in E$. By a previous remark we may assume $\left[p, x_{i}\right] \notin E$. Now $d_{H}(p) \geqslant k$ and $\left[q, x_{i}\right] \notin E$ implies that $d_{H}\left(x_{i}\right) \geqslant k$. Therefore both p and x_{i} have at least $k \quad 1$ neighbours among the $2 k-4$ vertices in $\bigcup\left(\left\{x_{j}, y_{j}\right\} \mid k-1 \geqslant j \neq i \geqslant 1\right)$. This implies that for some $j \neq i,\left[x_{i}, x_{j}\right],\left[p, y_{j}\right] \in E$. But now we have the perfect matching $\left[p, y_{j}\right]$, $\left[x_{i}, x_{j}\right],\left[q, y_{i}\right]$, and $\left[x_{t}, y_{t}\right](k-1 \geqslant t \neq i, j \geqslant 1)$, a contradiction.
It follows that there exists a subset $I \subseteq\{1, \ldots, k-1\}$ so that for $i \notin I$, $\left[q, x_{i}\right],\left[q, y_{i}\right] \notin E$ and for $i \in I,\left[q, x_{i}\right],\left[q, y_{i}\right] \in E$. By what was said before, $i \in I$ implies $\left[p, x_{i}\right],\left[p, y_{i}\right] \notin E$. Since G is connected there have to be $s \in I$, $t \notin I$ so that $\left[y_{s}, y_{t}\right] \in E$. We repeat a previous argument to conclude that there is an index $j \neq t$ so that $\left\{x_{t}, p\right\}$ can be matched with $\left\{x_{j}, y_{j}\right\}$. Now j cannot belong to I and in particular $j \neq s$. Let us say that $\left[x_{t}, x_{j}\right] \in E$, $\left[p, y_{j}\right] \in E$. Match these pairs and also $\left[y_{s}, y_{l}\right],\left[q, x_{s}\right]$, and $\left[x_{r}, y_{r}\right](k-1 \geqslant$ $r \neq s, t, j \geqslant 1$) for a perfect matching.

Note added in proof. Theorem 3 was independently proved by E. Györi (Combinatorica 1 (1981), 263-273).

References

1. C. Berge, "Graphs and Hypergraphs," North-Holland, Amsterdam, 1973.
2. B. Bollobís, "Extremal Graph Theory," Academic Press, New York, 1978.
3. A. Frank, Problem proposed on the Fifth British Combinatorial Conference, Aberdeen, Scotland, 1975.
4. E. Györi, On division of graphs to connected subgraphs, in "Combinatorics," Keszthely, 1976; Colloq. Math. Soc. János Bolyai 18 (1978), 485-494.
5. L. Lovísz, A homology theory for spanning trees of a graph, Acta Math. Acad. Sci. Hungar 30 (1977), 241-251.
6. S. B. Maurer, Vertex colouring without isolates, J. Combin. Theory, Ser. B 27 (1979), 294-319.

[^0]: * The author's work was supported by the Chaim Weizman Postdoctoral Fellowship. The author is grateful for the grant's generous support.

