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A. Frank (Problem session of the Fifth British Combinatorial Conference, 
Aberdeen, Scotland, 1975) conjectured that if G = (V, E) is a connected graph with 
all valencies >k and a,,..., ak > 2 are integers with C ai = / VI, then k’ may be 
decomposed into subsets A, ,..,, A, so that lAil = ai and the subgraph spanned by Ai 
in G has no isolated vertices (i= l,.... k). The case k = 2 is proved in Maurer (J. 
Combin. Theory Ser. B 27 (1979) 294-3 19) along with some extensions. The 
conjecture for k = 3 and a result stronger than Maurer’s extension for k = 2 are 
proved. A related characterization of a k-connected graph is also included in the 
paper, and a proof of the conjecture for the case a, = a2 = ... = ak-, = 2. 

Graph theoretic terminology is standard; see [ 1, 2] for definitions. A 
graph G = (I’, E) has order u = ] I’]. For A, B g V we let 

EWB)= {[x,ylEElxEA,yEB), 

E(A)=W,A), 

Also (/I& = (A) is the subgraph of G spanned by A. We let 6(G) be the 
smallest valence of vertices in G. 

In [3] A. Frank made the following: 

Conjecture. Let G = (V, E) be a connected graph, with 6(G) > k. Let 
a, ,..., ak > 2 be integers with Cf ai = v = 1 VJ. Then V may be decomposed 
into A , ,..., A, so that lAil = ai and (Ai) has no isolated vertices (i = l,..., k). 

A graph for which the conclusion of the conjecture holds is said to be k- 
decomposable, so the conjecture says that a connected graph with 6 > k is k- 
decomposable. 
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This problem for k = 2 was discussed by Maurer [6] who also considers 
the computational complexity of finding these, and related, decompositions 
of graphs. Maurer proved Frank’s conjecture for k = 2 and proved some 
extensions of this case. Among others he proves 

THEOREM M [6]. Let G = (V, E) be a connected graph, 6(G) > 2. Let 
a,, a, > 2 be integers with a, + a, = v = / VI. Then V may be decomposed 
into A,, A, so that /Ai1 = ai (i = 1,2) one of the (Ai) is connected and the 
other one has no isolated vertices. 

The results of this paper are: a proof of the conjecture for k = 3 
(Theorem 2), a theorem which contains Theorem M, a related charac- 
terization of k-connected graphs (Theorem 3), and a proof of the conjecture 
fora,=a,=..-=a,-,=2. 

Our first theorem contains Theorem M. To state it we define a friendship 
graph J’, = (V,, En), where V,={p} U {xiIn>i> 1) U {yiIn>i> l}, 
E,={[xi,Yi]ln>i>l} U ([p,Xi]ln>i>l} U ([PpYi]In>i>l}. In 
other words F, = K, + nK,. Now we state 

THEOREM 1. Let G = (V, E) be a connected graph, 6(G) > 2, and let 
a,,a,> 2 be integers such that (VI = v >a, +a,. Then unless G is a 
friendship graph and both a,, a, are odd, there exist A,, A, c V so that 
A,nA,=#, jA,l=a, (i= 1,2), one of(A,) is connected and the other one 
has no isolated vertices. 

Proof Note first that if G is a friendship graph and a,, a, are odd then 
at least one of the (Ai) must have an isolated vertex. We need 

LEMMA 1. Let G = (V, E) be a connected graph, 6(G) > 2, which is not 
a friendship graph. Then there are two adjacent vertices x, y E V so that 
4G.J > 2, where G,, is the graph obtained from G by contracting x, y to a 
single vertex. 

Proof: Let us consider the vertices of degree 23. If there are none G 
must be a circuit and the lemma holds unless G = K, which is the friendship 
graph F, . If there is just one vertex of degree 23, G is a collection of circuits 
having exactly one vertex in common. For such graphs the conclusion of the 
lemma holds except if all circuits are triangles and the graph is a friendship 
graph. 

If there are two adjacent vertices p, q with d(p), d(q) > 3, then either 
6(G,,) > 2 and we let x =p, y = q, or 6(G,,) = 1. In the latter case there 
must be a vertex w  with T(w) = {p, q}. Let x =p, y = w  to achieve 
4G,,) > 2. 

In the remaining case we can assume that there exist vertices p, q with 
d(p), d(q) 2 3 and such vertices must be nonadjacent. Now let p = x0, x1 ,..., 
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x, = q be a shortest path between them. We claim that for x = p, y = x, we 
have 6(G,,) > 2. Otherwise p and x, must have a common neighbour, but 
since d(x,) = 2, T(x,) = {p, xz} and if p. x2 E E, there is a shorter path from 
P to 4. 

We go back to prove the theorem by induction on c = v - (a, + a*). The 
case c = 0 is Theorem M above. So assume c > 1 and G is not a friendship 
graph. Find x, y which satisfy the lemma and consider G’ = G,,. If G’ is a 
friendship graph then it is easy to check that the theorem holds. If G’ is not 
a friendship graph we may apply induction: 

Let p be the vertex in G’ which represents (x, y}. By the induction 
hypothesis we may find disjoint subsets Ai, Ai of q{x,y} U (p) so that 
lA\/=ai (i= 1,2), one of (A;),, is connected and the other one has no 
isolated vertices. If p & Ai U Ai, let A i = AI (i = 1. 2) and this satisfies the 
theorem. 

Assume, then, that p E Ai and let A; = A{\(p} U (x,y), A, = A; be sets 
of vertices in G. They fail to satisfy the theorem only in that IA; / = a, + 1. 
Since p belongs to a component of (Ai)c of order 22, x, y belong to a 
component of (A;)c of order 23. Omitting a non-cut vertex of this 
component A, is obtained and the theorem follows. 1 

Let us state and prove now the main result. We prove the conjecture for 
k= 3. 

THEOREM 2. Let G = (V, E) be a connected graph with all valencies 23. 
Let a,, a,, a3 > 2 be integers with a, + a, + a3 = v = / I/). Then there is a 
decomposition A,, A,, A, of V so that 1 A i / = a, and (A i) has no isolated 
vertices (i = 1, 2, 3). 

First we need two technical lemmas: 

LEMMA M. Let G be a graph with 6(G) > 2. If all components of G are 
of order >5 then G is 2-decomposable. 

Proof. Contained in [6, Theorem 4.211. 

LEMMA 2. Assume 6(G) > 3 implies 3-decomposability for connected 
graphs G of order <v. Then it implies 3-decomposability also for graphs of 
order <v having all components of order >6. 

Proof. By induction on the order of the graph. Let c, > ‘.. > ck > 6 be 
the orders of the components of G and let a, > a2 > a3 > 2 satisfy 
a, + a, + a3 = v. If ck < a, - 2 we may continue by induction so assume 
ck > a, - 1 which readily implies k < 3, and since k > 1 we have to check 
only k = 2, 3. 

Let k = 3 first. Of course c, < a, but in case of equality we may proceed 
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by induction. So we may assume c3 = a, - 1. Similarly cz > a, - 1 and 
c2 # a, imply c2 = a2 - 1 (c, > a, + 1 is impossible since a, + a, + a3 = 
c1+cz+c,, a,>a,>a,, c, > c, > c3). Using the same arguments we 
remain with two cases: 

C2 a3 

at3 

a 

a 

a 

a 

a 

a+1 a+1 a+1 
a+1 at1 a-2 

with a > 6. Each of these can be handled easily and the details are omitted. 
For k = 2 we find integers q, , q2, q3 with ai-2>q,>2, or qi=aj 

(i = 1, 2, 3) and C qi = c,. Then we decompose c, with parameters q,, q2, q3 
and cl with a, -ql, a,-qq,, ax-q,. This yields a solution unless c, = 7, 
CI> = a3 = 3. which can be easily handled. I 

Proof of Theorem 2. First we show that G may be decomposed into 
nontrivial stars. Namely, we want to find a set of vertices R = (r, ,..., r,} and 
nonempty subsets L i ,..., L, of V with T(ri) ?L, (1 < i< m) so that R, 
L i ,..., L, is a decomposition of I’. 

Let R, L , ,,.., L, satisfy the above conditions except that R U (U’: L/) # V 

and let IR U (Uy Li)l be largest possible. Since G is connected there is an 
.Y E V\(R U (Uy L,)) with a neighbour in R U (UT Li). By maximality this 
neighbour cannot be in R. If [X,JJ] E E, y E Li and lLil > 2 we let 
Lf = Li\4’, rm+, =.V, L,+, = {x) contradicting the maximality. If Li = { y}, 

let r( = y, LI = { ri, X} again contradicting maximality. 
Define Si=(ri}ULi. si=ISil (m>i> 1) and assume s,>...>s,. 

Among all decompositions into starts (R, L, ,..., L,) choose one with largest 
m and among those, choose one with (s, ,..., s,) lexicographically minimal. 
These assumptions imply 

if si > 4, then e(L,) = 0; (1) 

if si + sj > 6, i #j, then e(L,, Lj) = 0. (2) 

Besides, if e(L,, rj) # 0, then sj > si - 1. We say that Sj can be reached from 
Si if there is a sequence i = i,,..., i, =j (t > 0) without repetitions such that 
e(LiL,, ri, ,) # 0 (v = O..... t - 1). The last observation extends to 

if Sj can be reached from Si, then si>si- 1. 

In the following section we assume s, > 4. Consider now all stars S, ,..., S, 
with si = s, (p > i > l), and let P = {m > i > 1 ISi can be reached from one 
of s i,..., S,}. Let H= ((JicP Si). We claim that H is 3-decomposable. 
Referring to Lemma 2 we note that all components of H have order >6. Also 
all valencies in H are 23, this can fail for a vertex x E Lj (i E P) only if x 
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has a neighbour in UidP Li which by (2) is possible only if s, = 4, si = 3, 
and [x, y] E E, y E Lj, sj = 2. But then we can replace a 4, 3, 2 subsequence 
of s 1 Y--*9 s, by the lexicographically smaller 3, 3, 3. For rj, j E P, the 
condition dH(rj) 2 3 can fail only if sj = 3, but since s, > 4, the edge by 
which Sj was reached from a larger star ensures that indeed dH(rj) > 3. 

We want to reduce the proof to the case where P = (l,..., m}. If 
p f { l,..., m} let t = max{sj ]j@ P}. We already know that IP( > 3, 
si > s, - 1 (i E P) and so CipP si > 3s, - 2. 

If t<a,-2 we can replace a,, a2, a3, the parameters for decomposing, 
by a1 - t, a*, a3, and move to the next largest Sj (j 66 P). If this process can 
be carried out until all stars not in P are used we finally have to 3- 
decompose H with parameters a;, a;, a; > 2, which can be done by 
induction on U. So consider the first case where it fails. Assume, then, 
t > a, - 1 and use a, > a, > a3, s, > t + 1, xi,, si > 3s, - 2 to write 

2s, + t + 1 > 3t + 3 > 3a, > a, + a, + a3 = u 

~ t + ~~ Si ~ t + 3S, - 2 

which implies 3 > s,, a contradiction. 
This allows us to assume from now on that s, > s, - 1. Moreover we may 

assume that Uy Li is an independent set of vertices, if s, > 4. If s, > 5 this 
follows immediately from (l), (2). If s, = 4, (2) reduces the discussion to a 
case where some si = 3, Li = {x,y} and [x, y] E E. But since Si can be 
reached from a star on 4 vertices we may transfer vertices and transform Si 
to a star on 4 vertices which violates (1). 

Besides, we are allowed to assume that e(rj, UT Li) > 3 (m >j> 1). 
Again if s, > 5 this is clear and if s, = 4 and sj = 3, rj has a neighbour in 
fJi+jLi, since Sj can be reached from other stars. 

We claim that we may assume e(R) = 0. Otherwise start deleting edges 
from E(R). On deleting such an edge all valencies in G remain >3 but it may 
possibly disconnect. So assume that one of these edges is a bridge. By 
Lemma 2 we may assume that at least one of the components of the graph 
resulting when this edge is deleted is of order <5. This leads to a short list of 
possible cases 

Sizes of Components ala2a3 

474 3,3,2 
54 3,393 
535 4,492 
I,4 5,393 
735 4,4,4 
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Each one of these may be handled separately. So we may assume 

d(x) = 3 (xEULi)* 

Consider now the graphs Gi = G\( {ri} U T(ri)) (m > i > 1). We want to 
show that each of them contains a vertex of valence <2. If 6(G,) > 3 for 
some i, we claim that all components of Gi have order >6. This follows 
easily, since G is bipartite and has all valencies >3. This means that 
Lemma 2 will be applicable. Let q = d(r,) + 1, if q < u, - 2, decompose G, 
with parameters u, - q, a,, a3. If q > a3, consider Gf which is a graph 
obtained by adding to Gi q - a3 of the vertices in T(ri). S(Gl) > 2 and by 
Lemma M may be decomposed with parameters a,, u2. 

Assume, then, that the remaining possibility holds, where a, = a, = a3 = 
q + 1. Let rj have neighbours in T(ri) and let A i = {rir rj} U T(ri). In G\P I 
all components are of order >5 and by Lemma M it can be decomposed with 
parameters a,, a3. 

We may put the conclusion of the above paragraph in the form 

Vm>i>l, 3 1 <j # i < m 3 IT(r,)\T(r,)l < 2, (4) 

in which case we say that ri hits rj. In what follows Ti stands for T(ri). We 
want to show that there are 4 distinct indices m > i,, i,, j,, j, > 1 so that ri, 
hits rj,, ri, hits rj,. By (4) this is not the case only if there is a m > t > 1 so 
that all ri (m > i # t > 1) hit rI and only rt. Let r, hit rs. So 

Let ri have a neighbour in r,\r,. Since ri hits rI but does not hit rs it follows 
that Ir,\r, I = 2 and ri is a neighbour of both vertices in r,\r,. It also follows 
that Ir,\r,i = 2 and ri is a neighbour of exactly one vertex in r,\r,. But 
since the vertices in (r,\r,) U (r,\r,) all have valence 3 (by (3)) this is 
impossible. 

So we have 4 distinct indices 1 < a, /3, y, 6 < m so that 

Now represent the ats as 

ai =fis + gi(S - 1) + hi (i= 1,2,3), 

where 2 fi = f - 2, f being the number of s:s which are =s, and C gi = g = 
m -f = number of sI)s which are =s - 1, C hi = 2s, hi > 0. (Iff = I, change 
the roles of s and s - 1.) 
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We assign now stars to classes as dictated by these parameters, namely,f, 
s-stars to A,, etc. Let us say that h r, h, < s/2. Assign S, to A r and S, to A,, 
only S,, S, are unassigned yet. Now by (5) we transfer h, vertices of L, to 
A i and h, vertices of L, to A,. The rests of S,, S, are assigned to A, to 
complete the decomposition. 

If h, , h, > s/2, assign S,, S, to A, and transfer s - h, , s - h, vertices 
from S,, S, respectively to A,. The remains of S,, S, are assigned to A,, 
A z, respectively. 

The only case which needs settling yet is the one where s, < 3. Let us say 
that we have a Si’s equal 2 and /3 of them equal 3. It is easy to check that if 
a > 4 and /3 > 2 then a decomposition exists regardless of the values of a,, 
a,, a3. 

So we may assume a < 3 or /I < 2. The cases are 

a=0 (a,, a,, a3) = (1, 1, 1) or (0, 1,2) or (2,2, 2) mod 3, 

a=1 (a,, a,, a3) = (0, 1, 1) or (1,2,2) mod 3, 

a=2 (a,, u,, a3> = (2, 1, 1) mod 3, 

a=3 (a,, a,, a,) = (1, 1, 1) mod 3, 

p=o (a,,u,,a,)-(0, 1, l)mod2, 

p=1 (u,,u,,u,)-(1, 1, l)mod2, 

of any of their permutations. 
If /I < 1 we can find three 2-stars which can be transformed into two 3- 

stars, taking care of ,8 < 1. If a < 3 we can find two neighbouring 3-stars and 
transform them into a 4-star and a 2-star, or else transform four 3-stars into 
two 4-stars and two 2-stars. It is a routine check to validate that the decom- 
position is achieved in any of these cases. 1 

Together with the conjecture discussed in the present paper Frank made in 
[3] another conjecture, later proved by Lovisz [ 51 and Gyori [4]: 

THEOREM LG. A graph G = (V, E) of order >k + 1 is k-connected iff 
for any k integers a, ,..., uk > 1 and any k distinct vertices x, ,..., xk E V, it is 
possible to decompose V into A ,,..., A, so that lAil = ui, xi E Ai, (Ai) is 
connected (i = l,..., k). 

This brings to mind the idea that one should try to prove a stronger 
conjecture than the one discussed in the present paper in which not only 
a, ,..., ak are specified but also some vertices x, ,..., xk in a manner similar to 
Theorem LG. However, even for the case a,= .a- =ak-l =2 the 
specification x1 ,..., xk already implies k-connectivity as Theorem 3 shows. 
The harder part of the theorem is contained in Theorem LG but it seems 
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worth mentioning as it supplies an independent characterization of k- 
connectivity. 

THEOREM 3. A graph G = (V, E) of order >2k - 1 is k-connected iff for 
every set {x, ,..., XJ c V, there is a matching of x, ,..., xk-, within G\{xk} so 
that the vertices which are not in the matching span a connected subgraph of 
G. 

Proof: The crucial step in the proof is an application of alternating 
paths, a method which is fundamental in matching theory. See Berge 11, 
Chap. 8 ] for several examples of this method. 

We assume G to be k-connected, and start by showing that it is possible to 
match T= {x, ,..., xk- i} within G\xk. To show this we employ Hall’s 
theorem 11, p. 1341. Let X= {xi . . . . . xi}, and for S c T let N(S) be the set of 
those vertices in v\xk which have a neighbour in S. If T cannot be matched 
within G\xk, then, by Hall’s theorem, /N(S)1 < 1 SI for some S z T. But then 
the set W = N(S) U (x\S) separates S from the rest of the vertices in V. 
Note that the sets S and W do not exhaust all of V, because together they 
contain at most 2k - 2 vertices whereas j VI > 2k - 1. Therefore W 
disconnects G, but this is impossible, since 

/ WI = IN( + 1X1- ISI < 1X1= k. 

Among all sets Y that can be matched with T in G\x, we choose one for 
which the component of x,, in G\(Tu Y) contains as many vertices as 
possible. Assume Y = (y, ,..., all- ,) and [xi,yi] E E for i = l,..., k - 1. If 
G\(TU Y) is connected, then the proof is finished, so we assume that it is 
disconnected. 

Let C, ,..., C, be the components of G\(Tu Y) and let A, be the vertex set 
of Cj. We assume that r > 2, xk E A,, and that iA, I is as large as possible. 
First we note that E(A , , Y) # 0, since otherwise T separates A, from Y and 
therefore from Y U A z U ... WA,., although jTI=k- 1. Let Y,#0 be the 
set of those vertices in Y which have a neighbour in A,. Define 

S = (x E T 1 There is a sequence x,, ,..., x,, = x of 

distinct vertices in T (I > 1) so that J,, E Y, and (6) 
[x~~~,~v~,,~ ] E E for i = l..... 1 - 1 1. 

We show that 

E(S,Ai)=0 for i = 2,..., r. (7) 

Suppose on the contrary that for some x E S there is a y E Ur=2 Ai such 
that [X,JJ] E E. Let I, ,,..., .Y,,,= x be a sequence as in the definition (6). We 
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define Y’ = Y\y,, U y, and show that T can be matched with Y’ in G\xL. 
For i & {a, ,..., a,) we leave xi and yi matched. For j = l,..., I- 1 we match 
xaj with ynj+ i. Note that (xQj, yaj+,] E E by definition (6); x=x,, is 
matched with y. However, the component of G\(T U Y’) which contains xk 
includes A, U y,, , and therefore contains more vertices than the component 
C, of G\(TU Y). This contradicts the maximality of (A, 1 and proves (7). 
Denote S’ = { yi ( xi E S}. We show that (T\S) U S’ separates S U A, from 
(Y\S’)U UT=, Ai. S ince \(T\S) U S’ ] = k - 1 this is a contradiction which 
proves the “only if’ part of the theorem. Consider A, first: evidently, 
E(A,,Ai)=0fori=2 ,..., r. Also E(A,, r\S’) = 0, since Y, 5 S’. As for S, 
we have (7). By definition of S we have E(S, Y) = E(S, S’) and this part of 
Theorem 3 is proven. 

The “if’ part of the theorem is proved as follows: Suppose S c V is such 
that 1 S I= k - 1 and G\S is disconnected. Let A i ,..., A, (r > 2) be the vertex 
sets of the components of G\S. Suppose first that IAil < k - 1 for some i, 
and let U be a subset of S having k - 1 - 1 Ail vertices. Define xi ,..., xk-, to 
be the vertices in Ai U U. Also, let xk be a vertex in S\U. No vertex outside 
Ai U S is adjacent to a vertex of A,. Therefore, at most I S\(UU xJ = 
\Ai / - 1 vertices in V\(A, U UU xk) may have a neighbour in A i. Thus it is 
impossible to match AiU U= {xi ,..., xkAl) within G\xk. 

We may assume, then, that IAil > k for 1 < i < r. Now let x, ,.,., xk-, be 
the vertices of S, and xk a vertex not in S. From the assumption that every 
component of G\S has >k vertices it follows that for every matching of S in 
G (if any), the remaining vertices span a disconnected subgraph of G, a 
contradiction. I 

Let us show now that the conjecture holds for the case a, = ... = ak- i = 2. 
This case is of course a problem on the existence of matchings as was also 
noted by Frank and Maurer. 

THEOREM 4. Let G be a connected graph of order >2k with 6(G) > k. 
Then there is a matching [xi, yi] (i = l,..., k - 1)) so that the graph 
G\({xJi= l,..., - l}U{yili= l,..., k - 1) ) has no isolated vertices. 

Proof. That G contains a (k - 1) matching is known (see, e.g., [2, 
Theorem 2.4.21). Consider a matching [xi, yi] (i = l,..., k - 1) for which 
G\({x, / i = l,..., k - 1 } U { y  I i = l,..., k - 1 } has as few isolated vertices as 
possible. Let p be an isolated vertex in this subgraph. Identify v\(( p} U 
{xi 1 i = l,..., k - 1 / U { yi 1 i = l,..., k - 1)) to a single vertex q. Let H be the 
resulting graph with vertex set {p, q} U {xi ) i = l,..., k - 1) U { yi I i = l,..., 

k - 1}, and E = E(H). If we can find a perfect matching in H we can trans- 
late this back into a (k - 1) matching in G with fewer isolated vertices 
among the vertices which are not in the matching. 
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We prove that H has a perfect matching by contradiction. If [p, xi] E E, 
[q, yi] E E for some k - 1 > i > 1, then a perfect matching is obtained by 
matching [P, Xi], [q, Yi], and [xj,yj], k- 1 >j#i> 1. Notice that xi, yi 
play exactly the same roles so whenever an assumption on xi, yi can be 
made without loss of generality we will make it with no further comment. 
We want to show that for k - 1 > i > 1 either [q, xi], [q,yi] E E or [q, xi], 

[q, yi] 6! E. Assume that [q, xi] & E, [q,vi] E E. By a previous remark we 
may assume [p, xi] @ E. Now d,(p) > k and [q, xi] 6? E implies that 
dH(xi) > k. Therefore both p and xi have at least k - 1 neighbours among the 
2k - 4 vertices in U({xj, yj) / k - I > j # i > 1). This implies that for some 
j # i, [xi, xi], [p, yj] E E. But now we have the perfect matching [p, yj], 
]xi, xj], [q, yi], and [xl, y,] (k - 1 > t f i, j > l), a contradiction. 

It follows that there exists a subset I c {l,..., k - 1) so that for i t? I, 
[q, xi], [q, y,] 4 E and for i E I, [q, xi], [q, yi] E E. By what was said before, 
i E I implies [p, xi], [p, yi] @ E. Since G is connected there have to be s E I, 
t & I so that [ ys, y,] E E. We repeat a previous argument to conclude that 
there is an index j # t so that {xt,p} can be matched with (xj, yj). Now j 
cannot belong to I and in particular j # s. Let us say that [x1, xj] E E, 
fp,-vj] E E. Match these pairs and also [ ys, y,], [q, xs], and [x,, y,] (k - 1 > 
Y # s, t, j > 1) for a perfect matching. 1 

Note added in proof. Theorem 3 was independently proved by E. Gyiiri (Combinatorics 1 
(198 1). 263-273). 
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