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GRAPH DISTANCES IN THE DATA-STREAM MODEL∗

JOAN FEIGENBAUM† , SAMPATH KANNAN‡, ANDREW MCGREGOR§ ,

SIDDHARTH SURI¶, AND JIAN ZHANG‖

Abstract. We explore problems related to computing graph distances in the data-stream model.
The goal is to design algorithms that can process the edges of a graph in an arbitrary order given only
a limited amount of working memory. We are motivated by both the practical challenge of processing
massive graphs such as the web graph and the desire for a better theoretical understanding of the data-
stream model. In particular, we are interested in the trade-offs between model parameters such as per-
data-item processing time, total space, and the number of passes that may be taken over the stream.
These trade-offs are more apparent when considering graph problems than they were in previous
streaming work that solved problems of a statistical nature. Our results include the following:
(1) Spanner construction: There exists a single-pass, Õ(tn1+1/t)-space, Õ(t2n1/t)-time-per-edge
algorithm that constructs a (2t + 1)-spanner. For t = Ω(log n/log log n), the algorithm satisfies the
semistreaming space restriction of O(n polylog n) and has per-edge processing time O(polylog n).
This resolves an open question from [J. Feigenbaum et al., Theoret. Comput. Sci., 348 (2005),
pp. 207–216]. (2) Breadth-first-search (BFS) trees: For any even constant k, we show that any
algorithm that computes the first k layers of a BFS tree from a prescribed node with probability at
least 2/3 requires either greater than k/2 passes or Ω̃(n1+1/k) space. Since constructing BFS trees is
an important subroutine in many traditional graph algorithms, this demonstrates the need for new
algorithmic techniques when processing graphs in the data-stream model. (3) Graph-distance lower
bounds: Any t-approximation of the distance between two nodes requires Ω(n1+1/t) space. We also
prove lower bounds for determining the length of the shortest cycle and other graph properties. (4)
Techniques for decreasing per-edge processing: We discuss two general techniques for speeding up
the per-edge computation time of streaming algorithms while increasing the space by only a small
factor.
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1. Introduction. In recent years, streaming has become an active area of re-
search and an important paradigm for processing massive data sets [4, 23, 27]. Much
of the existing work has focused on computing statistics of a stream of data elements,
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e.g., frequency moments [4, 29], �p distances [23, 28], histograms [24, 26], and quan-
tiles [25]. More recently, there have been extensions of the streaming research to the
study of graph problems [6, 22, 27]. Solving graph problems in this model has raised
new challenges, because many existing approaches to the design of graph algorithms
are rendered useless by the sequential-access limitation and the space limitation of
the streaming model.

Massive graphs arise naturally in many real-world scenarios. Two examples are
the call graph and the web graph. In the call graph, nodes represent telephone numbers
and edges correspond to calls placed during some time interval. In the web graph,
nodes represent web pages, and the edges correspond to hyperlinks between pages.
Also, massive graphs appear in structured data mining, where the relationships among
the data items in the data set are represented as graphs. When processing these graphs
it is often appropriate to use the streaming model. For example, the graph may be
revealed by a web crawler or the graph may be stored on external-memory devices,
where being able to process the edges in an arbitrary order improves I/O efficiency.
Indeed, the authors of [33] argue that one of the major drawbacks of standard graph
algorithms, when applied to massive graphs such as the web, is their need to have
random access to the edge set.

In general it seems that most graph algorithms need to access the data in a very
adaptive fashion. Since we cannot store the entire graph, emulating a traditional al-
gorithm may necessitate an excessive number of passes over the data. There has been
some success in estimating quantities that are of a statistical nature, e.g., counting
triangles [6, 11, 31] or estimating frequency and entropy moments of the degrees in a
multigraph [12, 15]. However, it seemed for a while that more “complicated” com-
putation was not possible in this model. For example, Buchsbaum, Giancarlo, and
Westbrook [10] demonstrated the intrinsic difficulty of computing common neighbor-
hoods in the streaming model with small space. One possible way to ameliorate the
situation is to consider algorithms that use Θ(n polylogn) space, i.e., space roughly
proportional to the number of nodes rather than the number of edges. This space
restriction was identified as an apparent “sweet-spot” for graph streaming in a survey
article by Muthukrishnan [37] and dubbed the semistreaming space restriction. This
spurred further research on algorithms for graph problems in the streaming model
such as distance estimation [19, 22], matchings [22, 36], and connectivity [21, 41], in-
cluding the work described here. We will provide further discussion of the results on
distance estimation in the next section.

A related model is the semiexternal model. This was introduced by Abello, Buchs-
baum, and Westbrook [1] for computations on massive graphs. In this model, the
vertex set can be stored in memory, but the edge set cannot. However, unlike in our
model, random access to the edges, although expensive, was allowed. Finally, graph
problems have been considered in a model that extends the stream model by allowing
the algorithm to write to the stream during each pass [2, 16]. These annotations can
then be utilized by the algorithm during successive passes. Aggarwal et al. [2] go fur-
ther and suggest a model in which sorting passes are permitted, and the data-stream
is sorted according to a key encoded by the annotations.

Designing algorithms for computing graph distances is a very well studied prob-
lem, and graph distances are a natural quantity to study when trying to understand
properties of massive graphs such as the diameter of the world wide web [3]. We start
with a formal definition of the relevant terms.

Definition 1.1 (graph distance, diameter, and girth). For an undirected, un-
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weighted graph G = (V, E), we define a distance function dG : V ×V → {0, . . . , n−1},
where dG(u, v) is the length of the shortest path in G between u and v. The diameter
of G is the length of the longest shortest path, i.e.,

Diam(G) = max
u,v∈V

dG(u, v).

The girth of G is the length of the shortest cycle in G, i.e.,

Girth(G) = 1 + min
(u,v)∈E

dG\(u,v)(u, v).

Classic algorithms such as Dijkstra, Bellman–Ford, and Floyd–Warshall are taught
widely [14]. Recent research has focused on computing approximate graph distances [5,
7, 17, 40]. Unfortunately, these algorithms seem to be inherently unsuitable for com-
puting distances in the streaming model; an important subroutine of many of the
existing algorithms is the construction of breadth-first-search (BFS) trees, and one of
our main results is a lower bound on the computational resources required to com-
pute a BFS tree. For example, Thorup and Zwick provide a construction of distance
oracles for approximating distances in graphs [40]. Although all-pairs-shortest-path
distances can be approximated using this oracle, their oracle construction requires the
computation of shortest-path trees for certain vertices. Indeed, many constructions
of distance oracles have this requirement, i.e., they need to compute some distances
between certain pairs of vertices in order to build a data structure from which the
all-pairs-shortest-path distances can be approximated.

A common method for approximating graph distances is via the construction of
spanners.

Definition 1.2 (spanners). A subgraph H = (V, E′) is an (α, β)-spanner of
G = (V, E) if, for any vertices x, y ∈ V ,

dG(x, y) ≤ dH(x, y) ≤ αdG(x, y) + β.

When β = 0, we call the spanner a multiplicative-spanner and refer to α as the stretch
factor of the spanner.

In [22], a simple semistreaming spanner construction is presented. That algorithm
constructs a (log n)-spanner in one pass using O(n polylog n) space. However, this
algorithm needs O(n) time to process each edge in the input stream. Such a per-edge
processing time is prohibitive, especially in the streaming model when edges may be
arriving in quick succession. The work of [19] studies the construction of (1 + ε, β)
spanners in the streaming model. However, the algorithm of [19] requires multiple
passes over the input stream, while our construction needs only one pass.

Notation and terminology. We refer to an event’s occurring “with high probabil-
ity” if the probability of the event is at least 1−1/nΩ(1). We denote the set {1, . . . , t}
by [t]. Let P (S) denote the power set of S, i.e., {S′ : S′ ⊂ S}.

1.1. Our results. Our results include the following.
1. Spanner construction: There exists a single-pass O(tn1+1/t log2 n) space,

O(t2n1/t log n) time-per-edge algorithm that constructs a (2t + 1)-spanner.
For t = Ω(log n/log log n), the algorithm satisfies the semistreaming space
restriction of O(n polylog n) and has per-edge processing time O(polylog n).
The algorithm is presented in section 3. This result resolves an open question
from [22].
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2. BFS trees: For any even constant k, any algorithm that computes the first
k layers of a BFS tree from a prescribed node with probability at least 2/3
requires either greater than k/2 passes or Ω̃(n1+1/k) space. This result is
proved in section 4. Since constructing BFS trees is an important subroutine
in many traditional graph algorithms, this demonstrates the need for new
algorithmic techniques when processing graphs in the data-stream model.

3. Lower bounds: In section 5, we present lower bounds for the following prob-
lems:
(a) Connectivity and other balanced properties: We show that testing any of

a large class of graph properties, which we refer to as balanced properties,
in one pass requires Ω(n) space. This class includes properties such as
connectivity and bipartiteness. This result provides a formal motivation
for the semistreaming space restriction, where algorithms are permitted
O(n polylog n) space.

(b) Graph distances and graph diameter: We show that any single-pass al-
gorithm that returns a t-approximation of the graph distance between
two given nodes with probability at least 3/4 requires Ω(n1+1/t) bits of
space. Furthermore, this bound also applies to estimating the diame-
ter of the graph. Therefore, approximating a distance using the above
spanner construction is only about a factor of 2 from optimal in terms
of the approximation factor achievable for a given space restriction.

(c) Girth: Any p-pass algorithm that ascertains whether the length of the
shortest cycle is longer than g requires Ω

(
p−1(n/g)1+4/(3g−4)

)
bits of

space.
4. Techniques for decreasing per-edge processing: In section 6, we present a

method for local amortization of per-data-item complexity. We also present
a technique for adapting existing partially dynamic graph algorithms to the
semistreaming model.

The above results indicate various trade-offs between model parameters and accu-
racy. These include the smooth trade-off between the space a single-pass algorithm is
permitted and the accuracy achievable when estimating graph distances. For multiple-
pass algorithms, a smooth trade-off between passes and space is evident when trying
to compute the girth of a graph. This trade-off is, in a sense, fundamental as it
indicates that the only way to get away with using half the amount of space is es-
sentially to make half as much progress in each pass. The trade-off between space
and passes when computing BFS trees indicates that, as we restrict the space, no
algorithm can do much better than emulating a trivial traditional graph algorithm
and will consequently require an excessive number of passes.

Recent developments. Since the preliminary version of this paper appeared, im-
proved spanner construction algorithms were presented by Baswana [8] and Elkin [18].
Extensions of ideas in section 6 have been developed by Zelke [41, 42].

2. Preliminaries. In this section, we give a formal definition of a graph stream.
Definition 2.1 (graph stream). For a data-stream A = 〈a1, a2, . . . , am〉, where

aj ∈ [n] × [n], we define a graph G on n vertices V = {v1, . . . , vn} with edges E =
{(vi, vk) : aj = (i, k) for some j ∈ [m]}.

We usually assume that each aj is distinct, but this assumption is often not
necessary. When the data items are not distinct, the model can naturally be extended
to consider multigraphs; i.e., an edge (vi, vk) has multiplicity equal to |{j : aj =
(i, k)}|. Similarly, we consider undirected graphs, but the definition can be generalized
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to define digraph streams. Sometimes we will consider weighted graphs, and in this
case aj ∈ [n]× [n]×N, where the third component of the data item indicates a weight
associated with the edge. Note that some authors have also considered a special
case of the model, the adjacency-list model, in which all incident edges are grouped
together in the stream [6]. We will be interested in the fully general model.

3. Spanners. In this section, we present a single-pass streaming algorithm that
constructs a (2t + 1)-spanner for an unweighted, undirected graph. The algorithm
uses some of the ideas from [7] and adapts them for use in the data-stream model.
We then extend this algorithm to construct (1 + ε)(2t + 1)-spanners for weighted,
undirected graphs using a geometric grouping technique.

Overview of the algorithm. Intuitively, we want to cover each “dense subgraph”
of the graph by a tree of small depth, i.e., one of depth O(log n), rooted at some node.
If there are many edges between two such dense subgraphs, only one representative
edge needs to be remembered. Edges between vertices that are not part of such dense
subgraphs also need to be remembered, but we will argue that there are not too many
of them. The construction requires a delicate balance between trying to include as
many nodes as possible in a small number of dense subgraphs and ensuring that the
depth of the spanning tree covering each dense subgraph is O(log n).

Our clusters are similar to those used in [5, 7, 17]. However, the constructions of
the clusters in [5, 7, 17] all employ an approach similar to BFS; i.e., the clusters are
constructed layer by layer. Such a layer-by-layer process is important to ensure that
the clusters constructed in [5,7,17] have small diameters. In the streaming model, this
would necessitate multiple passes over the input stream. Our labeling scheme employs
a different strategy to control the clusters’ diameters, thus bypassing the BFS.

In more detail, in the case in which we are constructing O(log n)-spanners, we
consider log n/2 levels. Each node is present at the bottom level and is “promoted”
to each successively higher level with probability 1/2. Whenever a node is present at
level i, a cluster at level i is dynamically grown around it as we process the edges. The
expected number of clusters at level i + 1 is half of the expected number of clusters
at level i. At the top level, the expected number of clusters is

√
n. As the algorithm

goes through the input stream of edges, a node in a lower-level cluster may join a
higher-level cluster. The constructed spanner consists of three types of edges: (1) a
small-diameter spanning tree for each cluster, (2) one edge between each pair of top-
level clusters whose vertex sets have at least one edge between them, and (3) a small
number of “other” edges that do not fit into either of these two categories and are
necessary to preserve the spanner property.

The above ideas are applicable mutatis mutandis when a t-spanner is sought for
other values of t. The description below is for arbitrary t.

The algorithm. A label l used in our construction is a positive integer. Given
two parameters n and t, the set of labels L used by our algorithm is generated in the
following way. Initially, we have labels [n]. We denote by L0 this set of labels and
call them the level-0 labels. Independently, and with probability n−1/t, each label
l ∈ L0 will be put into a set S0 and marked as selected. From each label l in S0, we
generate a new label l′ = l + n. We denote by L1 the set of newly generated labels
and call them the level-1 labels. We then apply the above selection and new-label-
generation procedure on L1 to get the set of level-2 labels L2. We continue this until
the level-	t/2
 labels L�t/2� are generated. If a level-(i + 1) label l is generated from
a level-i label l′, we call l the successor of l′ and denote it by Succ(l′) = l. The set of
labels we will use in our algorithm is the union of labels of levels 0, 1, 2, . . . , 	t/2
, i.e.,
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L =
⋃�t/2�

0 Li. Note that L can be generated before the algorithm sees the edges in
the stream. But, in order to generate the labels in L, except in the case t = Θ(log n),
the algorithm needs to know n, the number of vertices in the graph, before seeing
the edges in the input stream. For t = Θ(log n), a simple modification of the above
method can be used to generate L without knowing n, because the probability for a
label to be selected is constant.

At first glance, it might appear that our labeling scheme resembles the sequences
of sets initially constructed by the algorithm of Thorup and Zwick [40]. In our con-
struction, the generation of the clusters of vertices depends on both the labels and the
edge set. Thorup and Zwick, however, generate their sequence of sets independently
of the edges. But, this is just the first step in their algorithm. Subsequently, their
algorithm computes the exact distance between a fixed vertex and each of the sets of
vertices in the sequence. Computing the exact distances between a pair of vertices
is difficult in the streaming model. Our algorithm takes a very different approach
from [40] to avoid this difficulty.

While going through the stream, our algorithm will label each vertex with labels
chosen from L. The algorithm may label a vertex v with multiple labels; however, v
will be labeled by at most one label from Li for i ∈ [	t/2
]. Moreover, if v is labeled
by a label l, and l is selected, the algorithm will also label v with the label Succ(l).

Denote by li a label of level i, i.e., li ∈ Li. Let L(v) = {l0, lk1 , lk2 , . . . , lkj} be the
collection of labels that has been assigned to the vertex v, where 0 < k1 < · · · < kj ≤
	t/2
. Let

Height(v) = max{j|lj ∈ L(v)}

and Top(v) = lk ∈ L(v) s.t. k = Height(v). Let C(l) be the collection of vertices that
are labeled with the label l.

The sets L(v) and C(l) will grow while the algorithm goes through the stream
and labels the vertices. For each C(l), our algorithm stores a tree, Tree(l), on the
vertices of C(l) and the tree is rooted on the first vertex that gets labeled by l. We
say an edge (u, v) connects C(l) and C(l′) if u is labeled with l and v is labeled with
l′. For some pairs of labels l, l′ ∈ L�t/2�, our algorithm will store edges that connect
C(l) and C(l′). We denote by H the set of such edges stored by our algorithm. In
addition, for each vertex v, we denote by M(v) the other edges incident to v that
are stored by our algorithm. Intuitively, the subgraph induced by ∪v∈V M(v) is the
sparse part of the graph G. The spanner constructed by the algorithm is the union
of the rooted trees for all the labels, M(v) for all the vertices, and the set H . The
detailed algorithm is given in Figure 3.1.

Analysis. We start with two preliminary lemmas showing that, with high proba-
bility, the spanner construction requires only a small amount of working space. Note
that randomness is introduced in the generation of the labels in Algorithm 1; that is
the reason that the bounds stated in both lemmas are true with high probability.

Lemma 3.1. With high probability, for all v ∈ V , |M(v)| = O(tn1/t log n).
Proof. Let M (i)(v) ⊆M(v) be the set of edges added to M(v) during the period

when Height(v) = i. Let L(M(v)) = ∪(u,v)∈M(v)L(u) be the set of labels that have
been assigned to the vertices in M(v). An edge (u, v) is added to M(v) only in step
2(b)ii. Note that, in this case, 	 t

2
 ≥ Height(u) ≥ Height(v). Hence, the set Lv(u)
is not empty. Also, by the condition in step 2(b)ii, an edge (u, v) is added only
when none of the labels in Lv(u) appears in L(M(v)). Thus, if we add the edge in
this step, we will introduce/add the label(s) in Lv(u) to L(M(v)). Because Lv(u)
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Algorithm 1 (efficient one pass spanner construction).
The input to the algorithm is an unweighted, undirected graph G = (V, E),
presented as a stream of edges, and two positive integer parameters n and t.

1. Generate the set L of labels as described. ∀ vi ∈ V , label vertex vi with
label i ∈ L0. If i is selected, label vi with Succ(i). Continue this until we
encounter a label that is not selected. Set M(vi)← ∅ and H ← ∅.

2. Upon seeing an edge (u, v) in the stream, if L(v) ∩ L(u) �= ∅, drop the
edge. Otherwise, consider the following cases:
(a) If Height(v) = Height(u) = 	t/2
, and there is no edge in H that

connects C(Top(v)) and C(Top(u)), set H ← H ∪ {(u, v)}.
(b) Otherwise, assume, without loss of generality, that 	t/2
 ≥

Height(u) ≥ Height(v). Consider the collection of labels

Lv(u) = {lk1 , lk2 , . . . , lHeight(u)} ⊆ L(u),

where Height(v) ≤ k1 ≤ k2 ≤ · · · ≤ Height(u). Let l ∈ Lv(u) be the
selected label whose level is the lowest among the selected labels in
Lv(u).

i. If such a label l exists, label the vertex v with the successor
l′ = Succ(l) of l, i.e.,

L(v)← L(v) ∪ {l′}.

Incorporate the edge in the rooted tree Tree(l′). If l′ is selected,
label v with l′′ = Succ(l′) and incorporate the edge in the tree
Tree(l′′). Continue until we see a label that is not marked as
selected. (Note that Height(v) is increased by this process.)

ii. If no such label l exists and there is no edge (u′, v) in M(v) such
that u, u′ are labeled with the same label l ∈ Lv(u), add (u, v)
to M(v).

3. After seeing all the edges in the stream, output the union of the rooted
trees for all the labels, M(v) for all the vertices, and the set H as the
spanner.

Fig. 3.1. An efficient, one-pass algorithm for computing sparse spanners. See the descriptions
before Lemma 3.1 for the definitions of H, M(v), L(v), C(l), Tree(l), Succ(l), Top(v), and Height(v).

is nonempty, it adds at least one new label to L(M(v)). This is the case for every
edge in M (i)(v). Let B be the set of distinct labels that M (i)(v) adds to L(M(v)).
Furthermore, because each edge in M (i)(v) adds at least one new label, the size of B
is at least |M (i)(v)|. Note that the labels in B are not marked as selected. Otherwise,
the algorithm would have taken step 2(b)i instead of step 2(b)ii. Hence, the size of B
satisfies

Pr (|B| = k) ≤ (1− 1/n1/t)k.

Thus, with high probability, |M (i)(v)| = O(n1/t log n). Because i can take only O(t)
values, with high probability,

|M(v)| =
∑

i

|M (i)(v)| = O(tn1/t log n).
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Lemma 3.2. With high probability, the algorithm stores O(tn1+1/t log n) edges.
Proof. The algorithm stores edges in the set H , in the rooted trees for each

cluster C(l), and in the sets M(v), for all v ∈ V . By the Chernoff bound and the
union bound, with high probability the number of clusters at level t/2 is O(

√
n), and

the size of the set H is O(n).
For each label l, the algorithm stores a rooted tree for the set of vertices C(l).

The rooted tree is formed by the set of edges added when the vertices in C(l) get
labeled by the label l. This happens in step 2(b)i. In this step, we add an edge only
at the time when a vertex becomes a member of C(l). Therefore, the set of edges
forms a tree on C(l). We call this tree the rooted tree of C(l). Note that two vertices
u and v in C(l) may share some other label l′ of a different level. In this case, they
both also belong to C(l′). The tree of C(l′) may have a path connecting u and v.
Hence the subgraph of the spanner induced by the vertices in C(l) is not necessarily
a tree. When we say “the rooted tree of C(l),” we refer only to the edges added when
the vertices in C(l) get labeled by l.

Note that, for each level i ∈ [	t/2
], a vertex is labeled with at most one label in
Li. Hence,

∑
l∈Li |C(l)| ≤ |V |. Thus, the number of edges summed over the rooted

trees for the labels at level i is O(n), and the total number of edges in all the rooted
trees is O(tn). Finally, by Lemma 3.1, with high probability, |M(v)| = O(tn1/t log n).
By the union bound, with high probability,

∑
v∈V |M(v)| = O(tn1+1/t log n).

Theorem 3.3. Let G be an unweighted graph. There exists a single-pass
O(tn1+1/t log2 n) space algorithm that constructs a (2t + 1)-spanner of G with high
probability and processes each edge in O(t2n1/t log n) time.

Proof. Consider Algorithm 1 in Figure 3.1. At the beginning of the algorithm, for
all the labels l ∈ L0, C(l) is a singleton set, and the depth of the rooted tree for C(l)
is zero. We now bound, for label li, where i > 0, the depth of the rooted tree T i on
the vertices in C(li). A tree grows when an edge (u, v) is incorporated into the tree
in step 2(b)i. In this case, li is a successor of some label li−1 of level i− 1. Assume
that the depth dT i(v) of the vertex v in the tree is one more than the depth dT i(u) of
the vertex u. Then u ∈ C(li−1), and the depth dT i−1(u) of u in the rooted tree T i−1

of C(li−1) is the same as dT i(u). Hence, dT i(v) = dT i−1(u) + 1, where T i is a tree
of level i, and T i−1 is a tree of level i− 1. Given that dT 0(x) = 0 for all x ∈ V , the
depth of a rooted tree for C(l), where l is a label of level i, is at most i.

We proceed to show that, for any edge that the algorithm does not store, there
is a path of length at most 2t + 1 that connects the two endpoints of the edge. The
algorithm ignores three types of edges. First, if L(u) ∩ L(v) �= ∅, the edge (u, v) is
ignored. In this case, let l be one of the label(s) in L(u) ∩ L(v). The nodes u and
v are both on the rooted tree for C(l); hence, there is a path of length at most t
connecting u and v. Second, (u, v) will be ignored if Height(v) = Height(u) = 	t/2
,
and there is already an edge connecting C(Top(u)) and C(Top(v)). In this case, the
path connecting u and v has length at most 2t + 1. Finally, in step 2(b)ii, (u, v) will
be ignored if there is already another edge in M(v) that connects v to some u′ ∈ C(l),
where l ∈ L(u). Note that u and u′ are both on the rooted tree of C(l). Hence, there
is a path of length at most t + 1 connecting u and v.

Hence, the stretch factor of the spanner constructed by Algorithm 1 is 2t + 1.
By Lemma 3.2, with high probability, the algorithm stores O(tn1+1/t log n) edges
and requires O(tn1+1/t log2 n) bits of space. Also note that the bottleneck in the
processing of each edge lies in step 2(b)ii, where, for each label in Lv(u), we need to
examine the whole set of M(v). This takes O(t2n1/t log n) time.
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Extensions. Once the spanner is constructed, all-pairs-shortest-distances of the
graph can be computed from the spanner. This computation does not need to access
the input stream and thus can be viewed as postprocessing. We also note that the
above algorithm can be used to construct a spanner of a weighted graph G = (V, E)
using a geometric grouping technique [13,22]. Namely, we can round each edge weight
ω′ up to min{ω(1+ ε)i : i ∈ Z, ω(1+ ε)i ≥ ω′}, where ω is the weight of the first edge,
and ε > 0 is a user-defined accuracy parameter. Let Gi = (V, Ei) be the graph formed
from G by removing all edges not of weight ω(1 + ε)i. For each Gi, we construct a
spanner in parallel and take the union of these spanners. This leads to the following
theorem.

Theorem 3.4. Let G be a weighted graph and W be the ratio between the max-
imum and minimum weights. There exists a single-pass O(ε−1tn1+1/t log W log2 n)
space algorithm that constructs a (1 + ε)(2t + 1)-spanner of G with high probability
and processes each edge in O(t2n1/t log n) time.

In the case where t = log n/log log n, Algorithm 1 computes a (2log n/log log n +
1)-spanner in one pass using O(n log4 n) bits of space and processing each edge in
O(log4 n) time. This answers an open question we posed in [22]. Finally, note that
constructing a (2t + 1)-spanner gives a (2t + 1)-approximation for the diameter and,
indirectly, a (2t + 2)/3-approximation of the girth. The diameter result is immediate.
For the girth approximation, note that, if the constructed spanner is a strict subgraph
of G, then the girth of G must have been between 3 and 2t + 2.

4. BFS trees lower bound. In this section, we prove a lower bound on the
number of passes required to construct the first l layers of a BFS tree in the streaming
model. The result is proved using a reduction from the communication-complexity
problem “multivalued pointer chasing.” This is a natural generalization of the pointer-
chasing problem considered by Nisan and Wigderson [38].

Overview of proof. Nisan and Wigderson [38] considered the problem in which
Alice and Bob have functions fA : [m] → [m] and fB : [m] → [m], respectively.
The k-round pointer-chasing problem is to output the result of starting from 1 and
alternatively applying fA and fB a total of k times, starting with fA. Nisan and
Wigderson proved that, if Bob speaks first, the communication complexity of any
k-round communication protocol to solve this problem is Ω(m/k2 − k log m). Jain,
Radhakrishnan, and Sen [30] gave a direct sum extension showing that, if there are d
pairs of functions and the goal is to perform k-round pointer chasing as above on each
pair, the communication-complexity lower bound is approximately d times the bound
of [38]. More precisely, they showed a lower bound of Ω(dm/k3 − dk log m− 2d) for
the problem.

We show how the lower bound of [30] implies a lower bound on the communication
complexity of pointer chasing with “d-valued functions,” i.e., functions that map i ∈
[m] to a subset of [m] of size at most d. If fA and fB are such functions, then the
result of pointer chasing starting from 1 produces a set of size at most dk. The key
difference between this problem and the problem of [30] is that in the latter, one is
concerned only with chasing “like” pointers. That is, if one gets to an element j using
the function fA,i, one can continue only with fB,i. (We will present an example after
the formal definition of the appropriate terms.) Nevertheless, we give a reduction that
shows that the two problems have fairly similar communication complexity.

Finally, we create a an l-layered graph in which alternate layers have edges cor-
responding to d-valued functions fA and fB. In order to construct the BFS tree, we
must solve the l-round, d-valued pointer-chasing problem and then apply the afore-
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mentioned lower bound. This will lead to the following theorem.
Theorem 4.1 (BFS lower bound). For any constant k, any algorithm that com-

putes the first k layers of a BFS tree with probability at least 2/3 requires either k/2
passes or Ω(n1+1/k/(logn)1/k) space.

We now present the above argument formally. Let Fd be the set of functions
f : P ([m])→ P ([m]) such that

∀i ∈ [m], |f(i)| ≤ d and ∀A ⊂ [m], f(A) =
⋃
i∈A

f(i).

Throughout the rest of this section, we abuse notation and denote the singleton set
{i} by i when it appears as the input or the output of a function f ∈ Fd.

Definition 4.2. Define gk,d : Fd × Fd → P ([m]) inductively as

g0,d(fA, fB) = {1} and gi,d(fA, fB) =
{

fA(gi−1,d(fA, fB)) if i odd,
fB(gi−1,d(fA, fB)) if i even.

Define hk,d as the d-fold direct sum of gk,1, i.e.,

hk,d(〈fA,1, . . . , fA,d〉, 〈fB,1, . . . , fB,d〉) = 〈gk,1(fA,1, fB,1), . . . , gk,1(fA,d, fB,d)〉.
Example 4.3. Consider fA,1, fA,2, fB,1, fB,2 ∈ F1, where

fA,1 :1→ 1 fA,2 :1→ 2 fB,1 :1→ 1 fB,2 :1→ 3
2→ 2 2→ 3 2→ 2 2→ 1
3→ 3, 3→ 1, 3→ 3, 3→ 2.

Let fA, fB ∈ F2 be defined by fA(j) := fA,1(j)∪fA,2(j) and fB(j) := fB,1(j)∪fB,2(j).
Then

h2,2(〈fA,1, fA,2〉, 〈fB,1, fB,2〉) = 〈1, 1〉, whereas g2,2(fA, fB) = {1, 2, 3}.
Let Alice have function fA and Bob have function fB. Let Rr

δ(gd,k) be the r-round
randomized communication complexity of gd,k where Bob speaks first, i.e., the number
of bits sent in the worst case (over all inputs and random coin tosses) by the best
r-round protocol Π in which, with probability at least 1− δ, both Alice and Bob learn
gd,k. The following theorem for hk,d was proved in [30] using an information-theoretic
argument in combination with a result by Nisan and Wigderson [38].

Theorem 4.4 (see Jain, Radhakrishnan, and Sen [30]). Rk
1/3(h

k,d) = Ω(dmk−3−
dk log m− 2d).

We now use the above result to prove a bound on the communication complexity
of gk,d.

Theorem 4.5. Rk
1/3(g

k,d) = Ω(dm/(k + 1)3 − d(k + 1) log m− 2d− 6dk+1 lg m)
if k is even.

Proof. The proof uses a reduction from hk,d. Let (〈fA,1, . . . , fA,d〉, 〈fB,1, . . . , fB,d〉)
be an instance of hk,d. Define f∗

A and f∗
B as follows:

f∗
A(j) := {fA,i(j) : i ∈ [d]} and f∗

B(j) := {fB,i(j) : i ∈ [d]}.
Assume that there exists a k-round protocol Π for gk,d that fails with probability at
most 1/3 and communicates o(dm/(k +1)3− d(k +1) log m− 2d− 12dk+1 lg m− km)
bits in the worst case. We will show how to transform Π into a (k+1)-round protocol
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Π′ for hk+1,d that fails with probability at most 1/3 and communicates o(dm/(k +
1)3 − d(k + 1) log m − 2d) bits in the worst case. This contradicts Theorem 4.4 and
hence shows that there is no such protocol Π.

Let Π′ be a protocol that simulates Π and, in addition, on the jth message
(1 < j ≤ k + 1), sends the following set of triples:1

Tj−1 = {〈a, b, fC,a(b)〉 : b ∈ gj−2,d(f∗
A, f∗

B)}, where C =

{
A if j is even,
B if j is odd.

Π is shown to be correct by an inductive argument and requires at most 3dj−1 log m
additional bits of communication per message, because b ∈ gj−2,d(f∗

A, f∗
B) and

|gj−2,d(f∗
A, f∗

B)| ≤ dj−2, a ∈ [d], and each 〈a, b, fC,a(b)〉 can be encoded with at most
3 logm bits. However, if Π is successful, then the player who sends the kth message
(which is Alice by assumption that k is even and Bob speaks first) of Π also knows
gk,d(f∗

A, f∗
B). Hence, she can also send

Tk+1 = {〈a, b, fA,a(b)〉 : b ∈ gk,d(f∗
A, f∗

B)}.
Hence, after (k + 1) rounds,

⋃
i∈[k+1] Ti is known to both parties with probability at

least 2/3 and can be used to deduce gk+1,d. The total amount of extra communica-
tion required to transmit

⋃
i∈[k+1] Ti is

∑
i∈[k+1] 3di log m ≤ 6dk+1 log m. Hence Π′

communicates o(dm/(k + 1)3 − d(k + 1) log m− 2d) bits in the worst case.
We are now in a position to prove Theorem 4.1.
Proof. The proof is a reduction from d-valued pointer chasing. Let m = n/(k+1),

and let d = c(m/ logm)1/k for some small constant c. Then, since k is constant by
Theorem 4.5, Rk

1/3(g
k,d) = Ω(n1+1/k/(log n)1/k).

Consider an instance (fA, fB) of gk,d. The graph described by the stream is on
the following set V of n = (k + 1)m nodes:

V =
⋃

0≤i≤k

{vi
1, . . . , v

i
m}.

For i ∈ [k], we define a set of edges E(i) between {vi−1
1 , . . . , vi−1

m } and {vi
1, . . . , v

i
m}

in the following way:

E(i) =
{ {(vi−1

j , vi
�) : � ∈ fA(j)} if i is odd,

{(vi−1
j , vi

�) : � ∈ fB(j)} if i is even.

Suppose there exists an algorithm A that computes the first k layers of the BFS
tree from v1

1 in p passes using memory M . Let Lr be set of nodes that are at distance
exactly r from v1

1 . Note that, for all r ∈ [k],

gr,d = Lr ∩ {vr
1, . . . , v

r
m}.

By simulating A on a stream starting with
⋃

0≤i≤k:even E(i) and concluding with⋃
i∈[k]:odd E(i) in the natural way, we deduce that there exists a (2p)-round commu-

nication protocol for gk,d that uses only 2pM communication. (Note that 2p rounds
of communication rather than (2p− 1) rounds are required, because we required both
parties to learn gk,d.) Hence, either 2p > k or M = Ω(n1+1/k).

1Note that on the (k + 1)th message there is no message of Π to simulate and only Tk is trans-
mitted.
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5. Other lower bounds. In this section, we present lower bounds on the space
required to estimate graph distances, test whether a graph is connected, and compute
the girth of a graph. Our lower bounds are reductions from problems in commu-
nication complexity. In the Set-Disjointness problem, Alice has a length-n bi-
nary string x ∈ {0, 1}n, and Bob has a length-n binary string y ∈ {0, 1}n, where∑

i∈[n] xi =
∑

i∈[n] yi = 	n/4
. If Bob is to compute

Set-Disjointness(x, y) =
{

1 if x · y = 0,
0 if x · y ≥ 1

(where x · y =
∑

i∈[n] xiyi) with probability at least 3/4, then it is known that Ω(n)
bits must be communicated between Alice and Bob [32, 39]. In the Index problem,
Alice has x ∈ {0, 1}n, and Bob has j ∈ [n]. If Bob is to compute Index(x, j) = xj

with probability at least 3/4 after a single message from Alice, then it is known that
this message must contain Ω(n) bits (e.g., [34]). To relate our graph-stream problems
to these communication problems, we use reductions based upon results from random-
graph theory and extremal combinatorics.

5.1. Connectivity and balanced properties. Our first result shows that a
large class of problems, including connectivity, cannot be solved by single-pass stream-
ing algorithms in small space. Specifically, we identify a general type of graph prop-
erty2 and show that testing any such graph property requires Ω(n) space.

Definition 5.1 (balanced properties). We say a graph property P is balanced
if there exists a constant c > 0 such that, for all sufficiently large n, there exists a
graph G = (V, E) with |V | = n and u ∈ V such that

min{|{v : (V, E ∪ {(u, v)}) has P}|, |{v : (V, E ∪ {(u, v)}) has ¬P}| } ≥ cn.

In other words, there are Ω(n) vertices v such that (V, E ∪ {(u, v)}) has P and Ω(n)
vertices v such that (V, E ∪ {(u, v)}) does not have P.

Many interesting properties are balanced, including connectivity, bipartiteness,
and whether there exists a vertex of a certain degree.

Theorem 5.2. Testing for any balanced graph property P with probability 3/4 in
a single pass requires Ω(n) space.

Proof. Let c be a constant, G = (V, E) be a graph on n vertices, and u ∈ V
be a vertex satisfying the relevant conditions. The proof is by a reduction to the
communication complexity of Index. Let (x, j) ∈ {0, 1}cn × [cn] be an instance of
Index. Let G(x) be a relabeling of the vertices of G such that u = vn and, for i ∈ [cn],
(V, E∪{(vn, vi)}) has P if and only if xi = 1. Such a relabeling is possible, because P
does not depend on the labeling of the vertices. Let e(j) = (vj , vn). Hence the graph
determined by the edges of G(x) and e(j) has P if and only if xj = 1. Therefore,
any single-pass algorithm for testing P using M bits of work space gives rise to a
one-message protocol for solving Index, and this implies that M = Ω(n).

For some balanced graph properties, the above theorem can be generalized. For
example, it is possible to show that any p-pass algorithm that determines whether a
graph is connected requires Ω(np−1) bits of space [27].

2A graph property is a boolean function whose inputs are the elements of the adjacency matrix
of the graph but whose output is independent of the labeling of the nodes of the graph.
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5.2. Graph distances and graph diameter. If we are interested only in es-
timating the distance between two nodes u and v, it may appear that constructing a
graph spanner that gives no special attention to u or v, but rather approximates all
distances, is an unnecessarily crude approach. In this section, however, we show that
the spanner-construction approach yields an approximation at most a factor 2 from
optimal. Our result is a generalization of one in [22] that applied to the semistreaming
case. Integral to our proof is the notion of a k-critical edge.

Definition 5.3. In a graph G = (V, E), an edge e = (u, v) ∈ E is k-critical if
dG\(u,v)(u, v) ≥ k.

In Lemma 5.4, we show the existence of a graph G with a large subset of edges
E′ such that each edge in E′ is k-critical, but the removal of all edges in E′ leaves a
graph with relatively small diameter. The proof uses a probabilistic method.

Lemma 5.4. For sufficiently large n and 3 ≤ k = o(log n/ log log n), there exists
a set E of edges partitioned into two disjoint sets E1 and E2 on a set of n nodes V
such that

1. |E2| =
⌈
n1+1/k/144

⌉
,

2. every edge in E2 is k-critical for G = (V, E), and
3. Diam(G1) ≤ k + 1, where G1 = (V, E1).

Proof. Let γ = 1/k. Consider choosing a random graph G′ = (V, E′) on n nodes
where each edge is (independently) present with probability p = 1/(2n1−γ). This is
commonly denoted as G′ ∼ Gn,p. We will then construct G1 = (V, E1) by deleting
each edge in G′ with probability 1/2. We will show that, with nonzero probability,
the sets E1 and E2 = {e ∈ E′ \ E1 : e is k-critical for G′} satisfy the three required
properties.

The second property is satisfied by construction. It follows from the fact that, if
an edge is k-critical in a graph G, then it is also k-critical in any subgraph of G. We
now argue that the third property is satisfied with probability at least 99/100. First
note that the process that generates G1 is identical to picking G1 ∼ Gn,p/2. It can be
shown that, with high probability, the diameter of such a graph is less than 1/γ + 1
for sufficiently large n [9, Corollary 10.12].

We now show that the first property is satisfied with probability at least 8/100.
Applying the Chernoff bound and the union bound proves that, with probability at
least 99/100, the degree of every vertex in G′ is between nγ/4 and 3nγ/4.

Now consider choosing a random graph and a random edge in that graph simulta-
neously, i.e., G′ = (V, E′) ∼ Gn,p and an edge (u, v) ∈R E′. We prove a lower bound on
the probability that (u, v) is k-critical in G′. Let Γi(v) = {w ∈ V : dG′\(u,v)(v, w) ≤ i}.
For sufficiently large n, conditioned on the event that the maximum degree is at most
3nγ/4,

|Γk(v)| ≤
∑

0≤i≤k

(3n/4)iγ ≤ 1.01(3n/4)kγ ≤ 4(n− 1)/5.

As G′ varies over all possible graphs, by symmetry, each vertex is equally likely to
be in Γk(v). Thus the probability that u is not in this set is at least 1/5. By Markov’s
inequality,

Pr
(|{(u, v) ∈ E′ : dG′\(u,v)(u, v) ≥ k}| ≥ |E′|/9

) ≥ 1/10.

Note that, if the degree of every vertex in G′ is at least nγ/4, then |E′| ≥ n1+γ/8.
Hence,

Pr
(|{(u, v) ∈ E′ : dG′\(u,v)(u, v) ≥ k}| ≥ n1+γ/72

) ≥ 9/100.
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Fig. 5.1. Diameter lower-bound construction. Edges Ex are dotted, Ej are dashed, and Em

are solid.

Given that each edge in E′ is deleted independently with probability 1/2 to form E1,
by a further application of the Chernoff bound we deduce that

Pr
(|{(u, v) ∈ E′ \ E1 : dG′\(u,v)(u, v) ≥ k}| ≥ n1+γ/144

) ≥ 8/100.

From this set of k-critical edges, we can choose a subset whose size is exactly⌈
n1+γ/144

⌉
, as required by statement 1. Therefore, all three properties hold with

probability at least 1− 92/100− 1/100 = 7/100.
Theorem 5.5. For 3 ≤ k = o(log n/ log log n), any single-pass algorithm that,

with probability at least 3/4, returns D̃ such that

Diam(G) ≤ D̃ ≤ (k − 1)Diam(G),

where G is a weighted graph on n nodes, requires Ω̃(n1+1/k) space.
Proof. Let (x, j) ∈ {0, 1}t × [t] be an instance of the Index problem. We will

show how to transform an algorithm A for approximating the diameter of a graph
into a protocol for Index.

Let G = (V, E = E1 ∪ E2) be a graph on n′ = (144t)1/(1+γ) nodes with the
properties listed in Lemma 5.4. We assume that both Alice and Bob know G and
that, moreover, they agree on an ordered list e1, . . . , et of the edges that are in E2.
This may be assumed, because Alice and Bob can generate identical enumerations of
all graphs on n′ nodes and all partitions of the edges of each graph into E1 and E2,
test each graph and partition for the necessary properties, and use the first that passes
all of the tests. Finding such a G may take exponential time, but that is all right,
because it is only the communication complexity of the resulting Index protocol, not
the time complexity, that concerns us.

Alice forms the graph Gx = (V, Em ∪ Ex), where Ex = {ei ∈ E2 : xi = 1} and
Em = E1. She then creates the prefix of a stream by taking r (to be determined
later) copies of Gx, i.e., a graph on n′r vertices {v1

1 , . . . , v
1
n′ , v2

1 , . . . , v
2
n′ , v3

1 , . . . , v
r
n′}

and with edge set {(vi
j , v

i
k) : i ∈ [r], (vj , vk) ∈ Ex}. All these edges have unit weight.

Let j be the index in the instance of Index, and let ej = (a, b). Bob determines
the remaining edges Ej as follows: r−1 edges of zero weight, {(vi

b, v
i+1
a ) : i ∈ [r−1]},

and two edges of weight k + 1, (s, v1
a) and (vr

b , t). See Figure 5.1 for a diagram of the
construction.

Note that, regardless of the values of x and j, the diameter of the graph described
by the stream equals dG(s, t). Note that xj = 1 implies that dG(s, t) = r + 2k + 2.
However, if xj = 0, then dG(s, t) = kr + 2k + 2. Hence, for r = 2k2, the ratio
between kr + 2k + 2 and r + 2k + 2 is at least k − 1. Therefore, any single-pass
algorithm that approximates the diameter to within a factor of k − 1 gives rise to a
one-way protocol for solving Index. This implies that any such algorithm requires
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V2V1 V3 Vg

Fig. 5.2. Girth lower-bound construction. Edges Ex are dotted, Ey are dashed, and Em are solid.

Ω(n1+1/k) bits of space, because the total number of nodes in the construction is
n = O((144t)1/(1+1/k)k2).

5.3. Girth. In this section, we prove a lower bound on the space required by a
(multipass) algorithm that tests whether a graph has girth at most g. We shall make
use of the following result from [35].

Lemma 5.6 (see Lazebnik, Ustimenko, and Woldar [35]). Let k ≥ 1 be an odd
integer, t = 	k+2

4 
, and q be a prime power. There exists a bipartite, q-regular graph
with at most 2qk−t+1 nodes and girth at least k + 5.

The following lower bound is established with a construction based on Lemma
5.6 that yields a reduction from Set-Disjointness to girth estimation.

Theorem 5.7. For g ≥ 5, any p-pass algorithm that tests whether the girth of
an unweighted graph is at most g requires Ω

(
p−1(n/g)1+4/(3g−4)

)
space. If g is odd,

this can be strengthened to Ω
(
p−1(n/g)1+4/(3g−7)

)
space.

Proof. Let q be a prime power; let k = g − 4 if g is odd, and k = g − 3 if g is
even. Let t = 	k+2

4 
. Then,

k − t + 1 ≤ k − k + 2
4

+ 3/4 + 1 ≤
{

(3g − 7)/4 if g is odd,
(3g − 4)/4 if g is even.

Lemma 5.6 implies that there exists a q-regular graph G′ = (L ∪ R, E′) with at
most 2n′ ≤ 2qk−t+1 nodes and girth at least g + 1. Let L = {l1, . . . , ln′} and R =
{r1, . . . , rn′} and, for each i ∈ [n′], Di = Γ(li).

We let (x, y) ∈ {0, 1}r × {0, 1}r be an instance of Set-Disjointness where r =
n′q. It will be convenient to write x = x1 . . . xn′

and y = y1 . . . yn′
, where xi, yj ∈

{0, 1}q. We will show how to transform a p-pass algorithm A for testing whether the
girth of a graph is at most g into a protocol for Set-Disjointness. IfA uses M bits of
working memory, then the protocol will transmit O(pM) bits. Hence M = Ω(p−1n′q).

Alice and Bob construct a graph G based upon G′, x, and y as follows. For i ∈ [g],
let Vi = {vi

1, . . . , v
i
n′}. For each i ∈ [n′], let Di(x) ⊂ Di be the subset of Di whose

characteristic vector is xi. Di(y) is defined similarly. There are three sets of edges on
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these nodes:

Em =
g⋃

j=�g/2�+1

{(vj
i , v

j+1
i ) : i ∈ [n′]},

Ex = {(v1
i , v2

j ) : j ∈ Di(x), i ∈ [n′]}, and

Ey = {(v�g/2�
j , v

�g/2�+1
i ) : j ∈ Di(y), i ∈ [n′]}.

See Figure 5.2 for a diagram of the construction.
Note that Girth(G) = g if there exists i such that Di(x) ∩ Di(y) �= ∅, i.e., x

and y are not disjoint. However, if x and y are disjoint, then the shortest cycle is of
length at least 4 + 2	 g−2

2 
 ≥ g + 1. Hence, determining whether the girth is at most
g determines whether x and y are disjoint.

6. Toward fast per-item processing. In section 3, we gave a spanner con-
struction that processes each edge much faster than previous spanner-construction
algorithms. In this section, we explore two general methods for decreasing the per-
edge computation time of a streaming algorithm. As a consequence, we will show how
some results from [20] give rise to efficient graph-stream algorithms.

Our first observation is that we can locally amortize per-edge processing by us-
ing some of our storage space as a buffer for incoming edges. While the algorithm
processes a time-consuming edge, subsequent edges can be buffered subject to the
availability of space. This yields a potential decrease in the minimum allowable time
between the arrival of consecutive pairs of incoming edges.

Theorem 6.1. Consider a streaming algorithm that runs in space S(n) and uses
computation time τ(m, n) to process the entire stream. This streaming algorithm can
be simulated by a one-pass streaming algorithm that uses O(S(n) log n) storage space
and has worst-case time per-edge τ(m, n)/S(n).

Next we turn to capitalizing on work done to speed up dynamic graph algorithms.
Dynamic graph algorithms allow edges to be inserted and deleted in any order and
the current graph to be queried for a property P at any point. Partially dynamic
algorithms, on the other hand, are those that allow only edge insertions and querying.
In [20], the authors describe a technique called sparsification and use it to speed
up existing dynamic graph algorithms that decide whether a graph has property P .
Sparsification is based on maintaining strong certificates throughout the updates to
the graph.

Definition 6.2. For any graph property P and graph G, a strong certificate for
G is a graph G′ on the same vertex set such that, for any H, G ∪H has property P
if and only if G′ ∪H has it as well.

It is easy to see that strong certificates obey a transitivity property: If G′ is a
strong certificate of property P for graph G, and G′′ is a strong certificate for G′,
then G′′ is a strong certificate for G. Strong certificates also obey a compositional
property. If G′ and H ′ are strong certificates of P for G and H , then G′ ∪ H ′ is a
strong certificate for G ∪H .

In order to achieve their speedup, the authors of [20] ensure that the certificates
they maintain are not only strong but also sparse. A property is said to have sparse
certificates if there is some constant c such that for every graph G on an n-vertex set,
we can find a strong certificate for G with at most cn edges. Maintaining P over a
sparse certificate allows an algorithm to run on a dense graph, using the (smaller)
computational time required for a sparse graph.
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Table 6.1

One-pass, O(npolylog n) space streaming algorithms given by Theorem 6.3.

Problem Time/edge

Bipartiteness α(n)
Connected comps. α(n)

2-vertex connected comps. α(n)
3-vertex connected comps. α(n)
4-vertex connected comps. log n

MST log n
2-edge connected comps. α(n)
3-edge connected comps. α(n)
4-edge connected comps. nα(n)

Constant edge connected comps. n log n

In the streaming model, we are concerned only with edge insertion and need only
query the property at the end of the stream. Moreover, observe that a sparse certificate
fits in space O(n polylog n). The following theorem states that any algorithm that
could be sped up via the three major techniques described in [20] yields a one-pass,
O(n polylog n) space, streaming algorithm with the improved running time per input
edge.

Theorem 6.3. Let P be a property for which we can find a sparse certificate in
time f(n, m). Then there exists a one-pass, semistreaming algorithm that maintains
a sparse certificate for P using f(n, O(n))/n time per edge.

Proof. Let the edges in the stream be denoted e1, e2, . . . , em. Let Gi denote the
subgraph given by e1, e2, . . . , ei. Inductively, assume we have a sparse certificate Cjn

for Gjn, where 1 ≤ j ≤ 	m/n
, constructed in time f(n, O(n))/n per edge. Also,
inductively assume that we have buffered the next n edges, ejn+1, ejn+2, . . . , e(j+1)n.
Let T = Cjn∪{ejn+1, ejn+2, . . . , e(j+1)n}. By the composability of strong certificates,
T is a strong certificate for G(j+1)n. Let C(j+1)n be the sparse certificate of T . By the
transitivity of strong certificates, C(j+1)n is a sparse certificate of G(j+1)n. Since Cjn

is sparse, |T | = (c+1)n. Thus, computing C(j+1)n takes time f(n, O(n)). By Theorem
6.1, this results in f(n, O(n))/n time per edge, charged over ejn+1, ejn+2, . . . , e(j+1)n.
This computation can be done while the next n edges are being buffered. If k =
n	m/n
, then the final sparse certificate will be Ck ∪ {ek+1, ek+2, . . . , em}.

We note that, for f(n, m) that is linear or sublinear in m, a better speedup may
be achieved by buffering more than n edges, which is possible when we have more
space. In [20], the authors provide many algorithms for computing various graph
properties which they speed up using sparsification. Applying Theorem 6.3 to these
algorithms yields the list of streaming algorithms outlined in Table 6.1. For l ≥ 2, the
l-vertex and l-edge connectivity problems either have not been explicitly considered
in the streaming model or have algorithms with significantly slower time per edge [22].
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