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Abstract— We introduce the concept of matrix-valued ef-
fective resistance for undirected matrix-weighted graphs. Ef-
fective resistances are defined to be the square blocks that
appear in the diagonal of the inverse of the matrix-weighted
Dirichlet graph Laplacian matrix. However, they can also
be obtained from a “generalized” electrical network that is
constructed from the graph, and for which currents, voltages
and resistances take matrix values.

Effective resistances play an important role in several
problems related to distributed control and estimation. They
appear in least-squares estimation problems in which one
attempts to reconstruct global information from relative noisy
measurements; as well as in motion control problems in which
agents attempt to control their positions towards a desired
formation, based on noisy local measurements. We show that
in either of these problems, the effective resistances have a
direct physical interpretation.

We also show that effective resistances provide bounds on
the spectrum of the graph Laplacian matrix and the Dirichlet
graph Laplacian. These bounds can be used to characterize the
stability and convergence rate of several distributed algorithms
that appeared in the literature.

I. INTRODUCTION

This paper considers undirected graphs with a weight
associated with each one of its edges. The edge-weights
are symmetric positive definite matrices. For such graphs
we introduce the concept of “effective resistances.” The
effective resistance of a node is defined to be a square matrix
block that appears in the diagonal of the inverse of the
matrix-weighted Dirichlet graph Laplacian matrix (cf. Sec-
tion II). The terminology “effective resistance” is motivated
by the fact that these matrices also define a linear map from
currents to voltages in a generalized electrical network that
can be constructed from the undirected matrix-weighted
graph. However, the voltages, currents, and resistances in
this generalized electrical network take matrix values [1].

Effective resistances in “regular” electrical networks,
where currents voltages and resistances are scalar valued,
have been known to have far reaching implications in a vari-
ety of problems. Recurrence and transience in random walks
in infinite networks [2] and the coverage and commute times
of random walks in graphs [3] can be determined by the
effective resistance. There is a also a strong connection
between effective resistances and estimation error variances
that arise in the estimation of scalar-valued variables using

This material is based upon work supported by the Institute for Col-
laborative Biotechnologies through grant DAAD19-03-D-0004 from the
U.S. Army Research Office and by the National Science Foundation under
Grant No. CCR-0311084.

Both authors are with the Dept. of Electrical and Computer Engineering
and the Center for Control, Dynamical-Systems, and Computation at
Univ. of California, Santa Barbara, CA 93106.

relative measurements [4]. It was later shown by Barooah
and Hespanha [5] that this analogy can be extended to
vector measurements with matrix-valued covariances, by
introducing generalized electrical networks with matrix-
valued currents, voltages, and resistances. Correspondingly,
the effective resistance in a generalized electrical network
is matrix-valued. Every graph with positive definite matrix
weights can be thought of as a generalized electrical net-
work where the edge weights are the inverse-resistances.

The effective resistances of matrix-weighted graphs play
an important role in several problems related to distributed
control and estimation. We justify this statement in Sec-
tion IV by presenting several such problems. The first of
these problems is formulated in Section IV-A and con-
sists of estimating a certain number of variables, based
on noisy “relative” measurements. The adjective “relative”
refers to the fact that the measurements only provide in-
formation about pairwise differences between the unknown
variables. This problem was considered in [4–7] and has
multiple applications to sensor networks, including time
synchronization and sensor localization. It turns out that
the covariance matrices of the estimation errors are given
by the effective resistances of a graph that describes the
measurement model.

A second problem is formulated in Section IV-B and
consists of controlling a group of mobile agents towards a
formation defined by the desired relative positions between
the agents. Each agent has available for control noisy
measurements of its relative position with respect to a
small set of neighbors. We consider a proportional negative-
feedback control law that drives each agent to the current
best estimate of where it should be, based on the current
positions of its neighbors. For this law, the steady-state
covariance matrices of the vehicles positions are given
by the effective resistances of a graph that describes the
available measurements.

In Section IV-C we consider the control of a swarm of
vehicles based on relative measurements. We consider the
setup introduced by Fax and Murray [8] and show that
stability of the group of vehicles is guaranteed when the
Nyquist plot of the open-loop system does not encircle
any point in a line segment between the symmetric of
the sum of the traces of the effective resistances and the
origin of the complex plane. A similar condition could be
developed for the formation control problem in Yadlapalli
et al. [9]. The stability condition in terms of effective
resistances is typically more conservative than the one that
appeared in [8], but it is useful because effective resistances



have a physical interpretation that can be used to build
intuition. More importantly, it is possible to construct upper-
and low-bounds on the effective resistances for large-scale
graphs [1].

II. GRAPH EFFECTIVE RESISTANCES

An undirected matrix-weighted graph is a triple G =
(V,E,W), where V is a set of n vertices; E ⊂ V ×V a
set of m edges; and W := {Wu,v ∈ R

k×k : (u, v) ∈ E}
a set of symmetric positive definite matrix-valued weights
for the edges of G. Since we are dealing with undirected
graphs, the pairs (u, v) and (v, u) denote the same edge. For
simplicity of notation, we exclude the existence of multiple
edges between the same pair of nodes and also edges from
a node to itself.

The matrix-weighted Laplacian of G is a nk×nk matrix
L with k rows and k columns per node such that the k× k
block of L corresponding to the k rows associated with node
u ∈ V and the k columns associated with node v ∈ V is
equal to















∑

v∈Nu

Wu,v u = v

−Wu,v (u, v) ∈ E

0 (u, v) /∈ E.

where Nu ⊂ V denotes the set of neighbors of u, i.e., the
set of nodes that have an edge in common with u.

The matrix-weighted Dirichlet or Grounded Laplacian
is obtained from the Laplacian by removal of rows and
columns. In particular, given a subset Vo ⊂ V consisting
of no ≤ n nodes, the matrix-weighted Dirichlet Laplacian
for the boundary Vo is a (n − no)k × (n − no)k matrix
Lo obtained from the matrix-weighted Laplacian of G by
removing all rows and columns corresponding to the nodes
in Vo.

The usual graph Laplacian is a special case of the matrix-
weighted Laplacian when k = 1 and all the weights are
equal to one. The submatrix Lo of L in the special case of
k = 1 is called the Dirichlet Laplacian, since it arises in
the numerical solution of PDE’s with Dirichlet boundary
conditions [10]. It is also called a Grounded Laplacian
since it arises in the computation of node potentials in a
electrical network. Our terminology is derived from this
history, but as we shall see shortly, the matrix-weighted
Dirichlet Laplacian also arises in several distributed con-
trol/estimation problems.

We say that a graph G is connected to Vo if there is a
path from every node in the graph to at least one of the
boundary nodes in Vo. Lemma 1 at the end of this section
shows that the Dirichlet Laplacian Lo is invertible if and
only if G is connected to Vo.

We now formally define effective resistance of a node
in a connected graph G: node u’s effective resistance to
Vo, denoted by Reff

u (Vo), is the k × k block in the main

diagonal of L−1
o corresponding to the k rows/columns

associated with the node u ∈ V. This terminology is
justified by the fact that these matrices also express a map
from (matrix-valued) currents to (matrix-valued) voltages
in an appropriately defined electrical network (cf. [1]).
However, for now we are mostly interested in the fact that
these effective resistances have a direct physical relevance
in many distributed control/estimation problems. Moreover,
they also allow us to deduce properties of the spectrum of
the matrix-weighted Dirichlet Laplacian and even properties
of the spectrum of the original matrix-weighted Laplacian.
It should be noted that these effective resistances are matrix-
valued.

The previous definitions relied on the non-singularity of
Lo, which is established by the following lemma.

Lemma 1 (Invertibility). The matrices Lo and L are both
positive semi-definite. Moreover, the matrix Lo is positive
definite if and only if G is connected to Vo. �

To proceed with the proof of this lemma as well as to
build further insight into the structure of the matrices L
and Lo, we note that the matrix-weighted Laplacian can
also be defined compactly using the incidence matrix of the
graph. To do so, we consider a directed graph ~G obtained
by assigning arbitrary directions to the edges of G. The
incidence matrix of the directed graph ~G with n nodes and
m edges is an n × m matrix with one row per node and
one column per edge defined by A := [aue], where aue is
nonzero if and only if the edge e ∈ E is incident on the
node u ∈ V. When nonzero, aue = −1 if the edge e is
directed towards u and aue = 1 otherwise. Define W =
diag(W1, . . . , Wm). Figure 1 shows a graph G, a possible
corresponding directed graph ~G and its associated incidence
matrix. The matrix-weighted Laplacian of the graph G can
be expressed as

L := AWAT , A = A ⊗ Ik (1)

where ⊗ denotes the Kronecker product and Ik is a k × k
identity matrix. Note that the matrix-weighted Laplacian
does not depend on the directions of the edges chosen to
define the incidence matrix.

The Dirichlet Laplacian can also be expressed compactly
as

Lo := AoWAT
o , Ao := Ao ⊗ Ik , (2)

where the generalized basis incidence matrix Ao is a matrix
obtained by removing all the rows from the incidence matrix
A that correspond to nodes in Vo. Figure 1 also shows a
graph G and its associated matrix-weighted Laplacian L
when every edge weight is equal to the identity matrix.

Proof of Lemma 1. The incidence matrix A ∈ R
n×m has a

row rank less than or equal to n−1 [11, Theorem 8.3.1], and
since W is positive definite, L is positive semi-definite. The
matrix Ao is full-row rank if and only if G is connected to
Vo [1], which establishes the condition for Lo to be positive
definite.
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Fig. 1. A graph G, a directed version ~G and its incidence matrix
A (row and column indices of A correspond to node and edge indices,
respectively). The matrix Ao is for the boundary with the single node
Vo = {1}. The matrix-weighted Laplacian is shown for the case when
all the edge weights are equal to the identity matrix.

III. EFFECTIVE RESISTANCE VS. SPECTRAL PROPERTIES

The effective resistances of a graph can be uses to study
several spectral properties of a graph. The following result
provides the starting point to establish these results.

Lemma 2 (Spectrum of L and Lo). Assume that G is
connected to Vo and denote by λ1(L) ≤ λ2(L) ≤ · · · ≤
λnk(L) the sorted eigenvalues of the L and by λ1(Lo) ≤
λ2(Lo) ≤ · · · ≤ λ(n−no)k(Lo) the sorted eigenvalues of
Lo. For every i ∈ {1, 2 . . . , (n − no)k}

λi(Lo) ≥
1

∑

u∈V
traceReff

u (Vo)
(3)

and

λi(L) ≤ λi(Lo) ≤ λi+kno
(L). (4)

Proof. The inequality (3) is a consequence of the fact that
any eigenvalue of the positive definite matrix L−1

o can
be upper-bounded by its trace, which can be obtained by
adding up all the traces of its diagonal blocks Reff

u (Vo),
u ∈ V. This means that every eigenvalue of L−1

o satisfies:

λi(L
−1
o ) ≤ traceL−1

o =
∑

u∈V

traceReff
u (Vo),

from which (3) follows since the eigenvalues of L−1
o and Lo

are reciprocals of each other. The inequality (4) is a direct
application of the Interlacing Eigenvalues Theorem [12,
Theorem 4.3.15].

By construction, the matrix-weighted Laplacian L has
the property that L([Ik, . . . , Ik]T )nk×k = 0, where Ik

denotes the k × k identity matrix. This means that L has
k eigenvalues equal to zero. The effective resistances can
be used to obtain a lower bound on the smallest non-zero
eigenvalue of L. In particular, when no = 1, we conclude
from (3) and (4) that

λ1+k(L) ≥ λ1(Lo) ≥
1

∑

u∈V
traceReff

u (Vo)
,

which provides a lower-bound on the smallest strictly
positive eigenvalue of L. The following lemma summarizes
the discussion above:

Lemma 3 (Albegraic Connectivity). For any single-node
boundary set Vo, for which G is connected, the matrix L
has exactly k zero eigenvalues and all remaining eigenval-
ues satisfy

λi(L) ≥
1

∑

u∈V
traceReff

u (Vo)
> 0. �

When k = 1 and all the edge-weights are equal to one,
the matrix L is the usual graph Laplacian and the smallest
nonzero eigenvalue is known as the algebraic connectivity
of the graph. The algebraic connectivity is a measure of
performance/speed of consensus algorithms [13].

The convergence of several discrete-time distributed al-
gorithms is determined by the spectrum of the matrix

Jo := I − γD−1
o Lo, γ ∈ (0, 1],

where Do is a block diagonal matrix that contains the k×k
blocks that appear in the diagonal of the matrix-weighted
Dirichlet Laplacian Lo (see Fig. 1 for an example). The
next lemma establishes the stability of Jo and provides a
bound on the spectrum of this matrix.

Lemma 4 (Discrete-time convergence). Assume that G is
connected to Vo. Every eigenvalue of Jo is real and satisfies

−1 < λi(Jo) ≤ 1 −
γ

λmax(Do)
∑

u∈V
traceReff

u (Vo)
,

(5)

where λmax(Do) denotes the largest eigenvalue of Do.
Moreover, when the weighting matrices Wu,v , (u, v) ∈ E

are all diagonal or all equal (but not necessarily diagonal),
we actually have

|λi(Jo)| ≤ 1 −
γ

λmax(Do)
∑

u∈V
traceReff

u (Vo)
. �

Proof. Since

Jo = D
− 1

2

o

(

I − γD
− 1

2

o LoD
− 1

2

o

)

D
1

2

o ,

we conclude that Jo can be transformed by a similarity
transformation into the symmetric matrix I−γD

− 1

2

o LoD
− 1

2

o

and therefore all eigenvalues of Jo must be real. Moreover,
all eigenvalues of Jo have absolute value strictly smaller
than one because the discrete-time Lyapunov equation

J ′
oPJo − P = −Q

has a positive definite solution P := DoL
−1
o Do > for

Q := γ(2Do − Lo) + γ(1 − γ)Lo ≥ γ(2Do − Lo) > 0.

To verify that this matrix is positive definite, we note that
2Do −Lo is very similar to the matrix-weighted Laplacian
L, and in fact, 2Do − Lo = |Ao|W|AT

o |, where |Ao| is a
matrix whose entries are the absolute values of the entries of
Ao. The positive definiteness of |Ao|W|AT

o | can be proved
in a manner similar to that used in proving the positive
definiteness of Lo = AoWAT

o (Lemma 1).



Denoting by λ ∈ (−1, 1) an eigenvalue of Jo and by x
the corresponding eigenvector, we have that

(I − γD−1
o Lo)x = λx ⇔ L−1

o Dox =
γ

1 − λ
x.

Therefore
λmax(D0)

λmin(Lo)
‖x‖ ≥ ‖L−1

o Dox‖ =
γ

1 − λ
‖x‖,

from which we conclude using Lemma 2 that

λ ≤ 1−γ
λmin(Lo)

λ
max

(D0)
≤ 1−

γ

λ
max

(D0)
∑

u∈V
traceReff

u (Vo)
,

which proves (5).
When all the weighting matrices are diagonal, the matrix

Jo is non-negative for every γ ≤ 1. Therefore by Perron’s
Theorem [12, Theorem 8.3.1] we know that its eigenvalue
with the largest absolute value must be a positive number.
The last inequality in the Lemma then follows from (5).
When all weighting matrices are equal to some W > 0, it
follows from the definition (2) that

Jo = J̄o ⊗ Ik,

where Jo := I − γ(D̄−1
o L̄o) ∈ R

(n−no)×(n−no), L̄o is the
Dirichlet Laplacian for scalar weights equal to 1, and D̄o

its main diagonal. Thus, the weights W play no role. The
matrix D̄−1

o L̄o is nonnegative, and we conclude from the
reasoning above that its eigenvalue with largest absolute
value is positive. Since Jo = J̄o⊗Ik, the distinct eigenvalues
of Jo are just the distinct eigenvalues of J̄o, so we conclude
that the eigenvalue of Jo with largest norm is also positive.
The last inequality again follows from (5).

The convergence of several continuous-time distributed
algorithms is determined by the spectrum of the matrix

Go := −γD−1
o Lo, γ > 0.

where Do is a block diagonal matrix that contains the k ×
k blocks on the diagonal of the matrix-weighted Dirichlet
Laplacian Lo.

Lemma 5 (Continuous-time convergence). Assume that
G is connected to Vo. Every eigenvalue of Go is real and
satisfies

λi(Go) ≤ −
γ

λmax(Do)
∑

u∈V
traceReff

u (Vo)
, (6)

where λmax(Do) denotes the largest eigenvalue of Do.
�

Proof. Since

Go = D
− 1

2

o

(

− γD
− 1

2

o LoD
− 1

2

o

)

D
1

2

o ,

we conclude that Go can be transformed by a sim-
ilarity transformation into the negative definite matrix
−γD

− 1

2

o LoD
− 1

2

o and therefore all eigenvalues of Go must
be real and negative. Moreover, defining P := γ

2L−1
o we

conclude that

(αI + Go)P + P (αI + Go)
′ = γ(αL−1

o − γD−1
o ).

The matrix on the right hand side is then negative definite
as long as

γλmin(D
−1
o ) > α λmax(L

−1
o ) ⇔ α < γ

λmin(Lo)

λmax(Do)
.

From Lyapunov’s Theorem, we thus conclude that αI +Go

is Hurwitz for every α < γλmin(Lo)
λmax(Do) , which implies that the

eigenvalue of Go must be more negative than γλmin(Lo)
λmax(Do) .

The inequality (6) follows from this and Lemma 2.

IV. APPLICATIONS TO DISTRIBUTED CONTROL AND
ESTIMATION

We now describe a few problems in distributed control
and estimation for which the matrix-weighted Dirichlet
Laplacian and the effective resistances play a key role.

A. Graph estimation
Consider the problem of estimating the values of n node

variables x1, x2, . . . xn ∈ R
k, k ≥ 1 from noisy

“relative” measurements of the form

yu,v = xu − xv + εu,v, (u, v) ∈ E ⊂ V ×V, (7)

where the εu,v’s are uncorrelated zero-mean noise vectors
with associated covariance matrices Pu,v = E[εu,vε

′
u,v].

This estimation problem is relevant for such wide ranging
applications such as location estimation and time synchro-
nization in sensor networks [4, 6, 7]

This estimation problem can be associated with a matrix-
weighted graph G = (V,E,W) with n nodes and m edges,
with node set V := {1, 2, . . . , n}, edge set E consisting of
all the pairs of nodes (u, v) for which a noisy measurement
of the form (7) is available; and weight set W consisting
of the inverses of the covariance matrices Wu,v := P−1

u,v ,
(u, v) ∈ E.

Just with relative measurements, determining the xu’s
is only possible up to an additive constant. To avoid this
ambiguity, we assume that at least one of the nodes is
used as a reference and therefore its node variable can be
assumed known. In general, several node variables may be
known and therefore we may have several references. We
denote by Vo the set of reference nodes. This problem was
introduced in [5] for a single reference node.

By stacking together all the measurements into a single
vector y ∈ R

km, all node variables (known and unknown)
into one vector X ∈ R

kn, and all the measurement errors
into a vector ε ∈ R

km, we can express all the measurement
equations (7) in the following compact form:

y = AT X + ε, (8)

where A is as defined in (1). By partitioning X into a vector
x containing all the unknown node variables and another
vector r containing all the known reference node variables,
we can re-write (8) as

y = AT
r r + AT

o x + ε, (9)

where Ar contains the rows of A corresponding to the refer-
ence nodes and Ao contains the rows of A corresponding to
the unknown node variables (see Figure 1 for an example).



The estimation of the unknown x based on the linear
measurement model (9) is a classical estimation problem.
The Best Linear Unbiased Estimator (BLUE) of x is given
by

x̂ := L−1
o b, Lo := AoWAT

o , b := AoW(y −AT
r r), (10)

where Ao is as defined in (2) and W ∈ R
km×km is a block-

diagonal matrix with inverse-covariances in the diagonal
W = diag(P−1

1 , . . . , P−1
m );

Among all linear estimators of x, (10) has the smallest
variance for the estimation error x−x̂ and the inverse of Lo

provides the covariance matrix of the estimation error [14]:

E[(x − x̂)(x − x̂)′] = L−1
o . (11)

As we saw before, the inverse of Lo exists as long as the
graph G is connected to Vo.

From (11), we also conclude that the covariance matrix
Σu of the estimation error for the variable xu appears in
the corresponding k × k diagonal block of L−1

o , which is
precisely node u’s effective resistance to Vo defined in
Section II. For large graphs one is interested in how the
covariance of the BLU estimate grows as a function of
distance from the reference node. This question is answered
in [1] by determining how the matrix-effective resistance
scales with distance for a large class of graphs.

A distributed algorithms for the computation of the
estimates have been proposed in [7]. A similar algorithm
is also proposed in [6]. This algorithm is based on the
observation that the optimal estimate x̂ in (10) is a solution
to the following equation

x̂ = Jox̂ + γD−1
o b̂ (12)

where Jo := I − γD−1
o Lo, γ ∈ (0, 1]. Since all eigenvalues

of Jo have absolute value smaller than one (cf. Lemma 4),
the discrete-time system

x̂(t + 1) = Jox̂(t) + γD−1
o b̂

will converge precisely to the solution to (12), which is the
optimal estimate x̂. It turns out that the recursion in (12) can
be computed in a distributed fashion. In practice, each node
only computes the k elements of x̂(t) that correspond to its
node variable. Since the k rows of Jo that corresponds to
the node u only have nonzero k × k off-diagonal blocks in
the positions corresponding to the neighbors of u, all that u
needs are the current estimates of its 1-hop neighbors. The
algorithm proposed in [7] is actually a special case of this
one for γ = 1. Lemma 4 relates the speed of convergence
of this algorithm with the effective resistances.

B. Formation control with noisy measurements
Consider a group of n mobile agents moving in k-

dimensional space that one desires to control to a given
formation defined by their relative positions. In particular,
denoting by xu ∈ R

k, u ∈ V := {1, 2, . . . , n} the position
of the uth agent, the control objective is to make the
positions converge to values for which

xu − xv = ru,v , ∀(u, v) ∈ V ×V, (13)

where ru,v denotes the desired relative position of agent
u with respect to agent v. One of the agents o ∈ V will
be called the leader and it will move independently of the
remaining ones. The remaining agents attempt to maintain
the formation specified by (13). The leader may actually
not be a physical agent. Instead, it may be a “reference”
that is known to at least one of the physical agents.

Not all agents are able to measure their relative posi-
tions with respect to all other agents and therefore each
agent is constrained to use only a few relative position
measurements to compute its control signal. We denote by
E ⊂ V×V the set of pairs of agents that can measure their
relative positions. In particular, the existence of a pair (u, v)
in E signifies that agent u can measure its position with
respect to v and similarly, v can measure its position with
respect to u, although both measurements will be corrupted
with noise. Since the noise corrupting the measurement of
xu − xv available to u will be in general different from
the noise on the measurement of xv −xu available to v, we
need to distinguish these two measurements. To this end, we
introduce a directed edge set ~E containing the two ordered
pairs (u, v), (v, u) whenever (u, v) ∈ E. We assume that a
noisy measurement yu,v of the following form is available
to agent u if (u, v) ∈ ~E:

yu,v = xu − xv + εu,v (14)

where εu,v is a white random noise process with autocorre-
lation matrix given by E[εu,v(t1)ε

T
u,v(t2)] = δ(t1−t2)Ru,v.

Note that by assumption, if a measurement yu,v is avail-
able to u, then the measurement yv,u is available to v. The
noise processes over different edges are assumed indepen-
dent of each other. In particular, eu,v(t) is independent of
ev,u(t) for all t. In case xo is a reference and not a physical
agent, an edge between the node u and the leader o means
that the physical agent u is able to measure its position with
respect to the reference o.

The problem above is now associated with a matrix-
weighted directed graph ~G = (V, ~E, ~W) with node set
V = {1, 2, . . . , n}; directed edge set ~E consisting of all
ordered pairs of nodes (u, v) for which a noisy measurement
of the form (14) is available; and weight set ~W consisting of
the inverses of the autocorrelation matrices Wu,v := R−1

u,v,
(u, v) ∈ ~E. We assume that even though the measurement
errors on the two edges (u, v) and (v, u) connecting the
nodes u and v are uncorrelated, they have the same auto-
correlation matrix; i.e., Ru,v = Rv,u. We will refer to this
assumption, together with the assumption that the directed
edge (u, v) exists iff (v, u) exists, as bidirectionality. Fig. 2
shows an example of a bidirectional directed graph and its
associated undirected graph.

We are interested in control laws for which each agent
uses all its measurements to construct an optimal estimate of
the difference between its currently position and what this
“should” be, in view of what it know about its neighbors
positions. The measurements available to an arbitrary agent
u ∈ V are

yu,v = xu − xv + εu,v, ∀v ∈ Nu,



where Nu ⊂ V denotes set of nodes v such that (u, v) ∈
~E. If agent u assumes that all its neighbors are correctly
positioned then, according to (13), the desired position of
u is given by any one of the following equations

xd
u = xv + ru,v , ∀v ∈ Nu.

Combining the two previous sets of equations, we obtain

yu,v = xu − xd
u + ru,v + εu,v, ∀v ∈ Nu,

from which agents u estimates its position error xu − xd
u.

It is straightforward to show that the Best Linear Unbiased
estimate of xu − xd

u is given by D−1
u

∑

v∈Nu
R−1

u,v

(

yu,v −
ru,v

)

, where Du :=
∑

v∈Nu
R−1

u,v. This motivates the
following negative proportional control law for the agents

ẋu = −γD−1
u

∑

v∈Nu

R−1
u,v(yu,v − ru,v), ∀u ∈ V \ {o},

where γ denotes some positive number. For analysis pur-
poses it is convenient to describe the system dynamics
in term of positions with respect to the leader. Defining
x̃u = xu − xo, one concludes that

˙̃xu = −γD−1
u

∑

v∈Nu

R−1
u,v(x̃u − x̃v − ru,v + εu,v) − ẋo,

for every u ∈ V \ {o}. By stacking all the positions x̃u,
u ∈ V \ {o} in a column vector x̃, the above systems can
be written as follows:

˙̃x = −γD−1
o Lox̃ + γD−1

o BoW (r − ε) − ẋo1, (15)

where r is a column vector obtained by stacking all the
ru,v on top of each other; ε is a column vector obtained by
stacking all the εu,v; 1 is a n− 1× 1 column vector of all
1’s; W > 0 is a block-diagonal matrix with k rows/columns
for each edge in ~E, with the weights Wu,v := R−1

u,v,
(u, v) ∈ ~E in the diagonal; Do > 0 is a block-diagonal
matrix with k rows/columns for each node in V \ Vo,
with Du, u ∈ V \ Vo as defined earlier in the diagonal;
Lo = 1

2AoWAT
o where Ao is the generalized incidence

matrix for the directed graph (V, ~E) with Vo = {o} (cf.
section II); and Bo is a matrix with k rows for each vertex
in V\Vo and k columns for each edge in ~E, constructed as
follows: the k columns corresponding to edge (u, v) ∈ ~E
are all equal to zero except for the block corresponding
to the node u, which is equal to Ik. The white noise
process ε has block diagonal autocorrelation matrix given by
E[ε(t1)ε

T (t2)] = δ(t1 − t2)W
−1. Fig. 2 shows an example

of the matrices defined above.
Lo is exactly the matrix-weighted Dirichlet Laplacian

for the matrix-weighted undirected graph (V,E,W) with
boundary Vo := {o} and with weight Wu,v on every
undirected edge (u, v) assigned as the weight on the cor-
responding directed edge (u, v) ∈ ~E. Note that we get the
undirected Laplacian in the system dynamic equations (15)
due to the bidirectionality assumption.

From Lemma 5, we conclude that (15) is an asymptoti-
cally stable system and Lemma 5 actually relates the speed
of its slowest pole with the effective resistances. It turns out
that the effective resistances play an even more interesting

~G G

A0 =

h
−I 0 I I I 0 −I 0 −I 0

0 −I 0−I 0 I I I 0 −I 0

0 0 0 0 −I 0 0 −I I I

i

Bo =

h
I I I 0 0 0 0 0

0 0 0 I I I 0 0

0 0 0 0 0 0 I I

i

Fig. 2. A (bidirectional) directed graph ~G and the associated undirected
graph G. The matrices Ao and Bo shown are for the graph ~G.

role for this system. To see this, we further re-write the
model (15) as

˙̃x = −γD−1
o Lox̃ + w + b,

where b := γD−1
o BoWr− ẋo1 and w := −γD−1

o BoWε is
a white noise random process with autocorrelation matrix
given by

E[w(t1)w
T (t2)] = γ2D−1

o BoW E[ε(t1)ε
T (t2)]WBT

o D−1
o

= γ2δ(t1 − t2)D
−1
o BoWBT

o D−1
o = γ2δ(t1 − t2)D

−1
o ,

where we used the fact that BoWBT
o = Do. Since the

Lyapunov equation

−γD−1
o LoΣ∞ − γΣ∞LoD

−1
o + γ2D−1

o = 0

has a positive definite solution

Σ∞ =
γ

2
L−1

o ,

it is straightforward to show that the covariance matrix of x̃
converges to Σ∞. In particular, the steady-state covariance
matrix of the relative position x̃u := xu − xo is given by
k × k diagonal block of Σ∞, which is given by γ/2 times
node u’s effective resistance Reff

u,o to Vo := {o} defined in
Section II. The scaling of matrix-valued effective resistance
Reff

u,o as a function of distance du,o of u from the leader o
(addressed in [1]) determine how the structure of the graph
G affect the growth of the effective resistance, and therefore
tracking error covariance.

C. Stability of multi-vehicle swarms
Consider a group of n single-input/single-output vehicles

all with the same transfer function P (s) from their control
inputs ui, i ∈ V := {1, 2, . . . , n} to their positions xi. Each
vehicle is able to determine its relative position with respect
to a few other vehicles. We denote by E ⊂ V ×V the set
of pairs of vehicles that can measure each other relative
positions. In particular, the existence of a pair (i, j) in E

signifies that the measurement

yi,j := xi − xj , ∀(i, j) ∈ E

is available to both vehicles i and j. The control objective
is for all vehicles to rendezvous at a point. To this effect
each vehicle computes a weighted average

ei :=
∑

j∈Ni

wi,j(xi − xj), i ∈ V



of the relative positions that it can measure and uses it for
feedback according to Ui(s) = K(s)Ei(s), where Ui(s)
and Ei(s) denote the Laplace transforms of ui and ei,
respectively; and K(s) is a suitably selected controller
transfer function used by every vehicle. The error equation
can be associated with an undirected scalar-weighted graph
G = (V,E,W), with weights W := {wi,j ∈ R : (i, j) ∈
E}. It was shown by Fax and Murray [8] that the resulting
closed-loop system is stable if and only if for every nonzero
eigenvalue λi(L) of the scalar-weighted Laplacian matrix
L of G there is no net encirclements of −1/λi(L) by
the Nyquist plot of −K(s)P (s). We conclude from (3)
that −1/λi(L) ≥ −

∑

u∈V
traceReff

u (Vo). Moreover, it
can be easily seen that 2D − L = |A|W|AT | ≥ 0 (see
the proof of the discrete time convergence Lemma 4), so
λi(L) < 2λmax(D). We conclude that for all nonzero
λi(L), −1/λi(L) lies in the range

[
−1

λ2(L)
,

−1

λmax(L)
] ⊂

[

−
∑

u∈V

traceReff
u (Vo),−

1

2λmax(D)

]

.

We therefore conclude that the closed-loop system is
stable, as long as the the Nyquist plot of −K(s)P (s)
does not encircle any point in the line segment from
−

∑

u∈V
traceReff

u (Vo) to −1/2λmax(D). Large effective
resistances will generally lead to longer line segments and
therefore more stringent stability conditions.

Similar conclusions can be drawn for the type of for-
mations considered in [9] and [15], where every vehicle
tries to maintain a constant separation between itself and
its neighbors, and there is a leader whose control action
does not depend on the other vehicles. In this case the
quantities of interest are the eigenvalues of the Dirichlet
Laplacian, λi(Lo). In particular, the formation will be stable
if and only if for every eigenvalue λi(Lo) of the scalar-
weighted Dirichlet Laplacian matrix Lo of G there is no
net encirclements of −1/λi(Lo) by the Nyquist plot of
−K(s)P (s). We can derive in a manner similar to that
above that all −1/λi(Lo) lies in the range

[
−1

λ
min

(Lo)
,

−1

λ
max

(Lo)
] ⊂

[

−
∑

u∈V

traceReff
u (Vo),

−1

2λ
max

(Do)

]

.

V. CONCLUSION

We introduced the concept of matrix-valued effective re-
sistance for undirected matrix-weighted graphs and showed
that effective resistances have a direct physical interpreta-
tion in several problems related to distributed control and
estimation. We also showed that the effective resistances can
be used to construct bounds on the spectrum of the Lapla-
cian, Dirichlet Laplacian and other matrices that arise in
distributed control and estimation. We examined a few novel
and existing algorithms for such problems and showed that
their fundamental performance limits, including stability
and speed of convergence, can be determined by examining
the effective resistances in the underlying network. Our
coverage of problems for which effective resistances are
relevant was not exhaustive and we encourage the readers
to look for other problems where this tool can be of use.
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