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Abstract

We propose a new method for anomaly detection of hu-

man actions. Our method works directly on human pose

graphs that can be computed from an input video sequence.

This makes the analysis independent of nuisance parame-

ters such as viewpoint or illumination. We map these graphs

to a latent space and cluster them. Each action is then

represented by its soft-assignment to each of the clusters.

This gives a kind of ”bag of words” representation to the

data, where every action is represented by its similarity to a

group of base action-words. Then, we use a Dirichlet pro-

cess based mixture, that is useful for handling proportional

data such as our soft-assignment vectors, to determine if an

action is normal or not.

We evaluate our method on two types of data sets.

The first is a fine-grained anomaly detection data set (e.g.

ShanghaiTech) where we wish to detect unusual variations

of some action. The second is a coarse-grained anomaly

detection data set (e.g., a Kinetics-based data set) where

few actions are considered normal, and every other action

should be considered abnormal.

Extensive experiments on the benchmarks show that our

method1performs considerably better than other state of the

art methods.

1. Introduction

Anomaly detection in video has been investigated exten-

sively over the years. This is because the amount of video

captured far surpasses our ability to manually analyze it.

Anomaly detection algorithms are designed to help human

operators deal with this problem. The question is how to

define anomalies and how to detect them.

The decision of whether an action is normal or not is

nuanced. In some cases, we are interested in detecting ab-

normal variations of an action. For example, an abnormal

type of walking. We term this fine-grained anomaly detec-

tion. In other cases, we might be interested in defining nor-

1Code available at: https://github.com/amirmk89/gepc

mal actions and regard any other action as abnormal. For

example, we might be interested in determining that danc-

ing is normal, while gymnastics are abnormal. We call this

coarse-grained anomaly detection.

We desire an algorithm that can handle both types of

anomaly detection in a single, unified fashion. Such an al-

gorithm should take as input an unlabeled set of videos that

capture normal actions only (fine- or coarse-grained) and

use that to train a model that will distinguish normal from

abnormal actions.

We take advantage of the recent progress in human pose

estimation and assume our algorithm takes human pose

graphs as input. This offers several advantages. First, it

abstracts the problem and lets the algorithm focus on hu-

man pose and not on irrelevant features such as viewing di-

rection, illumination, or background clutter. In addition, a

human pose can be represented as a compact graph, which

makes analyzing, training and testing much faster.

Given a sequence of video frames, we use a pose esti-

mation method to extract the keypoints of every person in

each frame. Every person in a clip is represented as a tem-

poral pose graph. We use a combination of an autoencoder

and a clustering branch to map the training samples into a

latent space where samples are soft clustered. Each sample

is then represented by its soft-assignment to each of the k
clusters. This can be understood as learning a bag-of-words

representation for actions. Each cluster corresponds to an

action-word, and each action is represented by its similarity

to each of the action-words. Figure 1 gives an overview of

our method.

The soft-assignment vectors capture proportional data

and the tool to measure their distribution is the Dirichlet

Process Mixture Model. Once we fit the model to the data,

we can obtain a normality score for each sample and deter-

mine if the action is to be classified as normal or not.

The algorithm thus consists of a series of abstractions.

Using human pose graphs eliminates the need to deal

with viewpoint and illumination changes. And the soft-

assignment representation abstracts the type of data (fine-

grained or coarse-grained) from the Dirichlet model.
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Figure 1. Model Diagram (Inference Time): To score a video, we first perform pose estimation. The extracted poses are encoded using

the encoder part of a Spatio-temporal graph autoencoder (ST-GCAE), resulting in a latent vector. The latent vector is soft-assigned to

clusters using a deep clustering layer, with pik denoting the probability of sample xi being assigned to cluster k.

We evaluate our algorithm in two settings. The first is the

ShanghaiTech Campus [16] dataset, a large and extensively

evaluated anomaly detection benchmark. This is a typical

(fine-grained) anomaly detection benchmark in which nor-

mal behavior is taken to be walking, and the goal is to detect

abnormal events, such as people running, fighting, riding bi-

cycles, throwing objects, etc.

The second is a new problem setting we propose, and de-

note Coarse-grained anomaly detection. Instead of focus-

ing on a single action (i.e., walking), as in the ShanghaiTech

dataset, we construct a training set consisting of a varying

number of actions that are to be regarded as normal. For ex-

ample, the training set may consist of video clips of differ-

ent dancing styles. At test time, every dance video should

be classified as normal, while any other action should be

classified as abnormal.

We demonstrate this new, challenging, Coarse-grained

anomaly detection setting on two action classification

datasets. First is the NTU-RGB+D dataset, where 3D body

joints are detected using Kinect. Second is a larger and

more challenging dataset that consists of 250 out of the 400

actions in the Kinetics400 dataset2. For both datasets, we

use a subset of the actions to define a training set of normal

actions and use the rest of the videos to test if the algorithm

can correctly distinguish normal from abnormal videos.

We conduct extensive experiments, compare to a num-

ber of competing approaches and find that our algorithm

outperforms all of them.

To summarize, we propose three key contributions:

• The use of embedded pose graphs and a Dirichlet pro-

cess mixture for video anomaly detection;
• A new coarse-grained setting for exploring broader as-

pects of video anomaly detection;
• State-of-the-art AUC of 0.761 for the ShanghaiTech

Campus anomaly detection benchmark.

2We only use a subset of the classes as not all classes can be detected

using human pose detectors.

2. Background

2.1. Video Anomaly Detection

The field of anomaly detection is broad and has a large

variation in setting and assumptions, as is evident by the

different datasets proposed to evaluate methods in the field.

For our fine-grained experiment, we use the Shang-

haiTech Campus dataset [16]. Containing 130 anomalous

events in 13 different scenes, with various camera angles

and lighting conditions, it is more diverse and significantly

larger than all previous common datasets. It is presented in

detail in section 4.1.

In recent years, numerous works tackled the problem of

anomaly detection in video using deep learning based mod-

els. Those could be roughly categorized into reconstructive

models, predictive models, and generative models.

Reconstructive models learn a feature representation for

each sample and attempt to reconstruct a sample based

on that embedding, often using Autoencoders [1, 6, 10].

Predictive model based methods aim to model the current

frame based on a set of previous frames, often relying

on recurrent neural networks [15, 16, 17] or 3D convolu-

tions [21, 29]. In some cases, reconstruction-based models

are combined with prediction based methods for improved

accuracy [29]. In both cases, samples poorly reconstructed

or predicted are considered anomalous.

Generative models were also used to reconstruct, predict

or model the distribution of the data, often using Variational

Autoencoders (VAEs) [3] or GANs [2, 14, 19, 20].

A method proposed by Liu et al. [13] uses a generative

future frame prediction model and compares a prediction

with its ground truth by evaluating differences in gradient-

based features and optic flow. This method requires optic

flow computation and generating a complete scene, which

makes it costly and less robust to large scenery changes.

Recently, Morais et al. [18] proposed an anomaly detec-

tion method using a fully connected RNN to analyze pose
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sequences. The method embeds a sequence, then uses re-

construction and prediction branches to generate past and

future poses, respectively. Anomaly score is determined by

the reconstruction and prediction errors of the model.

2.2. Graph Convolutional Networks

To represent human poses as graphs, the inner-graph re-

lations are described using weighted adjacency matrices.

Each matrix could be static or learnable and represent any

kind of relation.

In recent years, many approaches were proposed for ap-

plying deep learning based methods to graph data. Kipf and

Welling [12] proposed the notion of Fast Approximate Con-

volutions On Graphs. Following Kipf and Welling, both

temporal and multiple adjacency extensions were proposed.

Works by Yan et al. [27] and Yu et al. [28] proposed tem-

poral extensions, with the former work proposing the use

of separable spatial and temporal graph convolutions (ST-

GCN), applied sequentially. We follow the basic ST-GCN

block design, illustrated in Figure 2.

Veličković et al. [24] proposed Graph Attention Net-

works, a GCN extension in which the weighting of neigh-

boring nodes are inferred using an attention mechanism, re-

lying on a fixed adjacency matrix only to determine neigh-

boring nodes.

Shi et al. [23] recently extended the concept of spatio-

temporal graph convolutions by using several adjacency

matrices, of which some are learned or inferred. Inferred

adjacency is determined using an embedded similarity mea-

sure, optimized during training. Adjacency matrices are

summed prior to applying the convolution.

2.3. Deep Clustering Models

Deep clustering methods aim to provide useful cluster

assignments by optimizing a deep model under a cluster

inducing objective. For example, several recent methods

jointly embed and cluster data using unsupervised represen-

tation learning methods, such as autoencoders, with cluster-

ing modules [5, 8, 25, 26].

A method proposed by Xie et al. [26], denoted Deep Em-

bedded Clustering (DEC), proposed an alternating two-step

approach. In the first step, a target distribution is calculated

using the current cluster assignments. In the next step, the

model is optimized to provide cluster assignments similar

to the target distribution. Recent extensions tackled DEC’s

susceptibility to degenerate solutions using regularization

methods and various post-processing means [8, 9].

3. Method

We design an anomaly detection algorithm that can op-

erate in a number of different scenarios. The algorithm con-

sists of a sequence of abstractions that are designed to help

each step of the algorithm work better. First, we use a hu-

man pose detector on the input data. This abstracts the prob-

lem and prevents the next steps from dealing with nuisance

parameters such as viewpoint or illumination changes.

Human actions are represented as space-time graphs and

we embed (sub-sections 3.1, 3.2) and cluster (sub-section

3.3) them in some latent space. Each action is now repre-

sented as a soft-assignment vector to a group of base ac-

tions. This abstracts the underlying type of actions (i.e.,

fine-grained or coarse-grained), leading to the final stage of

learning their distribution. The tool we use for learning the

distribution of soft-assignment vectors is the Dirichlet pro-

cess mixture (sub-section 3.4), and we fit a model to the

data. This model is then used to determine if an action is

normal or not.

3.1. Feature Extraction

We wish to capture the relations between body joints,

while at the same time provide robustness to external factors

such as appearance, viewpoint and lighting. Therefore, we

represent a person’s pose with a graph.

Each node of the graph corresponds to a keypoint, a body

joint, and each edge represents some relation between two

nodes. Many keypoint relations exist, such as physical rela-

tions defined anatomically (e.g. the left wrist and elbow are

connected) and action relations defined by movements that

tend to be highly correlated in the context of a certain action

(e.g. the left and right knees tend to move in opposite direc-

tions while running). The directions of the graph rise from

the fact that some relations are learned during the optimiza-

tion process and are not symmetric. A nice bonus with this

representation is being compact, which is very important for

efficient video analysis.

In order to extend this formulation temporally, pose key-

points extracted from a video sequence are represented as

a temporal sequence of pose graphs. The temporal pose

graph is a time series of human joint locations. Temporal

domain adjacency could be similarly defined by connecting

joints in successive frames, allowing us to perform graph

convolution operations exploiting both spatial and temporal

dimensions of our sequence of pose graphs.

We propose a deep temporal graph autoencoder based ar-

chitecture for embedding the temporal pose graphs. Build-

ing on the basic block design of ST-GCN, presented in Fig-

ure 2, we substitute the basic GCN operator with a novel

Spatial Attention Graph Convolution, presented next.

We use this building block to construct a Spatio-

Temporal Graph Convolutional Auto-Encoder, or ST-

GCAE. We use ST-GCAE to embed the spatio-temporal

graph and take the embedding to be the starting point for

our clustering branch.
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Figure 2. Spatio-Temporal Graph Convolution Block: The ba-

sic block used for constructing ST-GCAE. A spatial attention

graph convolution (Figure 3) is followed by a temporal convolu-

tion and batch normalization. A residual connection is used.

3.2. Spatial Attention Graph Convolution

We propose a new graph operator, presented in Fig-

ure 3, that uses adjacency matrices of three types: Static,

Globally-learned and Inferred (attention-based). Each ad-

jacency type is applied with its own GCN, using separate

weights. The outputs from the GCNs are stacked in the

channel dimension. A 1 × 1 convolution is applied as a

learnable reduction measure for weighting the stacked out-

puts, and provides the required output channel number.

The three adjacency matrices capture different aspects of

the model: (i) The use of body-part connectivity as a prior

over node relations, represented using the static adjacency

matrix. (ii) Dataset level keypoint relations, captured by the

global adjacency matrix, and (iii) Sample specific relations,

captured by inferred adjacency matrices. Finally, the learn-

able reduction measure weights the different outputs.

The static adjacency A is fixed and shared by all layers.

The globally-learnable matrix B is learned individually at

each layer, and applied equally to all samples during the

forward pass. The inferred adjacency matrices C are based

on an attention mechanism that uses learned weights to cal-

culate a sample specific adjacency matrix, a different one

for every sample in a batch. For example, for a batch of

size N of graphs with V nodes, the inferred adjacency size

is [N,V, V ], while other adjacencies are [V, V ] matrices.

The globally-learned adjacency is learned by initializing

a fully-connected graph, with a complete, uniform, adja-

cency matrix. The matrix is jointly optimized with the rest

of the model’s parameters during training. The computa-

tional overhead of this adjacency is small for graphs con-

taining no more than a few dozen nodes.

An inferred adjacency matrix is constructed using a

graph self-attention layer. After evaluating a few attention

models we chose a simple multiplicative attention mecha-

nism. First, we embed the input twice, using two sets of

learned weights. We then transpose one of the embedded

matrices and take the dot product between the two and nor-

malize. We then get the inferred adjacency matrix. The at-

tention mechanism chosen is modular and may be replaced

with other common alternatives. Further details are pro-

vided in the supplementary material.
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Figure 3. Spatial-Attention Graph Convolution: A zoom

into our spatial graph convolving operator, comprised of three

GCN [12] operators: One using a hard-coded physical adjacency

matrix (A), the second using a global adjacency matrix learned

during training (B), and the third using an adjacency matrix in-

ferred using an attention submodule (C). A residual connection is

used. GCN modules include batch normalization and ReLU acti-

vation, omitted for readability.

3.3. Deep Embedded Clustering

To build our dictionary of underlying actions, we take

the training set samples and jointly embed and cluster them

in some latent space. Each sample is then represented by its

assignment probability to each of the underlying clusters.

The objective is selected to provide distinct latent clusters,

over which actions reside.

We adapt the notion of Deep Embedded Clustering [26]

for clustering temporal graphs with our ST-GCAE architec-

ture. The proposed clustering model consists of three parts,

an encoder, a decoder, and a soft clustering layer.

Specifically, our ST-GCAE model maintains the graph’s

structure but uses large temporal strides with an increasing

channel number to compress an input sequence to a latent

vector. The decoder uses temporal up-sampling layers and

additional graph convolutional blocks, for gradually restor-

ing original channel count and temporal dimension.

The ST-GCAE’s embedding is the starting point for clus-

tering the data. The initial reconstruction based embed-

ding is fine-tuned during our clustering optimization stage

to reach the final clustering optimized embedding.

For each input sample xi, we denote the encoder’s latent

embedding by zi, and the soft cluster assignment calculated

using the clustering layer by yi. We denote the clustering

layer’s parameters by Θ. The probability pik for the i-th
sample to be assigned to the k-th cluster is:

pik = Pr(yi = k|zi,Θ) =
exp(θθθT

k
zi)∑

K

k′=1
exp(θθθT

k′zi)
. (1)

We adopt the clustering objective and optimization algo-

rithm proposed by [26]. The clustering objective is to min-

imize the KL divergence between the current model proba-

bilistic clustering prediction P and a target distribution Q:

Lcluster = KL(Q||P ) =
∑

i

∑

k

qiklog
qik
pik

. (2)
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The target distribution aims to strengthen current cluster

assignments by normalizing and pushing each value closer

to a value of either 0 or 1. Recurrent application of the

function transforming P to Q will eventually result in a hard

assignment vector. Each member of the target distribution

is calculated using the following equation:

qik =
pik/(

∑
i′
pi′k)

1

2

∑
k′ pik′/(

∑
i′
pi′k′)

1

2

. (3)

The clustering layer is initialized by the K-means cen-

troids calculated for the encoded training set. Optimiza-

tion is done in Expectation-Maximization (EM) like fash-

ion. During the Expectation step, the entire model is fixed

and, the target distribution Q is updated. During the Maxi-

mization stage, the model is optimized to minimize the clus-

tering loss, Lcluster.

3.4. Normality Scoring

This model supports two types of multimodal distribu-

tions. One is at the cluster assignment level; the other is

at the soft-assignment vector level. For example, an action

may be assigned to more than one cluster (cluster-level as-

signment), leading to a multimodal soft-assignment vector.

The soft-assignment vectors themselves (that capture ac-

tions) can be modeled by a multimodal distribution as well.

The Dirichlet process mixture model (DPMM) is a use-

ful measure for evaluating the distribution of proportional

data. It meets our required setup: (i) An estimation (fit-

ting) phase, during which a set of distribution parameters is

evaluated, and (ii) An inference stage, providing a score for

each embedded sample using the fitted model. A thorough

overview of the model is given by Blei and Jordan [4].

The DPMM is a common mixture extension to the uni-

modal Dirichlet distribution and uses the Dirichlet Process,

an infinite-dimensional extension of the Dirichlet distribu-

tion. This model is multimodal and able to capture each

mode as a mixture component. A fitted model has several

modes, each representing a set of proportions that corre-

spond to one normal behavior. At test time, each sample

is scored by its log probability using the fitted model. Fur-

ther explanations and discussion on the use of DPMM are

available in [4, 7].

3.5. Training

The training phase of the model consists of two stages, a

pre-training stage for the autoencoder, in which the cluster-

ing branch of the network remains unchanged, and a fine-

tuning stage in which both embedding and clustering are

optimized. In detail:

Pre-Training: the model learns to encode and recon-

struct a sequence by minimizing a reconstruction loss, de-

noted Lrec, which is an L2 loss between the original tem-

poral pose graphs and those reconstructed by ST-GCAE.

Fine-Tuning: the model optimizes a combined loss

function consisting of both the reconstruction loss and a

clustering loss. Optimization is done such that the cluster-

ing layer is optimized w.r.t. Lcluster, the decoder is opti-

mized w.r.t. Lrec and the encoder is optimized w.r.t. both.

The initialization of the clustering layer is done via K-

means. As shown by [8], while the encoder is optimized

w.r.t. to both losses, the decoder is kept and acts as a regular-

izer for maintaining the embedding quality of the encoder.

The combined loss for this stage is:

Lcombined = Lrec + λ · Lcluster. (4)

4. Experiments

We evaluated our model in two different settings, us-

ing three datasets. The first setting is the common video

anomaly detection setting, which we denote as the Fine-

grained setting. In this setting, the normal sample consists

of a single class and we seek to find fine-grained varia-

tions compared to it. For this setting, we use the Shang-

haiTech Campus dataset. The second is our new problem

setting, which we denote Coarse-grained anomaly detec-

tion, in which we seek to find abnormal actions that are dif-

ferent from those defined as normal.

4.1. ShanghaiTech Campus

Dataset The ShanghaiTech Campus dataset [16] is one

of the largest and most diverse datasets available for video

anomaly detection. Presenting mostly person-based anoma-

lies, it contains 130 abnormal events captured in 13 different

scenes with complex lighting conditions and camera angles.

Clips contain any number of people, from no people at all to

over 20 people. The dataset contains over 300 untrimmed

training and 100 untrimmed testing clips ranging from 15

seconds to over a minute long.

Experimental Setting An experiment is comprised of

two data splits, a training split containing normal examples

only and a test split containing both normal and abnormal

examples. Training is conducted solely using the training

split. A score is calculated for each frame individually, and

the combined score is the area under ROC curve for the con-

catenation of all frame scores in the test set.

We evaluate video streams of unknown length using a

sliding-window approach. We split the input pose sequence

to fixed-length, overlapping segments and score each indi-

vidually. For clips with more than a single person, each per-

son is scored individually. The maximal score over all the

people in the frame is taken. As the ShanghaiTech Campus

dataset is not annotated for pose, we use a 2D pose estima-

tion model to extract human pose from every clip.
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ShanghaiTech Campus

Luo et al. [16] 0.680

Abati et al. [1] 0.725

Liu et al. [13] 0.728

Morais et al. [18] 0.734

Ours - Pose 0.752

Ours - Patches 0.761

Table 1. Fine-Grained Anomaly Detection Results: Scores rep-

resent frame level AUC. [18] uses keypoint coordinates as input.

We also evaluate our model using patch embeddings as

input features instead of keypoint coordinates. Patches of

pixel RGB data are cropped from around each keypoint.

The patches are embedded using a CNN and patch feature

vectors are used to embed each keypoint. All other aspects

of the models are kept the same.

Given the use of a pose estimation model, the patch

embedding may be taken from one of the pose estimation

model’s hidden layers, requiring no additional computation

compared to the coordinate-based variant, other than in-

creased dimension for the input layer. Further details re-

garding this variant of our model, implementation, and the

pose estimation method used are available in the supple-

mental material.

Evaluation We follow the evaluation protocol of Luo et

al. [16] and report the Area under ROC Curve (AUC) for

our model in Table 1. ’Pose’ denotes the use of keypoint

coordinates as the initial graph node embedding. ’Patch’

denotes the use of patch embeddings vectors, as discussed

in this section. Our model outperforms previous state of the

art methods, both pose and pixel based, by a large margin.

4.2. Coarse­Grained Anomaly Detection

4.2.1 Experimental Setting

For our second setting of Coarse-Grained Anomaly Detec-

tion, a model is trained using a sample of a few action

classes considered normal. Training is done without labels,

in an unsupervised manner. The model is evaluated by its

ability to tell whether a new unseen clip belongs to any of

the actions that make up the normal sample. For this setting,

we adopt two action recognition datasets to our needs. This

gives us great flexibility and control over the type of nor-

mal/abnormal actions that we want to detect. The datasets

are NTU-RGB+D and Kinetics-250 that are provided with

clip level action labels.

In this setting, we first select 3-5 action classes and de-

note them our split. Classes are grouped into two sets of

samples, split samples, and non-split samples. All labels

are dropped. No labels are used beyond this point, except

for the final evaluation phase.

We conduct two complementary experiments. Few vs.

Many where there are few normal actions (say 3-5) in the

training set and many (tens or even hundreds) actions that

are denoted abnormal in the test set. We then repeat the

experiment but switch roles of the train and test sets and

denote this as Many vs. Few.

We repeat the above experiments for two types of splits.

The first kind, termed random splits, is made of sets of 3-5

classes selected at random from each dataset. The second,

which we call meaningful splits, is made of action splits

that are subjectively grouped following some binding logic

regarding the action’s physical or environmental properties.

A sample of meaningful and random splits is provided in

Table 3. We use 10 random and 10 meaningful splits for

evaluating each dataset.

4.2.2 Methods Evaluated

We compare our algorithm to several anomaly detection al-

gorithms. All algorithms but the last one are unsupervised:

Autoencoder reconstruction loss We use the reconstruc-

tion loss of our ST-GCAE model. In all experiments, the

ST-GCAE reached convergence prior to the deep cluster-

ing fine-tuning stage. Further optimization of the ST-GCAE

yielded no consistent improvement in results.

Autoencoder based one-class SVM We fit a one-class

SVM model using the encoded pose sequence representa-

tions (denoted zi in section 3.3). During test time, the cor-

responding representation of each sample is scored using

the fitted model.

Video anomaly detection methods We train the Future

Frame Prediction model proposed by Liu et al. [13] and the

Skeleton Trajectory model proposed by Morais et al. [18]

using our various dataset splits. Anomaly scores for each

video are obtained by averaging the per-frame scores pro-

vided by the model. As the method proposed by Morais et

al. only handles 2D pose, it was not applied to the 3D anno-

tated NTU dataset.

Classifier softmax scores The supervised baseline uses

a classifier trained to classify each of the classes from the

dataset split. The classifier architecture is based on the one

proposed by [27]. To handle the significantly smaller num-

ber of samples, we use a shallower variant. For classifier

architecture and implementation details, see suppl.

During the evaluation phase, a sample is passed through

the classifier and its softmax output values are recorded.

Anomaly score in this method is calculated by either us-

ing the softmax vector’s max value or by using the Dirichlet

normality score from section 3.4, using softmax probabili-

ties as input. We found Dirichlet based scoring to perform

better for most cases, and we report results based on it.
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NTU-RGB+D Kinetics-250

Few vs. Many Many vs. Few Few vs. Many Many vs. Few

Method Random Meaningful Random Meaningful Random Meaningful Random Meaningful

Supervised 0.86 0.83 0.82 0.90 0.77 0.71 0.63 0.82

Rec. Loss 0.50 0.54 0.53 0.54 0.45 0.46 0.51 0.61

OC-SVM 0.60 0.67 0.60 0.69 0.56 0.56 0.52 0.47

Liu et al. [13] 0.57 0.64 0.56 0.63 0.55 0.60 0.55 0.58

Morais et al. [18] - - - - 0.57 0.59 0.56 0.58

Ours 0.73 0.82 0.72 0.85 0.65 0.73 0.62 0.74

Table 2. Coarse-Grained Experiment Results: Values represent area under the ROC curve (AUC). In bold are the results of the best

performing unsupervised method. Underlined is the best method of all. For all experiments K = 20 clusters, see section 3.3 for details.

It should be noted that AUC=0.50 in case of random choice.

It is important to note that this method is fundamentally

different from our method and the other baselines. The clas-

sifier based method is a supervised method, relying on class

action labels that were not used by other methods. It is thus

not directly comparable and is here for reference only.

Kinetics

Random 1 Arm wrestling (6), Crawling baby (77)

Presenting weather forecast (254),

Surfing crowd (336)

Dancing Belly dancing (18), Capoeira (43),

Line dancing (75), Salsa (283),

Tango (348), Zumba (399)

Gym Lunge (183), Pull Ups (255), Push Up (260),

Situp (305), Squat (330)

NTU-RGB+D

Office Answer phone (28), Play with phone/tablet (29),

Typing on a keyboard (30), Read watch (33)

Fighting Punching (50), Kicking (51), Pushing (52),

Patting on back (53)

Table 3. Split Examples: A subset of the random and meaningful

splits used for evaluating Kinetics and NTU-RGB+D datasets. For

each split we list the included classes. Numbers in parentheses are

the numeric class labels. For a complete list, See suppl.

4.2.3 Datasets

NTU-RGB+D The NTU-RGB+D dataset by Shahroudy

et al. [22] consists of clips showing one or two people per-

forming one of 60 action classes. Classes include both ac-

tions of a single person and two-person interactions, cap-

tured using static cameras. It is provided with 3D joint mea-

surements that are estimated using a Kinect depth sensor.

For this dataset, we use a model configuration similar

to the one used for the ShanghaiTech experiments, with di-

mensions adapted for 3D pose.

Kinetics-250 The Kinetics dataset by Kay et al. [11] is a

collection of 400 action classes, each with over 400 clips

that are 10 seconds long. The clips were downloaded from

YouTube and may contain any number of people that are

not guaranteed to be fully visible.

Since Kinetics was not intended originally for pose es-

timation, some classes are unidentifiable by human pose

extraction methods, e.g., the hair braiding class contains

mostly clips focused on arms and heads. For such videos,

a full-body pose estimation algorithm will yield zero key-

points for most cases.

Therefore, we use a subset of Kinetics-400 that is suit-

able for evaluation using pose sequences. To do that, we

turn to the action classification results of [27]. Using their

publicly available model we pick a subset of the 250 best-

performing action classes, ranked by their top-1 training

classification accuracy. The accuracy of the class that had

the lowest score is 18%. We denote our subset Kinetics-250.

Due to the vast size of Kinetics (∼1000x larger than

ShanghaiTech), we used a single GCN for the spatial convo-

lution, using static A adjacency matrices only, and no pool-

ing. This makes this block identical to the one proposed

by [27], used for this specific setting only. We quantify the

degradation of this variant in the suppl. Kinetics is not an-

notated for pose and we use a 2D pose estimation model.

4.2.4 Evaluation

We report Area under ROC Curve (AUC) results in Table 2.

As these datasets require clip level annotations, the sliding

window approach is not required for our method, and each

temporal pose graph is evaluated in a single forward pass,

with the highest scoring person taken.

As can be seen, our algorithm outperforms all four com-

peting (unsupervised) methods, often by a large margin.

The algorithm works well in both random and meaningful

split modes, as well as in the Few vs. many and Many vs.

few settings. Observe, however, that the algorithm works
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(a) (b) (c)

Figure 4. Failure Cases, ShanghaiTech: Frames overlayed with

extracted pose. In Column (a), the large crowd is occluding the

abnormal skater and each other causing multiple misses. Column

(b) depicts a cyclist, considered abnormal. Fast movement caused

pose estimation failure, preventing detection. Column (c) depicts

a vehicle in the frame, which is not addressed by our method.

better on the meaningful splits (compared to the random

splits). We believe this is because meaningful splits share

similar patterns.

The table also reveals the impact of the quality of pose

estimation on results. That is, the NTU-RGB+D dataset is

cleaner and the human pose is recovered using the Kinect

depth sensor. As a result, the estimated poses are more ac-

curate and the results are generally better than the Kinetics-

250 dataset.

4.3. Fail Cases

Figure 4 shows some failure cases. The recovered pose

graph is superimposed on the image. As can be seen, there

is significant variability in scenes, viewpoints and poses of

the people in a single clip. Depicted in column (a), a highly

crowded scene causes numerous occlusions and people be-

ing partially detected. The large number of partially ex-

tracted people causes a large variation in model provided

scores, and misses the abnormal skater for multiple frames.

The two failures depicted in columns (b-c) show the

weakness of relying on extracted pose for representing ac-

tions in a clip. Column (b) shows a cyclist very partially

extracted by the pose estimation method and missed by the

model. Column (c) shows a non-person related event, not

handled by our model. Here, a vehicle crossing the frame.

4.4. Ablation Study

We conduct a number of experiments to evaluate the ro-

bustness of our model to noisy normal training sets, i.e.,

having some percentage of abnormal actions present in the

training set, presented next. We also conduct experiments to

evaluate the importance of key model components and the

stages of our clustering approach, presented in the suppl.

Robustness to Noise In many scenarios, it is impossible

to determine whether a dataset contains nothing but normal

samples, and some robustness to noise is required. To eval-

uate the model’s robustness to the presence of abnormal ex-

amples in the normal training sample, we introduce a vary-
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Figure 5. AUC Loss for Training with Noisy Data: Performance

of models trained for NTU-RGB+D splits when a percentage of

abnormal samples are added at random. The model is robust to

significant amount of noise. At 20%, noise surpasses the amount

of data for some of the underlying classes making up the split.

Different curves denote different dataset splits.

ing number of abnormal samples chosen at random to the

training set. These are taken from the unused abnormal por-

tion of the dataset. Results are presented in Figure 5. Our

model is robust and handles a large amount of abnormal

data during training with little performance loss.

For most anomaly detection settings, events occurring at

a 5% rate are considered very frequent. Our model loses on

average less than 10% of performance when trained with

this amount of distractions. When trained with 20% abnor-

mal noise, there is a considerable decline in performance.

In this setting, the training set usually consists of 5 classes,

so 20% distraction rate may be larger than an individual un-

derlying class.

5. Conclusion

We propose an anomaly detection algorithm that relies

on estimated human poses. The human poses are repre-

sented as temporal pose graphs and we jointly embed and

cluster them in a latent space. As a result, each action is

represented as a soft-assignment vector in latent space. We

analyze the distribution of these vectors using the Dirichlet

Process Mixture Model. The normality score provided by

the model is used to determine if the action is normal or not.

The proposed algorithm works on both fine-grained

anomaly detection, where the goal is to detect variations

of a single action (e.g., walking), as well as a new coarse-

grained anomaly detection setting, where the goal is to dis-

tinguish between normal and abnormal actions.

Extensive experiments show that we achieve state-of-

the-art results on ShanghaiTech, one of the leading (fine-

grained) anomaly detection data sets. We also outperform

existing unsupervised methods on our new coarse-grained

anomaly detection test.
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