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Abstract—Over the past few decades, a large family of algorithms—supervised or unsupervised; stemming from statistics or

geometry theory—has been designed to provide different solutions to the problem of dimensionality reduction. Despite the different

motivations of these algorithms, we present in this paper a general formulation known as graph embedding to unify them within a

common framework. In graph embedding, each algorithm can be considered as the direct graph embedding or its linear/kernel/tensor

extension of a specific intrinsic graph that describes certain desired statistical or geometric properties of a data set, with constraints

from scale normalization or a penalty graph that characterizes a statistical or geometric property that should be avoided. Furthermore,

the graph embedding framework can be used as a general platform for developing new dimensionality reduction algorithms. By utilizing

this framework as a tool, we propose a new supervised dimensionality reduction algorithm called Marginal Fisher Analysis in which the

intrinsic graph characterizes the intraclass compactness and connects each data point with its neighboring points of the same class,

while the penalty graph connects the marginal points and characterizes the interclass separability. We show that MFA effectively

overcomes the limitations of the traditional Linear Discriminant Analysis algorithm due to data distribution assumptions and available

projection directions. Real face recognition experiments show the superiority of our proposed MFA in comparison to LDA, also for

corresponding kernel and tensor extensions.

Index Terms—Dimensionality reduction, manifold learning, subspace learning, graph embedding framework.

Ç

1 INTRODUCTION

TECHNIQUES for dimensionality reduction [1] in super-
vised or unsupervised learning tasks have attracted

much attention in computer vision and pattern recognition.
Among them, the linear algorithms Principal Component
Analysis (PCA) [11], [14], [22] and Linear Discriminant
Analysis (LDA) [8], [14], [32], [33] have been the two most
popular because of their relative simplicity and effective-
ness. Another linear technique called Locality Preserving
Projections (LPP) [10] has been proposed for dimensionality
reduction that preserves local relationships within the data
set and uncovers its essential manifold structure. For
conducting nonlinear dimensionality reduction on a data
set that lies on or around a lower dimensional manifold,
ISOMAP [20], LLE [18], and Laplacian Eigenmap [3] are
three algorithms that have recently been developed. In
addition, the kernel trick [16] has also been widely applied
to extend linear dimensionality reduction algorithms to
nonlinear ones by performing linear operations on other

higher or even infinite dimensional features transformed by
a kernel mapping function. Recently, a number of algo-
rithms [25], [26], [27], [29], [30], [31] have been proposed to
conduct dimensionality reduction on objects encoded as
matrices or tensors of arbitrary order.

In this paper, we present two linked innovations to
dimensionality reduction. First, we present a general frame-
work called graph embedding, along with its linearization,
kernelization, and tensorization, that offers a unified view for
understanding and explaining many of the popular dimen-
sionality reduction algorithms such as the ones mentioned
above. Thepurpose of direct graph embedding is to represent
each vertex of a graph as a low-dimensional vector that
preserves similarities between the vertex pairs, where
similarity is measured by a graph similarity matrix that
characterizes certain statistical or geometric properties of the
data set. The vector representations of the vertices can be
obtained from the eigenvectors corresponding to the leading
eigenvalues of the graph Laplacian matrix with certain
constraints. While direct graph embedding only presents
the mappings for the graph vertices in the training set, its
extensionsprovidemappings for all samples, suchasnewtest
data, in the original feature space. The linearization of graph
embedding assumes that the vector representation of each
vertex is linearly projected from the original feature vector
representation of the graph vertex and the kernelization of
graph embedding applies the kernel trick on the linear graph
embedding algorithm to handle data with nonlinear dis-
tributions. Finally, in the tensorization of graph embedding,
the original vertex is encoded as a general tensor of arbitrary
order and the multilinear algebra approach is applied to
extend thedirect graph embedding tomultilinear cases based
on tensor representations. As we show in this paper, the
above-mentioned algorithms, such as PCA, LDA, LPP,
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ISOMAP, LLE, Laplacian Eigenmap, and the recently
proposed tensor based algorithms, can all be reformulated
within this common framework. In graph embedding, the
underlying merits and shortcomings of different dimension-
ality reduction schemes, existing or new, are revealed by
differences in the design of their intrinsic and penalty graphs
and their types of embedding.

Our second contribution is to show that the graph
embedding framework can be used as a general platform
for developing new dimensionality reduction algorithms.
We accomplish this task by designing graphs according to
specific motivations. In particular, we will focus on
formulating a variant of LDA using graph embedding.
We observe that, despite the success of the LDA algorithm
in many applications, its effectiveness is still limited since,
in theory, the number of available projection directions is
lower than the class number. Furthermore, class discrimi-
nation in LDA is based upon interclass and intraclass
scatters, which is optimal only in cases where the data of
each class is approximately Gaussian distributed, a prop-
erty that cannot always be satisfied in real-world applica-
tions. While many efforts [32], [33], including the popular
null subspace algorithm [24], have been devoted to
improving the performance of LDA, the fundamental issues
and limitations of LDA are still unsolved in theory.

Using the graph embedding framework as a platform, we
developanoveldimensionality reductionalgorithm,Margin-
al Fisher Analysis (MFA), to overcome these limitations of
LDA. In MFA, the intrinsic graph is designed to characterize
intraclass compactness, and the penalty graph is formulated
for interclass separability. In the intrinsic graph, a vertex pair
is connected if onevertex is among thek1-nearestneighbors of
the other and the elements of thepair belong to the same class.
In thepenalty graph, for each class, the k2-nearest vertex pairs
in which one element is in-class and the other is out-of-class
are connected. Based on the graph embedding framework,
we developMFA, Kernel MFA, and Tensor MFA to preserve
the characteristics of the intrinsic graph and at the same time
suppress the characteristics of the penalty graph. In compar-
ison to LDA, MFA has the following advantages: 1) The
number of available projection directions ismuch larger than
that of LDA, 2) there is no assumption on the data
distribution, thus it ismore general for discriminant analysis,
and 3) without a prior assumption on data distributions, the
interclass margin can better characterize the separability of
different classes than the interclass scatter in LDA.

The rest of thepaper is structured as follows:We introduce
in Section 2 the unified graph embedding formulation along
with its linearization, kernelization, and tensorization for
general dimensionality reduction. We then utilize the graph
embedding framework as a general platform for dimension-
ality reduction to designMarginal FisherAnalysis alongwith
its kernelization and tensorization in Section 3. We experi-
mentally evaluate the proposed schemes in a series of face
recognition experiments as well as a synthetic data experi-
ment in Section 4. Finally, we give concluding remarks and a
discussion of future work in Section 5.

2 GRAPH EMBEDDING: A GENERAL FRAMEWORK

FOR DIMENSIONALITY REDUCTION

Many approaches have been proposed for the dimension-
ality reduction task. Although the motivations of all these
algorithms vary, their objectives are similar, that is, to
derive a lower dimensional representation and facilitate the

subsequent classification task. A natural question that arises
is whether they can be reformulated within a unifying
framework and whether this framework assists the design
of new algorithms. In this section, we give positive answers
to these questions. We present the novel formulation of
graph embedding along with its linearization, kernelization,
and tensorization to provide a common perspective in
understanding the relationship between these algorithms
and to design new algorithms.

2.1 Graph Embedding

For a general classification problem, the sample set formodel
training is represented as a matrix X ¼ ½x1; x2; . . . ; xN �;
xi 2 IRm, whereN is the sample number andm is the feature
dimension. For supervised learning problems, the class label
of the sample xi is assumed to be ci 2 f1; 2; . . . ; Ncg, whereNc

is thenumber of classes.Wealso let�c andnc denote the index
set and number of the samples belonging to the cth class,
respectively.

In practice, the feature dimension m is often very high
and, thus, it is necessary and beneficial to transform the
data from the original high-dimensional space to a low-
dimensional one for alleviating the curse of dimensionality
[8]. The essential task of dimensionality reduction is to find
a mapping function F : x ! ŷ that transforms x 2 IRm into
the desired low-dimensional representation ŷ 2 IRm0

, where,
typically, m � m0:

ŷ ¼ F ðxÞ: ð1Þ
The function F may be explicit or implicit, linear, or
nonlinear in different cases. An intuitive illustration of
dimensionality reduction is displayed in Fig. 1 for different
types of data, i.e., vectors, matrices, and the general tensors,
as introduced later in this paper.

We now introduce the dimensionality reduction pro-
blem from the new point of view of graph embedding. Let
G ¼ fX;Wg be an undirected weighted graph with vertex
set X and similarity matrix W 2 IRN�N . Each element of
the real symmetric matrix W measures, for a pair of
vertices, its similarity, which may be negative. The matrix
can be formed using various similarity criteria, such as
Gaussian similarity from Euclidean distance as in [3], local
neighborhood relationship as in [18], and prior class
information in supervised learning algorithms as in [14].
The diagonal matrix D and the Laplacian matrix L of a
graph G are defined as

L ¼ D�W; Dii ¼
X

j6¼i

Wij; 8 i: ð2Þ
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Fig. 1. Illustration of dimensionality reduction for data of different forms.

Note that the third-order tensor data are the Gabor filtered images.



In this work, the graph embedding of the graph G is
defined as an algorithm to find the desired low-dimensional
vector representations relationships among the vertices of G
that best characterize the similarity relationship between the
vertex pairs inG. To simplify exposition, we explain the one-
dimensional case and represent the low-dimensional repre-
sentations of the vertices as a vector y ¼ ½y1; y2; . . . ; yN �T ,
where yi is the low-dimensional representation of vertex xi.
We define an intrinsic graph to be the graph G itself and a
penalty graphGp ¼ fX;W pg as a graphwhose verticesX are
the same as those of G, but whose edge weight matrix W p

corresponds to the similarity characteristics that are to be
suppressed in the dimension-reduced feature space. For a
dimensionality reduction problem, we require an intrinsic
graph G and, optionally, a penalty graph Gp as input. Our
graph-preserving criterion is given as follows:

y� ¼ arg min
yTBy¼d

X

i6¼j

kyi � yjk2Wij ¼ arg min
yTBy¼d

yTLy; ð3Þ

where d is a constant and B is the constraint matrix
defined to avoid a trivial solution of the objective
function. B typically is a diagonal matrix for scale
normalization and may also be the Laplacian matrix of
a penalty graph Gp. That is, B ¼ Lp ¼ Dp �W p, where Dp

is the diagonal matrix as defined in (2). We note that a
similar graph preserving criterion could alternatively be
formulated with the constraint

P

i kyik
2Bii ¼ d for scale

normalization or
P

i6¼j kyi � yjk2W p
ij ¼ d for the penalty

matrix Gp, when yi is of multiple dimensions.
The similarity preservation property from the graph

preserving criterion has a two-fold explanation. For larger
(positive) similarity between samples xi and xj, the distance
between yi and yj should be smaller to minimize the
objective function. Likewise, smaller (negative) similarity
between xi and xj should lead to larger distances between
yi and yj for minimization.

The graph preserving criterion provides the direct graph
embedding for all the vertices. To offer mappings for data
points throughout the entire feature space, we present three
approaches.

Linearization. Assuming that the low-dimensional vec-
tor representations of the vertices can be obtained from a
linear projection as y ¼ XTw, where w is the unitary
projection vector, the objective function in (3) becomes

w� ¼ argmin
wTXBXT w¼d

or wT w¼d

X

i6¼j

kwTxi � wTxjk2Wij ¼ argmin
wT XBXT w¼d

or wT w¼d

wTXLXTw:

ð4Þ
Note that, in the linearization case, scale normalization of
the low-dimensional representations may be transformed
onto the projection direction as in (4).

Commonly, the linearization extension of graph embed-
ding is computationally efficient for both projection vector
learning and final classification; however, its performance
may degrade in cases with nonlinearly distributed data and
we introduce the kernel extension of graph embedding to
handle nonlinearly distributed data as follows.

Kernelization. A technique to extend methods for linear
projections to nonlinear cases is to directly take advantage of
the kernel trick [16]. The intuition of the kernel trick is tomap
the data from the original input space to another higher
dimensionalHilbert space as � : x ! F and then perform the

linear algorithm in this new feature space. This approach is
well-suited to algorithms that only need to compute the inner
product of data pairs kðxi; xjÞ ¼ �ðxiÞ � �ðxjÞ. Assuming that
the mapping direction w ¼Pi �i�ðxiÞ and K is the kernel
Gram matrix with Kij ¼ �ðxiÞ � �ðxjÞ, we have the following
objective function from (4):

�� ¼ argmin
�T KBK�¼d
or �T K�¼d

X

i 6¼j

k�TKi � �TKjk2Wij ¼ argmin
�T KBK�¼d
or �T K�¼d

�TKLKT�:

ð5Þ

Here, Ki indicates the ith column vector of the kernel Gram

matrix K.

The solutions of (3), (4), and (5) are obtained by solving

the generalized eigenvalue decomposition problem [6],

~Lv ¼ � ~Bv; ð6Þ

where ~L ¼ L, XLXT or KLK, and ~B ¼ I; B;K;XBXT , or

KBK. For theproblem in (3), there is a trivial solutionwith all

elements being the same and corresponding to eigenvalue

zero of the Laplacian matrix L. We generally omit it as in [3].
Tensorization. The above linearization and kernelization

of graph embedding both consider a vector representation of
vertices. However, the extracted feature from an object may
contain higher-order structure. For example, an image is a
second-order tensor, i.e., amatrix, and sequential data suchas
video sequences used in event analysis is in the form of a
third-order tensor. Inuncovering theunderlyingstructure for
data analysis, it is undesirable to mask the underlying high-
order structure by transforming the inputdata into a vector as
done in most algorithms, which often leads to the curse of
dimensionality problem. Thus, a natural further extension of
the above linearization and kernelization of graph embed-
ding is to conduct dimensionality reduction with vertices
encoded as general tensors of an arbitrary order.

Before introducing the tensorization of graph embed-
ding, we review some terminology on tensor operations
[23]. The inner product of two tensors A 2 IRm1�m2�...�mn

and B 2 IRm1�m2�...�mn of the same dimensions is defined as

< A;B >¼
X

i1¼m1;...;in¼mn

i1¼1;...;in¼1

Ai1;...;inBi1;...;in ;

the norm of a tensorA is kAk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

< A;A >
p

, and the distance

between tensors A and B is kA�Bk. In the second-order

tensor case, thenormis called theFrobeniusnormandwritten

as kAkF . The k-mode product of a tensorA and amatrix U 2
IRmk�m0

k is defined as B ¼ A�k U , where Bi1;...;ik�1;j;ikþ1;...;in ¼
Pmk

I¼1 Ai1;...;ik�1;i;ikþ1;...;in�Uij; j ¼ 1; . . . ;m0
k. In this paper, bold

upper case letters represent general tensors, italic upper case

letters denote matrices, italic lower case letters represent

vectors, and plain-text lower case letters denote scalars.
We express the training sample set in tensor form as

fXi 2 IRm1�m2�...�mn ; i ¼ 1; 2; . . . ; Ng. Similar to the lineariza-
tion of graph embedding, we assume that the low dimen-
sional representation of a vertex is a tensor of a smaller size
which is projected from the original tensor with projection
matrices. A one-dimensional case can be represented as

yi ¼ Xi �1 w
1 �2 w

2 . . .�n w
n: ð7Þ
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Then, the objective function of (3) is expressed as

ðw1; . . . ; wnÞ� ¼ argmin
fðw1;...;wnÞ¼d

X

i6¼j

kXi �1 w
1 �2 w

2 . . .�n w
n

�Xj �1 w
1 �2 w

2 . . .�n w
nk2Wij:

ð8Þ

Here, if the matrix B is computed from scale normalization,

then

fðw1; . . . ; wnÞ ¼
X

n

i¼1

kXi �1 w
1 �2 w

2 . . .�n w
nk2Bii; ð9Þ

and, if B comes from the penalty graph, i.e., B ¼ Lp ¼
Dp �W p, then

fðw1; . . . ; wnÞ ¼
X

i6¼j

kXi �1 w
1 �2 w

2 . . .�n w
n �Xj �1 w

1

�2 w
2 . . .�n w

nk2W p
ij:

ð10Þ
In many cases, there is no closed-form solution for the

objective function of (8). However, for each projection
vector wo, o ¼ 1; 2; . . . ; n, if ðw1; . . . ; wo�1; woþ1; . . . ; wnÞ are
known, then the objective function is the same as that of
(4) if we set xi ¼ Xi �1 w

1 . . .�o�1 w
o�1 �oþ1 w

oþ1 . . .�n w
n.

Therefore, we can obtain the solution in a closed-form
manner by fixing the other projection vectors and the local

optimum of the objective function (8) can be obtained by
optimizing different projection vectors iteratively.

Comparedwith the linearization of graph embedding, the
feature dimension considered in each iteration of tensoriza-
tion is much smaller which effectively avoids the curse of
dimensionality issue and leads to a significant reduction in
computational cost.

2.2 General Framework for Dimensionality
Reduction

In this section, we show that the previously mentioned
dimensionality reduction algorithms can be reformulated
within the presented graph embedding framework. The
differences between these algorithms lie in the computation
of the similarity matrix of the graph and the selection of the
constraint matrix. Fig. 2 provides an illustration of the
graph embedding framework and also lists example
algorithms for different types of graph embeddings. In the
following, we give an overview of these algorithms.

PCA [11], [22] seeks projection directions with maximal
variances. In other words, it finds and removes the
projection direction with minimal variance, i.e.,

w� ¼ argmin
wTw¼1

wTCw with

C ¼ 1

N

XN

i¼1
ðxi � �xÞðxi � �xÞT ¼ 1

N
X I � 1

N
eeT

� �

XT :
ð11Þ

Here, e is an N-dimensional vector and I is an identity
matrix, C is the covariance matrix, and �x is the mean of all
samples. It is clear that PCA follows the linearization of
graph embedding with the intrinsic graph connecting all
the data pairs with equal weights and constrained by scale
normalization on the projection vector. Fig. 3a illustrates the
intrinsic graph of PCA. KPCA [16] applies the kernel trick
on PCA, hence it is a kernelization of graph embedding.
2DPCA [29] is a simplified second-order tensorization of
PCA and only optimizes one projection direction, while [30]
and [25] are full formulations of the second-order tensor-
ization of PCA. Note that [10] qualitatively notes that PCA
can be related to LPP by connecting the graph as in Fig. 3a.
However, it does not completely and formally justify that
PCA is a special case of their LPP framework since PCA
utilizes a maximization criterion, while LPP is based on
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Fig. 2. Graph embedding along with its linearization, kernelization, and

tensorization: A unified framework for dimensionality reduction. The top

row is the graph embedding type, the middle row is the corresponding

objective function, and the third row lists the sample algorithms.

Fig. 3. The adjacency graphs for PCA and LDA. (a) Constraint and intrinsic graph in PCA. (b) Penalty and intrinsic graphs in LDA.



minimization. With graph embedding, the intrinsic graph
characterizes the properties of the projections that need to
be be found and discarded, namely, the directions of small
variance in PCA.

LDA [14] searches for the directions that are most
effective for discrimination by minimizing the ratio between
the intraclass and interclass scatters:

w�¼arg min
wTSBw¼d

wTSWw¼ argmin
w

wTSWw

wTSBw
¼argmin

w

wTSWw

wTCw
;

SW ¼
X

N

i¼1

ðxi � �xciÞðxi � �xciÞT ¼ X I �
X

Nc

c¼1

1

nc
ececT

 !

XT ;

SB ¼
X

Nc

c¼1

ncð�xc � �xÞð�xc � �xÞT ¼ NC � SW :

ð12Þ
Here, �xc is the mean of the cth class and ec is an
N-dimensional vector with ecðiÞ ¼ 1 if c ¼ ci; 0 otherwise.
Note that, for the first line of (12), the second equality is
guaranteed to be satisfied when d 6¼ 0. When d ¼ 0, it will
still be satisfied given that it is valid to minimize wTSWw=d
with respect to w and the optimal solution is obtained by
minimizing wTSWw.

We can observe that LDA follows the linearization of
graphembedding inwhich the intrinsicgraphconnects all the
pairs with same class labels and the weights are in inverse
proportion to the sample size of the corresponding class. The
intrinsic graph of PCA is used as the penalty graph of LDA.
Note that, although [10] discusses the relationship between
LDA and LPP,B ¼ D in LPP,which implies that LDA cannot
be described as a special case of the LPP algorithm. In
contrast, with the graph embedding formulation in (4) and
the constraint from a penalty graph, LDA can naturally be
reformulated within the graph embedding framework.
Fig. 3b exhibits these two graphs for LDA. The Kernel
Discriminant Analysis (KDA) [9] algorithm is the kernel
extension of LDA. 2DLDA [31] is the second-order tensoriza-
tion of LDA, and the algorithm known as DATER [26] is the
tensorization of LDA in arbitrary order.

ISOMAP was proposed in [20] to find the low-dimen-
sional representations for a data set by approximately
preserving the geodesic distances of the data pairs. Let DG

be the obtained approximated geodesic distance matrix. The
function �ðDGÞ ¼ �HSH=2, where H ¼ I � 1=NeeT and
Sij ¼ D2

Gði; jÞ, converts the distance matrix into the corre-
sponding inner product matrix. The MDS [20] algorithm is
designed to obtain low-dimensional representations for all
data points. ISOMAP follows the direct graph embedding
formulation, as proven in Appendix A.

LLE [18] maps the input data to a lower dimensional
space in a manner that preserves the relationship between
the neighboring points. First, the sparse local reconstruction
coefficient matrixM is calculated such that

P

j2NkðiÞ Mij ¼ 1,
where the setNkðiÞ is the index set of the k nearest neighbors
of the sample xi and the objective function kxi �
P

j2NkðiÞ Mijxjk is minimized, and then the low dimensional
representation y is obtained by minimizing

P

i kyi �
P

j2NkðiÞ Mijyjk2. LLE follows the direct graph embedding
formulation, which we prove in Appendix B. Teh and
Roweis [21] proposed a procedure to align disparate locally
linear representations into a globally coherent coordinate
system by preserving the relationship between neighboring
points as in LLE. As demonstrated in [28], it is actually a
special Geometry-Adaptive-Kernel-based LLE, that is, it is a
kernel extension of LLE. The linearization of LLE, called
LEA, was recently discussed in [7].

Laplacian Eigenmap (LE) [3] preserves the similarities of
the neighboring points. Its objective function is similar to
that in (3) and the adjacency matrix is calculated from the
Gaussian function Wij ¼ expf�kxi � xjk2=tg if i 2 NkðjÞ or
j 2 NkðiÞ; 0 otherwise. It naturally follows the direct graph
embedding formulation. The newly proposed LPP [10]
algorithm is its direct linear approximation, i.e., its
linearization.

The above algorithms were proposed with different
motivations. However, they in fact share the common
formulation of (3), (4), (5), and (8). From the above analysis
and the proofs given in the Appendices, Table 1 lists the
similarity and constraint matrices for all of the above-
mentioned methods. Their corresponding graph embed-
ding types are also given.

2.3 Related Works and Discussions

We present a detailed discussion on the relationship
between the graph embedding framework and some well-
known related works.

2.3.1 Kernel Interpretation [13] and Out-of-Sample

Extension [4]

Ham et al. [13] proposed a kernel interpretation of KPCA,
ISOMAP, LLE, and Laplacian Eigenmap and demonstrated
that they share a common KPCA formulation with different
kernel definitions. Our framework and Ham’s work present
two intrinsically different perspectives to interpret these
algorithms in a unified framework and they are different in
many aspects. First, Ham’s work was proposed by consider-
ing the normalized similarity matrix of a graph as a kernel
matrix, whereas our work discusses the Laplacian matrix
derived from the similarity matrix of a graph. Second,
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TABLE 1
The Common Graph Embedding View for the Most Popular Dimensionality Reduction Algorithms

Note that the type D stands for direct graph embedding, while L, K, and T indicate the linearization, kernelization, and tensorization of the graph
embedding, respectively.



Ham et al.’s work analyzes only unsupervised learning
algorithms, while our proposed framework can more gen-
erally analyze both unsupervised and supervised learning
algorithms as described above. Moreover, as described later,
ourproposed framework canbeutilizedas ageneralplatform
and tool for developing new algorithms for dimensionality
reduction. Bengio et al. [4] presented amethod for computing
the low dimensional representation of out-of-sample data.
This method is also based on the kernel interpretation of
ISOMAP, LLE, and Laplacian Eigenmap, and, similar to
Ham’s work, it cannot be directly generalized for supervised
dimensionality reduction algorithms such as LDA.

2.3.2 Brand’s Work [5]

Brand [5] also mentioned the concept of graph embedding,
which defines an optimization problem as

y� ¼ arg max
yTDy¼1

yTWy;

where the matrices W and D are defined as in (2). This
optimization problem is equivalent to

y� ¼ arg min
yTDy¼1

yT ðD�WÞy:

Brand’s work is different from the graph embedding
framework proposed in this work in several aspects. First,
in [5], the constraint matrix B is fixed as the diagonal
matrix D with Dii ¼

P

j Wij as in (2); hence, it is a special
case of the general graph embedding framework. Despite
the sound mathematical justification for this definition of
the constraint matrix, it does not provide the level of
generality and flexibility as our proposed framework in
helping to understand and advance the dimensionality
reduction literature; in our proposed graph embedding
framework, the constraint matrix is flexible and can be
defined in different ways: One is for scale normalization of
which a special case is D as in [5] and another is the
Laplacian matrix from a penalty graph as described above.

Second, our proposed graph embedding framework
unifies most popular dimensionality reduction algorithms,
while the proposed graph embedding in [5] does not cover
many important algorithms in which the constraint matrixB
is computed from the penalty matrix, such as in LDA and its
variants. Moreover, [5] does not encompass the algorithms
ISOMAP and LLE since the constraint matrix B in both
methods is set as an identity matrix I, instead of D. We can
alsoprove that thematrixD in ISOMAPandLLEarenot equal
to the matrix I, which can be seen from the proofs in
Appendices A and B.

Finally, besides the basic direct graph embedding, we
comprehensively extend our work to include linearization,
kernelization, and tensorization. Brand’s work [5] can be
considered as a special case of our graph embedding
framework.

2.3.3 Laplacian Eigenmap [3] and LPP [10]

Laplacian Eigenmap aims to find a low-dimensional
representation that preserves the local properties of the
data lying on a low-dimensional manifold. Drawing on the
correspondence between the graph Laplacian, the Laplace
Beltrami operator on the manifold, and the connections to
the heat equation, it also imposes the optimization problem

y� ¼ arg min
yTDy¼1

yT ðD�WÞy:

The entries in the similarity matrix W are defined as Wij ¼
expf�kxi � xjk2=tg if one element of vertex pair ðxi; xjÞ is
among the k nearest neighbors of the other element; the
entry is set to 0 otherwise. As described in Section 2.2, LPP
is the linear approximation of Laplacian Eigenmap.

Similarly to Brand’s work [5], the Laplacian Eigenmap
and LPP algorithms are essentially different from our work.
First, similarly to [5], the works of [3] and [10] assume that
B ¼ D; hence, they work with only a single graph, i.e., the
intrinsic graph, and cannot be used to explain algorithms
such as ISOMAP, LLE, and LDA.

Second, the works of [3] and [10] use a Gaussian function
to compute the nonnegative similarity matrix, while, in our
work, the similarity matrix is flexible, allowing the elements
to even be negative.

Finally, as previously discussed, the works of [3] and [10]
are special cases of our proposed graph embedding frame-
work. Although [10] attempts to use LPP to explain PCA
and LDA, this explanation is incomplete. The constraint
matrix B is fixed to D in LPP, while as described in (12), the
constraint matrix of LDA is not diagonal and comes from a
penalty graph that connects all samples with equal weights;
hence, LDA cannot be explained by LPP. Also, as discussed
in Section 2.2, LPP, being a minimization algorithm, does
not explain why PCA maximizes the objective function.

3 MARGINAL FISHER ANALYSIS

In addition to encompassing most popular dimensionality
reduction algorithms, the proposed framework can also be
used as a general platform to design new algorithms for
dimensionality reduction.The straightforwardbyproducts of
the preceding analysis are the linear, kernel, and tensor
extensions of the ISOMAP, LLE, and Laplacian Eigenmap
algorithms. With this framework, we develop a new
dimensionality reduction algorithm to avoid certain limita-
tions of the traditional Linear Discriminant Analysis in terms
of the data distribution assumption and available projection
directions.

3.1 Marginal Fisher Analysis

The linear discriminant analysis algorithm is developed
with the assumption that the data of each class is of a
Gaussian distribution, a property that often does not exist in
real-world problems. Without this property, separability of
the different classes cannot be well characterized by
interclass scatter. This limitation of LDA may be overcome
by developing new criteria that characterizes intraclass
compactness and interclass separability. Toward this end,
we propose a novel algorithm, called Marginal Fisher
Analysis (MFA), using the graph embedding framework.
We design an intrinsic graph that characterizes the
intraclass compactness and another penalty graph which
characterizes the interclass separability, both shown in
Fig. 4. In this figure, the intrinsic graph illustrates the
intraclass point adjacency relationship, and each sample is
connected to its k1-nearest neighbors of the same class. The
penalty graph illustrates the interclass marginal point
adjacency relationship and the marginal point pairs of
different classes are connected.
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By following the graph embedding formulation,

intraclass compactness is characterized from the intrinsic

graph by the term

~Sc ¼
X

i

X

i2Nþ
k1
ðjÞ or j2Nþ

k1
ðiÞ
kwTxi � wTxjk2

¼ 2wTXðD�WÞXTw;

Wij ¼
1; if i 2 Nþ

k1
ðjÞ or j 2 Nþ

k1
ðiÞ

0; else:

�

ð13Þ

Here, Nþ
k1
ðiÞ indicates the index set of the k1 nearest

neighbors of the sample xi in the same class.
Interclass separability is characterized by a penalty

graph with the term

~Sp ¼
X

i

X

ði;jÞ2Pk2
ðciÞ or ði;jÞ2Pk2

ðcjÞ
kwTxi � wTxjk2

¼ 2wTXðDp �W pÞXTw;

W p
ij ¼

1; if ði; jÞ 2 Pk2ðciÞ or ði; jÞ 2 Pk2ðcjÞ
0; else:

�

ð14Þ

Here, Pk2ðcÞ is a set of data pairs that are the k2 nearest pairs

among the set fði; jÞ; i 2 �c; j 62 �cg.
The algorithmic procedure of Marginal Fisher Analysis

algorithm is formally stated as follows:

1. PCA projection. We first project the data set into the
PCA subspace by retaining N �Nc dimensions or a
certain energy. Let WPCA denote the transformation
matrix of PCA.

2. Constructing the intraclass compactness and inter-
class separability graphs. In the intraclass compact-
ness graph, for each sample xi, set the adjacency
matrix Wij ¼ Wji ¼ 1 if xi is among the k1-nearest
neighbors of xj in the same class. In the interclass
separability graph, for each class c, set the similarity
matrix W p

ij ¼ 1 if the pair ði; jÞ is among the
k2 shortest pairs among the set fði; jÞ; i 2 �c; j 62 �cg.

3. Marginal Fisher Criterion. From the linearization of
the graph embedding framework (4), we have the
Marginal Fisher Criterion

w� ¼ argmin
w

wTXðD�WÞXTw

wTXðDp �W pÞXTw
; ð15Þ

which is a special linearization of the graph embed-
ding framework with

B ¼ Dp �W p:

4. Output the final linear projection direction as

w ¼ WPCAw
�:

In comparison to LDA, MFA has the following advan-
tages: 1) The available projection directions are much
greater than that of LDA and the dimension size is
determined by k2, the selected number of shortest pairs of
in-class and out-of-class sample pairs. 2) There is no
assumption on the data distribution of each class and the
intraclass compactness is characterized by the sum of the
distances between each data and its k1-nearest neighbors of
the same class. Thus, it is more general for discriminant
analysis. 3) Without prior information on data distributions,
the interclass margin can better characterize the separability
of different classes than the interclass variance in LDA.

3.2 Kernel Marginal Fisher Analysis

The kernel trick is widely used to enhance the separation
ability of a linear supervised dimensionality reduction
algorithm. Marginal Fisher Analysis can be further im-
proved by using the kernel trick. Assume that the kernel
function kðxi; xjÞ ¼ �ðxiÞ � �ðxjÞ is applied and the kernel
Gram matrix is K with Kij ¼ Kðxi; xjÞ. Let the projection
direction be w ¼PN

i¼1 �i�ðxiÞ, then the optimal � can be
obtained as

�� ¼ argmin
�

�TKðD�W ÞK�

�TKðDp �W pÞK�
: ð16Þ

Note that the graphs for Kernel Marginal Fisher Analysis
(KMFA) may be different from MFA as the k1-nearest
neighbors for each sample in KMFA may be different from
that in MFA. The k1 nearest in-class neighbors of each
sample and the k2 closest out-of-class sample pairs for each
class are measured in the higher dimensional Hilbert space
mapped from the original feature space with the kernel
mapping function �ðxÞ. The distance between sample xi

and xj is obtained as

Dðxi; xjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðxi; xiÞ þ kðxj; xjÞ � 2kðxi; xjÞ
q

:

For a new data point x, its projection to the derived
optimal direction is obtained as

F ðx; ��Þ ¼ �
X

n

i¼1

��
i kðx; xiÞ;

� ¼ ð��TK��Þ�1=2:

ð17Þ

3.3 Tensor Marginal Fisher Analysis

When the objects are represented as tensors of arbitrary
order, from the tensorization of the graph embedding
framework, we have the following formulation:

ðw1; . . . ; wnÞ� ¼ argmin
wk;k¼1;...;n

P

i6¼j

kXi�1w
1�2w

2...�nw
n�Xj�1w

1�2w
2...�nw

nk2Wij

P

i6¼j

kXi�1w
1�2w

2...�nwn�Xj�1w
1�2w

2...�nwnk2Wp
ij

:

ð18Þ
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Fig. 4. The adjacency relationships of the intrinsic and penalty graphs for

the Marginal Fisher Analysis algorithm. Note that the left adjacency

graph only includes the edges for one sample in each class for greater

clarity.



As introduced in Section 2.1, the optimal projection vector
can be obtained in an iterative manner.

4 EXPERIMENTS

To evaluate the proposed Marginal Fisher Analysis (MFA)
algorithm, we systematically compare it with the LDA
algorithmon real-world and artificial data. On the real-world
data, three benchmark databases, XM2VTS [12], CMU PIE
[19], andORL [17], are used to evaluate the separability of the
lower dimensional representation derived from MFA in
comparison to LDA. In addition, we compare on the face
recognition problem the proposed Kernel MFA to Kernel
Discriminant Analysis and second-order Tensor Marginal
FisherAnalysis toDATER, respectively. Finally,we present a
synthetic data set for clearly comparing performance in
deriving the optimal discriminating direction when the data
do not follow a Gaussian distribution. This additional test
helps to support our observation that the MFA algorithm is
general in nature.

4.1 Face Recognition

In our experiments, we use the XM2VTS, CMU PIE, and
ORL databases for face recognition to evaluate our
proposed MFA, Kernel MFA (KMFA), Tensor MFA (TMFA)
algorithms. In all the experiments, all the images are aligned
by fixing the locations of the two eyes. Histogram
equalization is applied as a preprocessing step and after
applying dimensionality reduction, the nearest neighbor
classifier is used for final classification.

The XM2VTS database contains 295 people, where each
person has four frontal face images taken in four different
sessions. In this experiment, the samples in the first three
sessions are used for training and the samples in the first
session and the last session are used, respectively, as the
gallery and probe sets. The size of each image is 64� 64. The
CMU PIE (Pose, Illumination and Expression) database
contains more than 40,000 facial images of 68 people. The
images were acquired across different poses, under variable
illumination conditions, and with different facial expres-
sions. In this experiment, two subdatabases are chosen for the
evaluation of our proposed algorithms. In the first subdata-
base, referred to as PIE-1, five near frontal poses (C27, C05,

C29, C09, andC07) and illumination indexed as 10 and 13 are

used such that each person has 10 images. Another sub-

database, PIE-2, consists of the same fiveposes as inPIE-1, but

the illumination conditions indexed as 01 and 11 are

additionally used, giving each person 20 images. The ORL

database contains 400 images of 40 individuals. The images

were captured at different times andwithdifferent variations

includingexpressionand facial details. The sizeof each image

is 56� 46. For the CMU PIE database and ORL database, the

image set is partitioned into the different gallery and probe

sets where Gm=Pn indicates that m images per person are

randomly selected for training and the remaining n images

are used for testing. Some cropped sample data are displayed

in Fig. 5.

4.1.1 MFA versus Fisherface [2]

We first evaluate the performance of MFA in comparison to

the Fisherface algorithm, i.e., PCA followed by LDA. For

both algorithms, we retain N �Nc dimensions in the PCA

step. For a fair comparison with the Fisherface algorithm,

we explore the performance on all possible feature dimen-

sions in the LDA step and report the best result. Moreover,

we also explore all PCA dimensions retaining energies of 90

to 99 percent along with all possible LDA dimensions,

referred to as PCA + LDA in our results. The corresponding

PCA + MFA is also evaluated.
As in algorithms such as ISOMAP, LLE, and Laplacian

Eigenmap, how to set parameters is still an open problem.

We therefore empirically set the parameters k1 and k2 of

MFA in all face recognition experiments. Specifically, we

sampled five values of k1 between two and (mincfncg � 1)

and chose the value with the best MFA performance. We

similarly choose the best k2 between 20 and 8Nc at sampled

intervals of 20.
The experiments are conducted on both the XM2VTS and

PIE-2 subdatabase. The face recognition results, listed in

Tables 2 and 3, demonstrate that our proposed MFA

consistently performs better than Fisherface and PCA +

MFA outperforms PCA + LDA in most cases. All the results

from the LDA and MFA related algorithms are better than

that of the baseline algorithm PCA.
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Fig. 5. The sample images cropped from the face database XM2VTS, PIE-1, PIE-2, and ORL, respectively. Note that the set PIE-1 is a subset of

PIE-2. (a) XM2VTS, (b) PIE-1, (c) PIE-2, and (d) ORL.



4.1.2 Comprehensive Evaluation of Graph Embedding

Framework

In this section, we systematically evaluate Kernel Marginal
Fisher Analysis (KMFA) in comparison with the traditional
Kernel Discriminant Analysis (KDA) algorithm and the
second-order TensorMarginal FisherAnalysis (TMFA) to the
recently proposed DATER of second-order, i.e., 2DLDA. For
a comprehensive comparison, we also compare the above
algorithms with baseline algorithms PCA, Fisherface, Baye-
sian Face, and the LPP algorithm. Bayesian Face is
implemented as in [15], and LPP is implemented as in [10],
with parameter k (number of neighboring points) of LPP
selected in the same way for k1 in MFA.

In all the experiments, the Gaussian Kernel expf�kx�
yk2=�2g is used and parameter � is set as � ¼ 2ðn�10Þ=2:5�0,
n ¼ 0; 1; . . . ; 20, where �0 is the standard derivation of the

trainingdata set. The reported result is thebest one among the

21 configurations. Similar to observations made in [16], until

now, it is still unclear how to choose the optimal kernel

parameter. The PIE-1 subdatabase and the ORL database are

used for the evaluation. We report five sets of experimental

results, which are listed in Tables 4 and 5. From these results,

wemake several interesting observations:

1. The kernel trick can improve face recognition accu-

racy forbothKDAandKMFAbeyond the correspond-

ing linear algorithms. The results demonstrate that the
linearly inseparable data have the potential to be

linearly separable in the Hilbert feature space trans-

formed by the implicit kernel map of the defined

kernel function. KMFA can be seen to outperform

PCA, Fisherface, LPP, and MFA in most cases.

2. The results demonstrate that, when the training set

adequately characterizes thedatadistribution, suchas

the cases of G4/P6 and G5/P5 for the ORL database,

LPP has the potential to outperform Fisherface and

PCA as reported in [10]. However, when the data set

distribution is complex and the training data cannot

represent the data distribution well, such as for the

PIE-1 subdatabase, where three or four samples of

each person are not enough to characterize a data

distribution that includes five poses, LPP appears to

be less effective than Fisherface in these cases, though

still better than the PCA algorithm. All the results

show that LPP does not perform better than MFA.

3. The results show that the performance can be

substantially improved by exploring a certain range

of PCA dimensions before conducing LDA or MFA.

48 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 1, JANUARY 2007

TABLE 2
Recognition Accuracies of PCA, Fisherface, and MFA,

as Well as PCA + LDA and PCA + MFA on the
XM2VTS Database (64� 64)

Note that the numbers in parentheses are the corresponding feature
dimensions with the best results after dimensionality reduction. For PCA
+ LDA and PCA + MFA, the first number is the percentage of energy
retained in the PCA step.

TABLE 3
Recognition Accuracies of PCA, Fisherface, MFA, as Well as

PCA + LDA and PCA + MFA on the PIE-2 Subdatabase
(64� 64)

Note that the numbers in parentheses are the corresponding feature
dimensions with the best results after dimensionality reduction. For PCA
+ LDA and PCA + MFA, the first number is the percentage of energy
retained in the PCA step.

TABLE 4
Face Recognition Accuracies of PCA, Fisherface, LPP, MFA,
Bayesian Face, PCA + LDA, MFA + LDA, KDA and KMFA,

DATER, and TMFA on the ORL Database

Note that the numbers in parentheses are the corresponding feature
dimensions with the best results after the dimensionality reduction. For
PCA + LDA and PCA + MFA, the first number is the percentage of
energy retained in the PCA step, for KDA and KMFA, the number is the
kernel parameter sequence number and, for DATER and TMFA, the two
numbers are the reduced row and column numbers, respectively.

TABLE 5
Face Recognition Accuracies of PCA, Fisherface, LPP, MFA,
Bayesian Face, PCA + LDA, MFA + LDA, KDA and KMFA,

DATER, and TMFA on the PIE-1 Subdatabase

Note that the numbers in parentheses are the corresponding feature
dimensions with the best results after the dimensionality reduction. For
PCA + LDA and PCA + MFA, the first number is the percentage of
energy retained in the PCA step, for KDA and KMFA, the number is the
kernel parameter sequence number and, for DATER and TMFA, the two
numbers are the reduced row and column numbers, respectively.



We can also see that the PCA + LDA (PCA + MFA)

combinations are comparable with the kernel ver-

sion of the LDA (MFA) algorithm.
4. The Bayesian Face algorithm performs better than

PCA, Fisherface, and LPP in most cases and it is
comparable to MFA. However, it is consistently
worse than PCA + MFA in all cases.

5. The tensor representation brings encouraging per-
formance improvements compared to the corre-
sponding vector-based algorithms. TMFA (DATER)
is shown to be much better than MFA (Fisherface) in
all cases. Moreover, in most cases, the TMFA
(DATER) algorithm performs better than KMFA
(KDA) and PCA + MFA (PCA + LDA).

6. Another interesting observation is that, when the
training sample size is large enough to sufficiently
characterize the data distribution, such as the case
for the G5/P5 ORL database, all algorithms we
discussed in this work can achieve similar perfor-
mance. This fact shows that, for a real-world
application, it is critical to collect sufficient samples
for all subjects.

4.2 A Non-Gaussian Case

Generally, MFA can work well when the marginal sample
pairs are sufficient to characterize the separability of different
classes. In this artificial problem, a two-class classification
problem is designed. The objective of this artificial problem is
to justify that when the data do not follow a Gaussian
distribution, the original LDA algorithm may fail to find the
optimal projection direction for classification, whereas the
MFA algorithm can find a much better direction.

The data for each class are distributed as shown in Fig. 6.

Here, the circles and the diamonds represent samples of

different classes, which obviously do not exhibit a Gaussian

distribution for each class. The solid lines in Fig. 6 represent

the learned optimal projection directions from Marginal

Fisher Analysis (MFA) and Linear Discriminant Analysis

(LDA), respectively, and the dashed lines are the optimal

classification lines for MFA and LDA. The results clearly

demonstrate that LDA fails to find the optimal direction in

the case with non-Gaussian distributed data. However,

MFA successfully derives the discriminative direction

because of its consideration of marginal points.

Although this example represents an extreme case of non-
Gaussian data distributions that is not intended to represent
the only situations or even the majority of situations where
the MFA algorithm works, we utilize it to clearly justify the
intuition that, when the data do not follow a Gaussian
distribution, LDA may fail to find the optimal direction,
whereas MFA can find an a more discriminative direction.

5 CONCLUSION AND FUTURE WORK

In this paper, we aim to provide insights into the relationship
among the state-of-the-art dimensionality reduction algo-
rithms, aswell as to facilitate the design of new algorithms. A
general framework known as graph embedding, along with
its linearization, kernelization, and tensorization, has been
proposed to provide a unified perspective for the under-
standing and comparison of many popular dimensionality
reduction algorithms. Moreover, the graph embedding
framework can be used as a general platform to develop
new algorithms for dimensionality reduction. As shown in
this paper, we have proposed a novel dimensionality
reduction algorithm called Marginal Fisher Analysis by
designing two graphs that characterize the intraclass com-
pactness and the interclass separability, respectively, and by
optimizing their corresponding criteria based on the graph
embedding framework. This new algorithm is shown to
effectively overcome the data distribution assumption of the
traditional LDA algorithm. Thus, MFA is a more general
algorithm for discriminant analysis.

A byproduct of this paper is a series of linearization,
kernelization and tensorization versions of the ISOMAP
and LLE algorithms. One of our future works is to
systematically compare all possible extensions of the
algorithms mentioned in this paper. Another possible
extension of this work is the combination of the kernel
trick and tensorization. Although there have already been
some attempts to address this issue [27], there still exists no
theoretically reasonable way to map the tensor data to
another higher or even infinite tensor space while simulta-
neously providing an efficient solution. We intend to
further investigate this issue in both theory and practice.

An open problem inMFA is the selection of parameters k1
and k2, which is also an unsolved problem in algorithms such
as ISOMAP, LLE, Laplacian Eigenmap, and LPP. Additional
theoretical analysis is needed for this topic. Moreover, there
are also cases underwhichMFAmay fail. For example, when
the value of k2 is insufficiently large, a nonmarginal pair from
different classes in the original feature space may be very
close in the dimension-reduced feature space and degrade
classification accuracy.

There are also certain limitations in the graph embedding
framework. For example, this framework only considers the
L2 distance as a similarity measure, which means that it can
only take into account the second-order statistics of the data
set. How to utilize higher order statistics of the data set in
the graph embedding framework is also an interesting
direction for future study.

APPENDIX A
The ISOMAP algorithm can be reformulated as the direct
graph embedding formulation in (3) with the similarity
matrix Wij ¼ �ðDGÞij if i 6¼ j; 0 otherwise; and B ¼ I.
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Fig. 6. A synthetic data problem: the comparative optimal projections
from Marginal Fisher Analysis (k1 ¼ 5, k2 ¼ 250) and LDA. Note that the

solid line and dashed line represent the optimal projection direction and

optimal classification hyperline, respectively.



Proof. With matrix �ðDGÞ ¼ �HSH=2, we have, for any i,
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¼ 0þ 0 ¼ 0:

ut

Hence, the row sum of matrix �ðDGÞ is zero, so it can be

considered as the Laplacian matrix of a graph and if we

define a graph by setting the nondiagonal element as Wij ¼
�ðDGÞij if i 6¼ j; 0 otherwise; then we have

y� ¼ argmax
yT y¼�

yT �ðDGÞy ¼ argmax
yT y¼�

yT ðW �DÞy

¼ argmin
yT y�

yT ðD�W Þy:

Note that constant d is the corresponding eigenvalue of

�ðDGÞ, which is different from the other algorithms in

which d is mostly set to 1. Therefore, we can conclude that

the ISOMAP algorithm can be reformulated in the graph

embedding formulation in (3).

APPENDIX B
The LLE algorithm can be reformulated as the direct graph

embedding formulation in (3) with similarity matrix Wij ¼
ðM þMT �MTMÞij if i 6¼ j; 0 otherwise; and B ¼ I.

Proof. With simple algebraic computation, we have [18]

X

i

kyi �
X

j

Mijyjk2 ¼ yT ðI �MÞT ðI �MÞy:

ut

On the other hand,
P

j Mij ¼ 1; 8 i, thus

X

j

½ðI �MÞT ðI �MÞ�ij

¼
X

j

Iij �Mij �Mji þ ðMTMÞij

¼ 1�
X

j

Mij �
X

j

Mji þ
X

j

X

k

MkiMkj

¼ 1� 1�
X

j

Mji þ
X

k

Mki ¼ 0:

Therefore, the matrices ðI �MT ÞðI �MÞ can be consid-

ered as Laplacian matrices of a graph. If we set Wij ¼
ðM þMT �MTMÞij when i 6¼ j, 0 otherwise, then

y� ¼ argmin
yT y¼1

yT ðI �MT ÞðI �MÞy ¼ argmin
yT y¼1

yT ðD�WÞy:

That is, the LLE algorithm can be reformulated as the direct

graph embedding formulation as in (3).
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