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Abstract
A convenient way of dealing with image sets is to represent
them as points on Grassmannian manifolds. While several
recent studies explored the applicability of discriminant
analysis on such manifolds, the conventional formalism of
discriminant analysis suffers from not considering the local
structure of the data. We propose a discriminant analysis
approach on Grassmannian manifolds, based on a graph-
embedding framework. We show that by introducing within-
class and between-class similarity graphs to characterise
intra-class compactness and inter-class separability, the ge-
ometrical structure of data can be exploited. Experiments
on several image datasets (PIE, BANCA, MoBo, ETH-80)
show that the proposed algorithm obtains considerable im-
provements in discrimination accuracy, in comparison to
three recent methods: Grassmann Discriminant Analysis
(GDA), Kernel GDA, and the kernel version of Affine Hull
Image Set Distance. We further propose a Grassmannian
kernel, based on canonical correlation between subspaces,
which can increase discrimination accuracy when used in
combination with previous Grassmannian kernels.

1. Introduction
In contrast to object recognition approaches based on

considering one image at a time, there has been a recent
surge of interest in techniques based on explicit image set
matching [9, 16, 25, 26]. This is mainly driven by the need
for superior discrimination accuracy as well as increased
robustness to practical issues such as pose variations, mis-
alignment and varying environmental conditions (for exam-
ple, as present in realistic face recognition scenarios [21]).

While image set matching can be accomplished through
probability-density based methods [3, 8] and aggregation
methods [17], it has been shown that better performance can
be attained through modelling image sets via linear struc-
tures (ie., subspaces) [25, 29]. Subspaces appear to be ap-
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propriate models for this task since they are able to accom-
modate the effects of various image variations. For exam-
ple, an acceptable and widely used approximation for pho-
tometric invariance, under conditions of no shadowing and
Lambertian reflectance, is a 4 dimensional linear space [1].

A convenient way of dealing with subspaces is
to represent them as points on Grassmannian mani-
folds [11, 13, 19, 25]. Recently, several studies explored the
applicability of discriminant analysis (DA) on such man-
ifolds [13, 26]. Given subspaces that are represented as
points on a Grassmannian manifold M, the underlying idea
is to map them to another Grassmannian manifold M′, such
that a measure of discriminatory power on M′ is maximised
(see Fig. 1 for a conceptual example).

While the approaches presented in [13, 26] show promis-
ing results, the conventional formalism of DA suffers from
not being able to take into account the local structure of
data [10, 15]. For example, outliers and multi-modal classes
can adversely affect the discrimination and/or generalisa-
tion ability of models based on conventional DA.

Motivated by advances in DA over Euclidean vector
spaces [30, 24], we propose a novel DA on Grassmannian
manifolds, based on a graph-embedding framework [30].
We show that considerable gains in discrimination accu-
racy can be obtained by exploiting the geometrical structure
and local information on Grassmannian manifolds. This
is achieved by introducing within-class and between-class
similarity graphs to characterise intra-class compactness
and inter-class separability, respectively.

The proposed method for DA on Grassmannian mani-
folds is somewhat related to distance metric learning meth-
ods [28]. The main points of difference include the use of
graphs and manifolds in contrast to the typical use of vector
spaces in distance metric learning. Overall, the proposed
method can be considered as an extension of both graph-
embedding and distance metric learning to higher order data
structures.

We also propose a new kernel, based on canonical cor-
relation between subspaces, for measuring the similarity of
two points on a Grassmannian manifold. We empirically
show that, in combination with previous Grassmannian ker-
nels, the new kernel can result in considerable discrimina-
tion accuracy improvements.
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(a) (b) (c)
Figure 1. A conceptual illustration of the proposed approach. (a) Image-sets can be described in RD by linear subspaces. To compare two
linear subspaces, the principal angles between them can be used. For clarity just two subspaces are shown. (b) Linear subspaces in RD

can be represented as points on the Grassmannian manifold M. Having a proper geodesic distance between the points on the manifold,
it is possible to convert the image-set matching problem into a point to point classification problem. (c) By having a Grassmannian
kernel in hand, points on the Grassmannian manifold can be mapped into another Grassmannian manifold where not only certain local
properties have been retained but also the discriminatory power between classes has been increased. Unlike the conventional formalism
of discriminant analysis, the proposed method preserves the geometrical structure and local information on Grassmannian manifolds by
exploiting within-class and between-class similarity graphs.

We continue the paper as follows. Section 2 provides an
overview of Grassmannian analysis, which leads to the pro-
posed graph embedding discriminant analysis in Section 3.
We introduce the Grassmannian canonical correlation ker-
nel in Section 4. In Section 5 we briefly describe the overall
computational complexity of the proposed method. In Sec-
tion 6 we compare the performance of the proposed method
and kernel with previous approaches on several object and
face datasets. The main findings and possible future direc-
tions are summarised in Section 7.

2. Grassmannian Analysis
Manifold analysis has been extensively considered with

success by various disciplines. Amari and Nagaoka state
that many important structures in information theory and
statistics can be treated as structures in differential geom-
etry by regarding a space of probabilities as a Riemannian
manifold [2]. A manifold is a topological space that is lo-
cally similar to Euclidean space. At an intuitive level, man-
ifolds can be thought of as smooth, curved surfaces embed-
ded in higher dimensional Euclidean spaces. Riemannian
manifolds are endowed with a distance measure which al-
lows us to measure how similar two points are. In this work
we are interested in a particular class of Riemannian mani-
folds, known as Grassmannian manifolds [11].

Points on a Grassmannian manifold, GD,m, can be
viewed as the set of m-dimensional subspaces of RD and
are represented by orthonormal matrices, each with a size of
D ×m. Two points on a Grassmannian manifold are equiv-
alent if one can be mapped into the other one by a m × m

orthogonal matrix [11].
Grassmannian analysis provides a natural way to tackle

the problem of image set matching. Specifically, as GD,m

is the manifold parameterising m-dimensional real vector
subspaces of the D-dimensional vector space RD, the clas-
sification problem of matching sets comprising m images,
where each image is described by D pixels, can be trans-
formed to a point classification problem on GD,m.

During the past decade the concept of angles between
subspaces, ie., principal angles has been widely used for im-
age set matching [29]. Since Grassmannian manifolds are
curved and the shortest distance between points is geodesic,
it is not surprising to see that distances over Grassmannian
manifolds may outperform methods based on principal an-
gles. We note that principal angles can be considered as a
simple form of geodesic distance on Grassmannian mani-
folds [19].

Grassmannian kernels [13, 14, 27] allow us to treat the
Grassmannian space as if it were a Euclidean vector space.
As a result, learning algorithms in vector spaces can be ex-
tended to their counterparts on Grassmannian manifolds,
eg., kernel discriminant analysis [13, 26]. In the following
section we will demonstrate how Grassmannian kernels can
be employed to map points on a Grassmannian manifold
onto another Grassmannian manifold, where a measure of
discriminatory power between classes has been maximised.

3. Graph Embedding Discriminant Analysis
Linear Discriminant Analysis (LDA) is a supervised sta-

tistical learning method that seeks a linear projection by si-
multaneously maximising the between-class dissimilarities
and minimising the within-class dissimilarities [6]. While
LDA has been successfully applied to various computer
vision problems, eg., face recognition [5], it suffers from
not being able to naturally capture the local structure of
data [10, 24]. For example, LDA has problems handling



multi-modal classes (where each class is comprised of sev-
eral separate clusters) or when there are outliers in the data.
This stems from treating all data points in the same manner
(during the calculation of within-class and between-class
scatter matrices), no matter how they are related to their
classes.

To alleviate the above problem, a graph-embedding
framework can be used [7, 24, 30]. A graph (V ,W ) in our
context refers to a collection of vertices or nodes, V , and a
collection of edges that connect pairs of vertices. We note
that W is a symmetric matrix with elements describing the
similarity between pairs of vertices. Moreover, the diagonal
matrix D and the Laplacian matrix L of a graph are defined
as L = D −W , with the diagonal elements of D obtained
as D(i, i) =

P

j 6=i W (i, j).
Given a graph in a vector space, the purpose of graph-

embedding DA is to maximise a measure of discriminatory
power by mapping the underlying data into another vec-
tor space (usually with lower dimensionality) while pre-
serving similarities between vertex pairs. This problem
can be solved through a generalised eigen-analysis frame-
work [30]. In the following text, we formulate the discrim-
inant analysis over Grassmannian manifolds based on the
graph-embedding framework.

Given N labelled points X = {(X i, li)}Ni=1 from the un-
derlying Grassmannian manifold M, where X i ∈ RD×m

and li ∈ {1, 2, · · · , C}, with C denoting the number of
classes, the local geometrical structure of M can be mod-
elled by building a within-class similarity graph W w and
a between-class similarity graph W b. The simplest forms
of W w and W b are based on the nearest neighbour graphs
defined in Eqns. (1) and (2):

W w(i, j) =



1, if X i ∈ Nw(Xj) or Xj ∈ Nw(X i)
0, otherwise (1)

W b(i, j) =



1, if X i ∈ Nb(Xj) or Xj ∈ Nb(X i)
0, otherwise (2)

In Eqn. (1), Nw(X i) is the set of v neighbours
˘

X1
i ,X

2
i , ...,X

v
i

¯

, sharing the same label as li. Similarly
in Eqn. (2), Nb(X i) contains v neighbours having different
labels. We note that more complex similarity graphs, like
heat kernel graphs, can also be used to encode distances be-
tween points on Grassmannian manifolds [20].

Our aim is to maximise discriminatory power while si-
multaneously preserving geometry, by mapping the points
on M to a new manifold M′, ie., α : X i → Y i. A suitable
transform would place the connected points of W w as close
as possible, while moving the connected points of W b as far
as possible. Such a mapping can be described by optimising
the following two objective functions:

f1 = min
1

2

X

i,j
(Y i − Y j)

2 Ww(i, j) (3)

f2 = max
1

2

X

i,j
(Y i − Y j)

2 Wb(i, j) (4)

Eqn. (3) punishes neighbours in the same class if they are
mapped far away in M′, while Eqn. (4) punishes points of
different classes if they are mapped close together in M′.
Assume that points on the manifold are implicitly known
and only a measure of similarity between them is available
through a Grassmannian kernel1, kij = 〈X i,Xj〉.

Confining the solution to be linear, ie.,
αi =

PN
j=1 aijXj , we will have:

Y i = (〈α1,X i〉 , 〈α2,X i〉 , · · · , 〈αr,X i〉)T (5)

By defining Al=(al1, al2, · · ·, alN )T and Ki=(ki1, ki2, · · ·, kiN )T

it can be shown that 〈αl,X i〉 = AT
l K i. Hence Eqn. (3) can

be simplified to:
1
2

P

i,j (Y i − Y j)
2 Ww(i, j)

= 1
2

P

i,j

`

AT
i K i −AT

j Kj

´2
Ww(i, j)

=
P

i A
T
i K iK

T
i A

T
i Ww(i, i)

−Pi,j A
T
i KjK

T
i A

T
i Ww(i, j)

= ATKDwKTA− ATKW wKTA

(6)

where A = [A1|A2| · · · |Ar] and K = [K1|K2| · · · |KN ].
Considering that Lb = Db −W b, in a similar manner it can
be shown that Eqn. (4) can be simplified to:

1
2

P

i,j (Y i − Y j)
2 Wb(i, j)

= ATKDbKTA− ATKW bKTA
= ATKLbKTA

(7)

Following [7, 30], a constraint is imposed on Eqn. (3) and
the minimisation problem is converted to a maximisation
one. Specifically, by forcing ATKDwKTA to be a constant
such as 1, Eqn. (3) becomes the following maximisation
problem:

min
˘

ATKDwKTA− ATKW wKTA
¯

= min
˘

1− ATKW wKTA
¯

= max
˘

ATKW wKTA
¯

(8)

subject to
ATKDwKTA = 1 (9)

By converting both problems into maximisation, the overall
optimisation problem is hence:

max
˘

(ATK(Lb + βW w)KTA
¯

subject to ATKDwKTA = 1
(10)

where β is a Lagrangian multiplier that acts as a regulari-
sation parameter in the final solution. The solution of (10)
can be found through the following generalised eigenvalue
problem:

K {Lb + βWw}KTA = λKDwKTA (11)

More specifically, the desired projection matrix A, is equal
to the r largest eigenvectors of the Rayleigh quotient:

KDwKT

K {Lb + βW w}KT
(12)

1We use the notation 〈Xi,Xj〉 to indicate a similarity measure
between points Xi and Xj on a Grassmannian manifold. This is similar
in principle to an inner product in Hilbert space, as used in kernel-based
methods [22].



Fig. 2 outlines the proposed graph embedding method on
Grassmannian manifolds. The proposed algorithm uses the
points on the Grassmannian manifold implicitly (ie., via
measuring similarities through a kernel) to obtain a map-
ping, A = [A1|A2| · · · |Ar] that maximises a quotient similar
to discriminant analysis, while retaining the overall geomet-
rical structure.

Upon acquiring the mapping A, the matching problem
over Grassmannian manifolds is reduced to classification
in vector spaces. More precisely, for any query image
set Xq, a vector representation using the kernel function
and the mapping A is acquired, ie., V q = ATKq, where
Kq = (〈X1,Xq〉 , 〈X2,Xq〉 , · · · , 〈XN ,Xq〉)T . Similarly,
gallery points X i are represented by r dimensional vectors
V i = ATK i and classification methods such as Nearest-
Neighbour or Support Vector Machines [6] can be em-
ployed to label Xq.

4. Grassmannian Kernels
The similarity between two points on a Grassmannian

manifold, eg., X i and Xj ∈ RD×m, can be measured using
kernels such as the projection kernel:

k
[proj]
i,j =

‚

‚

‚X
T
i Xj

‚

‚

‚

2

F
(13)

One of the first attempts to solve the problem of image set
matching was based on the notion of principal angles. More
precisely, Yamaguchi et al. [29] used the largest canonical
correlation value (the cosine of principal angles) to mea-
sure the similarity between two image sets. In Section 4.1
we show that the largest canonical correlation between sub-
spaces is a kernel on Grassmannian manifolds. We then
show in Section 4.2 that a more complex kernel, created
through linearly combining existing Grassmannian kernels,
is also a Grassmannian kernel.

We will later demonstrate that combining the projection
kernel with the proposed canonical correlation kernel can
lead to considerable improvements in discrimination accu-
racy, in the context of the proposed graph-embedding dis-
criminant analysis.

4.1. Canonical Correlation Kernel
Given subspaces X i and Xj , we define the canonical

correlation kernel as:

k
[CC]
i,j = max

ap∈span(X i)
max

bq∈span(Xj)
aT
p bq (14)

subject to aT
p ap = bTp bp = 1 and aT

p aq = bTp bq = 0, p 6= q.
For k[CC] to be a Grassmannian kernel [14], it must be

(i) positive definite, and (ii) well defined, meaning it
is invariant to various representations of the subspaces,
ie., k(X1,X2) = k(X1R1,X2R2), ∀ R1,R2 ∈ Q(m),
where Q(m) indicates orthonormal matrices of order m.

Since the singular values of XT
1 X2 are equal to

RT
1 X

T
1 X2R2, the canonical correlation kernel is well-

defined. To show that the kernel matrix [K]ij = k
[CC]
i,j is pos-

itive definite, it suffices to show that zTKz > 0 for ∀z ∈ Rn:

zTKz =

0

B

B

B

@

z1
z2
...
zn

1

C

C

C

A

T
0

B

B

B

B

@

k
[CC]
1,1 k

[CC]
1,2 . . . k

[CC]
1,n

k
[CC]
2,1 k

[CC]
2,2 . . . k

[CC]
2,n

...
...

...
k
[CC]
n,1 k

[CC]
n,2 . . . k

[CC]
n,n

1

C

C

C

C

A

0

B

B

B

@

z1
z2
...
zn

1

C

C

C

A

= z21k
[CC]
1,1 + z22k

[CC]
2,2 + . . .+ z2nk

[CC]
n,n

+2
“

z1z2k
[CC]
1,2 + z1z3k

[CC]
1,3 + . . .+ z1znk

[CC]
1,n

”

+2
“

z2z3k
[CC]
2,3 + z2z4k

[CC]
2,4 + . . .+ z2znk

[CC]
2,n

”

+ . . .+ 2zn−1znk
[CC]
n−1,n (15)

In Eqn. (15) we have used the fact that k[CC]
i,j = k

[CC]
j,i . Since

the principal angle between X i to itself is zero, k
[CC]
i,i = 1.

Hence Eqn. (15) can be further simplified to:

zTKz =

 

n
X

i=1

zi

!2

− 2
n
X

i=1

X

j 6=i

zizj + 2
n
X

i=1

X

j 6=i

zizjk
[CC]
i,j

=

 

n
X

i=1

zi

!2

+ 2

n
X

i=1

X

j 6=i

zizj
“

k
[CC]
i,j − 1

”

(16)

Note that min
“

zizj
“

k
[CC]
i,j -1

””

= − zizj , since k
[CC]
i,j ∈ [0, 1].

Consequently:

min
“

zTKz
”

=

 

n
X

i=1

zi

!2

− 2

n
X

i=1

X

j 6=i

zizj (17)

As the right-hand side of Eqn. (17) is always positive for
zi 6= 0, K is a positive-definite matrix.

Input:
• Training set X = {(X i, li)}Ni=1 from the underlying Grass-

mannian manifold, where X i ∈ RD×m is a subspace
(obtained for example via SVD over an image-set) and
li ∈ {1, 2, · · · , C}, with C denoting the number of classes

• A kernel function kij , for measuring the similarity between two
points on the Grassmannian manifold

Processing:
1. Compute the Gram matrix [K]ij for all X i, Xj

2. Compute the within-class and between-class graph similarity
matrices, W w, W b, respectively, the between Laplacian ma-
trix Lb and the diagonal within matrix Dw

3. To obtain A, solve the maximisation problem in Eqn. (11) by
eigen decomposition; A is equal to the r largest eigenvectors
of the Rayleigh quotient KDwKT

K{Lb+βWw}KT

Output:
• The projection matrix A = [A1|A2| · · · |Ar], where each Ai

is an eigenvector found in step 3 above; the eigenvectors are
sorted in a descending manner according to their corresponding
eigenvalues

Figure 2. Pseudocode for training Grassmannian graph-
embedding discriminant analysis.



4.2. Grassmannian Kernel Combinations
In general, we can express a linear combination of two

Grassmannian kernels k[A] and k[B] as:

k[A+B] = γ[A]k[A] + γ[B]k[B] (18)

where γ[A], γ[B] ≥ 0. From the theory of Reproducing Ker-
nel Hilbert Space (RKHS) we know that the superposition
of two kernels is a new kernel [22]. As such and in order
to extent the superposition rule over Grassmannian mani-
fold, it suffices to show that the superposition kernel is well-
defined. Since,

k[A] (R1X1,R2X2) + k[B] (R1X1,R2X2)

= k[A] (X1,X2) + k[B] (X1,X2) (19)

k[A]+k[B] is well-defined and Eqn. (18) depicts a valid Grass-
mannian kernel.

5. Computational Complexity
The solution to (12) is found using Singular Value De-

composition (SVD), which has the computational complex-
ity of O(s3) for a square matrix of size s × s. Solving
the generalised eigenvector problem hence demands for
O(N3) operations. Computing k[CC] and k[proj] demands for
O(N(N−1)

2
(m2D+m3)) and O(N(N−1)

2
m2D)), respectively.

Considering that m << D and N << D, the computational
complexity of the proposed algorithm is hence O(m2DN2).

6. Experiments
The proposed approach2 was compared and contrasted to

previous state-of-the-art methods on two image set recogni-
tion tasks: face and object recognition. We will first briefly
overview the datasets used in the experiments (Section 6.1),
followed by a description and discussion of the experiments
(Section 6.2).

6.1. Setup of Image Datasets

For the face recognition task we used three datasets:
CMU-PIE [23], BANCA [4] and CMU-MoBo [12]. For the
object recognition task we used the ETH-80 dataset [18].
For all datasets we randomly split the images into train-
ing and test sets. 10 random splits were obtained. Follow-
ing [9, 13, 27, 29], we used normalised pixel intensities as
image features and generated subspaces using SVD.

CMU-PIE contains images of 68 people captured under
13 poses, 43 illuminations conditions, and with 4 expres-
sions. In our experiments, near frontal poses (c05, c07, c09,
c27, c29) were used. See Fig. 3 for examples of the varia-
tions. We generated 180 image sets as training data and 300

2Matlab/Octave source code for the proposed method is available at
http:// itee.uq.edu.au /∼uqmhara1

(a)

(b)

(c)

Figure 3. Examples of appearance variations in (a) CMU-PIE,
(b) BANCA, (c) CMU-MoBo. The variations include pose, il-
lumination, expression and image quality.

image sets as test data. Images were cropped to the internal
part of the face (ie., closely cropped, no background) and
downsampled to 32× 32 pixels.

BANCA contains image sets for 52 people (26 male and
26 female). For each person video recordings were made
under various conditions (illumination, pose and camera
variations), while the person was talking. In each condition
two recordings were made per person and 5 images were
extracted from each video. We generated 150 image sets
as training data and 150 sets as test data. All faces were
closely cropped and resized to 64× 64.

CMU-MoBo consists of motion sequences of 25 people
walking on a treadmill. For each person video recordings
were made for 4 walking styles (slow walk, fast walk, in-
clined walk and slow walk while holding a ball), viewed
from a set of fixed cameras. We generated 72 image sets as
training data and 216 sets as test data. Images were cropped
and normalised to 32× 32.

ETH-80 contains images of eight object categories: ap-
ples, cows, cups, dogs, horses, pears, tomatoes, and cars.
Each category includes ten object subcategories (eg., var-
ious dogs) in 41 orientations, resulting in 410 images per
category. Examples are shown in Fig. 4. We resized the im-
ages to 64 × 64. Unlike the face images mentioned above,
the background was kept. We generated 24 image sets as
gallery data and 56 sets as probe data.

6.2. Performance Comparison

The proposed algorithm was compared against: standard
geodesic distance on Grassmannian manifolds, Grassmann
Discriminant Analysis (GDA) [13], Kernel Grassmannian
Discriminant Analysis (KGDA) [26], and the kernel version



(a)

(b)

Figure 4. (a) examples from the eight object categories in the ETH-80 dataset; (b) examples of various classes within an object category.

of Affine Hull Image-Set Distance (Kernel AHISD) [9].
For GDA and KGDA the projection kernel (k[proj]) was
used. For the first kernel in KGDA (the kernel applied in
vector space) we considered Gaussian, polynomial and lin-
ear kernels; the best obtained results are reported.

We acknowledge that the graph parameter v and size
of projection matrix r must be duly adjusted in the pro-
posed approach. The graph parameter v is dependent on
the number of samples per class and distribution of points
over Grassmannian manifold. Our empirical studies sug-
gest that v ∈ [1, 10] provides satisfactory results; however,
the optimal value can be determined by searching over a
range of possible values. In the following experiments we
have used the maximum number of eigenvectors r = N − 1

for deriving the projection matrix.
The average recognition accuracy and standard deviation

across the 10 random splits of each dataset are reported. For
each split of the dataset, two evaluations were done, each
using a different number of images per set. For example,
we used sets with 6 and 9 images for the BANCA dataset.
For the sake of simplicity, the classification scheme in all
experiments was nearest-neighbour [6].

Table 1 shows the results for geodesic distance, GDA,
KGDA, as well as the proposed algorithm in conjunction
with k[proj]. The results indicate that the proposed algorithm
obtains the highest recognition accuracy, in all bar one case
(CMU-MoBo with 6 images per set). We note that the pro-
posed algorithm outperforms geodesic distance and GDA
by a significant margin for all the tests3. Moreover, the pro-
posed method also considerably outperforms KGDA on all
datasets except CMU-MoBo.

The superior performance of geodesic distance over
GDA and KGDA is an implication of a relatively difficult
recognition task, and can be intuitively explained by the
global behaviour of DA. Specifically, DA might underper-
form if the underlying data cannot be modelled effectively
by a Gaussian distribution.

3We also considered the less demanding ETH-80 experiment setup used
in [13] and obtained 100% accuracy with the projection kernel.

Table 2 shows the results for Kernel AHISD and the pro-
posed algorithm in combination with three kernels: (i) pro-
jection kernel k[proj], (ii) canonical correlation kernel k[CC],
(iii) combined kernel k[proj+CC].

For k[proj+CC], based on Eqn. (18), the mixing coefficient
γ[proj] was fixed at 1, while the optimal value of γ[CC] was
found by scanning through a range of values. The results
do not seem to vary much as long as γ[CC] is large enough
(approximately 5 to 10). The range of values for k[proj] was
found to be typically around 0.5 to 3, while k[CC] has a max-
imum value of 1 (see Section 4.1). As such, γ[CC] acts as
a scaling factor, making the contribution of γ[proj] and γ[CC]

to k[proj+CC] roughly comparable. Fig. 5 shows the perfor-
mance for various values of γ[CC].

The proposed algorithm, in conjunction with k[proj+CC],
considerably outperforms Kernel AHISD on all datasets ex-
cept CMU-MoBo, where the two approaches obtain quite
similar results. The results for the proposed algorithm also
show that neither k[proj] or k[CC] dominates. In some cases
k[proj] is better than k[CC], while in others the reverse is true,
suggesting that the two kernels are more suited to differ-
ent data distributions. By combining the two kernels, ie.,
k[proj+CC], noticeably better results than either of the two ker-
nels are obtained. This further suggests that k[proj] and k[CC]

are describing different aspects, which in turn suggests that
the proposed canonical correlation kernel can be useful.

The results in Tables 1 and 2 also indicate that using
more images helps in most cases. However, for the pro-
posed method in conjunction with k[CC], the opposite appears
to occur. Though it cannot be stated conclusively that either
kernel is more suitable for larger sets4, a possible explana-
tion could be the violation of the linearity assumption as
used in modelling of subspaces. Similar behaviour can be
observed for Kernel AHISD, where a similar modelling as-
sumption is used.

4To explore this further, we performed an extra experiment on CMU-
MoBo using 24 images per set. In this case k[CC] outperformed k[proj] by
more than 10 percentage points.
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Figure 5. Performance on CMU-PIE for various values of γ[CC], used for combining k[proj] and k[CC].

Table 1. Average correct recognition rate for image set matching using geodesic distance, GDA [13], KGDA [26], as well as the proposed
algorithm in conjunction with the projection kernel. The standard deviation is shown in brackets. The suffix in the dataset name indicates
the number of images per set (eg. the 6 in BANCA-6).

Dataset Geodesic GDA [13] KGDA [26] Proposed algorithm
with k[proj], eqn. (13)

CMU-PIE-6 33.70 (4.9) 24.07 (9.8) 20.23 (4.8) 42.67 (5.4)
CMU-PIE-15 57.80 (3.5) 53.33 (4.4) 50.00 (3.7) 65.27 (4.4)
BANCA-6 48.00 (4.4) 46.60 (2.9) 39.80 (4.5) 53.27 (4.5)
BANCA-9 60.13 (1.8) 56.80 (3.2) 50.07 (3.6) 64.53 (2.3)
CMU-MoBo-6 55.52 (2.9) 58.53 (2.8) 64.68 (2.3) 61.24 (2.5)
CMU-MoBo-9 61.00 (1.6) 63.65 (2.5) 64.36 (1.4) 64.90 (1.7)
ETH-80-6 85.71 (3.7) 83.21 (5.7) 67.50 (5.9) 90.89 (2.8)
ETH-80-15 85.17 (3.4) 84.11 (4.9) 63.21 (5.7) 91.25 (2.1)

Table 2. Average correct recognition rate for image set matching using Kernel AHISD [9], as well as the proposed algorithm in conjunction
with various kernels. The standard deviation is shown in brackets.

Dataset Kernel Proposed algorithm Proposed algorithm Proposed algorithm
AHISD [9] with k[proj], eqn. (13) with k[CC], eqn. (14) with k[proj+CC], eqn. (18)

CMU-PIE-6 46.60 (6.6) 42.67 (5.4) 52.93 (5.6) 68.47 (6.8)
CMU-PIE-15 44.66 (4.2) 65.27 (4.4) 53.67 (1.3) 75.80 (1.6)
BANCA-6 19.87 (1.2) 53.27 (4.5) 56.33 (1.9) 63.00 (2.5)
BANCA-9 19.33 (0.6) 64.53 (2.3) 55.00 (1.4) 68.73 (1.6)
CMU-MoBo-6 87.72 (1.5) 61.24 (2.5) 78.81 (2.9) 86.27 (1.3)
CMU-MoBo-9 89.70 (1.1) 64.90 (1.7) 76.62 (2.5) 89.92 (1.8)
ETH-80-6 69.11 (5.1) 90.89 (2.8) 75.71 (7.6) 91.96 (3.1)
ETH-80-15 68.21 (7.9) 91.25 (2.1) 73.93 (4.5) 92.32 (2.4)

7. Main Findings and Future Directions

In this paper we have proposed a novel image set match-
ing approach, based on Grassmannian manifolds. Specifi-
cally, our approach employs a graph-embedding framework
and derives a mapping on Grassmannian manifolds to si-
multaneously maximise a measure of discriminatory power
and preserve the geometrical structure of the manifold. We
have also introduced a new Grassmannian kernel, based on
canonical correlation between subspaces.

When compared to several recent methods (GDA,
KGDA, Kernel AHISD), experiments on several image
datasets suggest that the proposed approach can obtain con-
siderable improvements in discrimination accuracy. The
experiments also show that the new kernel, when used in
combination with the projection kernel, leads to further in-
creases in accuracy.

When the new and projection kernels were separately
evaluated for comparison purposes, there was no clear cut
winner — on some datasets the projection kernel was bet-



ter, while on others the proposed kernel was better. As such,
a more comprehensive study may provide more insights as
to why the two kernels are more suited to particular datasets.

Future avenues of research include exploring subset gen-
eration prior to Grassmannian analysis. More precisely, by
clustering a set of images into several subsets and consid-
ering each subset as a point on a Grassmannian manifold,
richer descriptions on Grassmannian manifolds might be at-
tained.
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