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ABSTRACT

In recent years, recommender systems play a pivotal role in helping
users identify the most suitable items that satisfy personal pref-
erences. As user-item interactions can be naturally modelled as
graph-structured data, variants of graph convolutional networks
(GCNs) have become a well-established building block in the latest
recommenders. Due to the wide utilization of sensitive user pro�le
data, existing recommendation paradigms are likely to expose users
to the threat of privacy breach, and GCN-based recommenders are
no exception. Apart from the leakage of raw user data, the fragility
of current recommenders under inference attacks o�ers malicious
attackers a backdoor to estimate users’ private attributes via their
behavioral footprints and the recommendation results. However,
little attention has been paid to developing recommender systems
that can defend such attribute inference attacks, and existing works
achieve attack resistance by either sacri�cing considerable recom-
mendation accuracy or only covering speci�c attack models or
protected information. In our paper, we propose GERAI, a novel
di�erentially private graph convolutional network to address such
limitations. Speci�cally, in GERAI, we bind the information pertur-
bation mechanism in di�erential privacy with the recommendation
capability of graph convolutional networks. Furthermore, based
on local di�erential privacy and functional mechanism, we innova-
tively devise a dual-stage encryption paradigm to simultaneously
enforce privacy guarantee on users’ sensitive features and themodel
optimization process. Extensive experiments show the superiority
of GERAI in terms of its resistance to attribute inference attacks
and recommendation e�ectiveness.
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1 INTRODUCTION

With the explosive growth of e-commerce, consumers are shopping
with online platforms more frequently [10, 20, 54]. As an e�ective
solution to information overload, recommender systems automati-
cally discover the most relevant items or services for each user and
thus improve both the user experience and business revenue. For
this reason, recommender systems have become an indispensable
part in our contemporary lives.

Latent factor models like matrix factorization [35] are typical col-
laborative �ltering-based recommendations, which infer user-item
interactions via learned latent user/item representations. Because
user-item interactions can be conveniently formulated as graph-
structured data, graph embedding-based recommenders [42, 52, 59]
are highly e�ective in uncovering users’ subtle preferences toward
items. As deep neural networks demonstrate superior capability
of representation learning in various machine learning tasks, deep
recommendation models, especially those derived from graph con-
volutional networks (GCNs) [49, 51, 55, 56] have recently become
one of the most prominent techniques in this �eld.

To enhance the recommendation performance, especially for
fresh (i.e., cold-start) customers, it is a common practice to incorpo-
rate side information (a.k.a. features or contexts) [2, 47, 58] about
users. During user registration, some service providers even start
persuading users to complete questionnaires about personal de-
mographics to facilitate user pro�ling. However, the utilization
of user data containing personal information often sparks serious
privacy concerns. A 2018 survey [26] showed that more than 80%

US Internet users were concerned about how their personal data is
being used on Facebook; and among Facebook users sharing less
content on social media, 47% reported that privacy issue was the
main concern. Consequently, with the growing public awareness
on privacy, a dilemma is presented to e-commerce platforms: either
they proceed with such sensitive data acquisition process despite
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the high risk on privacy breach, or they allow users not to disclose
their sensitive attributes but provide compromised recommendation
performance as a result. In that sense, a sound privacy guarantee
on the user side is highly desirable, which avoids uploading the
unencrypted raw user features to a recommender system. Further-
more, according to the example that Apple is now telling users their
personal data is protected before being shared for analytics, it also
helps increase users’ willingness to share their sensitive data.

Meanwhile, a more critical privacy issue comes from the fact
that users’ sensitive attributes can still be disclosed purely based on
how they behave. Regardless of the availability of features, recom-
menders learn explicit or latent pro�les that re�ect users’ prefer-
ences based on her/his behavioral footprints (e.g., previous ratings
and reviews), and produce personalized recommendations with
the constructed pro�les [40]. However, many early studies have
shown that even a user’s personal information can be accurately
inferred via her/his interaction history [5, 29, 50]. Such personal
information includes age, gender, political orientation, health, �-
nancial status etc. and are highly con�dential. Furthermore, the
inferred attributes can be utilized to link users across multiple
sites and break anonymity [16, 44]. For example, [36] successfully
deanonymizes Net�ix users using the public IMDb user pro�les.
Due to the open-access nature of many platforms (e.g., Yelp and
Amazon), users’ behavioral trajectories can be easily captured by a
malicious third-party, leading to catastrophic leakage of inferred
user attributes. This is known as the attribute inference attack [17],
where the malicious attackers can be cyber criminals, data brokers,
advertisers, etc. By proving that even a person’s racial informa-
tion and sexual orientation can be precisely predicted from merely
the “like” behaviors on Facebook, Kosinski et al. [29] demonstrated
that users’ preference signals are highly vulnerable to attribute
inference attacks. This is especially alarming for many GCN-based
recommenders, since user representations are usually formed by
aggregating information from her/his interacted items. Moreover,
the personalized recommendation results can also be utilized by
attackers since they are strong re�ections on users’ preferences and
are increasingly accessible via services like friend activity tracing
(e.g., Spotify) and group recommendation [54]. Hence, this moti-
vates us to design a secure recommender system that stays robust
against attribute inference attacks.

In GCN-based recommenders, graphs are constructed by link-
ing user and item nodes via their interactions. However, though
existing GCNs are advantageous in binding a node’s own features
and its high-order connectivity with other nodes into an expressive
representation, they exhibit very little consideration on user pri-
vacy. In fact, the �eld of privacy-preserving recommender systems
that are resistant to attribute inference attacks is far from its ma-
turity. [6, 14, 37, 39] have applied cryptography algorithms to the
recommendation models, but the computational cost of encryption
is too high to support real-world deployment. Recently, the notion
of di�erential privacy (DP) has become a well-established approach
for protecting the con�dentiality of personal data. Essentially, DP
works by adding noise to each data instance (i.e., perturbation),
thus masking the original information in the data. In the context of
both recommendation and graph embedding, there has also been
attempts to adopt DP to perturb the output of matrix factorization
algorithms [4, 33, 53]. Unfortunately, these approaches are designed

to only prevent membership attacks which infer users’ real ratings
in the dataset, and are unable to provide a higher level of protection
on users’ sensitive information against inference attacks. A recent
work [3] systematically investigates the problem of developing and
evaluating recommender systems under the attribute inference at-
tack setting. Their proposed model RAP [3] utilizes an adversarial
learning paradigm where a personalized recommendation model
and an attribute inference attack model are trained against each
other, hence the attackers are more likely to fail when inferring user
attributes from interaction records. However, it su�ers from twoma-
jor limitations. Firstly, as the design of RAP requires a pre-speci�ed
and �xed attribute inference model, its resistance to any arbitrary
attacker is unguaranteed given the unpredictability of the inference
model that an attacker may choose. Secondly, though RAP assumes
the existence of users’ sensitive attributes, it only treats them as
ground-truth labels for training the inference model, and does not
incorporate such important side information for recommendation.
This design not only fails to ease users’ privacy concerns on submit-
ting their original attributes, but also greatly hinders the model’s
ability to securely utilize user features to achieve more accurate
recommendation results.

To this end, we address a largely overlooked defect of exist-
ing GCN-based recommenders, i.e., protecting users’ private at-
tributes from attribute inference attacks. Meanwhile, unlike exist-
ing inference-resistant recommenders, we would like the model
to take advantage of user information for accurate recommenda-
tion without exerting privacy breach. In this paper, we subsume
the GCN-based recommender under the di�erential privacy (DP)
constraint, and propose a novel privacy-preserving recommender
GERAI, namely Graph Embedding for Recommendation against
Attribute Inference Attacks. In GERAI, we build its recommenda-
tion module upon the state-of-the-art inductive GCNs [11, 21, 28]
to jointly exploit the user-item interactions and the rich side infor-
mation of users. To achieve optimal privacy strength, we propose
a novel dual-stage perturbation paradigm with DP. Firstly, at the
input stage, GERAI performs perturbation on the raw user features.
On one hand, this o�ers users a privacy guarantee while sharing
their sensitive data. On the other hand, the perturbed user features
will make the generated recommendations less dependent on a
user’s true attributes, making it harder to infer those attributes via
recommendation results. Speci�cally, we introduce local di�erential
privacy (LDP) for feature perturbation, where each individual’s orig-
inal feature vector is transformed into a noisy version before being
processed by the recommendation module. We further demonstrate
that the perturbed input data satis�es the LDP constraint while
retaining adequate utility for the recommender to learn the sub-
tle user preferences. Secondly, we enforce DP on the optimization
stage of GERAI so that the recommendation results are less likely to
reveal a user’s attributes and preferences [3, 4, 33] in the inference
attack. To achieve this, we innovatively resort to the functional
mechanism [57] that allows to enforce DP by perturbing the loss
function in the learning process. Di�erent from methods that ap-
plies perturbation on recommendation results [4], by perturbing
the loss function, GERAI defends the inference attack without set-
ting obstacles for learning meaningful associations between user
pro�les and recommended items.

Overall, we summarize our contributions in the following:
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• We address the increasing privacy concerns in the recom-
mendation context, and propose a novel solution GERAI,
namely di�erentially private graph convolutional network
to protect users’ sensitive data against attribute inference
attacks and provide high-quality recommendations at the
same time.
• Our proposed GERAI innovatively incorporates di�erential
privacy with a dual-stage perturbation strategy for both the
input features and the optimization process. As such, GERAI
assures user privacy and o�ers better recommendation ef-
fectiveness than existing privacy-preserving recommenders.
• We conduct extensive experiments to evaluate the perfor-
mance of GERAI on real-world data. Comparisons with state-
of-the-art baselines show that GERAI provides a better pri-
vacy guarantee with less compromise on the recommenda-
tion accuracy.

2 PRELIMINARIES

In this section, we �rst revisit the de�nitions of di�erential privacy
and then formally de�ne our problem. Note that in the description
below, all vectors and matrices are respectively denoted wiht bold
lowercase and bold uppercase letters, and all sets are written in
calligraphic uppercase letters.

Di�erential Privacy.Di�erential privacy (DP) is a strong math-
ematical guarantee of privacy in the context of machine learning
tasks. DP was �rst introduced by [13] and it aims to preclude ad-
versarial inference on any raw input data from a model’s output.
Given a privacy coe�cient ϵ > 0, the ϵ−di�erential privacy (ϵ−DP)
is de�ned as follows:

De�nition 2.1. (ϵ−Di�erential Privacy) For a randomized function
(e.g., a perturbation algorithm or machine learning model) f (·) that
takes a dataset as its input, it satis�es ϵ−DP if:

Pr [f (D) ∈ O] ≤ exp(ϵ)Pr [f (D ′) ∈ O], (1)

where Pr [·] represents probability, D and D
′
are any two datasets

di�ering on only one data instance, and O denotes all subsets of
possible output values that f (·) produces. If O is continuous, then
the probability term can be replaced by a probability density func-
tion. Eq.(1) implies that the probability of generating the model
output with D is at most exp(ϵ) times smaller than with D ′. That
is, f (·) should not overly depend on any individual data instance,
providing each instance roughly the same privacy. As a common
practice for privacy protection, each individual user’s personal data
can be perturbed by adding controlled noise before it is fed into
f (·). In this case, the data owned by every user is regarded as a
singleton dataset, and we require the function f (·) to provide di�er-
ential privacy when such a singleton database is given as the input.
Speci�cally, this is termed as ϵ−local di�erential privacy (ϵ−LDP):

De�nition 2.1. (ϵ−Local Di�erential Privacy) A randomized func-
tion f (·) satis�es ϵ−LDP if and only if for any two users’ data t and
t ′, we have:

Pr [f (t) = t∗] ≤ exp(ϵ) · Pr [f (t ′) = t∗] (2)

where t∗ denotes the output of f (·). The lower ϵ provides stronger
privacy but may result in lower accuracy of a trained machine
learning model as each user’s data is heavily perturbed. Hence, ϵ is
also called the privacy budget that controls the trade-o� between

privacy and utility in DP. With the security guarantee from DP, an
external attacker model cannot infer which user’s data is used to
produce the output t∗ (e.g., the recommendation results) with high
con�dence.

Privacy-Preserving Recommender System. Let G = (U ∪
V, E) denote aweighted bipartite graph.U = {u1,u2, ...,u |U |} and
V = {v1,v2, ...,v |V |} are the sets of users and items. A weighted
edge (u,v, ruv ) ∈ E means that useru has rated itemv , with weight
ruv as 1. We use N(u) to denote the set of items rated by u and
N(v) to denote all users who have rated item v . Following [3],
for each user u we construct a dense input vector xu ∈ Rd0 with
each element representing either a sensitive attribute s ∈ S or a
pre-de�ned statistical feature s ∈ S′ of u. All categorical features
are represented by one-hot encodings in xu , while all numerical
features are further normalized into [−1, 1]. We de�ne the target of
a privacy-preserving recommender system below.

Problem1.Given theweighted graphG and user feature vectors
{xu |u ∈ U}, we aim to learn a privacy-preserving recommender
system that can recommend K products of interest to each user,
while any malicious attacker model cannot accurately infer users’
sensitive attributes (i.e., gender, occupation and age in our case)
from the users’ interaction data including both the users’ historical
ratings and current recommendation results. It is worth noting that
our goal is to protect users against a malicious attacker, but not
against the recommender system that is trusted.

3 GCN-BASED RECOMMENDATION MODULE

As we aim to address the privacy concerns in GCN-based recom-
mendation models, in this work we build our base recommender
upon GCNs [21, 28]. A recommender, at its core, learns vector rep-
resentations (a.k.a. embeddings) of both users and items based on
their historical interactions, then a user’s interest on each item
can be easily inferred by measuring the user-item similarity in
the latent vector space. When performing recommendation on the
graph-structured data, owing to the ability to preserve a graphs
topological structure, GCNs can produce highly expressive user
and item embeddings for recommendation. Given a weighted graph
G = (U ∪V, E), users and items are two types of nodes connected
by observed links. Then, for each node, GCN computes its embed-
ding by iteratively aggregating information from its local neighbors,
where all node embeddings are optimized for predicting the a�nity
of each user-item pair for personalized ranking.

We �rst introduce our recommendation module from the user
side. For each user u, the information I(u) passed into u comes
from the user’s �rst-order neighbors, i.e., items rated by u:

I(u) = {mv |v ∈ N(u)} ∪ {mu }

= {MLP(zv )|v ∈ N(u)} ∪ {MLP(zu )},
(3)

whereMLP(·) is a multi-layer perceptron,mu /mv are the messages
from user/item nodes, and zu , zv ∈ R

d respectively denote the
learnable latent embeddings of user u and item v . Note that zu , zv
can be initialized as follows:

zu = EUxu , zv = EVxv , (4)

where xu ∈ Rd0 is user u’s raw feature vector and EU ∈ R
d×d0

is the user embedding matrix. xv ∈ Rd1 and EV ∈ R
d×d1 are

respectively the item feature vector and embedding matrix. To
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Figure 1: The overview of GERAI

ensure our model’s generalizability, we formulate xv as an item’s
one-hot encoding as we do not assume the availability of item
features. Then, an aggregation operation is performed to merge all
information in I(u), thus forming an updated user embedding z∗u :

z∗u = ReLU (W · Aддreдate(I(u)) + b), (5)

where Aддreдate(·) is the aggregation function and ReLU (·) de-
notes the recti�ed linear unit for nonlinearity, and W and b are
learnable weight matrix and bias vector. Motivated by the e�ective-
ness of attention mechanism [45] in graph representation learning,
we quantify the varied contributions of each element in I(u) to
embedding z∗u by assigning each neighbour node a di�erent weight.
Formally, we de�ne Aддreдate(I(u)) as:

Aддreдate(I(u)) =
∑

k ∈N(u)∪{u }

αukmk , (6)

where αuk denotes the attention weight implying the importance of
messagemk ∈ I(u) to user node u during aggregation. Speci�cally,
to compute αuk , we �rst calculate an attention score auk via the
following attention network:

auk = w⊤2 · σ (W1(mk ⊕ zu ) + b1) + b2, (7)

where ⊕ represents the concatenation of two vectors. Afterwards,
each �nal attention weight αuk is computed by normalizing all the
attentive scores using softmax:

αuk =
exp(auk )∑

k ′∈N(u)∪{u } exp(auk ′)
. (8)

Likewise, on the item side, we repeat themessage passing scheme
by aggregating the information from an item’s interacted users in

N(v) to learn the item embedding z∗v :

z∗v = ReLU (W · Aддreдate(I(v)) + b), (9)

where I(v) = {MLP(zu )|u ∈ N(v)} ∪ {MLP(zv )}. Note that the
same network structure and trainable parameters are shared in the
computation of both user and item embeddings.

To train our model for top-K recommendation, we leverage the
pairwise Bayesian personalized ranking (BPR) loss [41] to learn
model parameters. To facilitate personalized ranking, we �rstly
generate a ranking score suv for an arbitrary user-item tuple (u,v):

quv = ReLU (W3(z
∗
u ⊕ z∗v ) + b3),

suv = h⊤quv ,
(10)

where h ∈ Rd is the projection weight. Intuitively, BPR optimizes
ranking performance by comparing two ranking scores suv , suv ′
for user u on items v and v ′. In each training case (u,v,v ′), v is
the positive item sampled from E, while v ′ is the negative item
having ruv ′ < E. Then, BPR encourages thatv should have a higher
ranking score than v ′ by enforcing:

L =
∑

(u,v,v ′)∈D

− logσ (suv − suv ′) + γ | |Θ| |
2
, (11)

where D is the training set, σ (·) is the sigmoid function, Θ denotes
parameters in the GCN-based recommendation module, and γ is
the L2-regularization coe�cient.
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Algorithm 1: Perturbing 1-Dimensional Numerical Data
with Piecewise Mechanism
Input: A single numerical feature x ∈ [−1, 1] and

coe�cient ϵ▷

Output: Perturbed feature x̂ ∈ [−C,C]
Uniformly sample ξ from [0, 1];

if ξ <
exp( ϵ

▷

2 )

exp( ϵ
▷

2 )+1
then

Uniformly sample x̂ from [ℓ(x),π (x)];

else

Uniformly sample x̂ from [−C, ℓ(x)
)
∪
(
π (x),C];

end

return x̂

4 GERAI: GRAPH EMBEDDING FOR
RECOMMENDATION AGAINST ATTRIBUTE
INFERENCE

In this section, we formally present the design of GERAI, a recom-
mendation model that can defend attribute inference attacks via a
novel dual-stage di�erential privacy constraint. Figure 1 depicts the
work�ow of GERAI, where two important perturbation operations
take place at both the input stage for user features and the optimiza-
tion stage for the loss function. The �rst step is to achieve ϵ▷−local
di�erential privacy (ϵ▷−LDP) by directly adding noise to users’ raw
feature vectors xu used for learning user embeddings, which can
avoid exposing users’ sensitive data to an unsecured cyber environ-
ment during upload, while providing the GCN-based recommender
with side information for learning expressive user representations.
Then, to prevent GERAI from generating recommendation results
that can reveal users’ sensitive attributes, we further enforce ϵ−DP
in the optimization stage by perturbing its loss function L. How-
ever, this is a non-trivial task as it requires to calculate the privacy
sensitivity of L, which involves analyzing the complex relationship
between the input data and learnable parameters. Hence, we pro-
pose a novel solution by deriving a polynomial approximation L̃
of the original BPR loss L, so as to support sensitivity calculation
and perform perturbation on L̃ to facilitate di�erentially private
training of GERAI. Notably, to distinguish the DP constraints in
two stages, we denote ϵ▷ as local privacy budget and ϵ as global
privacy budget, respectively.

4.1 User Feature Perturbation at Input Stage

At the input level, the feature vector xu of each user u is perturbed
before being fed into the recommender module. This helps address
users’ privacy concerns on sharing their personal attributes and
keep them con�dential during the upload process. Furthermore, as
we will show in Section 5.7, perturbing user features contributes to
defending attribute inference attacks as the recommendation results
are no longer based on the actual attributes. Then, instead of the
original xu , the perturbed data x̂u will be used for the recommen-
dation purpose. To achieve this, we treat numerical and categorical
features separately, as these two types of data will require di�erent
perturbation strategies. Firstly, for numerical data, perturbation is
performed based on a randomized encryption mechanism named
piecewise mechanism (PM) [46]. Algorithm 1 shows the PM-based

Algorithm 2: Perturbing Multidimensional Data with Nu-
merical and Categorical Features

Input: Feature vector xu = x(1) ⊕ x(2) ⊕ · · · ⊕ x(d ′) ∈ R
d0

and coe�cient ϵ▷

Output: Perturbed feature vector x̂u
x̂u = x̂(1) ⊕ x̂(2) ⊕ · · · ⊕ x̂(d ′) ← {0}

d0 ;
A ← ζ di�erent values uniformly sampled from
{1, 2, ...,d ′};

for each feature index i ∈ A do

if x(i) is a numerical feature then

x̂(i)← Execute Algorithm 1 with x = xi and ϵ▷=
ϵ▷

ζ
;

x̂(i)←
d ′

ζ
x̂(i);

else
fetch categorical feature i’s one-hot encoding from
xu , denoted by c← x(i) = [0, · · · , 0, 1, 0, · · · , 0];

for each element c ∈ c do
Draw c ′ from {0, 1} with

Pr [c ′ = 1] =




0.5, if c ′ = 1
1

exp( ϵ
▷

ζ
)+1
, if c = 0. ;

c ← c ′;

end

x̂(i) ← c;

end

end

return x̂u

perturbation for each scalar numerical feature x ∈ xu . In PM, the
original feature x ∈ [−1, 1] will be transformed into a perturbed
value x̂ ∈ [−C,C], with C de�ned as follows:

C =
exp( ϵ

▷

2 ) + 1

exp( ϵ
▷

2 ) − 1
. (12)

The probability density function of the noisy output x̂ is:

Pr (x̂ = c |x) =

{
p, if c ∈ [ℓ(x),π (x)]

p
exp(ϵ▷)

, if c ∈ [−C, ℓ(x)
)
∪
(
π (x),C]

, (13)

where:

p =
exp(ϵ▷) − exp(ϵ▷/2)

2exp(ϵ▷/2) + 2
,

ℓ(x) =
C + 1

2
· x −

C − 1

2
,

π (x) = ℓ(x) +C − 1.

(14)

The following lemma establishes the theoretical guarantee of
Algorithm 1.

Lemma 4.1. Algorithm 1 satis�es ϵ▷−local di�erential privacy.

Proof. By Eq.(13), let x ,x ′ ∈ [−1, 1] be any two input values
and x̂ ∈ [−C,C] denote the output of Algorithm 1, then we have:

Pr (x̂ |x)

Pr (x̂ |x ′)
≤

p

p/exp(ϵ▷)
= exp(ϵ▷). (15)

Thus, Algorithm 1 satis�es ϵ▷−LDP. □
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However, the PM perturbation presented above is only designed
for numerical data that is 1-dimensional. Hence, inspired by [46],
we generalize Algorithm 1 to the multidimensional xu containing
both numerical and categorical attributes. Given xu ∈ R

d0 , consid-
ering it encodes d ′ di�erent features in total, we can rewrite it as
xu = x(1) ⊕x(2) ⊕ · · · ⊕x(d ′), where the i-th feature x(i) (1 ≤ i ≤ d ′)
is either an one-dimensional numeric or an one-hot encoding vector
for a categorical feature. On this basis, we propose a comprehensive
approach for perturbing such multidimensional data. The detailed
perturbation process is depicted in Algorithm 2. Noticeably, we only
perturb ζ < d ′ features in xu . This is because that, if we straightfor-
wardly treat each of the d ′ features in xu as an individual element
in the dataset, then according to the composition theorem [13], the

local privacy budget for each feature will shrink to ϵ▷

d ′
in order to

maintain ϵ▷−LDP. As a consequence, this will signi�cantly harm
the utility of encrypted data. Hence, to preserve reasonable quality
of each perturbed numerical or categorical feature, we propose to
encrypt only a fraction of (i.e., ζ ) features in xu , ensuring a higher

local privacy budget of ϵ▷

ζ
. As shown in Algorithm 2, to prevent

privacy leakage, the unselected d ′ − ζ features will be dropped by
masking them with 0. Thus, to o�set the recommendation accuracy
loss caused by dropping these features, we follow the empirical
study in [46] to determine the appropriate value of ζ :

ζ = max{1,min{d ′, ⌊
ϵ▷

2.5
⌋}}. (16)

Additionally, when perturbing each categorical feature x(i) ∈ xu ,
we extend the continuous sampling strategy in Algorithm 1 to a
binarized version for each element/bit within the one-hot encod-
ing x(i) with the updated local privacy budget ϵ▷

ζ
. As the privacy

guarantee of the perturbed categorical feature x̂(i) can be veri�ed
in a similar way to numerical features [48], we have omitted this
part to be succinct. In this regard, our perturbation strategy for the
user-centric data in recommendation can provide ϵ▷−LDP, as we
summarize below:

Lemma 4.2. Algorithm 2 satis�es ϵ▷−local di�erential privacy.

Proof. As Algorithm 2 is composed of ζ times of ϵ▷

ζ
−LDP op-

erations, then based on the composition theorem [13], Algorithm 2
satis�es ϵ▷−LDP. □

4.2 Loss Perturbation at Optimization Stage

In most scenarios, the results generated by a predictive model (e.g.,
models for predicting personal credit or diseases) carry highly
sensitive information about a user, and this is also the case for
recommender systems, since the recommended items can be highly
indicative on a user’s personal interests and demographics. Though
privacy can be achieved via direct perturbation on the generated
results [9, 30], it inevitably impedes a model’s capability of learning
an accurate mapping from its input to output [57], making the
learned recommender unable to fully capture personalized user
preferences for recommendation. Hence, in the recommendation
context, we innovatively propose to perturb the ranking loss L
(i.e., Eq.(11)) instead of perturbing the recommendation results in
GERAI. This incurs the analysis of the privacy sensitivity ∆ of

Algorithm 3: Optimizing GERAI

Input:Maximum iteration number T , coe�cient ϵ and
learning rate η

Output: Optimal Parameters Θ∗ of GERAI

∆← d + d2

4 ;

for 0 ≤ j ≤ 2 do

for ϕ ∈ Φj do

λϕ ←
∑
t ∈D λϕt + Lap(

∆

ϵ |D |
), where t = (u,v,v ′)

denotes a triplet training sample;

end

end

L̂ ←
∑2
j=0

∑
t ∈D λϕt (h

⊤quv − h
⊤quv ′), where L̂ is the

perturbed loss;

Initialize Θ∗ randomly;

for each u ∈ U do

x̂u ← Algorithm 2;

end

for t ∈ T do

Draw a minibatch B ;

L̂ ← Eq.(17);

Take a gradient step to optimize Θ∗ with learning rate η;

end

Return Θ
∗.

L. For any function, the privacy sensitivity is the maximum L1
distance between its output values given two neighbor datasets
di�ering in one data instance. Intuitively, the larger that ∆ is, the
heavier perturbation noise is needed to maintain a certain level
of privacy. However, directly computing ∆ from L is non-trivial
due to its unbounded output range and the complex association
between the input data and trainable parameters.

Hence, we present a novel solution to preserving global ϵ−DP for
our ranking task. Motivated by the functional mechanism (FM) [57]
used for loss perturbation in regression tasks, we �rst derive a
polynomial approximation L̃ for L to allow for convenient privacy
sensitivity computation and make the private-preserving optimiza-
tion process more generic. Then, GERAI perturbs L̃ by injecting
Laplace noise to enforce ϵ−DP. It is worth noting that, to calcu-
late the privacy sensitivity of L̃, we apply a normalization step1

to every latent predictive feature quv produced in Eq.(10), which
ensures every element in quv is bounded by (0, 1). Using Taylor
expansion, we derive L̃, the polynomial approximation of L:

L̃ = 1
|D |

∑
∀(u,v,v ′)∈D

∑∞
j=0

f (k )(0)
k !
(h⊤quv − h

⊤quv ′)
j (17)

where
f (k )(0)
k !

is the k-th derivative of L̃ at 0. Recall that h =
[h1,h2, ...,hd ] is a projection vector containing d values. Let ϕ(h) =
h
c1
1 h

c2
2 · · ·h

cd
d

for c1, ..., cd ∈ N. Let Φj = {h
c1
1 h

c2
2 · · ·h

cd
d
|
∑d
l=1

cl =

j} given the degree j (e.g., Φ0 = {1}). Following [57], we truncate
the Taylor series in L̃ to retain polynomial terms with order lower
than 3. Specially, only Φ0,Φ1 and Φ2 involved in L̃ with polynomial

coe�cients as
f (0)(0)
0! = loд2,

f (1)(0)
1! = − 1

2 ,
f (2)(0)
2! =

1
8 .

1This assumption can be easily enforced by the clip function.
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Based on L̃, we now explore the global privacy sensitivity of
the recommendation loss, denoted as ∆. Let λϕt ∈ R denote the
coe�cient of ϕ(h) in the polynomial. In each mini-batch training
iteration, the di�erence of input data only in�uences these coef-
�cients, so we add perturbation to L̃’s coe�cients based on the
sensitivity. In the following lemma, we derive the global sensitivity
∆ of L̃, which serves as the important scale factor in determining
the noise intensity:

Lemma 4.3. The global sensitivity of L̃ is d + d2

4 .

Proof. Given L̃ and two training datasets D, D ′ that di�er in
only one instance, for J ≥ 1 and q = [q1,q2, ...,qd ] = quv − quv ′ ,
we can derive:

∆ =

J∑

j=1

∑

ϕ∈Φj

| |
∑

t∈D

λϕt −
∑

t ′∈D′

λϕt ′ | |1

≤ 2 ·max
t

J∑

j=1

∑

ϕ∈Φj

| |λϕt | |1

≤ 2 ·max
t

( f (1)(0)
1!

d∑

m=1

qm

)
+

f (2)(0)

2!

∑

m≥1,n≤d

qmqn

≤ 2(
dim(quv )

2
+

dim(quv )2

8
)

= d +
d2

4
,

(18)

where t = (u,v,v ′) ∈ D is an arbitrary training sample and dim(·)
returns the dimension of a given vector. □

Speci�cally, we employ FM to perturb the loss L̃ by injecting
Laplace noise2 Lap( ∆

ϵ |D |
) into its polynomial coe�cients, and the

perturbed function is denoted by L̂. The injected Laplace noise with
standard deviation of ∆

ϵ |D |
has been widely proven to e�ectively

retain ϵ−DP after perturbation [12, 13, 57]. Note that as ∆ is the
global sensitivity, it is evenly distributed to all instances in the
training set D during perturbation. We showcase the full training
process of GERAI with a di�erentially private loss in Algorithm 3.
In Algorithm 3, we �rst compute the sensitivity ∆ of loss L̃. In each
iteration, we add perturbation to every coe�cient in the polynomial
approximation of the loss function. Afterwards, we launch the
training session for GERAI with perturbed user feature vectors
{x̂u |u ∈ U}, where we use the perturbed coe�cients to obtain

the perturbed loss L̂ and optimize the parameters of the model by

minimizing L̂. Finally, we formally prove that Algorithm 3 satis�es
ϵ−DP:

Lemma 4.4. Algorithm 3 maintains ϵ−di�erential privacy.

2In our paper, the mean of our Laplace distribution is 0, i.e., Lap(·) = Lap(0, ·).

Table 1: Features extracted from the dataset.

- Number of rated products

- Number and ratio of each rating level given by a user

- Ratio of positive and negative ratings: The proportions of
high ratings (4 and 5) and low ratings (1 and 2) of a user.
- Entropy of ratings: It is calculated as −

∑
∀r Propr log Propr ,

where Propr is the proportion that a user gives the rating of r .
- Median, min, max, and average of ratings

- Gender: It is either male or female.
- Occupation: A total of 21 possible occupations are extracted.
- Age: We categorize age attribute into 3 groups: over 45, under
35, and between 35 and 45.

Proof. Assume that D and D
′
are two training datasets di�er-

ing in only one instance denoted by T and T ′, then we have:

Pr (L̂ |D)

Pr (L̂ |D ′)
=

Π
2
j=1Πϕ ∈Φj exp(

ϵ
∆
| |
∑
t ∈D λϕt − λϕ | |1)

Π
2
j=1Πϕ ∈Φj exp(

ϵ
∆
| |
∑
t ′∈D′ λϕt ′ − λϕ | |1)

≤ Π
2
j=1Πϕ ∈Φj exp(

ϵ

∆
| |
∑

t ∈D

λϕt −
∑

t ′∈D′

λϕt ′ | |1)

= Π
2
j=1Πϕ ∈Φj exp(

ϵ

∆
| |λϕT − λϕT ′ | |1)

= exp(
ϵ

∆

2∑

j=1

∑

ϕ ∈Φj

| |λϕT − λϕT ′ | |1)

≤ exp(
ϵ

∆
· 2 ·max

T

2∑

j=1

∑

ϕ ∈Φj

| |λϕT | |1) = exp(ϵ).

(19)

Then according to De�nition 1, Algorithm 3 satis�es ϵ−DP. □

In short, with our proposed dual-stage perturbation strategy for
both the user data and the training loss, GERAI fully preserves user
privacy with a demonstrable guarantee, while being able to achieve
minimal compromise on the recommendation e�ectiveness com-
pared with a non-private, GCN-based counterpart. Furthermore,
GERAI can be trained via stochastic gradient descent (SGD) algo-
rithms in an end-to-end fashion, showing its real-world practicality.

5 EXPERIMENTS

In this section, we conduct experiments to evaluate the performance
of GERAI in terms of both privacy strength and recommendation
e�ectiveness. Particularly, we aim to answer the following research
questions (RQs):

• RQ1: Can GERAI e�ectively protect sensitive user data from
attribute inference attack?
• RQ2: How does GERAI perform in top-K recommendation?
• RQ3: How does the key hyperparameters a�ect the privacy-
preserving property and recommendation accuracy of GERAI?
• RQ:4What is the contribution from each part of the dual-stage
perturbation paradigm in GERAI?
• RQ5: Can GERAI defend di�erent types of unseen attribute in-
ference attack models?
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5.1 Dataset

Following [3], we use the publicly available ML-100K datasets [1]
in our experiments. It contains 10, 000 ratings from 943 users on
1, 682 movies collected from the MovieLens website. In addition, in
the collected dataset, each user is associated with three sensitive
attributes, i.e., gender (Gen), age (Age) and occupation (Occ). Similar
to [3], we convert the gender, age and occupation into a 2, 3 and
21-dimensional categorical feature, respectively. Table 1 provides a
summary of all the features we have used.

5.2 Baseline Methods and Parameter Settings

We evaluate GERAI by comparing with the following baselines:

• BPR: It is a widely used non-private learning-to-rank model for
recommendation [41].
• GCN: This is the non-private, GCN-based recommendationmodel
proposed in [55].
• Blurm: This method directly uses perturbed user-item ratings
to train the recommender system [50].
• DPAE: In DPAE, Gaussian mechanism is combined in the sto-
chastic gradient descent process of an autoencoder-based rec-
ommender so that the training phase meets the requirements of
di�erential privacy [32].
• DPNE: It aims to develop a di�erentially private network embed-
ding method based on matrix factorization, and it is the state-of-
the-art privacy preserving network embedding method for link
prediction [53].
• DPMF: It uses objective perturbation with matrix factorization
to ensure the �nal item pro�les satisfy di�erential privacy [24].
• RAP: It is the state-of-the-art recommendation model that is
designed against attribute inference attacks [3]. The key idea
is to facilitate adversarial learning with an RNN-based private
attribute inference attacker and a CF-based recommender.

In GERAI, we set γ , learning rate and batch size to 0.01, 0.005
and 64, respectively. Without special mention, we use three-layer
networks for the neural components and initialized parameters to
random values by using Gaussian distribution, which has 0 mean
and a standard deviation of 1. The �nal embedding dimension is
d = 60 and the privacy budget is ϵ = 0.4 and ϵ▷ = 20, while
the e�ect of di�erent hyperparameter values will be further dis-
cussed in Section 5.6. For all baseline methods, we use the optimal
hyperparameters provided in the original papers.

5.3 Evaluation Protocols

Attribute Inference Attack Resistance. To evaluate all mod-
els’ robustness against attribute inference attacks, we �rst build
a strong adversary classi�er (i.e., attacker). Speci�cally, we use a
two-layer deep neural network model as the attacker. Suppose there
are K items R(u) recommended by a fully trained recommender
to user u ∈ U, then the input of the attacker is formulated as∑
∀v ∈I(u) onehot(v)+

∑
∀v ∈R(u) onehot(v)where onehot(·) returns

the one-hot encoding of a given item. The hidden dimension is
set to 100, and a linear projection is used to estimate the class of
the target attribute. We randomly choose 80% of the labelled users
to train the attacker, and use the remainder to test the attacker’s
inference accuracy. Note that the attacker model is unknown to all
recommenders during the training process. To quantify a model’s

Table 2: Attribute inference attack results. Lower F1 scores

represent better privacy protection from the model.

Attribute Method
F1 Score

K=5 K=10 K=15 K=20 K=25 K=30

Age

BPR 0.693 0.694 0.699 0.720 0.676 0.693
GCN 0.697 0.725 0.730 0.725 0.735 0.746
Blurm 0.715 0.725 0.716 0.692 0.679 0.710
DPAE 0.694 0.688 0.695 0.674 0.695 0.684
DPNE 0.684 0.685 0.700 0.701 0.679 0.674
DPMF 0.709 0.703 0.695 0.699 0.684 0.689
RAP 0.661 0.650 0.677 0.666 0.674 0.671
GERAI 0.677 0.663 0.648 0.651 0.652 0.650

Gen

BPR 0.810 0.773 0.808 0.778 0.782 0.801
GCN 0.851 0.836 0.891 0.880 0.862 0.869
Blurm 0.789 0.788 0.789 0.761 0.761 0.788
DPAE 0.781 0.771 0.770 0.772 0.771 0.777
DPNE 0.788 0.772 0.781 0.776 0.798 0.788
DPMF 0.783 0.770 0.768 0.765 0.761 0.771
RAP 0.787 0.771 0.763 0.772 0.776 0.763
GERAI 0.760 0.755 0.763 0.760 0.744 0.755

Occ

BPR 0.276 0.277 0.264 0.263 0.289 0.267
GCN 0.277 0.277 0.277 0.267 0.272 0.270
Blurm 0.267 0.267 0.262 0.262 0.267 0.269
DPAE 0.266 0.260 0.255 0.261 0.260 0.261
DPNE 0.267 0.265 0.266 0.264 0.266 0.262
DPMF 0.266 0.262 0.270 0.265 0.270 0.267
RAP 0.260 0.262 0.260 0.263 0.248 0.260
GERAI 0.260 0.261 0.255 0.256 0.246 0.251

privacy-preserving capability, we leverage a widely-used classi�ca-
tionmetric F1 score [60] to evaluate the classi�cation performance of
the attacker. Correspondingly, lower F1 scores demonstrate higher
resistance to this inference attack.

Recommendation E�ectiveness. For each user, we randomly
pick 80% of her/his interacted items to train all recommendation
models, while the rest 20% is held out for evaluation. We employ
Hit@K and NDCG@K , which are two popular metrics to judge the
quality of the top-K ranking list. Results on both attribute inference
and recommendation are averaged over �ve runs.

5.4 Privacy Protection E�ectiveness (RQ1)

Table 2 shows the F1 scores achieved by the attribute inference
attack model described in Section 5.3 on all the baselines. Lower
F1 scores show higher resistance of the recommender to attribute
inference attacks. Obviously, GERAI constantly outperforms all
baselines with K ∈ {15, 20, 25, 30}, indicating that our model is
able to protect users’ privacy and produce recommendations with
strong privacy guarantee. Though RAP achieves slightly better re-
sults on the age attribute atK = 5 andK = 10, it falls behind GERAI
in all other cases. As a model speci�cally designed for supervised
learning, RAP is naturally robust against attribute inference attack.
We also observe that GERAI has signi�cantly better performance
against attribute inference attack in comparison to Blurm that ob-
fuscates user-item rating data to the recommender system. The
results con�rm the e�ectiveness of our dual-stage perturbation
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(c) Above: Recommendation, Age, Gender and Occupation Inference results w.r.t. dimension d

Figure 2: Recommendation and privacy protection results w.r.t. privacy budget ϵ , ϵ▷ and d .

in private attribute protection. In addition, compared with con-
ventional recommender systems that collaboratively model user-
item interactions (i.e., BPR and GCN), models that make use of
di�erential privacy (i.e., DPAE, DPMF, DPNE and GERAI) show
obvious superiority in resistance to attribute inference attack. How-
ever, compared with all DP-based recommender systems, GERAI
achieves signi�cantly lower F1 score for all three private attributes
and thus outperform those methods in terms of obscuring users’
private attribute information. The reason is that the proposed pri-
vacy mechanisms in those DP-based methods cannot have the same
strength as GERAI on preventing leakage of sensitive information
from recommendation results. This further validates that incorpo-
rating di�erential privacy may prevent directly disclosing private
attributes, but these methods cannot e�ectively provide higher
privacy levels. Furthermore, with the increasing value of K , the
performance of the attacker slightly decreases. One possible reason
is that, more recommended products will become a natural “noise”
to help reduce the risk of privacy disclosure. Finally, we observe

that GCN has the weakest privacy protection results because it
directly incorporates the node features with sensitive information.
Note that compared with GCN, GERAI achieves an average rel-
ative improvement of 11%, 14.4% and 6.75% respectively on age,
gender and occupation, which implies that DP can ensure that the
published recommendations of GERAI can avoid breaching users’
privacy.

5.5 Recommendation E�ectiveness (RQ2)

We summarize all models’ performance on personalized recom-
mendation with Table 3. Note that higher Hit@K and NDCG@K

values imply higher recommendation quality. Firstly, GERAI outper-
forms all privacy-preserving baselines consistently in terms of both
Hit@K and NDCG@K . Particularly, the improvement of GERAI
with K = 5 demonstrate that our model can accurately rank the
ground truth movies at the top-5 positions. In addition, compared
with RAP, GERAI yields recommendation results that are closer to
the state-of-the-art GCN. Thanks to the dual-stage perturbation
setting where two sets of privacy budgets are used, a relatively
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Table 3: Recommendation e�ectiveness results. For both

Hit@K and NDCG@K, the higher the better.

Method K=5 K=10 K=15 K=20 K=25 K=30

Hit@K

BPR 0.348 0.507 0.614 0.686 0.741 0.791
GCN 0.365 0.519 0.619 0.690 0.743 0.789
Blurm 0.184 0.263 0.319 0.364 0.405 0.443
DPAE 0.185 0.285 0.345 0.394 0.438 0.458
DPNE 0.301 0.430 0.525 0.595 0.640 0.684
DPMF 0.195 0.280 0.343 0.394 0.432 0.474
RAP 0.319 0.475 0.575 0.648 0.706 0.754
GERAI 0.333 0.495 0.600 0.670 0.724 0.767

NDCG@K

BPR 0.228 0.280 0.310 0.330 0.341 0.363
GCN 0.247 0.296 0.323 0.340 0.351 0.360
Blurm 0.124 0.148 0.164 0.174 0.183 0.191
DPAE 0.126 0.153 0.170 0.176 0.180 0.188
DPNE 0.204 0.231 0.268 0.289 0.299 0.306
DPMF 0.134 0.154 0.171 0.182 0.191 0.186
RAP 0.211 0.264 0.286 0.308 0.317 0.329
GERAI 0.217 0.270 0.296 0.314 0.326 0.334

Table 4: Ablation test results.

Variant
Recommendation Task Attribute Inference Attack (F1 score)
Hit@5 NDCG@5 Age Gen Occ

GCN 0.365 0.247 0.697 0.851 0.277
GERAI-NL 0.340 0.221 0.688 0.791 0.270
GERAI-NF 0.337 0.219 0.679 0.788 0.266
GERAI 0.333 0.217 0.677 0.760 0.260

higher privacy for user feature perturbation does not signi�cantly
impede the recommendation accuracy, and is su�cient for high-
level attribute protection. Furthermore, the gap between the rank-
ing accuracy drops with the increasing value of K . Finally, GCN
achieves the best performance among all methods except when
K = 30, which showcases the intrinsic strength of GCN-based rec-
ommenders. Meanwhile, Blurm has the worst performance among
all methods as the way it adds noise to the user-item interaction
data is harmful for the recommendation quality.

5.6 Accuracy and Privacy (RQ3)

We answer RQ3 by investigating the performance �uctuations of
GERAI with varied global and local privacy budgets ϵ , ϵ▷ and em-
bedding dimension d . We vary the value of one hyperparameter
while keeping the other unchanged, and record the new recommen-
dation and attribute inference results achieved. Figure 2 plots the
results with di�erent parameter settings.

Impact of Global Privacy Budget ϵ for Loss Perturbation.

The value of the privacy budget ϵ is examined in {0.1, 0.2, 0.4, 0.8, 1.6,
3.2}. In general, our GERAI outperforms RAP in terms of recom-
mendation accuracy, and the performance improvement tends to
become less signi�cant when ϵ becomes quite small. Since a smaller
ϵ requires a larger amount of noise to be injected to the objective
function, it negatively in�uences the recommendation results. The
results further con�rms the e�ectiveness of GCNs-based recom-
mendation component in our model, which helps GERAI preserve
recommendation quality in practice. Furthermore, though the attack
results illustrate that a relatively small ϵ (large noise) can obtain
better performance on privacy protection within our expectation, it

also degraded recommendation results correspondingly. Compared
with RAP, the results imply that, by choosing a proper value of ϵ
(0.4 in our case), our GERAI can achieve a good trade-o� between
privacy protection and recommendation accuracy.

Impact of Local Privacy Budget ϵ▷ for User Feature Per-

turbation. We study the impact of the privacy budget on input
features with ϵ▷ ∈ {0.5, 5, 10, 20}. It is worth mentioning that we
seek a relatively higher value of ϵ▷ to maintain moderate utility
of user features. From Figure 2, we can draw the observation that
though reducing the value of privacy budget ϵ▷ in the input fea-
tures may help the model yield better performance against attribute
inference attack, GERAI generally achieves a signi�cant drop on
recommendation performance with a smaller ϵ▷. Particularly, when
ϵ▷ = 0.5, the recommendation results show that GERAI cannot
capture users’ actual preferences. This is because the feature vector
x̂u determines the number of non-zero elements in base embed-
ding of our model, which can cause signi�cant information loss
when it is small. As the recommendation is also highly accurate
when ϵ▷ = 10, the attribute inference performance achieved by
the attacker is occasionally comparable to setting ϵ▷ = 20. Overall,
setting ϵ▷ to 20 is su�cient for preventing privacy leakage, while
helping GERAI to achieve optimal recommendation results.

Impact of Dimension d . As suggested by Eq.(18), the dimen-
sion d controls the privacy sensitivity ∆ and our model’s expres-
siveness of the network structure. We vary the dimension d in
{20, 40, 60, 80, 100} and the corresponding noise parameters in Lapla-
ce distribution are {0.00375, 0.01375, 0.03, 0.05, 0.08}. Obviously,
the recommendation accuracy of GERAI bene�ts from a relatively
larger dimension d , but the privacy protection performance is not
always lower with a large d . The reason is that the value of the
dimension d is directly associated with our model’s expressiveness,
which means that a relatively larger d can improve the recommen-
dation results, providing better inputs to the attacker model as well.
Furthermore, as shown in Figure 2, the best privacy protection
performance is commonly observed with d = 60.

5.7 Importance of Privacy Mechanism (RQ4)

To better understand the performance gain from the major compo-
nents proposed in GERAI, we perform ablation analysis on di�erent
degraded versions of GERAI. Each variant removes one privacy
mechanism from the dual-stage perturbation paradigm. Table 4 sum-
marizes the outcomes in two tasks in terms of Hit@5, NDCG@5

and F1 score. For benchmarking, we also demonstrate the results
from the full version of GERAI and the non-private GCN.

Removing perturbation at input stage (GERAI-NL). The
GERAI-NL only enforces ϵ-di�erential privacy by perturbing the
objective function in Eq. (17). We remove the privacy mechanism in
users’ features by sending raw features X directly into the recom-
mendation component. After that, a slight performance decrease
in the recommendation accuracy appeared, while achieving better
performance against attribute inference attack. The results con�rm
that the functional mechanism in our model can help a GCN-based
recommender satisfy privacy guarantee and yield comparable rec-
ommendation accuracy. In addition, GERAI signi�cantly outper-
form GERAI-NL against attribute inference attack. Apparently, the
raw user features are not properly perturbed in GERAI-NL, leading
to a high potential risk in privacy leakage.
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Table 5: Performance of attribute-inference attack w.r.t. dif-

ferent types of attacker.

Attribute Method F1 Score
DT NB KNN GP

Age BPR 0.466 0.376 0.487 0.260
GCN 0.513 0.366 0.487 0.619
Blurm 0.471 0.402 0.492 0.265
DPAE 0.492 0.481 0.476 0.249

DPNE 0.593 0.402 0.476 0.349
DPMF 0.561 0.402 0.486 0.275
RAP 0.476 0.407 0.513 0.534
GERAI 0.434 0.365 0.466 0.286

Gen BPR 0.651 0.444 0.561 0.672
GCN 0.635 0.429 0.566 0.810
Blurm 0.630 0.370 0.556 0.693
DPAE 0.635 0.381 0.545 0.683
DPNE 0.640 0.381 0.556 0.667
DPMF 0.683 0.376 0.556 0.683
RAP 0.670 0.439 0.619 0.709
GERAI 0.619 0.429 0.556 0.656

Occ BPR 0.132 0.148 0.070 0.116
GCN 0.122 0.148 0.063 0.222
Blurm 0.127 0.185 0.074 0.105
DPAE 0.111 0.180 0.063 0.212
DPNE 0.132 0.175 0.079 0.106
DPMF 0.175 0.180 0.074 0.104
RAP 0.122 0.148 0.090 0.127
GERAI 0.111 0.116 0.069 0.090

Removing perturbation at optimization stage (GERAI-NF).

We remove the privacy mechanism in objective function by setting
ϵ = 0. As the users’ features are perturbed against information
leaks, GERAI-NF achieves a signi�cant performance improvement
in the privacy protection, compared with the pure GCN. In addition,
the slight performance di�erence between GERAI and GERAI-NF in
two tasks could be attributed to the perturbation strategy in objec-
tive function. It further veri�es that the joint e�ect of perturbation
strategies in objective function and input features are bene�cial for
both recommendation and privacy protection purposes.

5.8 Robustness against Di�erent Attribute
Inference Attackers (RQ5)

In real-life scenarios, themodels used by attribute inference attacker
are usually unknown and unpredictable, so hereby we investigate
how GERAI and other baseline methods perform in the presence of
di�erent types of attack models, namely Decision Tree (DT), Naive
Bayesian (NB), KNN and Gaussian Process (GP), that are widely
adopted classi�cation methods. In this study, we use the top-5 rec-
ommendation generated by corresponding recommender methods
for all attackers as introduced in Section 5.3. Table 5 shows the at-
tribute inference accuracy of each attacker. The �rst observation is
that our proposed GERAI outperforms all the comparison methods
in most scenarios. Though DPAE achieves slightly better results
in several cases, its recommendation accuracy is non-comparable
to GERAI. This further validates the challenge of incorporating

privacy protection mechanism for personalized recommendation.
Another observation is that there is a noticeable performance drop
of RAP facing non-DNN attacker models. As RAP is trained to de-
fend a speci�c DNN-based inference model, RAP is more e�ective
when attacker is also DNN-based as shown in Table 2. However,
RAP underperforms when facing the other �ve commonly used
inference models, showing that GERAI can more e�ectively resist
attribute inference attacks and protect users’ privacy without any
assumption on the type of attacker models.

6 RELATED WORK

Attribute Inference Attacks. The target of attribute inference
attack is inferring users’ private information from their publicly
available information (e.g. recommendations). Three main branches
of attribute inference attack approaches are often distinguished:
friend-based, behavior-based and hybrid approaches. Friend-based
approaches infer the target user’s attribute in accordance with the
target’s friends’ information [19, 22, 31]. He et al [22] �rst con-
structed a Bayesian network to model the causal relations among
people in social networks, which is used to obtain the probability
that the user has a speci�c attribute. Behavior-based approaches
achieve this purpose via users’ behavioral information such as
movie-rating behavior [50] and Facebook likes [29]. The third type
of works exploits both friend and behavioral information [17, 18, 23].
For example, [19] creates a social-behavior-attribute network to
infer attributes. Another work [23] models structural and behav-
ioral information from users who do not have the attribute in the
training process as a pairwise Markov Random Field.

Privacy and Recommender System.With the growth of on-
line platforms, recommender systems play a pivotal role in promot-
ing sales and enhancing user experience. The recommendations,
however, may pose a severe threat to user privacy such as political
inclinations via attribute inference attack. Hence, it is of paramount
importance for system designers to construct a recommender sys-
tem that can generate accurate recommendations and guarantee the
privacy of users. Current researches that address vulnerability to
privacy attacks often rely on providing encryption schemes [6, 27]
and di�erential privacy [25]. Encryption-based methods enhance
privacy of the conventional recommender systems with advanced
encryption techniques such as homomorphic encryption [8, 27].
However, these methods are considered computation expensive as
a third-party crypto-service provider is required. DP-based recom-
mender systems can provide a strong and mathematically rigorous
privacy guarantee [4, 33, 34]. Works in this area aim to ensure
that the recommender systems are not sensitive to any particular
record and thus prevent adversaries from inferring a target user’s
ratings. [38] proposes a perturbation method that adds or removes
items and ratings to minimize privacy risk. Similarly, RAPPOR [15]
is proposed to perturb the user’s data before sending them to the
server by using the randomized response. More recently, graph
embedding techniques have been opening up more chances to im-
prove the e�ciency and scalability of the existing recommender
systems [7, 55]. As the core of GCN is a graph embedding algorithm,
our work is also quite related to another area: privacy preservation
on graph embedding. Hua et al. [24] and Shin et al. [43] proposed
gradient perturbation algorithms for di�erentially private matrix
factorization to protect users’ ratings and pro�les. Another work
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enforces di�erential privacy to construct private covariance matri-
ces to be further used by recommender [12]. Liu et al. [32] proposed
DPAE that leverages the privacy problem in recommendation with
the Autoencoders. Gaussian noise is added in the process of gra-
dient descent. However, the existing privacy-preserving works in
recommendation systems focus on protecting users against the
membership attacks in which an adversary tries to infer a targeted
user’s actual ratings and deduce if the target is in the database,
which is not ful�lled in our scenario. These limitations motivated
us to propose GERAI that is able to counter private attribute infer-
ence attacks in the personalized recommendation system.

7 CONCLUSION

In this paper, we propose a GCN-based recommender system that
guards users against attribute inference attacks while maintaining
utility, named GERAI. GERAI �rstly masks users’ features including
sensitive information, and then incorporates di�erential privacy
into the GCN, which e�ectively bridges user preferences and fea-
tures for generating secure recommendations such that a malicious
attacker cannot infer their private attribute from users’ interaction
history and recommendations. The experimental results evidence
that GERAI can yield superior performance on both recommenda-
tion and attribute protection tasks.
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