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Abstract

This paper presents methods to analyze functional brain networks and signals from graph spectral 

perspectives. The notion of frequency and filters traditionally defined for signals supported on 

regular domains such as discrete time and image grids has been recently generalized to irregular 

graph domains, and defines brain graph frequencies associated with different levels of spatial 

smoothness across the brain regions. Brain network frequency also enables the decomposition of 

brain signals into pieces corresponding to smooth or rapid variations. We relate graph frequency 

with principal component analysis when the networks of interest denote functional connectivity. 

The methods are utilized to analyze brain networks and signals as subjects master a simple motor 

skill. We observe that brain signals corresponding to different graph frequencies exhibit different 

levels of adaptability throughout learning. Further, we notice a strong association between graph 

spectral properties of brain networks and the level of exposure to tasks performed, and recognize 

the most contributing and important frequency signatures at different levels of task familiarity.

Index Terms

Functional brain network; network theory; graph signal processing; fMRI; motor learning; filtering

I. Introduction

The study of brain activity patterns has proven valuable in identifying neurological disease 

and individual behavioral traits [1]–[3]. The use of functional brain networks describing the 

tendency of different regions to act in unison has proven complementary in the analysis of 

similar matters [4]–[7]. It is not surprising that signals and networks prove useful in similar 

problems since the two are closely related. In this paper we advocate an intermediate path in 
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which we interpret brain activity as a signal supported on the graph of brain connectivity. We 

show how the use of graph signal processing tools can be used to glean information from 

brain signals using the network as an aid to identify patterns of interest. The benefits of 

incorporating network information into signal analysis has been demonstrated in multiple 

domains. Notable examples of applications include video compression [8], breast cancer 

diagnostics [9], movie recommendation [10], and semi-supervised learning [11].

The fundamental GSP concepts that we utilize to exploit brain connectivity in the analysis of 

brain signals are the graph Fourier transform (GFT) and the corresponding notions of graph 

frequency components and graph filters. These concepts are generalizations of the Fourier 

transform, frequency components, and filters that are used in regular domains such as time 

and spatial grids [12]–[14]. As such, they permit the decomposition of a graph signal into 

components that represent different modes of variability. We can define low graph frequency 

components representing signals that change slowly with respect to brain connectivity 

networks in a well defined sense and high graph frequency components representing signals 

that change fast in the same sense. This is important because low and high temporal 

variability have proven important in the analysis of neurological disease and behavior [15], 

[16]. GFT based decompositions permit a similar analysis of variability across regions of the 

brain for a fixed time – a sort of spatial variability measured with respect to the connectivity 

pattern. We demonstrate here that it is useful in a similar sense; see e.g. Figs. 6, 7, 8, and 10.

The GSP studies in this paper are related to principal component analysis (PCA), which has 

been used with success in the analysis of brain signals [17], [18]. The difference with the 

GSP analysis we present here is that PCA implicitly assumes the brain network to be a 

correlation matrix and the signals to be drawn from a stochastic model. More importantly, 

whereas the GFT can be used to, e.g., decompose the signal into low, medium, and high 

frequency components, PCA is mostly utilized for dimensionality reduction; which in the 

language of this paper is tantamount to analyzing a few low graph frequency components. 

Another important difference is that PCA focuses on identifying variability across different 

realizations of brain signals, but the GFT identifies spatial variability of a single realization. 

GSP is also related to the spectral analysis of networks in general and Laplacians in 

particular [19], [20]. The difference in this case is that these spectral analyses yield 

properties of the networks. In GSP analyses, the network provides an underlying structure, 

but the interest is on signals expressed on this stratum.

Recent studies have already demonstrated that exploiting information from the underlying 

graph networks of structural brain connectivity to filter functional signals such as fMRI [21] 

and EEG [22] result in increased localization accuracy. The notion of investigating specific 

graph frequencies has just recently been introduced to capture key features of structural 

resting state networks (RSNs). Individual low frequencies have been identified to represent 

with low reconstruction error resting state networks related to visual and motor regions, and 

higher frequencies have been seen to well reconstruct more complex RSNs [23]. The 

research we present here extends these concepts by using GSP not only for investigating the 

underlying network as a whole, or individual frequencies on the underlying network, but to 

study how different ranges of frequencies capture significant information about the signal 
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activation patterns, and applying this to dynamic, task-associated signals. These previous 

findings give high motivation for such an investigation.

The goal of this paper is to introduce GSP notions that can be used to analyze brain signals 

and to demonstrate their value in identifying patterns that appear when monitoring activity 

as subjects learn to perform a visual-motor task. Specifically, the contributions of this paper 

are: (i) To explain tools from the emerging field of GSP and show how they can be applied 

in analyzing brain signals. (ii) To evaluate the graph spectrum of brain functional network 

and to define artificial network construction methods that replicate the features of the graph 

spectrum of functional networks. (iii) To examine the temporal variation of brain signals 

corresponding to different graph frequencies when participants perform visual-motor 

learning tasks. (iv) To investigate the contribution of brain signals associated with different 

graph frequencies to the learning success at different stages of visual-motor learning.

We begin the paper with the introduction of basic notions of graphs and graph signals. 

Particular emphasis goes into the definition of the graph Fourier transform and the 

interpretation of graph frequency components as different modes of spatial variability 

measured with respect to the brain network (Section II-A). We also introduce the notion of 

graph filters and discuss the interpretation of graph low-pass, band-pass and high-pass filters 

as a local averaging operation (Section II-B). We point out that the discussion here is more 

extensive than necessary for readers familiar with GSP so that the paper is accessible to 

readers that are not necessarily familiar with the subject.

We then move on to describe two different experiments involving the learning of different 

visual-motor tasks by different sets of participants (Section III). We visualize the 

decomposed graph frequencies relating to the functional brain network (Section IV). We find 

that high graph frequencies of functional networks concentrate on visual and sensorimotor 

modules of the brain – the two brain areas well-known to be associated with motor learning 

[24], [25]. This motivates us to consider graph frequencies other than low frequency 

components, whereas the PCA-oriented approach has been focusing on low frequencies. We 

also describe the construction of a simple model to establish artificial networks with a few 

network descriptive parameters (Section IV-A). We observe that the model is able to mimic 

the properties of actual functional brain networks and we use them to analyze spectral 

properties of the brain networks (Section IV-B). The paper then utilizes graph frequency 

decomposition to visualize and investigate brain activities with different levels of spatial 

variation (Section V). It is noticed that the decomposed signals associated to different graph 

frequencies exhibit different levels of temporal variation throughout learning (Section V-A). 

Finally, we also define learning capabilities of subjects, and examine the importance of brain 

frequencies at different task familiarity by evaluating their respective correlation with 

learning performance at different task familiarities (Section VI). We find as learning 

progresses, we favor different levels of graph frequency components.

II. Graph Signal Processing

The interest of this paper is to study brain signals in which we are given a collection of 

measurements xi associated with each cortical region out of n different brain regions. An 
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example signal of this type is an fMRI reading in which xi estimates the level of activity of 

brain region i. The collection of n measurements is henceforth grouped in the vector signal 

. A fundamental feature of the signal x is the existence of an 

underlying pattern of structural or functional connectivity that couples the values of the 

signal x at different brain regions. Irrespective of whether connectivity is functional or 

structural, our goal here is to describe tools that utilize this underlying brain network to 

analyze patterns in the neurophysiological signal x.

We do so by modeling connectivity between brain regions with a network that is connected, 

weighted, and symmetric. Formally, we define a network as the pair , where 

 is a set of n vertices or nodes representing individual brain regions and 

 represents weights of edges in the network with  being the weight of the 

edge (i, j), in which . Since the network is undirected and symmetric we have that 

wij = wji for all (i, j). The weights wij = wji represent the strength of the connection between 

regions i and j, or, equivalently, the proximity or similarity between nodes i and j. In terms of 

the signal x, this means that when the weight wij is large, the signal values xi and xj tend to 

be related. Conversely, when the weight wij is small, the signal values xi and xj are not 

directly related except for what is implied by their separate connections to other nodes.

We adopt the conventional definitions of the degree and Laplacian matrices [26, Chapter 1]. 

The degree matrix  is a diagonal matrix with its ith diagonal element 

. The Laplacian matrix is defined as the difference . The 

components of the Laplacian matrix are explicitly given by Lij = −wij and . 

Observe that the Laplacian is real, symmetric, diagonal dominant, and with strictly positive 

diagonal elements. As such, the matrix L is positive semidefinite. The eigenvector 

decomposition of L is utilized in the following section to define the graph Fourier transform 

and the associated notion of graph frequencies.

We note that brain networks, irrespective of whether their connectivity is functional [27] or 

structural [28], tend to be stable for a window of time, entailing associations between brain 

regions during captured time of interest. Brain activities can vary more frequently, forming 

multiple samples of brain signals supported on a common underlying network.

A. Graph Fourier Transform and Graph Frequencies

Given that the graph Laplacian L is real symmetric, it can be decomposed into its eigenvalue 

components,

(1)

such that for the set of eigenvalues , the diagonal eigenvalue matrix is 

defined as , and
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(2)

is the eigenvector matrix. VH represents the Hermitian (conjugate transpose) of the matrix 

V. We assume the set of eigenvalues of the Laplacian L are ordered so that 

. The validity of (1) follows because the eigenvectors of symmetric 

matrices are orthogonal so that the definition in (2) implies that VHV = I. The eigenvector 

matrix V is used to define the Graph Fourier Transform of the graph signal x as we formally 

state next; see, e.g., [14].

Definition 1—Given a signal  and a graph Laplacian  accepting the 

decomposition in (1), the Graph Fourier Transform (GFT) of x with respect to L is the signal

(3)

The inverse (i)GFT of  with respect to L is defined as

(4)

We say that x and  form a GFT pair.

Observe that since VVH = I, the iGFT is, indeed, the inverse of the GFT. Given a signal x we 

can compute the GFT as per (3). Given the transform  we can recover the original signal x 
through the iGFT transform in (4).

There are several reasons that justify the association of the GFT with the Fourier transform. 

Mathematically, it is just a matter of definition that if the vectors vk in (1) are of the form 

, the GFT and iGFT in Definition 1 reduce to the 

conventional time domain Fourier and inverse Fourier transforms. More deeply, if the graph 

 is a cycle, the vectors vk in (1) are of the form . Since 

cycle graphs are representations of discrete periodic signals, it follows that the GFT of a 

time signal is equivalent to the conventional discrete Fourier transform; see, e.g., [29].

An important property of the GFT is that it encodes a notion of variability akin to the notion 

of variability that the Fourier transform encodes for temporal signals. To see this, define 

 and expand the matrix product in (4) to express the original signal x as

(5)
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It follows from (5) that the iGFT allows us to write the signal x as a sum of orthogonal 

components vk in which the contribution of vk to the signal x is the GFT component . In 

conventional Fourier analysis, the eigenvectors  carry a 

specific notion of variability encoded in the notion of frequency. When k is close to zero, the 

corresponding complex exponential eigenvectors are smooth. When k is close to n, the 

eigenfunctions fluctuate more rapidly in the discrete temporal domain. In the graph setting, 

the graph Laplacian eigenvectors provide a similar notion of frequency. Indeed, define the 

total variability of the graph signal x with respect to the Laplacian L as

(6)

where in the second equality we expanded the quadratic form. It follows that the total 

variation TV(x) is a measure of how much the signal changes with respect to the network. 

For the edge (i, j), when wij is large we expect the values xi and xj to be similar because a 

large weight wij is encoding functional similarity between brain regions i and j. The 

contribution of their difference (xi − xj)
2 to the total variation is amplified by the weight wij. 

If the weight wij is small, activities at brain regions i and j tend to be uncorrelated, and 

therefore the difference between the signal values xi and xj makes little contribution to the 

total variation. We can then think of a signal with small total variation as one that changes 

slowly over the graph and of signals with large total variation as those that change rapidly 

over the graph.

Consider the total variation of the eigenvectors vk and use the facts that Lvk = λkvk and 

 to conclude that

(7)

It follows from (7) and the fact that the eigenvalues are ordered as , that 

the total variations of the eigenvectors vk follow the same order. Combining this observation 

with the discussion following (6), we conclude that when k is close to 0, the eigenvectors vk 

vary slowly over the graph, whereas for k close to n the eigenvalues vary more rapidly. 

Therefore, from (5) we see that the GFT and iGFT allow us to decompose the brain signal x 
into components that characterize different levels of variability. The GFT coefficients  for 

small values of k indicate how much these slowly varying signals contribute to the observed 

brain signal x. On the other hand, the GFT coefficients  for large values of k describe how 

much rapidly varying signals contribute to the observed brain signal x.

B. Graph Filtering and Frequency Decompositions

Given a graph signal x with GFT  we can isolate the frequency components corresponding 

to the lowest KL graph frequencies by defining the filtered spectrum  satisfying 

 for k < KL and  otherwise. The filter  can be written as the diagonal matrix 
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 where the vector  takes value 1 for frequencies smaller than KL and is 

otherwise null,

(8)

Utilizing the definitions of the GFT in (3) and the iGFT in (4), the spectral operation 

 is equivalent to performing the following operations in the graph vertex domain

(9)

From the equality in (9), we can see that the signal xL contains the low graph frequency 

components of x, and so we say the matrix HL is a graph low-pass filter.

The filter  admits an alternative representation as the expansion 

 in terms of Laplacian powers [29]. The coefficients hLk in this expansion 

are elements of the vector  where Ψ is the Vandermonde matrix defined by the 

eigenvalues of L, i.e.,

(10)

Since the eigenvalues are ordered in (10), the coefficients hLk tend to be concentrated in 

small indexes k, and the expansion  is therefore dominated by small 

powers Lk. From this fact it follows that we can think of the graph low-pass filtered signal 

xL as resulting from a localized averaging of the elements of x. To understand this 

interpretation, simply note that L0x = x coincides with the original signal, Lx is an average 

of neighboring elements, L2x is an average of elements in nodes that interact via 

intermediate common neighbors, and, in general, Lkx describes interactions between k-hop 

neighbors. The fact that xL can be considered as a signal that follows from local averaging of 

x implies that xL has smaller total variation than x and is consistent with the interpretation of 

low graph frequencies presented in Section II-A. We point out that the definition 

assumes the inverse matrix Ψ−1 exists. This holds true if the graph Laplacian does not have 

duplicate eigenvalues, which is the case for all functional brain networks examined in the 

paper.

Other types of graph filters can be defined analogously to study interactions between signal 

components other than the local interactions captured in xL. Apart from the graph low-pass 

filter HL, we also consider a graph band-pass filter HM and a graph high-pass filter HH, 

whose graph frequency responses are defined as

Huang et al. Page 7

IEEE J Sel Top Signal Process. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(11)

(12)

The definitions in (8), (11), and (12) are such that the low-pass filter takes the lowest KL 

graph frequencies, the band-pass filter captures the middle KM graph frequencies, and the 

high-pass filter the highest n − KL − KM frequencies. The three filters are defined such that 

the graph frequencies of their respective interest are mutually exclusive yet collectively 

exhaustive. As a result, if we use xM:= HMx and xH:= HHx to respectively denote the signals 

filtered by the band-pass and high-pass filters, we have that the original signal can be written 

as the sum x = xL + xM + xH. This gives a decomposition of x into low, medium, and high 

frequency components which respectively represent signals that have slow, medium, and 

high variability with respect to the connectivity network between brain regions. This 

decomposition is utilized in this paper to analyze brain activity patterns associated with the 

learning of visual-motor tasks.

III. Brain Signals during Learning

We considered two experiments in which subjects learned a simple motor task [30]–[32]. In 

the experiments, fourty-seven right-handed participants (29 female, 18 male; mean age 

24.13 years) volunteered with informed consent in accordance with the University of 

California, Santa Barbara Internal Review Board. After exclusions for task accuracy, 

incomplete scans, and abnormal MRI, 38 participants were retained for subsequent analysis.

Twenty individuals participated in the first experimental framework. The experiment lasted 6 

weeks, in which there were 4 scanning sessions, roughly at the start of the experiment, at the 

end of the 2nd week, at the end of the 4th week, and at the end of the experiment, 

respectively. During each scanning session, individuals performed a discrete sequence-

production task in which they responded to sequentially presented stimuli with their 

dominant hand on a custom response box. Sequences were presented using a horizontal 

array of 5 square stimuli with the responses mapped from left to right such that the thumb 

corresponded to the leftmost stimulus. The next square in the sequence was highlighted 

immediately following each correct key press; the sequence was paused awaiting the 

depression of the appropriate key if an incorrect key was pressed. Each participant 

completed 6 different 10-element sequences. Each sequence consists of two squares per key. 

Participants performed the same sequences at home between each two adjacent scanning 

sessions, however, with different levels of exposure for different sequence types. Therefore, 

the number of trials completed by the participants after the end of each scanning session 

depends on the sequence type. There are 3 different sequence types (MIN, MOD, EXT) with 

2 sequences per type. The number of trials of each sequence type completed after each 

scanning session averaged over the 20 participants is summarized in Fig. 1. During scanning 

sessions, each scan epoch involved 60 trials, 20 trials for each sequence type. Each scanning 
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session contained a total of 300 trials (5 scan epochs) and a variable number of brain scans 

depending on how quickly the task was performed by the specific individual.

Eighteen subjects participated in the second experimental framework. The experiment had 3 

scanning sessions spanning the three days. Each scanning session lasted roughly 2 hours and 

no training was performed at home between adjacent scanning sessions. Subjects responded 

to a visually cued sequence by generating responses using the four fingers of their 

nondominant hand on a custom response box. Visual cues were presented as a series of 

musical notes on a pseudomusical staff with four lines such that the top line of the staff 

mapped to the leftmost key pressed with the pinkie finger. Each 12-note sequence randomly 

ordered contained three notes per line. Each training epoch involved 40 trials and lasted a 

total of 245 repetition times (TRs), with a TR of 2,000 ms. Each training session contained 6 

scan epochs (240 trials) and lasted a total of 2,070 scan TRs.

In both experiments participants were instructed to respond promptly and accurately. 

Repetitions (e.g., “11”) and regularities such as trills (e.g., “121”) and runs (e.g., “123”) 

were excluded in all sequences. The order and number of sequence trials were identical for 

all participants. Participants completed the tasks inside the MRI scanner for scanning 

sessions.

Reordering with fMRI was conducted using a 3.0 T Siemens Trio with a 12-channel phased-

array head coil. For each functional run, a single-shot echo planar imaging sequence that is 

sensitive to blood oxygen level dependent (BOLD) contrast was utilized to obtain 37 (the 

first experiment) or 33 (the second experiment) slices (3mm thickness) per repetition time 

(TR), an echo time of 30 ms, a flip angle of 90°, a field of view of 192 mm, and a 64 × 64 

acquisition matrix. Image preprocessing was performed using the Oxford Center for 

Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software Library (FSL), 

and motion correction was performed using FMRIB’s linear image registration tool. The 

whole brain is parcellated into a set of n = 112 regions of interest that correspond to the 112 

cortical and subcortical structures anatomically identified in FSL’s Harvard-Oxford atlas. 

The choice of parcellation scheme is the topic of several studies in resting-state [33], and 

task-based [34] network architecture. The question of the most appropriate delineation of the 

brain into nodes of a network is open and is guided by the particular question one wants to 

ask. We use Harvard-Oxford atlas here because it is consistent with previous studies of task-

based functional connectivity during learning [30], [31]. The threshold in probability cutoff 

settings of Harvard Oxford atlas parcellation is 0 so that no voxels were excluded.

For each individual fMRI dataset, we estimate regional mean BOLD time series by 

averaging voxel time series in each of the n regions. We evaluate the magnitude squared 

spectral coherence [35] between the activity of all possible pairs of regions to construct n × n 

functional connectivity matrices W. Besides, for each pair of brain regions i and j, we use t-

statistical testing to evaluate the probability pi,j of observing the measurements by random 

chance, when the actual data are uncorrelated [36]. In the 3 day dataset, the value of all 

elements with no statistical significance (pi,j > 0.05) [37] are set to zero; the values remain 

unchanged otherwise. In the 3 day experiment, a single brain network is constructed for each 

participant. Thresholding is applied because the networks are for the entire span of the 
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experiment and many entries in W would be close to zero without threshold correction. In 

the 6 week experiment, due to the long duration of the experiment, we build a different brain 

network per scanning session, per sequence type for each subject. Because each network 

describes the functional connectivity for one training session given a subject, not many 

entries will be removed even in the presence of threshold correction; consequently, no 

thresholding is applied for the 6 week dataset. We normalize the regional mean BOLD 

observations  at any sample time t and consider  such that the total 

energy of activities at all structures is consistent at different t to avoid extreme spikes due to 

head motion or drift artifacts in fMRI.

IV. Brain Network Frequencies

In this section, we analyze the graph spectrum brain networks of the dataset considered. For 

the brain network W of each subject, we construct its Laplacian L = D − W, and evaluate 

the total variation TV(vk) [cf. (7)] for each eigenvector vk. Fig. 2 (a) and (c) plot the total 

variation of all graph eigenvectors averaged across participants of the 6 week training 

experiment and 3 day experiment, respectively. In both experiments, the Laplacian 

eigenvectors associated with larger indexes fluctuate more on the network. Another 

observation is that with respect to graph frequency indices 0 < k < 100, the total variation 

increases almost linearly.

Besides total variation, the number of zero crossings is used as a measure of the smoothness 

of signals with respect to an underlying network [14]. Since brain networks are weighted, we 

adapt a slightly modified version – weighted zero crossings – to investigate the given graph 

eigenvector vk

(13)

In words, weighted zero crossings evaluate the weighted sum of the set of edges connecting 

a vertex with a positive signal to a vertex with a negative signal. Fig. 2 (b) and (d) 

demonstrate the weighted zero crossings of all graph eigenvectors averaged across subjects 

of the 6 week and 3 day experiments, respectively. The weighted zero crossings increase 

almost proportionally with graph frequency index k until they eventually level off for 0 ≤ k ≤ 

100. For k greater than 100, though, eigenvectors associated with higher graph frequencies 

exhibit lower weighted zero crossings.

It would be interesting to examine where the associated eigenvectors lie anatomically, and 

the relative strength of their values. To facilitate the presentation, we consider three sets of 

eigenvectors, ,  and , and compute the absolute 

magnitude at each of the n cortical and subcortical regions averaged across participants and 

across all graph frequencies belonging to each of the three sets. Fig. 3 presents the average 

magnitudes for the two experimental frameworks considered in the paper using BrainNet 

[38], where brain regions with absolute magnitudes lower than a fixed threshold are not 
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colored. Throughout the paper, the parameter KL is set as 40 and KM is set as 32. This 

combination yields three roughly equally-sized components with one piece corresponding to 

the 40 lowest graph frequencies and another piece corresponding to the 40 highest 

frequencies. The results presented in the paper are robust with the choice of parameters: we 

examined the results for KL and KM in the range of 32 to 42, inclusive, and found similar 

observations as the ones presented. To demonstrate that, Fig. 4 presents the range of 

correlation coefficients calculated between the frequency ranges selected for this paper and 

all frequency ranges for KL and KM between 32 and 42, inclusive, giving 120 correlation 

values for each box plot. The correlation coefficients reported are a quantification of 

similarity measure when we examine the similarity between two vectors, given as the 

absolute magnitudes passing the given threshold across all brain regions. An investigation of 

cosine similarity gives high similarities as well. We have also conducted robustness testing 

in our analysis of learning rate (Section VI) and have plotted our results obtained from using 

all 121 possible frequency ranges (Fig. 12) and have quantified the robustness of parameters 

in Fig. 11.

A. Artificial Functional Brain Networks

An approach to analyze the complex networks is to define a model to generate artificial 

networks [39], [40]. The main motivation of an artificial network model is to use them to 

analyze complex brain networks. Examples of such models include the Barabási-Albert 

model for scale free networks [41] and recent developments and insights on weighted 

network models [40]. Here we present a framework to construct artificial networks that can 

be used to mimic the functional brain networks with only a few parameter inputs. The model 

is related to weighted block stochastic model [42], but involves more aspects like individual 

variance and analyzes links independent of their connectivity strength to other brain regions. 

The output of the method would be a symmetric network with edge weights between 0 and 1 

without self-loops.

To begin, suppose the desired network has two clusters of nodes  and  The algorithm 

requires the average edge weight μ1 for connections between nodes of the first cluster , 

average edge weight μo for links between nodes of the other cluster , and average edge 

weight μ1o for inter-cluster connections. To reflect the fact that the edge weights on some 

links are independent of their joining vertices, for each edge within , with probability 

, its weight is randomly generated with respect to uniform distribution  between 

0 and 1, and with probability , its weight is randomly generated with respect to 

uniform distribution . The parameter  determines the percentage of edges 

whose weights are selected irrespective of their actual locations To further simulate the 

observation that different participants may possess distinctive brain networks, if the edge 

weight is randomly generated from a uniform distribution , it is then 

perturbed by  where  controls the level of perturbation. The edge 

weights for connections within cluster  are generated similarly: with probability , 

the edge weight is randomly chosen from the uniform distribution  before 

being contaminated by . The edge weights for connections between 

clusters  and  are formed analogously μ1o. The method presented here can be easily 
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generalized to analyze brain networks with more regions of interest, i.e. by specifying sets of 

regions of interest and by detailing the expected correlation values on each type of 

connection between different regions.

Remark 1—At one extreme we can make each node i belonging to a different set . 

Then the method requires the inputs of expected weights for all nodes, or alternatively 

speaking, the expected network. At the other extreme, there is only one set of nodes , and 

then the method is highly akin to a network with edge weights completely randomly 

generated. Any construction of interest would have some prior knowledge regarding the 

community structure. Therefore, the method proposed here can be used to see if the network 

constructed with the specific choice of community structure highly simulate the key 

properties of the actual network, and can be used to examine the evolution of community 

structure in the brain throughout the process to master a particular task.

B. Spectral Properties of Brain Networks

In this section, we analyze graph spectral properties of brain networks. Given the graph 

Laplacian, we examine the fluctuation of its eigenvectors on different types of connections 

in the brain network [25]. More specifically, given an eigenvector vk, its variation on the 

visual module is defined as

(14)

where  denotes the set of nodes belonging to the visual module. The measure TVvisual(vk) 

computes the difference for signals on the visual module for each unit of edge weight. To 

facilitate interpretation, we only consider three sets of eigenvectors , 

 and . We then compute the visual module total variation 

 averaged over eigenvectors , and  as well as  similarly. 

Besides , we also examine the level of fluctuation of eigenvectors on edges within 

the motor module, denoted as TVmotor, and on connections belonging to brain modules other 

than the visual and motor module TVothers. Further, there are links between two separate 

brain modules, and to assess the variation of eigenvectors on those links, we define total 

variations between the visual and motor modules

(15)

where  denotes the set of nodes belonging to the motor module. Total variations 

TVvisual-others between the visual and other modules, and total variations TVmotor-others 

between the motor and other modules are defined analogously. We chose to study visual and 
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motor modules separately from other brain modules because of their well-known 

associations with motor learning [24], [25].

Fig. 5 (a) presents boxplots of the variation for eigenvectors of different graph frequencies 

measured over different types of connections across participants, at the start of the six week 

training. Despite that total variation of eigenvectors should increase with their frequencies, 

the variation on the other module  of eigenvectors associated with low frequencies 

are higher than  (pass t-test with p < 0.0001). This observation is discussed in detail 

in Section IV-C.

Next we study how the graph spectral properties of brain networks evolve as participants 

become more familiar with the tasks. Fig. 5 (b) illustrates the median of the variation for 

eigenvectors of different graph frequencies measured over different types of connections 

across subjects, at 10 different levels of exposure in the six week training. As participants 

become more acquainted with the assignment, their brain networks display lower variation 

in the visual and motor modules and higher variation in the other modules for low and 

middle graph frequencies, and the exact opposite is true for high graph frequencies. The 

association with training intensity is statistically significant (average correlation coefficient r 

= 0.8164).

C. Discussion

Firstly, we examine why we see a decrease in zero crossings of graph frequencies when k is 

greater than 100 in Fig. 2. A detailed analysis shows this is because the functional brain 

networks are highly connected with nearly homogeneous degree distribution, and 

consequently each high graph frequency tends to have a value with high magnitude at one 

vertex of high degree and similar values at other nodes, resulting in a smaller global zero 

crossings for eigenvectors associated with very high frequencies.

Secondly, in terms of the visualization of graph frequencies in Fig. 3, the most interesting 

finding relates to the eigenvectors associated with high graph frequencies. The magnitudes at 

different brain regions for high frequencies are significantly similar across the two datasets 

investigated (correlation coefficient 0.6616). There are very few noticeable brain regions in 

which the absolute magnitude highlighted in the first dataset is not likewise highlighted in 

the second. Given the different experiment setups, it would not be uncommon to observe 

large variations across datasets. However, the fact that we see the majority of brain regions 

similarly highlighted in the two experiments solidifies our understanding that eigenvector 

decomposition captures general signatures, as opposed to task-specific realizations. 

Additionally, brain regions with high magnitude values are highly alike (greater than 60% 

overlap) to the visual and sensorimotor cortices [43]. This is likely to be a consequence of 

the fact that visual and motor regions are more strongly connected with other structures, and 

hence an eigenvector with a high magnitude on visual or motor structures would result in 

high global spatial variation. The eigenvectors of low graph frequencies are more spread 

across the networks, resulting in low global variations. The middle graph frequencies are 

less interesting – the magnitudes at most regions (greater than 90%) do not pass the 
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threshold, and little associations (correlation coefficient 0.3529) can be found between the 

eigenvectors of the 6 week and 3 day experiments.

Thirdly, to better interpret the meaning of variations for specific types of connections, we 

construct artificial networks as described in Section IV-A with visual and motor modules as 

regions of interest, and consider other modules to be brain regions other than visual and 

motor modules. We observe that there are three contributing factors that cause the variation 

within a specific module to become higher for higher eigenvectors and to become lower for 

lower eigenvectors: (i) Increases in the average edge weight for connections within the 

module, (ii) Increments in the average edge weight for links between this module to other 

module, and (iii) Escalation in the average edge weight for associations within the other 

module. This can also be observed by analyzing closely the definition of total variation. If a 

module is highly connected, in order for the eigenvector associated with a low graph 

frequency to be smooth on the entire network, it has to be smooth on the specific module, 

resulting in a low value in the variation of an eigenvector associated with a low graph 

frequency with respect to the module of interest. Similarly, the increase in the variation of 

connections between two modules, e.g. between visual and other modules are resulted from: 

(i) The growth in the average edge weight for connections between visual and other 

modules, or (ii) The augmentation of average weight for links within the other module. The 

graph spectral properties as in Fig. 5 (a) are observed because (i) visual and motor modules 

are themselves highly connected, and (ii) visual module is also strongly linked with motor 

module.

Finally, in analyzing the evolution of graph spectral properties as participants become more 

familiar with the tasks, following the interpretations based on artificial network analysis, this 

evolution in graph spectral properties of brain networks is mainly caused by the decrease in 

values of connections within visual and motor modules and between the visual and motor 

modules. An interesting observation is that the values in the variation of eigenvectors 

associated with high frequencies decline with respect to the visual module much faster than 

that of motor module, even though the visual module is more strongly connected throughout 

training compared to the motor module. A deep analysis using artificial networks shows that 

this results from the following three factors: (i) Though more strongly connected compared 

to the motor module, connections within the visual module weaken very quickly, (ii) The 

motor module is more closely connected with the other module than the link between the 

visual module to the other module, and (iii) Association levels within the other module stay 

relatively constant. Therefore, as participants become more exposed to the tasks, compared 

to the visual module, the motor module becomes more strongly connected. The graph 

spectral properties of actual brain networks and their evolution can be closely imitated using 

artificial networks as plotted in Fig. 5 (c). The artificial network created for our analysis best 

imitated the real brain networks with parameters pε of 0.10, uε of 0.10, and δ of 0.01. The 

average edge weights μ for visual (ν), motor (m), other (o), and inter-connecting regions are 

μν = 0.6028, μm = 0.4902, μo = 0.3098, μνm = 0.3985, μνo = 0.3181, and μmo = 0.3271. The 

correlation coefficients of association with training intensity between real and artificial 

networks for low, medium, and high graph frequencies are 0.6436, 0.7187 and 0.8457, 

respectively. Additionally, the variation among participants in real dataset can be closely 

mimicked using artificial network model we proposed, with correlation coefficients 0.9338, 
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0.9660, and 0.9486 for low, medium, and high graph frequencies, respectively. The analysis 

for the three day training dataset is highly similar (correlation coefficients 0.9834, 0.9186, 

and 0.9674 for low, medium, and high graph frequencies, respectively) and for this reason 

we do not present and analyze it separately here.

V. Frequency Decomposition of Brain Signals

The previous sections focus on the study of brain networks and their graph spectral 

properties. In this section, we investigate brain signals from a GSP perspective, and analyze 

the brain signals by examining the decomposed graph signals xL, xM, and xH with respect to 

the underlying brain networks. We compute the absolute magnitude of the decomposed 

signal xL for each brain region averaged across all sample signals for each individual during 

a scan session and then averaged across all participants. Similar aggregation is applied for 

xM and xH.

Fig. 6 presents the distribution of the decomposed signals corresponding to different levels 

of spatial variations for the first scan session (top row) and the last scan session (bottom 

row) in the 6 week experiment. Fig. 7 exhibits how the decomposed signals are distributed 

across brain regions in the 3 day experiment. Brain regions with absolute magnitudes lower 

than a fixed threshold are not colored.

A. Temporal Variation of Graph Frequency Components

We analyze temporal variation of decomposed signals with respect to different levels of 

spatial variations. To this end, we evaluate the variance of the decomposed signals over 

multiple temporal scales – over days and minutes – for the two experiments. We describe the 

method specifically for xL for simplicity and similar computations were conducted for xM 

and xH. At the macro timescale, we average the decomposed signals xL for all sample points 

within each scanning session with different sequence type, and evaluate the variance of the 

magnitudes of the signals [15] across all the scanning sessions and sequence types. For the 6 

week experiment, there are 4 scanning sessions and 3 different sequence types, so the 

variance is with respect to 12 points. For the 3 day experiment, there are 3 scanning sessions 

and only 1 sequence type, so the variance is for 3 points. As for the micro or minute-scale, 

we average the decomposed signals xL for all sample points within each minute, and 

evaluate the variance of the magnitudes of the averaged signals across all minute windows 

for each scanning session with different sequence types. The evaluated variance is then 

averaged across all participants of the experiment of interest.

Fig. 8 displays the variance of the decomposed signals xL, xM and xH at two different 

temporal scales of the two experiments. For the 6 week dataset, 3 session-sequence 

combinations, with the number proportional to the level of exposure of participants to the 

sequence (1-MIN refers to MIN sequence at session 1, 5 denotes MIN sequence at session 4, 

9 entails EXT sequence at session 3) are selected out of the 12 combinations in total for a 

cleaner illustration, but all the other session-sequence combinations exhibit similar 

properties.
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B. Discussion

A deep analysis of Figs. 6 and 7 yields many interesting aspects of graph frequency 

decomposition. First, for xL, the magnitudes on adjacent brain regions tend to possess highly 

similar values, resulting in a more evenly spread brain signal distribution, where as for xH, 

neighboring signals can exhibit highly dissimilar values; this corroborates the motivation to 

use graph frequency decomposition to segment brain signals into pieces corresponding to 

different levels of spatial fluctuations. Second, decomposed signals for a specific level of 

variation, notedly xH, are highly similar with respect to different scan sessions in an 

experiment as well as with respect to the two experiments with different sets of participants. 

The correlation coefficient between datasets for high graph frequencies is 0.6469. Third, 

recall that we normalize the brain signals at every sample point for all subjects, and for this 

reason signals xL, xM and xH would be similarly distributed across the brain if nothing 

interesting happens at the decomposition. However, in both Figs. 6 and 7, it is observed that 

many brain regions possess magnitudes higher than a threshold in xL (∼ 60% pass) and xH 

(∼ 20% pass) while not many brain regions pass the thresholding with respect to xM (∼ 3% 

pass). It has long been understood that the brain combines some degree of disorganized 

behavior with some degree of regularity and that the complexity of a system is high when 

order and disorder coexist [44]. xL varies smoothly across the brain network and therefore 

can be regarded as regularity (order), whereas xH fluctuates rapidly and consequently can be 

considered as randomness (disorder). This evokes the intuition that graph frequency 

decomposition segments a brain signal x into pieces xL and xH, which reflect order and 

disorder (and are therefore more interesting), as well as the remaining xM.

For the variance analysis, it is expected for the low graph frequency components (smooth 

spatial variation) to exhibit the smallest temporal variations, exceeded by medium and then 

high counterparts. Nonetheless, it is observed that brain activities with smooth spatial 

variations exhibit the most rapid temporal variation. Because it has been shown that 

temporal variation of observed brain activities is associated with better performance in tasks 

[15], this indicates a stronger contribution of low graph frequency components during the 

learning process. Furthermore, since the measurements were normalized such that the total 

energy of overall brain activities stayed constant at different sampling points, the rapid 

temporal changes of low graph frequency components should be accompanied by fast 

temporal variation of some other components, which are found to be high frequency 

components in all cases. Because these results were consistent for all of the temporal scales 

and datasets that we examined, and the association between temporal variability and positive 

performance has been established [16], we concluded that brain activities with smooth or 

rapid spatial variations offer greater contributions during learning. The graph frequency 

signatures at different stages of learning is analyzed in the next section.

VI. Frequency Signatures of Task Familiarity

Given that the decomposed signals exhibit interesting perspectives, it is natural to probe 

whether the signals corresponding to different levels of spatial variations associate with 

learning. To this end, we first describe how learning rate is evaluated. Given a participant, 

for each sequence completed, we defined the movement time M as the difference between 
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the time of the first button press and the time of the last button press during a single 

sequence. We then estimate the participant’s learning rate by fitting an exponential function 

(plus a constant) using the robust outlier correction [45] to the sequence of movement times 

M

(16)

where t is a sequence representing the time index, κ is the exponential drop-off parameter 

(which we call the “learning rate parameter”) used to describe the early and fast rate of 

improvement, and c1 and c2 are nonnegative constants. Their sum c1 + c2 is an estimation of 

the starting speed of the participant of interest prior to training, while the parameter c2 

entails the fastest speed to complete the sequence attained by that participant after extended 

training. A negative value of κ indicates a decrease in movement time M(t), which is thought 

to indicate that learning is occurring [46]. We chose exponential because it is viewed as the 

most statistically robust choice [47]. Further, the approach that we used has the advantage of 

estimating the rate of learning independent of initial performance or performance ceiling.

We evaluate the learning rate for all participants at each scanning session, and then compute 

the correlation between the norm ║xL║2 of the decomposed signal corresponding to low 

spatial variation and the learning rates across subjects. The correlation (R value) between the 

norms ║xM║2 as well as ║xH║2 and learning rates are also calculated. Fig. 10 plots the 

Pearson correlation coefficients at all scanning sessions of the two experiments considered. 

The horizontal axis denotes the level of exposure of participants to the sequence – which day 

in the 3 day experiment and how many number of trials participants have completed at the 

end of the scanning session in the 6 week experiment. Points are densely distributed for 

small number of trials in the 6 week experiment, so to mitigate this effect, we also plot the 

points by taking the logarithm of numbers of trials completed. We emphasize that due to 

normalization at each sampling point, the correlation values would all be 0 if graph 

frequency decomposition segments brain signals into three equivalent pieces. There are scan 

sessions where the correlation is of particular interest, however the most noteworthy 

observation is the change of correlation values with the level of exposure for participants.

In general, for xL corresponding to smooth spatial variation, we see a gradually decreasing 

trend in correlation with learning as training progresses. Although not all training sessions 

can be fit to this pattern (i.e. trials 500 and 740), it is still visible that the correlation with 

learning is above zero (≈ 0.25) at the start of the training when participants perform the task 

for the first time and gradually shifts to below zero (≈ −0.25) at the end of the experiment 

when individuals are highly familiar with the sequence. For xH corresponding to vibrant 

spatial variation, its correlation with learning is below zero (≈ −0.2) at the start of the 

training, and gradually increases throughout training until it is above zero (≈ 0.25) at the end 

of the experiment, with the exception of trials 500 and 740. This is the exact opposite of xL. 

For xM, correlation between its norm ║xM║2 with learning rate generally increases with 

the intensity of training. However, this trend is not as obvious compared to other 

decomposition counterparts, and there are a greater number of sessions that cannot be fit to 

this pattern. The correlation between the number of trials and R values is summarized in Fig. 
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9. For robustness testing, we conduct similar analysis using the 120 other sets of parameters 

described in Section IV. The plots (similar to Fig. 10) for the R values resulting from all 

parameter choices are presented in Fig. 12 and the correlation between the number of trials 

and the average R value from considering all parameter choices is summarized in Fig. 11. 

Again, similar observations are found in different experiments involving different learning 

tasks and different sets of participants.

A. Discussion

This result further implies that the most association between learning or adaptability during 

the training process comes from the brain signals that either vary smoothly (xL, regularity) 

or rapidly (xH, randomness) with respect to the brain network. Therefore, the graph 

frequency decomposition could be used to capture more informative brain signals by 

filtering out non-informative counterparts, most likely associated with middle graph 

frequencies. Besides, the positive association between ║xL║2 and learning rates as well as 

the negative association between ║xH║2 and learning rates at the start of training indicates 

that it favors learning to have more smooth, spread, and cooperative brain signals when we 

face an unfamiliar task. As we gradually become familiar with the task, the smooth and 

cooperative signal distribution becomes less and less important, and there is a level of 

exposure when such signal distribution becomes destructive instead of constructive. We note 

that the task in the 3 day experiment is more difficult compared to that of the 6 week 

experiment, and therefore the time when the cooperative signal distribution starts to become 

detrimental (the point where the regression line intercepts the horizontal line of R value 

equaling 0) is also comparable in the two experiments, describing a certain level of 

familiarity to the task. When we become highly familiar with the task, it is better and favors 

further learning to have varied, spiking, and competitive brain signals.

In the dataset evaluated here, we utilize the average coherence between time series at pairs 

of brain cortical and subcortical regions during the training as the network. Hence, a 

concentration of brain activities towards low graph frequencies would imply that activities 

on brain regions that are generally cooperative are indeed similar. Simultaneously, the 

interpretation of concentration of brain activities towards high graph frequencies is that brain 

activities on brain regions that are generally cooperative are in fact dissimilar. In terms of 

learning, one possible explanation is that there are two different stages in learning: we start 

by grasping the big picture of the task to perform relatively well, and then we refine the 

details to perform better and to approach our limits.

Because the graph frequency analysis method presented in this paper applies to any setting 

where signals are defined on top of a network structure representing proximities between 

nodes, it would be interesting in future to use this method to investigate other types of 

signals and networks in neuroscience problems. As an example, in situations given fMRI 

measurements on structural networks, concentration of signals in low graph frequency 

components would imply functional activities do behave according to the structural 

networks.

Besides, it has been understood that learning is different when one is unfamiliar or familiar 

with a particular task – it is easy to improve performance at first exposure due to the fact that 
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one is far from their performance ceiling. It would therefore be interesting to utilize graph 

frequency decomposition to further analyze the difference between learning scenarios at 

different stages of familiarity, e.g. adaptability at first exposure and creativity when one fully 

understands the components of the specific tasks.

VII. Conclusion

We used graph spectrum methods to analyze functional brain networks and signals during 

simple motor learning tasks, and established connections between graph frequency with 

principal component analysis when the networks of interest denote functional connectivity. 

We discerned that brain activities corresponding to different graph frequencies exhibit 

different levels of adaptability during learning. Further, the strong correlation between graph 

spectral property of brain networks with the level of familiarity of tasks was observed, and 

the most contributing frequency signatures at different task familiarity was recognized.
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Fig. 1. 
Relationship between training duration, intensity, and depth for the first experimental 

framework. The values in the table denote the number of trials (i.e., “depth”) of each 

sequence type (i.e., “intensity”) completed after each scanning session (i.e., “duration”) 

averaged over the 20 participants.
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Fig. 2. 
(a) Total variation TV(vk) and (b) weighted zero crossings ZC(vk) of the graph Laplacian 

eigenvectors for the brain networks averaged across participants in the 6 week training 

experiment. (c) and (d) present the values for the 3 day experiment. In both cases, the 

Laplacian eigenvectors associated with larger indexes vary more on the network and cross 

zero relatively more often, confirming the interpretation of the Laplacian eigenvalues as 

notions of frequencies. Besides, note that total variation increases relatively linearly with 

indexes.
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Fig. 3. 
Absolute magnitude at each of the n cortical structures averaged across participants in the 6 

week experiment and averaged across all frequency components in (a) the set of low graph 

frequencies , (b) the set of middle graph frequencies , and (c) the set 

of high graph frequencies  (d)–(f) presents the average absolute magnitudes for 

the 3 day experiment. Only brain regions with absolute magnitudes higher than a fixed 

threshold (0.015) are colored. The magnitudes at different brain regions across the datasets 

are significantly similar in the low and high graph frequencies (correlation coefficients 

0.5818 and 0.6616, respectively). The brain regions with high magnitude values significantly 

overlap with the visual and sensorimotor modules, in which more than 60% of values greater 

than the threshold belong to the visual and sensorimotor modules.
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Fig. 4. 
Box plots demonstrating the robustness of parameters chosen for different frequency ranges 

for the absolute magnitudes across brain regions for (a) 6 week and (b) 3 day experiments. 

Each box plot presents the correlation coefficients between the frequency range selected for 

this paper and all frequency ranges for KL and KM between 32 and 42, inclusive.
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Fig. 5. 
Spectral property of brain networks in the 6 week experiment. (a) Left: Averaged total 

variation of eigenvectors vk for 6 different types of connections of the brain averaged across 

all eigenvectors associated with low graph frequencies , across all 

participants and scan sessions. Middle: Across all eigenvectors associated with mid-range 

graph frequencies . Right: Across all eigenvectors with high graph 

frequencies . (b) Median total variations of brain networks across 

participants of different scanning sessions and different sequence types with respect to the 

level of exposure of participants to the sequence type at the scanning session. Relationship 

between training duration, intensity, and depth is summarized in Fig. 1. Value of 1 on the x-

axis in the figures refers to minimum exposure to sequences (all 3 sequence types of the first 
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session), and value of 10 on the x-axis denotes the maximum exposure to sequences (EXT 

sequence types of the fourth session). An association between spectral property of brain 

networks and the level of exposure is clearly observed (average correlation coefficient 

0.8164). (c) Median total variations evaluated upon artificial networks. Spectral properties of 

actual brain networks can be closely simulated using a few parameters. The main text gives 

all correlation values for similarity between variance among subjects and between 

correlations of training intensity.
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Fig. 6. 
Distribution of decomposed signals for the 6 week experiment. (a) Absolute magnitudes for 

all brain regions with respect to xL – brain signals varing smoothly across the network – 

averaged across all sample points for each individual and across all participants at the first 

scan session of the 6 week dataset. (b) With respect to xM and (c) with respect to xH – 

signals rapidly fluctuating across the brain. (d), (e), and (f) are averaged xL, xM and xH at the 

last scan session of the 6 week dataset, respectively. Only regions with absolute magnitudes 

higher than a fixed threshold are colored.
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Fig. 7. 
Distribution of decomposed signals for the 3 day experiment. (a), (b), and (c) are the 

absolute magnitudes for all brain regions with respect to xL, xM and xH, averaged across all 

sample points for each subject and across participants in the 3 day experiment, respectively. 

Regions with absolute value less than a threshold are not colored.
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Fig. 8. 
Temporal adaptations of spatial variations. Boxplots showing differences in temporal 

adaptabilities between brain activities with smooth (pink), moderate (red) and rapid 

(maroon) spatial variations, measured over the complete experiment for 6 week (a) and 3 

day (c), and individual training sessions for 6 week (b) and 3 day (d) experiments. We 

measured the temporal adaptations using the variance of the averaged activities over the 

complete experiment or with individual training sessions. Compared to activities with 

moderate spatial variations, smooth (95% sessions pass t-test with p < 0.01) and rapid (65% 

sessions pass t-test with p < 0.005) spatial variations have significantly higher temporal 

adaptations.
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Fig. 9. 
Pearson correlation coefficients between the number of trials (level of task familiarity) and R 

values, defined as correlations between learning rate parameters and the norm of the 

decomposed signal of interest. More obvious adaptability between decomposed signals and 

learning across training is observed for xL and xH, with decreasing association with exposure 

to tasks for the former and increasing importance for the latter.
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Fig. 10. 
Scatter plots in which each point is for a specific training session (level of task familiarity), 

depicting the R value defined here as correlations between learning rate parameters and the 

norm of the decomposed signal of interest (Pink points in the Left: xL, Red points in the 

Middle: xM, and Maroon points in the Right: xH). Top row: 6 week experiment with number 

of trials described in linear scale. Middle row: 6 week experiment withe number of trials 

evaluated in logarithm scale. We examine 6 week experiment by ordering the number of 

trials in both linear and logarithm scales to alleviate the fact that number of trials are densely 

distributed towards small values. Bottom row: 3 day experiment in which the number of 

trials is represented by the 3 scanning sessions in the experiment.
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Fig. 11. 
Pearson correlation coefficients for robustness testing, as comparable to Fig. 9. Each 

correlation coefficient is between the number of trials (level of task familiarity) and the 

average R value obtained at each trial. As such, each trial contains 121 R values for the 

different frequency ranges considered for KL and KM between 32 and 42, inclusive. Each R 

value is defined as the correlation between learning rate parameters and the norm of the 

decomposed signal of interest for a given frequency range.
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Fig. 12. 
Robustness testing to show similar trends as observed in Fig. 10. Each box is for a specific 

training session (level of task familiarity), depicting the R values obtained from changing the 

frequency ranges of KL and KM between 32 and 42, inclusive. As such, the R value is 

defined here as correlations between learning rate parameters and the norm of the 

decomposed signal of interest for a specific frequency range. Each box contains R values for 

121 different combinations of frequency ranges.
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