
Graph Grammars and Constraint Solving for Software Architecture Styles

Dan Hirsch1 Paola Inverardi2 Ugo Montanari3
1 Dep. de Computaci�on 2 Dipartamento Di Matematica 3 Dipartimento di Informatica

Universidad de Buenos Aires Universita' dell'Aquila Universita' di Pisa
Ciudad Universitaria, Pab.I, (1428) Via Vetoio, Localita' Coppito Corso Italia 40, (56125)

Buenos Aires, Argentina L'Aquila, Italia Pisa, Italia
dhirsch@dc.uba.ar inverard@univaq.it ugo@di.unipi.it

Abstract

The description of a software architecture style must in-
clude the structural model of the components and their
interactions, the laws governing the dynamic changes
in the architecture, and the communication pattern. In
our work we represent a system as a graph where hy-
peredges are components and nodes are ports of com-
munication. The construction and dynamic evolution
of the style will be represented as context-free produc-
tions and graph rewriting. To model the evolution of
the system we propose to use techniques of constraint
solving. From this approach we obtain an intuitive way
to model systems with nice characteristics for the de-
scription of dynamic architectures and recon�guration
and, a unique language to describe the style, model the
evolution of the system and prove properties.

1 Introduction

A software architecture style is a class of architectures
exhibiting a common pattern [1]. The description of a
style must include the structure model of the compo-
nents and their interactions (i.e. structural topology),
the laws governing the dynamic changes in the architec-
ture, and the communication pattern. In the following
we refer to all these aspects as a complete style descrip-
tion. A simple and natural way to describe a system
architecture is by using graphs, and as an extension of
this, by using graph grammars to describe styles. So
a grammar will generate all possible instances of that
style. This approach has �rst been proposed in [2].

In this position paper we propose to represent a sys-
tem as a graph where edges (or hyperedges) are compo-
nents and nodes are ports of communication. To model
the construction and dynamic evolution of the style we
need to choose a way of selecting which components will
evolve and communicate. For these we use a technique
already applied in [3] to represent distributed systems
with graph rewriting and constraint solving. A graph
represents a distributed system, where edges represent

processes and nodes represent shared data. In order
to evolve, one process may need to synchronize with
adjacent processes on some conditions on the shared
data. If they agree on these conditions, then all of them
can evolve. This is modeled by a two phased approach
where, context-free process productions are speci�ed (a
set for each process) with synchronization conditions for
each of the possible moves. After that, context-sensitive
subsystem rewriting rules are obtained by combining
some context-free productions (this is called the rule-
matching problem) [4].

Applying one of these context-sensitive rules, allows
for the evolution of a subpart of the system consisting of
several processes (each with one of its context-free pro-
ductions) that agree on the conditions imposed on the
shared data. The solution of the rule-matching prob-
lem is implemented considering it as a �nite domain
constraint problem [5].

In the case of software architectures we use con-
straint rules to coordinate the dynamic evolution of the
system. This is done using constraints (conditions) on
ports to represent communications between components
and (if necessary) to control changes in the con�gura-
tion of the system.

In [2], a dual approach is taken and architectural
styles are represented as context-free graph grammars
were nodes represent components and edges their com-
munication links. But, in this case the grammar only
speci�es the static con�guration of the system (referred
as style). The dynamic evolution (create and remove
components) is de�ned independently by a coordinator.

The main di�erence between the two approaches is
that in our work we give a uniform description of the
complete style with grammars. Also, we don't have a
global coordinator of evolution. Instead, each type of
component de�nes its own evolution making it easier to
describe dynamic recon�guration and specially for self
organising architectures that do not use a global coor-
dinator [6]. In this way, a clearer view of the system is
obtained while a separation of con�guration and evolu-
tion is achieved (a desirable property of software archi-
tecture description languages) [7]. Another important
point is that the evolution and communication pattern
can be obtained directly by the rewriting sequences on
the graphs, analogously to what happens in the CHAM
description of software architectures [8]. And this is fun-
damental for the veri�cation of properties of the system.



2 Basic Notions

An edge-labeled hypergraph is de�ned as in [9], as a
tuple that contains a set of nodes, a set of edges and
labeling functions for nodes and edges. Each edge can
be connected to a list of nodes (hyperedge) and a set of
distinguished external nodes is given.

In our approach we will just consider context-free
productions of the form L ! R, where L is the (graph
containing only the) hyperedge to be rewritten and R is
the graph to be generated. A production L! R can be
applied to a graph G yielding H if there is an occurrence
of L in G. The result of applying the production to G

is a graph H which is obtained from G by removing the
occurrence of L and adding R.

To model coordinated rewriting, it is necessary to
add some conditions to the nodes in the left side of pro-
ductions. In this way, each rewrite of an edge must
match conditions with its adjacent edges which should
in turn evolve as well. These conditions will be used to
coordinate interactions among components (communi-
cations, synchronization on shared data, etc.). For ex-
ample, consider two edges which share one node, such
that no other edge is attached to that node, and let us
take one production for each of these edges. Each of
these productions have a condition on the shared node
(a and b). If a 6= b, then the edges cannot rewrite to-
gether (using those rules). If a = b, then they can move
to a new state.

3 Modeling Software Architecture Styles

Now we will apply the notions introduced in the previ-
ous section to the description of software architectures.

Software architectures are represented as hyperedge
graphs where edges are components and nodes are com-
munication ports. Two edges sharing a node mean that
there is a communication link between the two compo-
nents.

A software architecture style is described by a hy-
peredge context-free grammar. The productions of a
grammar are grouped in three sets. The construction
of an instance of a style (graph grammar) begins with
the application of the �rst set of productions to ob-
tain a desired initial con�guration of the system. Af-
ter this, the last two sets of rules can be applied to
model the evolution of the architecture. The second set
represents the rules for the dynamic evolution of the
con�guration and are used to create and remove com-
ponents dynamically. If necessary, some of these rules
can be constrained. For example, rules of this type can
be used to coordinate simultaneous or ordered creation
and destruction of components, and to model local and
coordinated termination.

The third set of rules describes the communication
pattern of the style. These rules are constrained pro-
ductions that during rewriting will synchronize to model
the evolution of the system. Because of the use of
context-free productions and constraints we obtain in-
dependent speci�cations of the di�erent types of com-
ponents and the only relation between them is by the
communication coordination using constraints.

Software architectures may require complex interac-
tions among components. The explicit and independent
speci�cation of connectors, help to achieve a higher level
of reusability. In this direction we propose to use the

generality of the model we are presenting to obtain in-
dependent connector descriptions. Using the same lan-
guage to specify connectors based on more basic ones,
allows to incorporate them to the primitive set of com-
munication types and reuse them successively in di�er-
ent style descriptions.

Now we present a simple example to show how a
style is modeled.

3.1 Client-Server

The example is a client-server case study based on the
one used in [2].

The software architecture style is represented as a
hyperedge context-free grammar. Edge labels are drawn
as boxes and have two parts. One is the component
name and the other is the status of the component that
represents its di�erent states during evolution. One dif-
ference with [3], is that in our approach, we will rely on
two basic types of communication paradigms: point-
to-point and broadcast communications. This allows
to represent both types of communication at the same
time. Broadcast ports are drawn as full circles and
point-to-point ports as empty circles. Nodes are la-
beled with port names (port names are local to rules
and external nodes have to be matched when a pro-
duction is applied). Constraints decorate nodes in bold
letters, and appear on the right part of a production.
For point-to-point we have a CCS like notation for the
constraints, where a node labeled as a means that the
component is the sender of a message a and a node la-
beled a is its receiver. For broadcast, all nodes that
have to coordinate are labeled with the constraint rep-
resenting the message.

The example has three types of components: clients,
servers and a manager. An instance of the style can
have an initial con�guration with any number of clients,
any number of servers and one manager. Clients and
servers communicate through the manager. Clients and
manager are connected via the CR (client request) and
CA (client answer) ports. Servers and manager are con-
nected via the SR (server request) and SA (server an-
swer) ports. In this case all nodes are point-to-point
ports.

CR

(init)
SM

(init)
M

(init)
M

(init)
M

(init) (init)

SA

SR

S
(idle)

SR

SA

S
(idle)

C

CA

CR

(init)
C

CACASA

CRSR

M
(idle)

CASA

CRSR

CASA

CRSR

(init)
C

CASA

CRSR

CASA

CRSR

Figure 1: Client-Server: Static Productions

As we said at the beginning of this section we grouped
productions in three sets. The �rst set represents the
construction of all possible initial con�gurations of the
class of architectures modeled by the style. For the
client-server example these are the productions in �g-
ure 1. This �gure shows that all instances start with
the manager and then clients and servers are attached
to it. This is done by the application to the manager of
the �rst and second rules in �gure 1 (the dash line is a
shortcut to describe two productions for the manager).
Note that the status of all components at this level is
(init), indicating that they are in a construction (or ini-
tialization) phase. Figure 2 shows an instance with two



clients and one server generated by these productions.

CASA

CRSR

M
(init) (init)

C

CASA

CRSR

M
(init) (init)

C

CASA

CRSR

M
(init)(init)

S
(init)

C
(init)

C

CASA

CRSR

M
(init)(init)

S

Figure 2: Client-Server: An instance of the architecture style gen-
erated by the static productions

After the desired initial con�guration is obtained,
then (init)! (idle) rules are applied (last three in �g-
ure 1). These rules mean that the construction phase
is over and that the system is ready to start to work.
Now, you can apply the last two sets of rules for the
evolution of the architecture.

C

CASA

CRSR

M

CASA

CRSR

M
(idle) (idle) (idle)

CR

CA

C

CA

(idle)

CR

Figure 3: Client-Server: Dynamic Productions

Figure 3 shows the dynamic rules. In this example
we have two simple rules. The �rst one states that the
manager accepts the incorporation of a new client in
the system, and the second one is for clients that want
to leave the system.

CR

CA

C
(idle)

CASA

CRSR

M
(idle)

(idle)
S

SR

SA

req
s

anss cans

CR

CA

ansc

c
req

CASA

CRSR

M
(pcr)

req
s

CR

CA

req
c

anss

a)

(idle)
S

SA

SR

S
(pr)

SR

SA

CASA

CRSR

M
(psa)

CASA

CRSR

M
(idle)

C
(idle)

CASA

CRSR

M
(wsa)

C
(wa)

wa: waiting answer
pcr: processing client request
wsa: waiting server answer
psa: processing server answer
pr: processing request

req
s req

CS

SR CR

SA CA

M
(pr) (wsa) (wa)

s

anss
anss

CS

SR CR

SA CA

M
(idle) (wa)(psa)

ansc ansc

b)

CS

SR CR

SA CA

M
(idle) (idle) (idle)

idle

c
req req

c

CS

SR CR

SA CA

M
(pcr) (wa)(idle)

Figure 4: Client-Server: Communication Pattern Productions

Figure 4a shows the rules corresponding to the com-
munication pattern. Note that all component speci�ca-
tions are independent from each other and that the only

relation between them is by the communication coordi-
nation. This is important for a better understanding
and analysis of the system behavior.

In this example all ports are point-to-point so, the
manager will have to choose among the clients that
want to make a request (obviously this is handled by
the constraint resolution algorithms). In a broadcast
communication all rules that want to rewrite and share
nodes have to agree on the conditions imposed by the
constraints.

In �gure 4b you can see how the constrained rules
work with a client that sends a request, the manager,
and a server that returns the answer. These compo-
nents can be part of a bigger graph but we assume that
they were already chosen by the constraint solving al-
gorithm at each rewriting step. The three components
start from an idle state. Then the manager and the
client rewrite respectively to the pcr and wa states after
having coordinated on the client request. The second
rewriting is between the manager and the server (to
wsa and pr states, respectively) when the manager for-
wards the request the server. The last two steps are
from the server to the manager (to idle and psa states,
respectively) delivering the answer, and from the man-
ager to the client returning the answer of its request.
At the end of the sequence they return to an idle state
(the server already after returning the answer), where
new communications can be performed or any of the
dynamic productions can be applied. Note that the dy-
namic productions in �gure 3 can be applied only when
components are in an idle status (they cannot be in the
middle of a communication).

It is worthwhile mentioning that the generality of
the approach allows to choose the level of abstraction
for the description of the communication pattern, and
with this to obtain di�erent levels of detail. For ex-
ample, �gure 5a is an alternative set of rules for the
communication pattern, where there are two rewrites
instead of four, one that sends the request from the
client to the server (via the manager), and the other
that returns the answer to the client (�gure 5b).

Summarizing, we present a language for the descrip-
tion of software architecture styles. This includes the
description of the communication pattern and the dy-
namic changes in the topology of systems. The use of
context-free productions and constraint solving allows a
separation of coordination and con�guration and is well
suited for the explicit modeling of dynamic recon�gura-
tion. Also note that by analyzing the derivation tree of
the grammar it is possible to have all the computations
of the system permitting the veri�cation of properties
of the architecture, like for example, deadlock [10, 11].

4 Conclusions and Future Work

In this work we have presented a speci�cation method
for software architecture styles using hyperedge context
free graph grammars. Based on the rewriting system
speci�ed by the grammars we describe the style as a set
of productions that model the initial structural topol-
ogy of the architecture, the laws governing the dynamic
changes, and its communication pattern. Among the
bene�ts of this approach we can mention, that a simple
description of systems with a unique language is ob-
tained; the use of constraints to model coordination of



CR

CA

C
(idle)

CASA

CRSR

M
(idle)

(idle)
S

SR

SA

CR

CA

ansc

C
(idle)

req
s

CR

CA

req
c

C
(wa)

CASA

CRSR

M
(pcr)

c
req

req
s

S
(pr)

SR

SA

(idle)
S

anss

SA

SR

anss cans
CASA

CRSR

M
(idle)

CRSR c
reqreq s

req
s req

c

CS

SR CR

SA CA

M
(wa)(pr) (pcr)

ansc ansc
anssanss

b)

CS

SR CR

SA CA

M
(idle) (idle) (idle)

wa: waiting answer
pcr: processing client request

pr: processing request

CS

SR CR

SA CA

M
(idle) (idle) (idle)

a)

Figure 5: Client-Server: Communication Pattern Productions. An
alternative

components allows a clear description of component in-
teractions and controlled dynamics; and the inheritance
of the distributed solutions for the constraint-solving
problem. Also, context-free rules are a natural way for
modeling the behavior of components independently of
each other, allowing a distributed implementation.

Finally, the productions we use are all rewriting rules,
but an interesting extension is to incorporate re�nement
rules where the history of the system is remembered.
This can be useful in the description of a bigger class of
software architectures, specially those in which the or-
ganization of components and connectors may change
during system execution [12].

In spite of the fact that context-free productions
limit the classes of systems that can be described, it is
clear that the description language proposed has very
good properties for modeling recon�guration and self
organising architectures. It is our intention to continue
the research in this direction for a deeper analysis of the
subject.

Acknowledgments

The third author was partially supported by CNR In-
tegrated Project Sistemi Eterogenei Connessi mediante
Reti di Comunicazione, Esprit Working Group COOR-
DINA and Italian Ministry of Research Tecniche For-
mali per Sistemi Software.

The �rst author was partially supported by ARTE
Project, PIC 11-00000-01856, ANPCyT and FOMEC
Project 376, Contract 164.

References

[1] Shaw, M. and Garlan, D., Software Architecture:
Perspectives on an Emerging Discipline, Prentice

Hall, 1996.

[2] Le M�etayer, D., \Describing software architecture
styles using graph grammars," IEEE Transactions
on Software Engineering, to appear.

[3] Montanari, U. and Rossi, F., \Graph rewriting,
constraint solving and tiles for coordinating dis-
tributed systems," 1997, To appear in Applied
Category Theory.

[4] Corradini, A., Degano, P., and Montanari, U.,
\Specifying highly concurrent data structure ma-
nipulation," in COMPUTING 85:A Broad Per-
spective of Concurrent Developments, Bucci, G.
and Valle, G., Eds. Elsevier Science, 1985.

[5] A.K. Mackworth, Encyclopedia of IA, chapter Con-
straint Satisfaction, Springer Verlag, 1988.

[6] Magee, J. and Kramer, J., \Self organising software
architectures," in Proceedings of the Second Inter-
national Software Architecture Workshop, 1996.

[7] Medvidovic, N., \A classi�cation and compari-
son framework for software architecture description
languages," Technical Report ICS-TR-97-02, Uni-
versity of California, Irvine, Department of Infor-
mation and Computer Science, 1997.

[8] Inverardi, P. and Wolf, A., \Formal speci�cation
and analysis of software architectures using the
chemical abstract machine model," IEEE Trans-
actions on Software Engineering, vol. 21, no. 4, pp.
373{386, April 1995, Special Issue on Software Ar-
chitectures.

[9] Drewes, F., Kreowski, H.-J., and Habel, A., \Foun-
dations," in Handbook of Graph Grammars and
Computing by Graph Transformation, G. Rozen-
berg, Ed., vol. I, chapter 2. World Scienti�c, 1996.

[10] Degano, P. and Montanari, U., \A model for dis-
tributed systems based on graph rewriting," Jour-
nal of the Association for Computing Machinery,
vol. 34, no. 2, April 1987.

[11] Compare, D., Inverardi, P., and Wolf, A., \Un-
covering architectural mismatch in dynamic behav-
ior," To appear.

[12] Magee, J. and Kramer, J., \Dynamic structure
in software architectures," in Proceedings of the
Fourth ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering, 1996, ACM Soft-
ware Engineering Notes.


