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Abstract

This paper is the first part of an introduction to the subject of graph homomorphism
in the mixed form of a course and a survey. We give the basic definitions, examples and
uses of graph homomorphisms and mention some results that consider the structure and
some parameters of the graphs involved. We discuss vertex transitive graphs and Cayley
graphs and their rather fundamental role in some aspects of graph homomorphisms.
Graph colourings are then explored as homomorphisms, followed by a discussion of various
graph products.

1 Introduction

Homomorphisms provide a way of simplifying the structure of objects one wishes to study
while preserving much of it that is of significance. Most mathematicians remember the iso-
morphism theorems we learn in a first course on group theory, and certainly anyone involved
in some way with mathematics or computer science knows about integers modulo some n.
It is not surprising that homomorphisms also appeared in graph theory, and that they have
proven useful in many areas.

We do not claim to provide the definitive survey but only an introductory course. Of
necessity, we had to omit most proofs and, sadly, even many results and some aspects of the
subject matter. But we do try to provide an extensive bibliography and the interested reader
will be able to find the missing pieces with little trouble. For the rest, we will all have to
wait for the book that Hell and Nesetfil are reportedly writing. The course/survey is divided
into two parts. The present paper is concerned with structure and symmetry, the sequel [56]
deals with computational aspects of graph homomorphisms and surveys the computer science
roots of the subject.

Graph homomorphisms in the current sense were first studied by Sabidussi in the late
fifties and early sixties, with results published in the paper on Graph derivatives [109] and
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used by him in, among others, [108]. This was followed by much activity of what has become
known as the Prague school of category theory. There, people around Hedrlin and Pultr
pursued homomorphisms of relational systems in general, and graph homomorphisms in par-
ticular, in the sixties and the seventies, with many of the results collected in Combinatorial,
Algebraic and Topological Representations of Groups, Semigroups and Categories by Pultr
and Trnkova [102]. Some of this work was continued by Hell in his Ph.D. thesis [65] in 1972
with a study of retracts of graphs. In computer science, graph homomorphisms have been
studied as interpretations, especially in relation to grammars ([93, 92|, for example), and
as “general colourings”. Welzl’'s homomorphism density theorem 2.33 (Section 2.5) arose in
this context. Others took an algorithmic approach such as How difficult is it to recognize if
a graph is homomorphic to a given one?, usually — but not always — proving the problem
NP-complete. This is discussed in more detail in [56].

Graph homomorphisms are mostly used as tools, especially in connection with colouring
problems. For example, the chromatic difference sequence of a graph studied by Albertson,
Berman, Collins, Tardif, Zhou and others ([3, 5, 119, 132, 134]), relies on them. Since odd
cycles must map to odd cycles of at most equal length, people have studied homomorphisms
into them, for example [5, 25, 49]. But some of the rare structural results stem from con-
sidering graphs which have the property that there are homomorphisms from the cartesian
product GOG into G.

Many of the concepts of graph homomorphisms work equally well for finite and for infinite
graphs (clearly infinite graphs homomorphically equivalent to finite ones “behave” essentially
like them). But the important idea of a core of a graph does not easily generalize to infinite
graphs and its considerations lead to undecidability results (these are discussed [56]). This
is the main reason for limiting the present paper to finite graphs.

2 Basics

2.1 Basic definitions

Unless otherwise indicated, graphs in this paper will be simple, loopless and finite. We shall
assume the basics of graph theory and, unless otherwise stated, use the notation of [19] for
graphs and of [106] for groups. We will denote the vertex set of a graph G by V(G) and
its edge set by E(G); the edge between u and v will be denoted by [u,v]. The order of
a graph G, i.e. the number of vertices, will be denoted by |G|. Most of the time we shall
confuse an equivalence class of graphs under isomorphisms with a particular representative
of it. Thus, the complete graph K, will usually be on the vertex set {0,1,...,n — 1} = [n].
The complement of a graph G will be denoted by G. We will denote by P, and by C,, the
path and the cycle on n vertices. Functions will be composed from right to left, g o h(x) =
gh(z) = g(h(z)), and we define ¢(S) = {¢(s) : s € S}.

Definition 2.1 Let G and H be graphs. A function ¢ : V(G) — V(H) is a homomorphism
from G to H if it preserves edges, that is, if for any edge [u, v] of G, [¢p(u), p(v)] is an edge of
H. We write simply ¢ : G — H.

It is usual to think of graphs as sets of vertices with a binary relation. This is consistent
with writing ¢ : G — H for a homomorphism which maps vertices to vertices. When
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¢ : G — H is a homomorphism, it induces a mapping

¢p : E(G) — E(H), ¢p([u,v]) = [¢(u), p(v)],

and we can define the graph ¢(G) = (¢(V(G)), ¢r(E(G))), called the homomorphic image of
G in H.

In group theory, there are trivial homomorphisms from one object to another. Any group
can be mapped by a homomorphism into any other by simply sending all its elements to
the identity of the target group. In fact, the study of kernels is important in algebra. In
the context of graphs without loops, the notion of a homomorphism is far more restrictive.
Indeed, there need not be a homomorphism between two graphs, and these cases are as much
a part of the theory as those where homomorphisms do exist (there are other categories where
homomorphisms do not always exist between two objects, e.g. the category of bounded lattices
or that of semigroups, and the interested reader will want to consult [102]).

A surjective homomorphism is often called an epimorphism, an injective one a monomor-
phism and a bijective homomorphism is sometimes called a bimorphism. Note that unlike in
group theory, the inverse of a bijective homomorphism need not be a homomorphism. For
example, any bijection from K, to K, is a bimorphism. A homomorphism from a graph G to
itself is called an endomorphism. The identity endomorphism on a graph G will be denoted
by idg. The set of endomorphisms of a graph G is a semigroup under composition.

Definition 2.2 A homomorphism ¢ : G — H is called faithful if ¢(G) is an induced
subgraph of H. It will be called full if [u,v] € E(G) if and only if [¢(u), p(v)] € E(H), that
is, when ¢~ !(z) U ¢~ !(y) induces a complete bipartite graph whenever [x,y] € E(H).

In other words, a homomorphism ¢ : G — H is faithful when there is an edge between
any two pre-images ¢~ '(u) and ¢~1(v) such that [u,v] is an edge of H. When a faithful
homomorphism ¢ is bijective, it is full since each ¢~!(u) is a singleton, and we have that
[~ 1(u), ¢~ 1 (v)] is an edge in G if and only if [u,v] is an edge in H. Thus a faithful bijective
homomorphism is an isomorphism and in this case we write G &£ H. An isomorphism from
G to G is an automorphism of G; the set of automorphisms of a graph forms a group under
composition. We shall denote the group of automorphisms of G by Aut(G) .

A surjective faithful homomorphisms ¢ is sometimes called complete. When ¢ : G — H
is a complete homomorphism, H is a homomorphic image of G. Similarly, G is isomorphic
to its image under ¢ when ¢ is injective and faithful.

Observation 2.3 Suppose that ¢ : G — H is a graph homomorphism. Then ¢ is an
isomorphism if and only if ¢ is bijective and if ¢~ is also a homomorphism. In particular,
if G = H then ¢ is an automorphism if and only if it is bijective.

Example 2.4 Let P,, be the path ug...u,—1 and K5 the complete graph with vertices 0, 1.
It is easy to see that the mappings described below are homomorphisms, and that ¢ is onto
and ¢3 is one-to-one.

o ¢1(u;) =u; wheni=0,...,n—2, ¢1(up—1) = up—3 (from P, to P,).

o po(ugk) =0, ¢o(ugks1) =1for k=0,...,|[5] (from P, to Ky).
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o #3(0) = u;, ¢3(1) =iy, forany 0 <i<n—1 (from Ky to Py).

In fact, Ky is the homomorphic image of any bipartite graph. In particular, there always is
a homomorphism from the cycle Cs; onto Ko for any k.

Example 2.5 Let C), =ug...upm—1 and Cp, = vg...v,—1 be odd cycles, with m > n. There
is a homomorphism from C,, to C,, for example, ¢ : C,, — C,, given by ¢(u;) = v; for
0<i<n-1,and un+;j = Vj(mod 2)- On the other hand, there is no homomorphism from C,
into Cy,.

Observation 2.6 Let G and H be non-bipartite graphs and ¢ : G — H a homomorphism.
Then

(1) the length of a shortest odd cycle in G (the odd girth of G) is at least the odd girth
of H;

(2) the size w(Q) of a largest clique in G (the clique number of G) is at least w(H).

Example 2.7 A proper k-colouring of a graph G is an assignment of colours to the vertices
of G in such a way that adjacent vertices get different colours. It is useful to think of a proper
k-colouring as a function ¢ : V. — [k], with [k] = {0,1,...,k — 1}. Indeed, it is an easy
exercise to see that a graph G has a proper k-colouring if and only if there is a homomorphism
from G into the complete graph Kj. Thus we have a definition of a proper colouring in the
language of homomorphisms.

The colours in the above example induce a partition of the vertex set of the graph and
the homomorphism into K, corresponds to identifying the vertices of the same colour. This
can be done in general as is explained in the next section.

The reader might have asked whether between any two graphs there is a homomorphism.
Proper colourings provide examples of pairs of graphs neither of which maps into the other
by a homomorphism. Recall that the chromatic number x(G) of a graph G is the least k
for which G has a proper k-colouring. From the observation made in Example 2.7 it follows
that if there is a homomorphism ¢ : G — H, then x(G) < x(H); in other words, a graph
with chromatic number k£ cannot map by a homomorphism into one with a lower chromatic
number. Thus the graph K3 and any graph of chromatic number at least four containing
no triangles cannot be homomorphic in either direction. The latter kind of graphs exist, for
example certain Kneser graphs (defined in Section 3.4; see in particular Proposition 3.14).

2.2 Quotients

Definition 2.8 Let G be a graph and let P = {Vi,...,Vi} be a partition of the vertex set
of G into non-empty classes. The quotient G/P of G by P is the graph whose vertices are
the sets V1,..., V) and whose edges are the pairs [V;, V], i # j, such that there are u; € Vj,
uj € Vj with [u;,u;] € E(G). The mapping mp : V(G) — V(G/P) defined by mp(u) =V;
such that u € V;, is the natural map for P.

Quotients often provide a way of deriving the structure of an object from the structure of
a larger one; factor groups are a good example. In the present context it is worth our while
to investigate when the natural map mp : V(G) — V(G/P) is a homomorphism. Observe
that if mp is a homomorphism, then it is automatically faithful.
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Lemma 2.9 A map ¢ : V(G) — V(H) is a graph homomorphism if and only if the pre-
image ¢~ 1(I) of every independent subset I of V(H) is an independent set.

Corollary 2.10 Let G be a graph and P a partition of the vertex set of G. Then mp is a
homomorphism if and only if V; is an independent set for each 1.

Proposition 2.11 For every homomorphism ¢ : G — H there is a partition P of V(Q)
into independent sets and a monomorphism ¢ : G/P — H such that ¢ = 1) o wp.

A homomorphism ¢ of a graph G into H gives rise to an equivalence relation =g, the
kernel of ¢, defined on V' by u =4 v if and only if ¢(u) = ¢(v). This, in turn, induces a
partition Py on the vertex set of Gj it is this partition that works in the Corollary 2.10 and
Proposition 2.11. We can then speak of the quotient of G by ¢ and, abusing the notation
slightly, we write G/¢ for G/Py. The language of quotients also gives us a more natural
definition of a complete homomorphism.

Proposition 2.12 A homomorphism ¢ : G — H is complete if and only if p : G/ — H
(defined in Proposition 2.11) is an isomorphism.

One simple but useful consequence is that any homomorphism can be viewed is a sequence
of identifications of pairs of vertices by complete homomorphisms.

Definition 2.13 A complete homomorphism ¢ : G — H is elementary if there is unique
pair of (nonadjacent) vertices u,v € V(G) which are identified by ¢. We call H an elementary
quotient of G.

We then have the very useful observation of Lemma 2.14. It allows us to specify a
homomorphism simply by saying which vertices are equivalent under the homomorphism
under construction and, further, to say which vertices are identified, pair by pair.

Lemma 2.14 Let G and H be graphs and ¢ : G — H a homomorphism. Then there is a
natural number k and graphs G = Go, Gy, ...,Gy such that Gi11 is an elementary quotient
of G; when i < k and Gy, = G/¢.

One type of homomorphism which is best defined in terms of partitions although in the
literature ([30, 22, 45]) it is not defined in this language, is a folding.

Definition 2.15 (i) An elementary homomorphism ¢ : G — H is a simple fold if the two
vertices which are identified have a common neighbour.

(ii) A folding is a homomorphism obtained as a sequence of simple folds. If ¢ : G — H
and ¢ is a folding, we say that G folds onto H.

The above-mentioned papers deal with minimal graphs that can fold onto complete
graphs, a problem raised in [30] and answered in [45].

Usually, a graph cannot fold onto each of its homomorphc images. For example, a dis-
connected graph cannot fold onto a connected one. A simple connected example is a path of
length three which cannot fold onto a triangle but can be mapped to it by an elementary ho-
momorphism. However, we will see in the next section that some important homomorphisms
are foldings.
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2.3 Retracts

When ¢ is an endomorphism of a graph G, the image of G under ¢ is a subgraph of G and
there is a natural homomorphism back from ¢(G) into G, namely the inclusion map. Such
relationships between G and ¢(G) are natural objects to consider and lead to the idea of
retracts. The concept is not proper to graph theory — retracts have their origin in topology
and appear often in category theory. Hell’s thesis [65] is concerned with category-theoretic
aspects of graph retracts and extends the work of the Prague school ([102]). Our concerns
are slightly different and so we shall not elaborate on this.

Definition 2.16 Let G and H be graphs. Then H is called a retract of G if there are
homomorphisms p: G — H and v : H — G such that po~y = idy. The homomorphism p
is called a retraction and v a co-retraction.

The composition of two retractions is again a retraction and so a retract of a retract
of G is a retract of G. A co-retraction is always a faithful monomorphism and v(H) an
induced subgraph of G. Thus retracts of G are (isomorphic to) induced subgraphs of G. We
usually think of retracts as subgraphs, since an endomorphism p of GG onto its subgraph R is
a retraction whenever p | R = idr. In this case the co-retraction is naturally the inclusion
map.

Observation 2.17 Since there exist homomorphisms in both directions between a graph G
and any of its retracts H, it follows that G and H have the same chromatic number, odd
girth and clique number. Note also that x(G) = w(G) if and only if K, () is a retract of G.

The condition of Definition 2.16 that the composition of a retraction and its associated
co-retraction be the identity can be slightly relaxed, providing a more useful characterization
of retracts.

Lemma 2.18 Let G, H be graphs. Then H is a retract of G if and only if there exist
homomorphisms p: G — H and o : H — G such that po o € Aut(H).

In particular, if H is a subgraph of G, then H is a retract of G is and only if there is a
homomorphism p : G — H whose restriction to H is an automorphism of H.

A retract of a graph G is always a quotient of G (i.e., a homomorphic image), and
retractions are complete homomorphisms. In the case of connected graphs we can say more.

Proposition 2.19 Any retraction of a connected graph is a folding.

Proof Let p : G — H be a retraction, where G is connected and H is a subgraph of G. Let
u € V(G) be a vertex not in H, adjacent to some vertex v in H. Since the retraction p which
takes G onto H must map u to a neighbour of v, the elementary homomorphism p,, which
identifies u and p(u) is a simple fold. The resulting graph still has H as a retract and so a
folding can be constructed by repeating the argument. O

In some sense, retracts are easy to find — if we already have an endomorphism, the
following lemma allows us to find a retraction.
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Lemma 2.20 Let ¢ be an endomorphism of a graph G. Then there is an n such that R =
¢"(Q) is a retract of G (and ¢" a retraction). Further, ¢ | R is an automorphism of R.

Observation 2.17 shows that there are (many) subgraphs of G which are not retracts of
(. Indeed, no subgraph of G with chromatic number smaller than that of GG is a retract of G.
On the other hand, a graph is always a retract of itself and need not have any other retracts.

2.4 Cores

Whenever one looks at substructures with some given property one is naturally tempted to
ask whether there is a smallest one that has the property. This is often the case and the
property of being a retract is no exception. Minimal retracts are known as cores.

Definition 2.21 A graph G is a core if no proper subgraph of G is a retract of G.

Natural though it is, we never work with this definition but replace it at once by an
equivalent one which is technically much easier to handle. Note, however, that as it stands,
Definition 2.21 applies equally well to finite and infinite graphs, but that this is not the case
for its reformulated version:

Proposition 2.22 Let G be a graph. Then G is a core if and only if every endomorphism
of G is an automorphism of G.

Proof Suppose G is a core, and let ¢ : G — G be an endomorphism. By Lemma 2.20,
¢"(G) is a retract of G for some n. Thus ¢™(G) = G by the definition of a core, and hence
¢ € Aut(G). The converse is trivial. O

The above proposition suggests another name for cores - automorphic graphs. This would
be consistent with the names for similiar concepts in other branches of mathematics.

Example 2.23 The following graphs are cores. While some are easily seen to be such, others
are justified later.

o Ky, n2>1;
o (i1 (the odd cycle) for k > 1;

e Wyt (the odd wheel, that is, an odd cycle with one extra vertex adjacent to all vertices
of the cycle), for k > 1;

e the Petersen graph;

e any x-critical graph, that is, a graph for which the chromatic numbers of its proper
subgraphs are strictly smaller than its chromatic number.

Example 2.24 On the other hand, these are not cores.
o (Y, for k> 0;

e complete graphs with one edge removed;



114 G. Hahn and C. Tardif

e a disjoint union of cycles.
Definition 2.25 A retract H of G is called a core of G if it is a core.

Among all subgraphs of G which are retracts of G choose one, say H, having the smallest
number of vertices. Since retracts of retracts of G are retracts of G, it follows that H is a
core. Thus:

Proposition 2.26 FEvery finite graph has a core.
Proposition 2.27 If Hy and Hy are cores of a graph G then they are isomorphic.

Proof Consider such a pair of cores of G and consider the retractions pg and p; of G onto
Hy and Hy, respectively. Without loss of generality we can assume that both Hy and H; are
subgraphs of G. Let o; : H; — Hi_; be the restriction of p;_; to H;, i = 0,1. Then o1_;0;
is an endomorphism of H;, and since H; is a core, o1_;0; € Aut(H;), by Proposition 2.22.
This means that og, o1 are, in fact, isomorphisms. O

Since all cores of a graph G are isomorphic, it is legitimate to speak of the core of a graph
G; we will denote it by G*®. Strictly speaking, G*® is any member of its isomorphism class and
we usually take for G* a subgraph of G (which is necessarily induced). This way of thinking
of the core is more intuitive. For example, if G is bipartite then G* =2 K5, and so any edge
of G is its core.

2.5 Homomorphic equivalence

It is useful to define a relation on the class of graphs using homomorphisms.

Definition 2.28 If there is a homomorphism from a graph G to a graph H we say that G
maps to H and we write G — H.

For a simple example, note that H — G for any subgraph H of G. The relation —
is clearly transitive and reflexive but is not symmetric (an even cycle maps to an odd one
but not vice versa). In fact, it does not define a partial order since it is not anti-symmetric
either (for example, any two bipartite graphs map one into the other even when they are not
isomorphic). Thus the relation — is only a quasi-order on the class of all graphs.

Definition 2.29 We say that graphs G and H are homomorphically equivalent if G — H
and H — G. When this is the case we write G <+ H.

For instance, if R is a retract of G then G < R. Indeed, the definition of a retract
provides the homomorphisms in both direction, namely the retraction p : G — R and the
co-retraction v : R — G. This is true, in particular, of cores of graphs. Therefore, given
any two graphs G, H, we have that G < H implies G* <« H*®. However, the following much
stronger result holds.

Proposition 2.30 Let G, H be graphs such that G <~ H. Then the cores of G and H are
isomorphic.
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Proof Consider the cores G* and H*® together with their retractions pg : G — G*® and
pr : H — H® and co-retractions vg : G* — G and vy : H* — H. Let ¢g : G — H
and ¢y : H — G be homomorphisms. Then the mapping ¢ : G* — G* defined by
¥ = pg o ¢g o ¢ © Vg is a homomorphism and hence an automorphism of G®. Therefore
pc oo : H— G* is a retraction of H onto G* (and ¢g o vg : G* — H a co-retraction),
thus G* is a core of H by Lemma 2.18. By Proposition 2.27, G* is isomorphic to H®. O

Clearly < is an equivalence relation on the class of all graphs. We shall denote by H(G)
the equivalence class of this relation containing the graph G. The following corollary follows
from our discussion of retracts, cores and from the definition of homomorphic equivalence.

Corollary 2.31 Let G be a graph. Then to within isomorphism, G® is the unique graph of
smallest order in H(G).

The above corollary indicates why graph homomorphisms are interesting and important.
The various aspects of any property which is preserved under homomorphisms can be stud-
ied on graphs best adapted for such investigations, provided they all belong to the same
equivalence class (here, as elsewhere, we omit the qualifier under homomorphisms). For ex-
ample, all the graphs in a class H(G) have the same odd girth, chromatic number, ultimate
independence ratio, etc.

The set of equivalence classes of finite graphs can be partially ordered by homomorphisms
between their elements.

Definition 2.32 Let G and H be graphs. Then H(G) < H(H) if G — H.

This partially ordered set is, in fact, a lattice. We will indicate what the join and the
meet are in the next section. Moreover (assuming we consider only graphs having at least
one edge), there is a unique equivalence class which is minimal with respect to <, namely
the class H(K32) consisting of all bipartite graphs. It was first noticed by Welzl [127] that
the part of the lattice above the minimal class H(K>2) has the remarkable property of being
order-dense. Although this result concerns equivalence classes of graphs we shall formulate
it in terms of representatives.

Theorem 2.33 (Welzl) Let G and H be graphs such that G — H and H /> G. Then there
is a graph K such that G — K — H and H 4 K /4 G.

In terms of the equivalence classes this means that H(G) < H(K) < H(H), both inequal-
ities being strict. Welzl’s proof is rather long, a short one will be given in Section 5.1.

2.6 Products

We need to recall some of the various graph products that have been defined and used. We
shall use the natural descriptive notation devised by Nesettil. We will consider four products,
two of them in some depth.

Definition 2.34 Let G and H be graphs. The following products of G and H are defined
on the vertex set V =V (G) x V(H).
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the cartesian product GOH, with

E(GOH) = {[(u,x), (v,y)] : either u =v,[x,y] € E(H), or [u,v] € E(G),z =y};

the categorical product G x H, with

E(G x H) = {[(u,2), (v,y)] : [u,v] € E(G), [2,y] € E(H)};

the strong product G X H, with

E(GRH) = E(G x H)U E(GOH);

the lexicographic product G[H], with

E(G[H]) = {[(u,x), (v,y)] : either u =, [x,y] € E(H), or [u,v] € E(G)}.

All the products can be found in the literature under a variety of names. The notation
in the first three products indicates exactly what the result of taking the product of K5 by
K is; this defines the whole graph.

It is easy to show that all the products are associative and that all but the lexicographic
product are commutative. We can then define products of k graphs G, ..., G} in the obvious
manner and denote them by D’f:lGi and, analogously, for x and K. The meaning of G* (when
G; = G for all 7) will be specified as needed.

When a product of graphs G and H is studied, it is often useful to consider the graphs
induced by {u} x V(H) or by V(G) x {z}. It is easy to see that these graphs, called fibers,
are isomorphic to G or H in the case of the cartesian, strong, and lexicographic products.
Hence the next observation.

Observation 2.35 Let G and H be graphs and let x be any of the cartesian, strong or
lexicographic product. Then G — G+ H and H — G * H. In fact, in each case G and H are
induced subgraphs of the product.

The converses are not always true. In particular, if both G and H have at least one edge,
then w(GX H) = w(G[H]) > max{w(G),w(H)}, and so these products do not map into their
factors. The cartesian product sometimes does have a homomorphism into its factors, but
rarely (see Section 5.2).

Let X and Y be sets and X x Y their cartesian product. The projections of X x Y
onto their factors are the mappings pry : X x Y — X defined by pry(u,z) = u and
pry : X x Y — Y defined by pry (u,z) = x. When G and H are graphs, and X = V(G),
Y = V(H), we write simply pry and pry. Clearly, the projections are not homomorphisms
for the cartesian, strong and lexicographic products, and they are homomorphisms for the
categorical product. The latter proves the next lemma.

Lemma 2.36 Let G and H be graphs. Then G x H - G and G x H — H.
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The converse is not true: Ko X K3 = Cg, and while the bipartite C maps to K9 and can
be “wrapped around” K3, the latter does not map into Cg

The categorical product allows us to make a lattice of homomorphism equivalence classes
and, by extension, of cores. Recall that H(G) is the equivalence class containing G' under
homomorphisms.

Theorem 2.37 The equivalence classes of graphs under homomorphisms form a lattice under
the partial order <. The join of H(G) and H(H) is the equivalence class containing the
disjoint union of G and H, and the meet of H(G) and H(H) is H(G x H).

Products preserve homomorphisms in the following manner. Let G, H,G’, H' be graphs
with ¢ : G — G’ and ¢y : H — H'. Define 7 : V(G) x V(H) — V(G') x V(H') by
T(u,x) = (¢p(u),¥(x)). Then 7 is a homomorphism for each of the products defined above.
In particular, GOH < G*0OH® < (GOH)® and similarly for the other products. It is not
true, however, that the product of cores of graphs is the core of the products.

Example 2.38 Consider Ky and Coiy1. Both are cores but (K3OC9;41)® = Cogyq. Simi-
larly, (K2 x Copy1)® = Ka.

3 Vertex-transitive graphs

Bijectivity is a very restrictive condition to impose on a homomorphism. Nonetheless, au-
tomorphisms play a significant role in the general study of homomorphisms, in view of
some of the facts presented earlier. We have seen in Lemma 2.20 that every endomorphism
¢ : G — @G acts as an automorphism on some retract of G. Also, the core graphs, which
represent all classes of graphs, have the property that all of their endomorphisms are auto-
morphisms. By themselves, these observations do not make the subject of vertex-transitive
graphs a central theme in the study of homomorphisms, though they emphasize its study, for
its own sake, as a fruitful venture. The practical motivation for studying vertex-transitive
graphs in the context of graph homomorphisms rather comes from special classes of graphs
which are vertex-transitive and play a central role in some aspects of the theory (as complete
graphs do in graph colouring).

This section is therefore intended to serve two purposes. First, to present results that
are specific to the context of homomorphisms of vertex-transitive graphs, such as Sabidussi’s
theorem, the No-Homomorphism Lemma and Welzl’s theorem on cores of vertex-transitive
graphs. Second, to introduce some families of graphs such as Cayley graphs, Kneser graphs
and circular graphs, which are of relevance in other sections of this paper.

3.1 Cayley graphs

Let I" be a group and S a subset of I' that is closed under inverses and does not contain the
identity!. The Cayley graph Cay(T',S) is the graph with I' as its vertex set, two vertices u
and v being joined by an edge if and only if u='v € S. Simple examples of Cayley graphs
include the cycles, which are Cayley graphs of cyclic groups, and the complete graphs K,,

'Such a set is often called a Cayley subset of T.
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which are Cayley graphs of any group of order n. Specific names are sometimes given to
some classes of Cayley graphs; for instance, Cayley graphs of cyclic groups are often called
circulants (the name comes from the fact that their adjacency matrices are called “circulant
matrices”), and a Cayley graph Cay(F,S), where F is a finite field, |F| = 1 mod 4, and S is
the set of quadratic residues of F', is called a Paley graph.

Cayley graphs constitute a rich class of vertex-transitive graphs. It is well known that
the left translations (that is, bijections T, : I' — I' defined by T,(z) = ax) of a Cayley
graph are automorphisms, thus ensuring vertex transitivity. Since a Cayley graph may also
have other automorphisms, the group structure is not encoded in the graph structure.?
shifting the focus from automorphisms to homomorphisms, one could expect to see the relative
importance of Cayley graphs diminish within the subject of graph symmetry. The topic of
graph homomorphisms, however, emphasizes Cayley graphs as a central theme in the study
of vertex-transitive graphs for the following reason: up to homomorphic equivalence, Cayley
graphs represent all classes of vertex-transitive graphs.

In

Let G be a vertex-transitive graph, and g a fixed vertex of G. Recall that Aut(G) denotes
the automorphism group of G and Stab(ug) the stabilizer of uy, i.e., the subgroup of Aut(G)
containing all automorphisms ¢ such that ¢(ug) = ug. Put

S = {o € Aut(Q) : [uo, o(uo)] € E(G)}.

Thus S is a union of left cosets of Stab(uy).

It is easily seen that S contains the inverse of each of its elements, and that the iden-
tity does not belong to S. Thus we can define the Cayley graph Cay(Aut(G),S). By the
definition of S, for ¢1,¢2 € Aut(G), we have [p1,¢2] € E(Cay(Aut(G),S)) if and only
if [p1(ug), p2(ug)] € E(G). With this characterization of adjacency in Cay(Aut(G),S), it
is easy to see that the maps p and ~ defined below are homomorphisms between G and
Cay(Aut(G), 5).

o p: Cay(Aut(G),S) — G, defined by putting p(¢) = ¢(uo).

e v : G — Cay(Aut(G), S), defined by arbitrarily selecting v(u) = ¢,, such that ¢, (ug) =
u for each u € V(G).

Note that p o y(u) = u for any u € V(G), so p is a retraction. Thus, we have the following.

Theorem 3.1 (Sabidussi [108]) Any vertez-transitive graph is a retract of some Cayley
graph. O

It is worthwhile to discuss some additional properties of the retraction p. Note that for
any u € V(G), the set

pH(w) = {¢ € Aut(G) : d(ug) = u}

is a left coset of Stab(ug). In fact, p is a full homomorphism — if [u,v] is an edge of G, then
p~H(u)Up~!(v) induces a complete bipartite graph; this accounts for the freedom encountered
in defining . But we have more: Cay(Aut(G), S) is isomorphic to the lexicographic product

2Nonetheless, a result of Babai and Godsil provides evidence that most Cayley graphs have a regular
automorphism group, see [7].
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G[K}] with k = [Stab(ug)|. Thus the structure of Cay(Aut(G),S) is independent of the
choice of ug. A graph isomorphic to G[K}] for some k is called a multiple of G.

With this in mind, we give an alternative statement of Theorem 3.1 which is closer to its
original spirit.

Theorem 3.1 (Multiples version) Let G be a vertez-transitive graph. Then some multiple
of G is a Cayley graph. O

In our approach, a Cayley graph on Aut(G) is defined first, then the structure of G is
recovered by retracting Cay(Aut(G),S) onto it. It is possible to interchange the order of
these steps; this gives rise to the notion of a Cayley coset graph. Let I'" be a group, I'g a
subgroup of I' and S a subset of I' that is closed under inverses and does not contain the
identity. The Cayley coset graph Ccg(T',S,Ty) is defined by putting

V(Ceg(I',5,Ty)) = {alg:ael},
E(Ccg(T,S,Ty)) = {[aFo,bFO] callyg # bl'g and al'g N OGS # @}

The condition al'g N byS # () means that there exist ¢ € al'g, d € bI'y such that d~'c € S.
In particular, our retraction p amounts to collapsing Cay(Aut(G),S) onto the coset graph
Ceg(Aut(G), S, Stab(ug)). Thus, Theorem 3.1 also admits the following formulation.

Theorem 3.1 (Cayley coset graphs version) Any vertez-transitive graph is isomorphic
to a Cayley coset graph. O

In general, the natural map from a Cayley graph Cay(I',S) to a Cayley coset graph
Ceg(T, S,T) is a homomorphism if and only if Tg NS = (. However, an element of Ty N S
does not contribute to the structure of Ccg(T",S,Tg) in any way, so the condition Ty NS = ()
is not a severe restriction on a Cayley coset graph.

3.2 Indepedemce ratio and the No-Homomorphism Lemma

Other than trial and error, there seems to be no sure-fire way to determine whether there
exists a homomorphism from a given graph to another. Parameters such as the odd girth and
the chromatic number provide some restrictions, but these are far from being exhaustive. The
basic idea behind the No-Homomorphism Lemma is to use symmetry to find new restrictions
for the existence of homomorphisms between graphs. Only the simplest version is given here,
but it is clear from the proof that many generalizations and variations are possible.

We write a(G) for the independence number of a graph G, that is, the maximum number
of vertices in an independent set of G.

Definition 3.2 The independence ratio of a graph G is i(G) = a(G)/|V(G)|.

Lemma 3.3 (No-Homomorphism Lemma, Albertson and Collins [5]) Let G, H be
graphs such that H is vertex-transitive and G — H. Then

i(G) > i(H).
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Proof Let S(H) denote the family of independent sets of size a(H) in H. By symmetry,
every vertex of H is in the same number, say m, of members of S(H). We then have

a(H) - |S(H)| = m - |H], (3.1)

since each expression counts the number of inclusions u € I, with uw € V(H) and I € S(H).
Let ¢ : G — H be a homomorphism. Then, for each I € S(H), we have |¢~1(I)] < a(G).
Summing this inequality for all members of S(H), we get

Y. 67D < G) - IS(H)|. (3.2)

IeS(H)

However, each u € V(G) contributes exactly m to the sum }_;cgp) |¢p~1(I)], since ¢(u)
belongs to exactly m members of S(H). Thus,

Y. o7t D)l =m-|Gl. (3-3)

I€S(H)
Combining (3.1), (3.2), (3.3), we get
i(G) = G)/|G] = m/|S(H)| = a(H)/|H| = i(H). (3-4)

a

The name “No-Homomorphism Lemma” is derived from the contrapositive: if H is vertex-
transitive and i(G) < i(H), then G 4 H. One trivial consequence of this result is the
well-known fact that the chromatic number of a graph G is at least |G|/a(G). In terms of
Lemma 3.3, we may rephrase this by saying that a necessary condition for G to admit a
homomorphism into K, is that i(G) > 1/n.

Example 3.4 Consider the odd cycles. We have a(Coy1) = k, and the No-Homomorphism
Lemma states that if Coryq — Copry1, then k/(2k +1) > K/ /(2K + 1), i.e., k > K.

In fact, there exists a homomorphism from Cayxyq1 to Copyq if and only if k& > k| but
sufficiency cannot be deduced from Lemma 3.3.

Example 3.5 Let G = Cay(Zs,{+1,+2}) and H = Cay(Z7,{£1,£2}). Then o(G) =
a(H) = 2. So,
i(G) =2/8 < 2/7 = i(H).

Since H is vertex-transitive, this implies that there exists no homomorphism from G to H.

In fact, there exists no homomorphism from H to G either for the graphs in the above
example, though this cannot be deduced from the No-Homomorphism Lemma. A direct
verification of this statement could be messy. However, if we define the parameter 7(G)
as the maximum number of vertices in an induced subgraph of G that does not contain a
triangle, we get 7(G) =5, m(H) = 4, so n(H)/|H| < 7(G)/|G|. The reader might want to
check how the proof of the No-Homomorphism Lemma can be adapted to deduce from this
that H /4 G.

The critical situation in the No-Homomorphism Lemma is the case of homomorphisms
between graphs with the same independence ratio. The next result shows how the behaviour
of homomorphisms is restricted in that case.
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Lemma 3.6 Let G, H be graphs such that H is vertex-transitive, i(G) = i(H) and G — H.
Then for any independent set I of cardinality o(H) in H and any homomorphism ¢ : G — H
we have

01 (D)] = a(G).

Proof With the notation of the proof of Lemma 3.3, our hypotheses imply that equality
holds in (3.4). Thus, m - |G| = a(G) - [S(H)|. By (3.3), we then have }_/cqm lp= (1) =
a(G) - |S(H)]|. Since |¢~1(I)|] < a(Q) for all I € S(H), we must have |¢p~1(I)| = a(G) for all
IeS(H). O

In particular, the situation described in Lemma 3.6 arises in the case of homomorphically
equivalent graphs. If G and H are homomorphically equivalent vertex-transitive graphs, then
the No-Homomorphism Lemma states that i(G) > i(H) and i(H) > i(G). Thus, i(G) = i(H),
and Lemma 3.6 says that any homomorphism between G and H induces a map between
S(H) and S(G). Sometimes this information helps to characterize such homomorphisms (see
Proposition 3.15).

3.3 Cores of vertex-transitive graphs

Theorem 3.1 tells us that any vertex-transitive graph is a retract of a Cayley graph. As
retractions often provide a way of simplifying the structure of an object, it would be worth-
while to investigate the retracts of vertex-transitive graphs as well. However, retractions do
not generally preserve vertex transitivity; for instance, any even cycle retracts onto a path
of the same diameter. With respect to symmetry, the most interesting retract of a vertex-
transitive graph is its core. Recall that core graphs have the important property that all of
their endomorphisms are automorphisms, and this is the basis of many useful properties of
cores of vertex-transitive graphs, starting with the following (also independently proved by
MacGillivray):

Theorem 3.7 (Welzl [128]) Let G be a vertex-transitive graph. Then its core G* is vertez-
transitive.

Proof Fix a retraction p : G — G*® with co-retraction v : G* — G. For any u,v € V(G*),
there exists an automorphism ¢ of G mapping y(u) to y(v). We then have po¢poy(u) =v
(since p o~y is the identity map on G*). But since G*® is a core, the map pogpo~y: G®* — G*
is an automorphism of G*®. Thus, Aut(G*) acts transitively on G*°. O

Along the same lines, it is easy to show that the core of an edge-transitive graph is again
edge-transitive and the same idea applies to many other types of symmetry.

Theorem 3.7 allows us to apply the results of the preceding section. A vertex-transitive
graph and its core are homomorphically equivalent vertex-transitive graphs, so Lemma 3.3
states that they have the same independence ratio. Since this ratio is defined with integer
parameters on graphs, we deduce a sufficient condition for a graph to be a core.

Corollary 3.8 Let G be a vertex-transitive graph. If a(G) and |G| are relatively prime, then
G is a core.
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In particular, this occurs for vertex-transitive graphs on a prime number of vertices. It
is known that such a graph is isomorphic to a circulant Cay(Z,,S), whose automorphism
group is generated by the left translations and the automorphisms of Z, that preserve the
connection set S (see Turner [122]). By the preceding result, these graphs are also cores, and
thus have no endomorphisms other than their automorphisms.

In general, the result of Lemma 3.6 cannot be formulated for vertices rather than maxi-
mum independent sets. For instance, consider the homomorphisms between the 6-cycle and
the 4-cycle. Note that the cardinalities of inverse images of individual vertices vary, while
the sum over maximal independent sets is constant. The next result show that the situation
is different in the case of cores.

Theorem 3.9 Let ¢ be a homomorphism of a vertex-transitive graph G onto G*. Then all
inverse images ¢~ (u),u € V(G®), have the same cardinality, namely |G|/|G*|.

Proof Fix a homomorphism v : G* — G and a vertex u of G°*. Put
X ={(v,¥) :v € V(G*),¢ € Aut(G) and ¢ o oy(v) = u}.

The cardinality of X can be evaluated in two ways: First, for any ) € Aut(G), the map
¢orpoy : G* — G* is an automorphism of G, so it must be bijective. Therefore there exists a
unique v € V(G*®) such that ¢popoy(v) = u, i.e., (v,9) € X. Thus |X| = |[Aut(G)|. Second, for
any v € V(G*) and x € ¢~ *(u), the set of automorphisms of G mapping v(v) to x is a left-coset
of Stab(y(v)), and has cardinality |Aut(G)|/|G|. Thus |X| = |G®| - |¢ L (w)|- (|Aut(G)|/|G]).
Combining these two expressions for |X|, we have |¢~1(u)| = |G|/|G*|. O

This last result is an analogue for cores of vertex-transitive graphs of Lagrange’s theorem:
the order of G* divides that of G.

Any fixed retraction p and co-retraction v between a graph G and its core G* induce a
map between Aut(G) and Aut(G*®), defined by mapping ¢ € Aut(G) to po ¢ oy € Aut(G®).
Some results of this section are applications of this fact, but notice that this induced mapping
between groups is devoid of algebraic significance. A case in point is the fact that the core
of a Cayley graph is not necessarily a Cayley graph. The Petersen graph is a well-known
example of a vertex-transitive graph which is not a Cayley graph. It will be shown in the
next section that the Petersen graph is a core. However, by Theorem 3.1, the Petersen graph
is a retract of a Cayley graph, so it is the core of a Cayley graph.

3.4 Kneser graphs

Let r, s be integers such that 1 < r < s/2. The Kneser graph K(r,s) is the graph whose
vertices are the r-subsets of [s], two vertices being joined by an edge if and only if they
are disjoint. Kneser graphs are a combinatorial structure which arises naturally in different
contexts. The graphs K(r,2r + 1),r > 1 are also called odd graphs; amongst them we find
K (2,5), which is the Petersen graph. Also, K(1,s) is the complete graph K. We will
see below a connection between Kneser graphs and the Erdos-Ko-Rado theorem, and other
sections of this paper will show their relation with the lexicographic product of graphs and
some parameters such as the fractional chromatic number.

It will also be shown that Kneser graphs provide examples of graphs with arbitrarily large
odd girth and chromatic number.
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The name ‘Kneser graph’ is derived from Kneser’s conjecture, which is the following
statement.

Let r, s be integers such that 2 < r < s/2. If the r-subsets of a s-set are partitioned
into s — 2r + 1 families, then one family contains two disjoint sets.

Note that a partition of the r-subsets of [s] into families of pairwise intersecting subsets
amounts to a proper vertex colouring of the Kneser graph K(r,s). Thus Kneser’s conjecture
says that x(K(r,s)) > s —2r+2. On the other hand, it is easily seen that s — 2r + 2 colours
are sufficient: For k =0,...,s — 2r, assign the colour k to the set

I ={A e V(K(r,s)) : minA = k},
and assign the colour s — 2r + 1 to the set
Is_ory1 ={A € V(K(r,s)) :minA>s—2r+1}.

This graph-theoretic interpretation of Kneser’s conjecture is due to Lovasz, who gave the first
proof of it.

Theorem 3.10 (Lovéasz [91]) The chromatic number of K(r,s) is s — 2r + 2.

Lovész used a surprising approach; simplifications and generalizations were later made by
Barany [14] and Walker [126], but the crux remains the basic idea of Lovész, which is, to
transpose the problem to some topological space associated with the graph, and then use
some powerful tools of algebraic topology, notably the Borsuk-Ulam antipodal theorem. It is
somewhat unsettling that there is as yet no genuine graph-theoretic argument that explains
why K (r,s) cannot be coloured with s — 2r + 1 colours; on the other hand, Lovdsz’s result
gives an interesting topological flavour to the problem of determining whether there exists a
homomorphism between two given graphs.

The independence number of Kneser graphs is related to the following classical inequality.

Theorem 3.11 (Erdés, Ko, Rado [42]) Let r, s be integers such that 1 <r < s/2, and F
a family of pairwise intersecting r-subsets of [s|. Then

s—1
IJ-'\<<T_1>.

As the families of pairwise intersecting r-subsets of [s] are precisely the independent sets of
K(r,s), this result gives a bound for «(K(r,s)). This bound is easily seen to be sharp, as it
coincides with the cardinality of each set

Jy={AeV(K(rs)): ke A}, k=0,...,s—1.

One other combinatorial inequality provides further information on the structure of Kneser
graphs:

Theorem 3.12 (Hilton, Milner [81]) Let r,s be integers such that 1 <r < s/2, and F a
family of pairwise intersecting r-subsets of [s]. If (| F =0, then

s—1 s—r—1
< _
‘f|—(r_1> ( o >+1.
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This result shows that the only independent sets of maximal cardinality in K (r,s) are the
sets Jy, ..., Js—1 defined above. We see from this that the automorphism group of K(r,s)
is isomorphic to the symmetric group Ss: Any permutation of the base set [s] induces an
automorphism of K (r,s) in a natural way. Conversely, any automorphism of K (r,s) must
interchange the sets Ji,...,Js (since these are the only independent sets of maximal size)
thus induces a permutation of [s]. With the help of Lemma 3.6, it is possible to complete the
characterization of endomorphisms of Kneser graphs.

Proposition 3.13 All Kneser graphs are cores.

Proof Let ¢ : K(r,s) — K(r, s) be a homomorphism. Then for k = 0,...,5—1, |[¢~1(Jy)| =
a(K (r,s)), so there exists an index (k) € [s] such that ¢~ (Jx) = Jy). By definition of
the sets Ji,k = 0,...,s — 1, this means that for any A € V(K (r,s)), we have k € ¢(A) if
and only if ¢)(k) € A. Therefore, 1) must be bijective, ¢ is the automorphism induced by
=1 [s] — [s], and K(r,s) is a core. O

The Kneser graphs with a given chromatic number k are the graphs K(n,2n — 2 + k),
n > 1, and the odd girth of these can be made arbitrarily large. Thus, we get a constructive
proof of the well-known result that there exist graphs with arbitrarily large odd girth and
chromatic number (see [41]). The following statement provides specific examples for any
given odd girth and chromatic number.

Proposition 3.14 Given integers k, n such that n > 3, let r = k(n—2), s = (2k+1)(n—2).
Then K(r,s) has chromatic number n and odd girth 2k + 1.

Proof By Theorem 3.10, x(K(r,s)) = n. Also, since Kneser graphs are vertex-transitive,
Lemma 3.3 states that Ca;11 — K(r,s) only if i/(2i + 1) > k/(2k + 1), that is, ¢ > k. Thus,
the odd girth of K(r,s) is at least 2k + 1. The interested reader may want to verify that
K(r,s) indeed contains a (2k + 1)-cycle, but this also follows from our discussion of circular
graphs in the next section. O

At this point it is worthwhile to reflect upon the condition r < s/2 that we imposed in
the definition of Kneser graphs. If we allow r = s/2, the resulting graph K(r,2r) is a perfect
matching. The formulas above still provide the correct chromatic number and independence
number, but the subsequent results on the structure of independent sets and automorphisms
groups are no longer valid. If s/2 < r < s, the resulting graph K (r, s) has no edge, and the
formulas for the chromatic number and the independence number are wrong in most cases.
However, for some applications of Kneser graphs such as subset colourings and the fractional
chromatic number, it is convenient to consider these marginal graphs as Kneser graphs. The
context will make clear what restrictions on r and s are to be imposed.

The remainder of this section is devoted to homomorphisms between Kneser graphs.
A question raised by Hell asks for which integers r,s,r’, s’ we have K(r,s) — K(r',s') (see
Godsil [50]). Lovéasz’s theorem and the No-Homomorphism Lemma provide some restrictions.
If K(r,s) — K(r',s"), then

X(K(r,s)) =s—2r+2<s -2 +2=y(K(',5))
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and
i(K(r,s))=r/s>1"/s =i(K(r,§)).

Also, the proof of Proposition 3.13 can easily be adapted to the following characterization of
homomorphisms between Kneser graphs with the same independence ratio.

Proposition 3.15 (Stahl [113]) Letr,s be relatively prime numbers such that 1 <r < s/2.
Then K(mr,ms) — K(nr,ns) for integers m,n if and only if n is a multiple of m.

We now turn our attention to a wide list of homomorphisms between Kneser graphs. Note
that K (r,s) is an induced subgraph of K(r,s + 1). Also, it is easily seen that there exists a
homomorphism from K (r+1,s+1) to K(r, s) defined by removing the maximal element from
each A € V(K (r+1,s+1)). A refinement of this idea is used in the proof of the following
result:

Proposition 3.16 (Stahl [113]) For any two integers such that 1 < r < s/2 we have
K(r+1,s+2)— K(r,s).

Proof Define a map ¢ from K(r + 1,s 4+ 2) to K(r,s) by

_ [ A\ {max(A)} if AN {s,s+1} <1
#4) = { (A\ {s,s+1}) U{max(A)} if{s,s+1}C A

(where A denotes the complement of A). We show that ¢ is a homomorphism. Take A, B €
V(K(r 4+ 1,s + 2)) such that [A,B] € E(K(r +1,s 4+ 2)). Then ANB =0, so A and B
cannot both contain {s,s + 1}. We may therefore assume that [A N {s,s +1}| < 1. We
then have ¢(A) C A. If |[BN {s,s +1}| < 1, then ¢(B) C B, thus ¢(4) N¢(B) = 0
and [p(A),¢(B)] € E(K(r,s)). Otherwise, we have ¢(B) \ B = {k}, where kK < s — 1 and
{k+1,...,s+1} € B. Since AN B = (), we have max(A4) < k, thus k ¢ ¢#(A). But
B(B)\ {k} € B, 50 6(4) N 6(B) = 0 and [¢(4), (B)] € E(K(r,s)). 0

Note that the graphs K(r,k — 2 + 2r),r € N, are precisely the Kneser graphs with
chromatic number k. By the preceding result, these are linearly ordered by the relation —.
Combining this with inclusions, we get the following.

Corollary 3.17 Let r,1',s,s" be integers such that r > 1, 1 <r < s/2 and 1 <1’ < §'/2.
Then K(r,s) — K(r',s) if and only if s = 2r +2 < s' = 21" + 2. O

It remains to investigate homomorphisms from K (r,s) to K(r’,s"), with » < 7’. The next
result allows us to make use of the homomorphisms we have already defined.

Proposition 3.18 Let G be a graph, and let r,1’, s, s’ be integers such that 1 <r < s/2 and
1< <d/2. If G— K(r,s) and G — K(r',s') then G — K(r +1',s + §').

Proof Let ¢1 : G — K(r,s) and ¢3 : G — K (r',s’) be homomorphisms. Define ¢ : G —
K(r+r',s+s") by putting ¢(u) = ¢1(u)U{i+s:i € ¢2(u)}. Then ¢ is a homomorphism. O
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By Theorem 3.16, K(r,s) — K(r —k,s — 2k) for all k € {1,...,7 — 1}, so this last result
shows that K (r,s) — K(nr — k,ns — 2k) for all n € N and k € {1,...,r — 1}. This is where
the question stands today. Stahl [113] conjectures that K(r,s) — K(r',s’) if and only if
s’ > ns — 2k, where ' = nr — k. This conjecture is known to be true for low values of r, and
for all odd graphs K (r,2r 4+ 1) (see Stahl [114]).

3.5 Circular graphs

This section presents a class of graphs that behaves with respect to — like the set of rationals
with respect to its usual order. Let r,s be integers such that 1 < r < s/2. We define the
circular graph G', as the Cayley graph Cay(Zs,{r,r +1,...,s — r}). These graphs play
an important role in the definition of the circular chromatic number (see Section 4) and
some essential properties of this parameter are derived from the results presented here. It
is worthwhile to warn the reader about some notation used in the proofs. Formally, the
elements of Z4 are congruence classes modulo s, but are usually written as integers from [s].
This convention becomes inconvenient and confusing when defining maps between groups Z
and Z. Consequently some proofs will be given in more detail than usual in order to avoid
any possible misinterpretation.

Lemma 3.19 Let r,s be positive integers such that r < s/2. Then a(G%) =r.

Proof Obviously, a(G%) > r, since {0,1,...,7 — 1} is an independent set. Let I be an
independent set of G, and u an element of I. Then I C {u— (r —1),...,u,...,u+1r— 1}
However, I can contain only one vertex of each edge [u —i,u — i+ 7], so |I| <r. O

This simple result shows that the independence ratio of G is /s, and allows us to use the
No-Homomorphism Lemma to investigate the existence of homomorphisms between circular
graphs. Also note that the Erdés-Ko-Rado inequality (Theorem 3.11) can be deduced from
Lemma 3.19 (see [120]). Define ¢ : G, — K (r, s) by putting ¢(u) = {u,u+1,...,u+r—1}
(we identify a congruence class in Zg with its unique representative in [s]). Clearly, ¢ is a
homomorphism, and with Lemma 3.3, the independence ratio of G, provides an upper bound
for a(K (r,s)) which coincides with the Erdds-Ko-Rado bound.

Lemma 3.20 (Bondy, Hell [18]) Let r,s,k be integers such that r < s/2. Then G, <
G

Proof Let ¢ be the unique group homomorphism mapping the generator 1 of Zg to the
element k of Zys. It is easily seen that ¢ is a homomorphism from G to G’,ﬁ; We can also
define a homomorphism 1 : G} — G% by putting ¥(v) = u if and only if v € {¢(u), d(u) +
L,...,0(u) +k—1}. O

Proposition 3.21 (Bondy, Hell [18]) Let r,s,m,n be integers such that r < s/2 and m <
n/2. Then G% — G if and only if r/s > m/n.

Proof By Lemma 3.3 and Lemma 3.19, if there exists a homomorphism from G to G},
then r/s > m/n. Conversely, suppose that r/s > m/n. By Lemma 3.20, G} < G}
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and G)' «— G But nr > sm, so G}, is a subgraph of G%'. Therefore, there exists a
homomorphism from G’ to G7;'. O

This last result shows that with respect to the relation —, the class of circular graphs
behaves like the rationals in ]0,1/2] with respect to the relation >. This is an example of a
family of graphs which is ‘dense’ in the sense of Theorem 2.33: between any two rationals
r/s < r'/s" in ]0,1/2], there exists a rational r”/s” which is strictly in between them; we
then have GQ: — ng — G, but no two of the three graphs are homomorphically equivalent.
Recall that all circular graphs are Cayley graphs and so are vertex-transitive. It is natural
to ask whether Welzl’s density theorem 2.33 can be restricted to vertex-transitive graphs.
This question was raised by Welzl [128]. Albertson and Booth [4] have shown that every
vertex-transitive graph is an endpoint of an interval containing no other vertex-transitive
graph. They also proved a special case of the following theorem.

Theorem 3.22 (Tardif [118]) If G and H are vertex-transitive graphs such that G maps
strictly into H then there is a vertex-transitive graph K such that G — K — H and no two
of the three graphs are homomorphically equivalent.

By Proposition 3.21, G% 4 GZ: for any integers 7', s’ such that r/s < r'/s’. We conclude
this section with a result showing that G7, is critical with respect to this property. Recall
that G —u is the graph obtained from G by the removal of the vertex u and all edges incident
with it.

Proposition 3.23 (Bondy, Hell [18]) Let r,s be relatively prime integers such that r <
s/2. Then there exists integers m,n such that r/s < m/n, and for any u € V(G}), G —u —
Gr.

Proof Since r and s are relatively prime, there exist integers ¢ < s and b < r such that
ar = bs+1. Put m = r —band n = s —a. Then, r/s < m/n. We show that for any
u € V(G}) there exists a homomorphism from G, — u to GJ'.

By vertex transitivity, it suffices to consider the case v = 0. Also, by Lemma 3.20,
it suffices to find a homomorphism from G} — {0} to G]'. To do this, we identify the
vertices of G, — {0} with their representatives 1,...,s — 1 in N, and the vertices of G}
with their representatives 0,...,rn —1 in N (to recover multiplication in N). We then define
¢ : Gy — {0} — G} by putting ¢(i) = im. This map is well defined since 1 <i < s—1
implies 0 <im < rn—1. Take 1 <i < j < s— 1 such that [i, j] is an edge of G, — {0}. Then
j—ie{r,...,s—r},s00(j)—¢(i) = (j—i)m € {rm,...,r(n—m)} (since (s—r)m < r(n—m)).
Thus, [¢(7),#(j)] is an edge of GJ*, and ¢ is a homomorphism. O

™ )

4 Graph colourings and variations

One of the sources of the subject of graph homomorphisms is the theory of graph colourings.
We have seen (Example 2.7) that a proper colouring of a graph G with k colours can be
viewed as a homomorphism from G into Kj. In this section we will explore the homomor-
phism approach to graph colourings, beginning with definitions phrased in the language of
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homomorphisms. We begin with proper colourings and the chromatic number. We will be
brief most of the time since there are recent publications surveying much of the literature on
graph colourings; see [82, 121, 142].

A k-colouring of a graph G is a homomorphism into the complete graph Kj. Such a
homomorphism is often wasteful in that not all the vertices (or edges) of K} are images of
vertices (or edges) of G. It is, therefore, of interest to restrict our attention only to colourings
that use all of the target graph.

Definition 4.1 Given a natural number k, a complete k-colouring of a graph G is a complete
homomorphism ¢ : G — Kj.

That is, a k-colouring of GG is complete if it is proper and every pair of colours appears on
the endpoints of some edge of G. The definition can be rephrased by saying that a complete
colouring of a graph G is a partition P of V(G) into independent sets such that G/P is a
complete graph. When the partition has k classes, we speak of a complete k-colouring.

We will prove (Proposition 4.12) that if there is a complete homomorphism from G onto
K, and onto K; then there also is one onto K for any s between r and t. Since clearly r
is bounded below (by 1) and ¢ is bounded above (by |G|), it is reasonable to ask for tight
bounds. These have been studied extensively, especially the former, and we consider them
briefly in the next two sections.

4.1 Chromatic number

There is a large number of papers dealing with the minimum value of the k& for which there is
a complete k-colouring of a graph, most not concerned with homomorphisms. We will only
mention, in the language of homomorphisms, a small number of very basic results.

Lemma 4.2 Let G and H be graphs and assume that G — H. Then G has a proper k-
colouring whenever H does.

Proof Let ¢ : G — H and v : H — K} be homomorphisms. Then the composition of ¥
and ¢ is a k-colouring of G. O

The chromatic number of a graph is usually defined as the least k£ so that the graph has
a proper k-colouring. We do the same thing in the language of homomorphisms.

Definition 4.3 Let G be a graph. The chromatic number of G, denoted by x(G), is the
least n such that there is a homomorphism from G onto K.

We can immediately observe the following.

Lemma 4.4 Let G be a graph with x(G) = n. Then every homomorphism G — K, is
complete.

Lemma 4.2 then has a few corollaries.

Corollary 4.5 If G — H then x(G) < x(H).
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Corollary 4.6 If H is the quotient of G by an elementary homomorphism then x(G) <
X(H) < x(G) + 1.

Proof Let ¢ : G — H be an elementary homomorphism and let u,v be the only vertices
of G such that ¢(u) = ¢(v). Let v : G — K, (recall that V(K,) = [n]). By Lemma 4.5
we only need to prove the upper bound. Define a complete homomorphism ' : H — K11
by ' (2) = (¢~ 1(2)) for z # {u,v} (this is well defined since ¢ is elementary) and ¢'(u) =
P (v) = n. O

Corollary 4.7 The chromatic number of a graph and its core are the same.

This corollary provides a sufficient condition for a graph to be a core. If we define a graph
G to be y-critical whenever each of its proper induced subgraphs has chromatic number
strictly smaller than x(G), we can immediately deduce that all x-critical graphs are cores.

Another way to define the chromatic number of a graph is described by X.Zhu in [138].
Let I be an interval of length 1 and r > 1 any real number. Let I(r) be the graph whose
vertices are the open intervals in I of length 1/r, two of which are joined by an edge if and
only if their intersection is empty (the non-intersection graph of these intervals).

Theorem 4.8 (X.Zhu [138]) For any graph G, x(G) = inf{r : G — I(r)}.

Proof Let r > 1 be a real number. Define ¢ : I(r) — K|, by ¢((a,a + 1/r)) = i if and
only if i/r < a < (i +1)/r. This is a homomorphism. Since I clearly contains |r| pairwise
disjoint open intervals of length 1/r, I(r) < K|,|. O

This way of defining a parameter related to graph homomorphism is often useful and will
appear throughout the sections on colourings.

4.2 Achromatic number

The maximum k for which a graph has a complete k colouring is a more recent idea than the
chromatic number. It stems partly from Proposition 4.12.

Definition 4.9 The achromatic number of a graph G, denoted by achr(G), is the largest s
such that there is a complete homomorphism from G onto K.

For example, achr(K,) = n, achr(P;) = 3, achr(Ps) = 4, achr(P;1) = 5, etc. The next
lemma follows easily from the definition.

Lemma 4.10 ([59]) If ¢ : G — H is complete then achr(G) > achr(H).

As with the chromatic number, the achromatic number of a quotient of a graph G by an
elementary homomorphism cannot differ much from that of G.

Proposition 4.11 ([59]) If there is an elementary homomorphism ¢ : G — H, then

achr(G) — 2 < achr(H) < achr(G).
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The lower bound is attained by graphs constructed from complete bipartite graphs with
at least three vertices in each class of the bipartition by removing two non-adjacent edges.
The elementary homomorphism identifying the endpoints of the removed edges in one of the
classes of the bipartition is onto a complete bipartite graph whose achromatic number is 2
while the achromatic number of the original graph is 4.

The next result, known as the Interpolation Theorem for complete homomorphisms, is
due to Harary, Hedetniemi and Prins [60].

Proposition 4.12 Let G be a graph. There is a complete homomorphism from G onto K,
for each s such that x(G) < s < achr(G).

Proof We give the proof in terms of elementary quotients. By definition of the achromatic
number there is a quotient G/¢ which is the complete graph on achr(G) vertices and, by
Lemma 2.14 there are graphs Gy, ...,Gy such that Go = G, G = Kachr(G)> and G;4 is
an elementary quotient of G;, ¢ = 0,...,k — 1. Now G — G; and G; — K, for each 1,
with s; = x(G;). Since, by Lemma 4.6, the sequence sg, s1, ..., S; = § is non-decreasing and
si < si—1 + 1, there is, for each x(G) < s < achr(G), a least is such that x(G;,) = s. Thus,
the composition of the natural map from G to G;, with any s-colouring of G;, is a complete
homomorphism from G to K. a

The achromatic number has been studied by many. For example, in their work on graphs
with high achromatic number, Hell and Miller ([69]) use quotients obtained by defining w
and v to be equivalent if and only if v and v have the same neighbourhood. Graphs in which
distinct vertices have distinct neighbourhoods are called irreducible. The important theorem
then says than the number of irreducible graphs with a given achromatic number is finite.

Theorem 4.13 ([69]) For every k there is a K such that |V (G)| < K for any irreducible
graph G with achr(G) = k.

In [68] Hell and Miller also study the achromatic number of paths and cycles by exploring
the relationship between eulerian trails and complete homomorphisms.

Lemma 4.14 ([68]) Let G be a graph, n an integer.

(1) There is a complete homomorphism from P, onto G if and only if G is the underlying
graph of some multigraph G' with n — 1 edges and an eulerian trail.

(2) There is a complete homomorphism from Cy, onto G if and only if G is the underlying
graph of some multigraph G’ with n edges and an eulerian tour.

Paths, of course, are much easier to analyze than general graphs since, as the lemma
indicates, they only need to be "wrapped around” a complete graph in order to get a lower
bound on their achromatic number. It is an indication of the difficulty of the general problem
that, except in a few special cases, the achromatic number is not known even for trees. For
a recent survey of results on the achromatic number see [82].

Hedrlin, Hell and Ko consider another kind of interpolation in [63] by defining the class

H, 1 of graphs obtained form K, by adding two new vertices, each adjacent to some but
2

not all the vertices of K,,, each of which is adjacent to at least one of the two new vertices.

Note that the graphs in H, 1 are homomorphically equivalent to K.
2
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Theorem 4.15 (Hedrlin, Hell, Ko) For every graph G for which there are complete ho-
momorphisms onto Ky, and Ky there is a graph K € H, 1 and a complete homomorphism
2

of G onto K.

4.3 Kneser colourings

. From the point of view of homomorphisms, a proper colouring is a homomorphism of a graph
into a complete graph. The minimum and the maximum order of the complete graphs for
which there is a surjective homomorphism from G define numerical parameters which give us
information about the graphs by implying the existence of homomorphisms. It is then natural
to realize that any homomorphism could be called a ‘colouring’ if we do not restrict the image
to complete graphs. This point of view is adopted by Hell and Nesetfil in [72] (see also [56]).
This, however, destroys the very desirable property of having a link between homomorphisms
and numerical parameters. In the case of the chromatic and the achromatic numbers, this
link is a consequence of the structure of the images allowed (complete graphs), and of our
knowledge of homomorphisms between the members of this family. Many parameters that
have been studied in graphs can be presented within the same framework. Start with a given
family F of graphs. For a graph GG, the homomorphisms from G to members of F are called
‘colourings’ by F. Then if some numerical parameter m can be naturally associated to all
members of F, we may expand the definition of this parameter to the class of all graphs, by
putting

m(G) =inf{n(H): He F and G — H} (4.1)

and hope that the infimum will turn out to be minimum. In some cases this happens naturally,
as it does for the chromatic number. The parameters defined in this manner share some
fundamental properties, the principal one being that 7(G) < 7w(H) whenever G — H.

Recall that the Kneser graph K(r,s), r < s/2, is the non-intersection graph of the r-
element subsets of [s].

Definition 4.16 Let 7, s be positive integers, r < s/2. A Kneser (r, s)-colouring of a graph
G is a homomorphism from G to the Kneser graph K (r,s).

This concept was introduced by Stahl [113]. The “normal” definition is clearly the fol-
lowing. An (7, s)-subset colouring, r < s/2, of a graph G is a map ¢ from the vertex set of G
to the r-subsets of the set {1,...,s} such that adjacent vertices are mapped to disjoint sets.

Notice that we have K(r,s) — K(r,s + 1) for all s € N. This allows a definition of the
r-chromatic number.

Definition 4.17 Given a natural number r, the r-chromatic number x,(G) of a graph G is
the least s such that G — K(r, s).

In particular, a Kneser (1, s)-colouring is a homomorphism into a complete graph on s
vertices and so x1(G) = x(G) for any graph G. The chromatic number x(G) of a graph G
is thus generalized to a sequence of numerical parameters {x,(G)}ren. Such a sequence tells
us more about the graph than the chromatic number alone. For example, there is an infinite
sequence of Kneser graphs with a given chromatic number but the sequence of r-chromatic
numbers determines a Kneser graph uniquely.
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Observe that for a graph G, x,(G) = r if and only if G has no edges, and that x,(G) = 2r
if and only if G is bipartite with at least one edge. From the No-Homomorphism Lemma 3.3
we have that if there is a homomorphism from G into K(r,s), then o(G)/|G| > r/2 and so
(@) = 1/Gl/a(G).

Obviously, homomorphisms between Kneser graphs can be translated as relationships be-
tween members of the sequence of r-chromatic numbers. For instance, from Propositions 3.16
and 3.18 we have that K(r + 1,5 + 2) — K(r,s) and x,+1(G) > x»(G) + 2, as well as
Xr+s(G) < Xxr(G) + xs5(G), see [113].

The latter is related to homomorphisms between categorical products of Kneser graphs
(see Section 5). Some additional properties of the r-chromatic numbers are linked to the
fractional chromatic number defined below. Also, the r-chromatic numbers of graphs are
related to the chromatic number of lexicographic products of graphs (see Section 5.3).

4.4 Circular colourings

The next family of graphs does not immediately provide a minimum in the equation (4.1)
defining 7, but it can be shown that the infimum is, in fact, a minimum.

Let 1 <r < s/2. Recall that G} is the Cayley graph Cay(Zs,{r,r +1,...,s —r}).

Definition 4.18 Let 1 < r < s/2. A circular (r,s)-colouring of a graph G is a homomor-
phism ¢ : G — G,

This concept was introduced by Vince [125], without the name, with the next (equivalent)
definition.

Definition 4.19 A circular (1, s)-colouring of a graph G is a map ¢ : V(G) — {0,...s — 1}
such that
[u,v] € E(G) = 7 < |p(u) = ¢(v)] < s — 7

Our presentation follows the combinatorial approach of Bondy and Hell [18] rather than
that of Vince who used continuous methods. The name “circular” is suggested by the circulant
target graphs of the homomorphisms.

The circular chromatic number® x.(G) of a graph G is defined by putting

Xc(G) = inf{s/r: G — GL}.

The range of this new parameter is not restricted to the integers, so we have to define it as
an infimum instead of a minimum. ;From Proposition 3.21 we have that G — G, if and
only if s/r > x.(G). Further, since by Proposition 3.23 we only need to consider surjective
homomorphisms, these results imply that the infimum is actually a minimum.

Theorem 4.20 (Bondy and Hell [18]) The circular chromatic number of a graph G is

Xc(G) = min{s/r : G — G, and s < |G|}.

3The name star chromatic number usually given to this parameter only relates to the current notation x*.
The name circular is not only justified by the homomorphisms into circulants but also by the characterization
of the parameter due to X.Zhu given later.
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Thus, the circular chromatic number of a finite graph G is always rational, and completely
determines the pairs of integers r, s such that G has a circular (r,s)-colouring: G — G if
and only if s/r > x.(G).

Also note that since G is the complete graph K, we have the inequalities

X(G) —1 < x(G) < x(G).

The following characterization of circular colourings and of the circular chromatic number
is due to X.Zhu [138]. Let C be a circle in R? of length 1, and let 7 > 1 be any real number.
Let C(r) be the non-intersection graph of the open arcs on C of length 1/r.

Theorem 4.21 For any graph G, x.(G) = inf{r : G — C(r)}.

(From the above theorem together with Theorem 4.8 we can obtain a sufficient condition
for graphs for to have the same the chromatic and the circular chromatic number.

Theorem 4.22 If G has a vertex v which is adjacent to every other vertex of G, then x.(G) =
x(G) =n.

Proof A vertex adjacent to all other vertices in G must map to an interval I which intersects
no other. Thus an r-circle colouring exists if and only if an r-interval colouring exists since the
circle colouring corresponds to an interval one by “cutting” the circle at one of the endpoints
of I (the other direction is trivial). O

By refining somewhat the proof of the theorem we obtain a slightly more general result.

Corollary 4.23 Suppose that G has chromatic number s and a verter whose neighbours
induce a subgraph of chromatic number s—1. Then x.(G) = x(G). In particular, if x(G) = s
and G contains (a copy of) Ks then x.(G) = x(G).

The corollary can, of course, be obtained simply by considering what the circular graph
which realizes the circular chromatic number must look like in this case.

Abbott and B.Zhou [1], and, independently, G.Gao, Mendelsohn and H.Zhou [47], have
found a more general sufficient condition for the circular chromatic number to be equal to
the chromatic number, again by using r-circle colourings.

Theorem 4.24 If G is a graph whose complement is disconnected, then x.(G) = x(G).

The circular chromatic number has been studied by Gao, Hahn, Hell, H.Zhou, X.Zhu
[18, 26, 46, 48, 115, 138] and others. We shall not list here the many results obtained for
particular classes of graphs, for more see the survey [142]. Deuber and X.Zhu [34] have
generalized the circular chromatic number further (incidentally again justifying the change
of name). They start with a graph G and a weight function which assigns to each vertex
of G a non-negative real weight w(u). Then they consider a circle of circumference ¢ in the
plane and a mapping ¢ assigning to each vertex u of a graph G an arc of length w(u) on the
circle in such a way that the arcs assigned to adjacent vertices do not intersect. The weighted
circular chromatic number x.(G,w) is then the infimum of the ¢ for which such a ¢ exists.
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Clearly x.(G, 1) = x.(G). Other weighted colourings are considered as well, but the methods
do not use homomorphism.

The interest of the circular chromatic number comes in part from the bound it provides on
the ultimate independence ratio discussed in Section 4.7. The fractional chromatic number
considered next also gives a bound on the ultimate independence ratio.

4.5 Fractional chromatic number

Definition 4.25 Let Z(G) denote the set of all independent sets of a graph G. A fractional
colouring of G is a weight function p : Z(G) — [0, 1] such that the constraints

are satisfied for all u € V(G).

While the concepts of both subset colouring and circular colouring remain close to our
intuitive notion of colouring, that is, the affectation of colours to vertices, the idea of a
fractional colouring is somewhat different. It can be motivated by our definitions of colourings
through homomorphisms: we assign vertices to colours rather than the other way around.
Thus, the usual vertex colourings are constructed by selecting disjoint independent set which
are assigned to different colours. The corresponding weight function has value 1 for all
selected independent sets, and 0 for all other independent sets. With fractional colourings,
we allow independent sets to be ‘partially’ selected. Examples of such fractional colourings
can be found by looking at the Kneser (r,s) colourings of a graph. If ¢ : G — K(r,s)
is a homomorphism, we may define a fractional colouring p : Z(G) — [0,1] by putting
w(I) = kr/r, where ky is the number of indices i € [s] such that I = {u € V(G) : i € ¢(u)}.

The fractional chromatic number x f(G) of a graph G is defined by putting

X¢(G) = inf{ Z wu(I) - p is a fractional colouring of G}.
Ie1(G)

Thus, the fractional chromatic number of a graph is the solution of a linear program with
|Z(G)| variables and |G| constraints. Therefore, the infimum is always attained and is truly
a ‘fraction’. Note that this definition of the fractional chromatic number does not seem to
relate to homomorphisms. However, we can express the fractional chromatic number of a
graph in terms of graph homomorphisms in at least two ways, the second of which uses the
independence number «(G) of the graph G.

Proposition 4.26 Let G be a graph. Then
x¢(G) =inf{s/r: G — K(r,s)} =sup{|H|/a(H) : H — G}.

Some relations between the fractional chromatic number, the circular chromatic number
and the subset chromatic numbers of a graph can be derived from the first of these equalities.
First of all we easily have x t(G) < x,(G)/r for all r € N by the definition of these parameters
(in fact, x¢(G) = lim, o0 Xr(G) /7). We also have G§ — K(r,s), so that x.(G) < x#(G).
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Unlike the circular chromatic number, the fractional chromatic number of a graph can differ
arbitrarily from its chromatic number, the simplest example being that of the Kneser graphs
themselves. Finally, note that the last characterization of the fractional chromatic number
strays from our intended mold. This may be explained by the dual version of the linear
program defining the fractional chromatic number of a graph, which can be expressed as
follows.

max ZuEV(G) v(u)
subject to >, c;v(u) <1 for all I € Z(G).

Observe also that the 0 — 1 weight functions v on V(G) that satisfy the above constraints
are obtained by assigning the value 1 to all vertices of some complete subgraph of G and 0
to all the other vertices. Hence the above expression can be thought of as a fractional clique
number of G. We can then note that while the chromatic number and the clique number of
a graph can differ arbitrarily, the fractional versions always coincide.

(From the primal and the dual formulations of the fractional chromatic number we can
prove something for vertex-transitive graphs.

Theorem 4.27 If G is a vertex-transitive graph then xf(G) = |G|/a(G).

The No-Homomorphism Lemma 3.3 can be viewed as a consequence of this and Proposi-
tion 4.26.

An alternate description of the fractional chromatic number is given by X.Zhu in [48]
and [34]. Let I be an interval of length 1 and r» > 1 any real number. Let M(r) be the
non-intersection graph of the measurable subsets of I of measure 1/7.

Theorem 4.28 (X.Zhu [48]) For any graph G, x¢(G) =inf{r : G — M(r)}.

4.6 Chromatic difference sequence

There is but a small step from the chromatic number to asking How many vertices of a
graph can be coloured with a given number of colours? More precisely, following Albertson
and Berman [3], we define, for a given graph G and a positive integer k, ax(G) to be the
maximum number of vertices in a k-colourable induced subgraph of G. We also define the
differences of successive ay’s by setting 0, (G) = ax(G) — ag_1(G), for k > 0 and an(G) = 0.
Thus 3% | 6i(G) = ar(G).

Definition 4.29 Let G be a graph and let n = |G|. The chromatic difference sequence of G
is the sequence (51(G), ..., By (G)). The normalized chromatic difference sequence of G is
the sequence (81(G)/n, ..., By (G)/n).

We will say that a sequence aq,...,a, dominates the sequence by, ...,b,, if Zle a; >
Zle b; for all k, with equality when k& = n (this can be extended to sequences of different
lengths, see [132]).

Chromatic difference sequences have been used to prove that graphs do not have homo-
morphisms into other graphs. The No-Homomorphism Lemma 3.3 was first proved in this
context in the following form.
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Lemma 4.30 ([5]) If there is a homomorphism from a graph G to a graph H and H ‘s
vertex-transitive, then the normalized chromatic sequence of G dominates that of H.

It was then used to show that for the Petersen graph P, P" /4 P? for any r > s, where P"
is the n-th cartesian power of P. Others, notably H. Zhou in his thesis [135] and subsequent
papers, considered the behaviour of the chromatic difference sequences under homomorphisms
and in relation to graph products.

Theorem 4.31 The normalized chromatic difference sequence of G* is equal to that of G
for any Cayley graph G of an abelian group, with the cartesian product.

In general, H.Zhou has shown the following.

Theorem 4.32 ([132]) Let G and H be graphs. Then:
(1) The normalized chromatic difference sequence of G x H dominates those of G and H.

(2) The normalized chromatic difference sequence of GOH is dominated by those of G and
H, and so the normalized chromatic difference sequence of the cartesian power GF is
dominated by that of G.

Albertson and Collins [5] conjectured that the chromatic difference sequence of a vertex-
transitive graph was always non-increasing. In a similar direction, H.Zhou asked if a Cayley
graph G has a non-increasing achievable chromatic difference sequence (that is, one with
colour classes of sizes O for k = 1,...,x(G)). Tardif [119] constructed a circulant whose
chromatic difference sequence is not monotonic.

Example 4.33 The chromatic difference sequence of (C7[C5s]) x Kg is (36, 36, 36, 36, 31, 35).

While the chromatic difference sequence does not lead to a numerical parameter, a concept
whose roots are in the study of the chromatic difference sequence does. It is the ultimate
independence ratio of a graph considered next.

4.7 Ultimate independence ratio

Recall that the independence ratio of a graph G is i(G) = a(G)/|G| (Definition 3.2). Since
in this section we will be concerned with the cartesian product, we will have G = G and
GrF = GF1oa.

We begin by asking about a(GOH). Clearly, a(GOH) < |G|a(H) since each fiber F,, =
{u} x V(H) of GOH can contribute at most a(G) vertices to a maximum independent set
of GOH. This is achievable if and only if we can choose, in each fiber F;, a maximum
independent set {u} x I, of size a(G) so that I, N I, = 0 whenever [u,v] is an edge of G.
This can be expressed in a setting using homomorphisms.

Let G be a graph and define the maximum independent set graph of G, Ind(G), to be the
non-intersection graph the maximum independent sets of G.

Definition 4.34 An independent set cover of a graph G by a graph H is a homomorphism
t: G — Ind(H). When G has an independent set cover by G, we say simply that G has an
independent set cover.
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For example, Ind(Cyy1) is the odd cycle Coy1; the maximum independent set graph of
the Petersen graph consists of five isolated vertices. Thus each odd cycle has an independent
set cover but the Petersen graph does not.

The following results are direct consequences of the above discussion.

Lemma 4.35 Let G and H be graphs. Then
i(GOH) < min{i(G),i(H)},

with equality if and only if G — Ind(H) or H — Ind(G), depending on whether i(H) < i(G)
or i(G) <i(H).

In particular this says that a graph G has an independent set cover if and only if
i(G?) = i(G). In the language of Section 5.2 this can be restated by saying that the graph
Hom(G,Ind(G)) (see Definition 5.18) is non-empty. In fact we have the stronger statement
that i(G?) = i(G) if and only if the graphs Hom (G, Ind(G)) and Ind(G?) are isomorphic.*

Given a graph G, consider the powers G*. By Lemma 4.35 we have that i(G*) >
i(G*1) > 0 for all k. Hence the sequence i(G¥), k = 1,2,..., has a limit > 0. In fact
the sequence is bounded away from zero since by Lemma 5.13, x(G*) = x(G) for all k, so
that i(G*) > 1/x(G*) = 1/x(G). Hell, Yu and H. Zhou introduced the concept of ultimate
independence ratio in [75].

Definition 4.36 The ultimate independence ratio of a graph G, denoted by I(G), is

I(G) = lim i(G"Y).
k—so00
It is not known if the limit is always rational.
There exist graphs for which I(G) is strictly less than i(G*) for any k. For example, if
G is the Petersen graph, then I(G) = 1/3 whereas i(G*) = a(G*)/10* (two proper fractions
with relatively prime denominators). At the other extreme are graphs whose ultimate inde-

pendence ratio is already equal to i(G). A class of such graphs is provided by the following
result of Hell, Yu and H. Zhou [75] which is based on Lemma 4.35.

Theorem 4.37 If G?> — G — Ind(G) then I(G) = i(G).

Thus the powers of a graph satisfying G?> — G and having an independent set cover all
have the same independence ratio. Conversely, if G is any graph for which I(G) = i(G), then
in particular i(G?) = i(G), hence by the remark after Lemma 4.35 we have that the condition
G — Ind(G) in Theorem 4.37 is necessary. We do not know whether the same is true for the
condition G? — G. In general, Theorem 4.37 is false without it (see the end of this section).

We can use Theorem 4.37 to prove the following result.

Theorem 4.38 Let G be a Cayley graph Cay(T',S) on an abelian group T'. Then I(G) =
i(GQ).

4This was noticed independently by B. Larose, F. Laviolette and G. Sabidussi.
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Proof For an abelian group I' the mapping ¢ : G2 — G defined by ¢(g,h) = gh is a
homomorphism. Let I be any maximum independent set of G and for any g € I set I, = g[.
Since left translations are automorphisms, I, is a maximum independent set. If now gh is
an edge of G, I, N I;, = () since otherwise gk = hk' for some k, k' € I and so k™K' =
h~lg € S, contradicting the independence of I. Thus the map g — I, is a homomorphism
G — Ind(G). O

The above theorem can be generalized to normal Cayley graphs, see Section 5. For
arbitrary Cayley graphs very little is known, and results even for Cayley graphs of dihedral
groups are nonexistent. We do know, however, that the tempting conjecture that I(G) = i(G)
for Cayley graphs fails for infinitely many Cayley graphs, see [57].

Corollary 4.39 If G is a circulant, then I(G) = i(G). In particular, I(Co) = 1/2 and
I(CZkJrl) = k’/(Qk' + 1) for k> 0.

With the ultimate independence ratio we can prove an analogue of the No-Homomorphism
Lemma 3.3. Tt does not require that the target graph H be transitive, but we pay a price by
having to deal with limits. The proof uses multiples of graphs mentioned in Section 3.1.

Theorem 4.40 (Hahn, Hell, Poljak [55]) If G — H then I(H) < I(G). In particular, if
H is a retract of G, then I(H) = I(G).

This gives, as corollaries, that I(G) < 1/w(G) (w(G) is the size of a largest clique in G)
and that I(G) = 1/x(G) for perfect graphs.
Homomorphisms also allow us to prove:

Theorem 4.41 (Hahn, Hell, Poljak [55]) For any graph G,
1 1
——<I(G) < )
x(G) x#(G)

X.Zhu gives more bounds related to homomorphisms. The first was also proved indepen-
dently by Favaron[44].

Theorem 4.42 (X.Zhu [137]) For any graph G, the sequence 1/x;(G¥), k = 1,2,..., is

non-increasing and
1

(@) = im —Gxy:

Theorem 4.43 (X.Zhu [137]) For any graph G, I(G) > 1/x.(G).

In general, the problem of determining the ultimate independence ratio of a graph is
open. The conjectures which would equate I(G) to one of the bounds have proven wrong (for
example, X.Zhu constructs a graph with 1/x(G) < I(G) < 1/x#(G) in [137]). The simplest
case of interest — because of the methods which must be invented — is that of the odd wheels
in general and Wj in particular. From solving the linear program for the fractional chromatic
number of the square of W5 we get 1/4 < I(W5) < 11/41. The working hypothesis is that
1/4 is the value for any odd wheel.
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As an application of these remarks and in order to illustrate the usefulness of Theo-
rem 4.40, let us show that in general Theorem 4.37 fails if we only assume that G — Ind(G).
In other words, it is not true that if i(G?) = i(G), then all the higher powers of G also have
the same independence ratio. Let W/ be a 5-wheel with a “double hub”, i.e. a pentagon with
two additional vertices that are joined to all vertices of the pentagon but not to each other.
Clearly the wheel W5 is a retract of WZ. Hence by Theorem 4.40,

I(Wi) = 1(W5) < 11/41 < 2/7 = i(W3).

On the other hand, it is easy to check that Ind(W¢) = W5, and hence the condition W} —
Ind(WY) is satisfied.

5 Graph products

The main constructions known as ‘graph products’ have already been introduced in Sec-
tion 2.6. In this section, we take a closer look at some of the themes linking graph homo-
morphisms and products. The principal motivation of this subject is the investigation of the
behaviour of some parameters, such as the chromatic number, the clique number or the inde-
pendence number, under some product. In terms of homomorphisms, these questions often
amount to finding criteria for the existence of a homomorphism from a product of graphs to
a given graph, or from a given graph to a product of graphs.

5.1 The categorical product and Hedetniemi’s conjecture

Recall that the categorical product G x H of two graphs G and H is the graph with vertex
set V(G) x V(H), where two vertices (ui,u2), (v1,v2) are adjacent if and only if u;, v, are
adjacent in G, and ug, v9 are adjacent in H. This is the product with the universal property
in the category of graphs. Indeed, both projections pr; and pry of G'x H onto its factors are
homomorphisms, and a graph K admits homomorphisms ¢; : K — G and ¢9 : K — H
if and only if it admits a homomorphism ¢ : K — G x H such that ¢; = pr; o ¢ and
¢ = pry o ¢. This homomorphism ¢ is defined by putting ¢(u) = (¢1(u), p2(u)). In general,
there need not exist a homomorphism from G to G x H; such a homomorphism exists if and
only if G — H. However, two homomorphisms ¢; : G — G’ and ¢3 : H — H' can be used
coordinatewise to define a homomorphism ¢ : G x H — G’ x H'. In terms of the quasi-
order —, the universal property of the categorical product of graphs says that for graphs G,
H, K, we have K — G x H if and only if both K — G and K — H hold. Thus, the class
H(G x H) is the infimum of the classes H(G) and H(H) with respect to the partial order <.

On a more concrete level, note that both the odd girth and the clique number of a graph
are defined by homomorphisms from odd cycles or complete graphs into this graph. With this
in mind, the following facts are direct applications of the universal property of the categorical
product.

Observation 5.1 Let G, H be graphs. Then the odd girth of G x H is the mazimum of the
odd girths of G and H, and the clique number of G x H is the minimum of the clique numbers
of G and H.

It is very enlightening to be able to express the value of some parameters in a product as a
function of the same parameters in the factors in this fashion. We may wonder if we might be
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able to do the same with other parameters. In particular, note that the chromatic number of
G x H is defined by homomorphisms from G x H to complete graphs, and its characterization
does not fall within the framework of the defining property of the categorical product. Thus,
the colourings of G x H are much less predictable. Some ‘canonical’ colourings can be defined
by projecting G x H onto one of its factors and then colouring this factor, but other colourings
also exist. However, we do not know any instances where less than min{x(G), x(H)} colours
are used. It is believed that such colourings are impossible, and this is the essence of the
following.

Conjecture 5.2 (Product conjecture, Hedetniemi [62]) Let G, H be graphs. Then

X(G x H) = min{x(G), x(H)}. (5.1)

It is easy to see that the identity (5.1) holds for min{x(G), x(H)} < 3. In terms of ho-
momorphisms, Conjecture 5.2 admits many equivalent formulations, which take into account
the obvious inequality x(G x H) < min{x(G), x(H)}. Each of the following statements is
equivalent to the product conjecture.

e Let n be a positive integer. If for two graphs G, H we have G /4 K, and H /4 K,,
then G x H /4 K,.

e Let G, H be m-chromatic graphs. Then there exists an m-chromatic graph K such
that K - G and K — H.

The first of these statements amounts to saying that K, is multiplicative (see Definition 5.9
below). Note that in the second statement, no restriction is made on the graph K. Of course,
if the product conjecture is true, we can put K = G x H. However, it is sometimes convenient
to consider other possible choices for K. For instance, we can try to find a graph K that is
x-critical. In particular, the only 3-colourable graphs that are y-critical are the graphs K,
K5 and the odd cycles. This simple family of graphs accounts for the validity of the product
conjecture for min{x(G), x(H)} < 3.

The next step towards a proof of the product conjecture would be to settle the case
min{x(G), x(H)} = 4. However the family of 4-critical graphs is much more complex than
the family of odd cycles, and there is no hope of generalizing the arguments that worked
before. Nonetheless, progress has indeed been made with a new approach due to El-Zahar
and Sauer, and it is now known that the identity (5.1) holds for min{x(G), x(H)} < 4.

For a graph G and an integer n, put

F ={H : G x H is n-colourable}.

Then, Hi — Hs and Hy € F implies Hy € F. Thus, F is an ideal with respect to the
quasi-order —. If G is n-colourable, then F contains all graphs; the interesting situation
arises when x(G) > n. Then, we find a counterexample to the product conjecture if there
exists a graph H € F such that y(H) > n. The following construction, due to El-Zahar and
Sauer, allows us to find a maximal element in F.

Definition 5.3 For a graph G and an integer n, we define the n-colouring graph C,(G) of G
by putting

V(Cu(G)) = {f:VI(G) — [n]},

E(C(@) = {lf,g]: forall (u,v) € V(G), [u,0] € E(G), f(u) # g(v)}.
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The vertices of C,(G) are arbitrary functions, not proper colourings in general. Thus,
|C,.(G)| = nl€l, and the structure of G only determines the structure of E(C,(G)). By the
definition of E(C,,(G)), a function f is adjacent to itself (i.e., [f, f] is a loop) if and only if it
is a proper colouring of G.%> Thus, C,(G) has no loops if and only if x(G) > n.

For H € F and a proper n-colouring ¢ of G x H, we define a map ¢ : H — C,(G) by
putting ¢(z) = fz, where f; : V(G) — {0,...,n — 1} is the function defined by f,(u) =
¢(u, ). By the definition of C,(G), it is straightforward to verify that 1 is a homomorphism.
Conversely, we can define a proper n-colouring ¢ of G x C,(G) by putting ¢(u, f) = f(u).
Thus, C,(G) € F, and F = {H : H — C,(G)}.

Now assume that x(G) > n. If x(C,(G)) < n, then x(H) < n for all H € F, and there
does not exist any graph H such that x(H) > n and x(G x H) < n. On the other hand, if
X(Crn(G)) > n, we find a counterexample to the product conjecture since x(G x C,(G)) < n.
Therefore, the product conjecture is equivalent to the statement that for any graph G and
for any n < x(G), we have x(C,(G)) < n. The main results of El-Zahar and Sauer are the
following.

Theorem 5.4 (El-Zahar, Sauer [40]) Let G be a graph such that x(G) > 4. Then
x(Cs3(G)) =3.

Corollary 5.5 If x(G) >4 and x(H) > 4, then x(G x H) > 4.

The proof of Theorem 5.4 is intricate and, once again, it is not clear how it can be
generalized to higher values of n. However, El-Zahar and Sauer’s approach provides a fruitful
insight into colourings of a categorical product of graphs. For instance, for a graph G and
n = x(G)—1, we at least know that x(C,(G)) is bounded, so there exists an integer m > x(G)
such that if x(H) > m, then x(G x H) = x(G). The situation is different if we do not fix a
graph G and consider the function a : N — N defined by putting

a(m) = min{x(G x H) : x(G) = x(H) = m}.

Though a is non decreasing, it is not even clear that a is not bounded. Poljak and Rodl [101]
obtained the surprising result that if a is bounded, then a(m) < 16 for all m € N (Poljak
[100] later improved this bound to 9).

The next three results show how our knowledge of the general structure of the graph
Cn(G) helps to solve further instances of the product conjecture.

Lemma 5.6 (El-Zahar, Sauer [40]) Let G be a connected graph and n an integer such
that n < x(G). Then C,(G) contains a unique complete subgraph of cardinality n, namely,
the subgraph induced by the constant functions.

Proof Let fi,...,f, denote the vertices of a complete subgraph in C,(G). Suppose that
G contains a vertex u such that the values fi(u),..., fn(u) are all distinct. Then for any
neighbour v of w and for any ¢ € {1,...,n}, we have f;(v) # f;(u) for all j # i. Thus,
filv) = fi(u) for all ¢ € {1,...,n}, and the values fi(v),..., fn(v) are all distinct. Since G is

Technically, we do not allow loops in this paper, so we should always specify that x(G) > n. However,
the validity of the approach remains unaltered even if we disregard the possible presence of loops.
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connected, we can repeat this argument to show that f;(u) = f;(v) for all u,v € V(G) and
i€ {1,...,n}. Therefore, {fi,..., fn} are the constant functions.

It remains to consider the case where for all v € V(G), the sequence fi(u),..., fo(u)
contains at least one repetition. We show that if this were the case, then G would be n-
colourable. Define a map ¢ : G — {0,...,n — 1} by selecting, for each u € V(G), a value
¢(u) that appears at least twice in the sequence fi(u),..., fn(u). It is easy to verify that ¢
is a proper colouring of G. Since x(G) > n, such a colouring is impossible. Therefore, C,(G)
contains a unique complete subgraph of cardinality n. O

Theorem 5.7 (Burr, Erdés, Lovasz [23]) Let H be a graph such that each vertex of H
is contained in a complete subgraph of cardinality n, and x(H) > n. Then for any graph G
such that x(G) > n we have x(G x H) > n.

Proof We may assume that G is connected. Suppose that x(G x H) < n. Then H — C,(G),
and any homomorphism ¢ : H — C,(G) must map all vertices of H to the unique n-clique
of C,,(G). This implies that H is n-colourable, which contradicts our hypothesis. O

Theorem 5.8 (Duffus, Sands, Woodrow [38]) Let G, H be two connected graphs, both
containing a complete subgraph of cardinality n, and such that x(G),x(H) > n. Then x(G X
H) >n.

Proof Suppose that x(G x H) < n. Then there exists a homomorphism ¢ : H — C,(G),
and since H is connected, ¢ must map all vertices of H into the same connected component
of C,(G), namely, the component C' that contains the constant functions. It remains to show
that if G contains a complete subgraph of cardinality n, then C is n-colourable.

Let uy,...,u, denote the vertices of a complete subgraph of G. Suppose that C' contains
a function f such that the values f(u1),..., f(u,) are all distinct. For any neighbour g
of f, we have f(u;) # g(u;) for all i # j, so f(u;) = g(u;) for ¢ = 1,...,n. Thus, the
values g(u1),...,g(u,) are all distinct, and since C' is connected, any function h in C has
the property the values h(uy),...,h(u,) are all distinct. However, this is impossible since C'
contains the constant functions.

Therefore, for any function f in C, the values f(uq),..., f(u,) are not all distinct. We
can then define a map ¢ : C — {0,...,n — 1} by selecting, for each f € V(C), a value ¢(f)
that appears at least twice in the sequence f(u1),..., f(uy,). It is easy to verify that ¢ is a
proper n-colouring of C'. O

Note that since the categorical product of graphs is commutative, we have H — C,(G)
if and only if G — C,,(H). This accounts for the similarity of the proofs of Lemma 5.6 and
Theorem 5.8. The reader may have noticed that connectedness plays an important role in
these proofs. Of course, if the product conjecture is false, then there exist two connected
graphs G and H such that x(G x H) < min{x(G), x(H)}. Also, it is an easy exercise to
verify that if Cy,...,C), are the connected components of G, then C,(G) is isomorphic to
X 1Cn(Cy). Hence, everything seems to indicate that difficulties related to connectedness are
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avoidable. However, a closer inspection of the order-theoretic properties of the construction
C,, with respect to the quasi-order — reveals that connectedness is indeed an important issue.’

Given a homomorphism ¢ : G — H one can define a homomorphism ¢ : C,(H) —
Cn(G) by putting ¥ (f) = f/, where f'(u) = f(¢(u)). Thus, the construction C, ‘reverses
arrows’ in the sense that G — H implies C,(H) — C,(G). Suppose that neither G nor
Cn(G) is n-colourable. Then we may iterate the construction and consider C,(C,(G)). Since
Cn(G) x G is n-colourable, we have G — C,(C,(G)). Therefore, x(C,(Cn(G))) > x(G), and
Cn(Cn(G)) is not m-colourable. Again, C,(C,(G)) x Cn(G) is n-colourable, and C,(G) —
Cn(Cr(Cr(G))). However, since the construction C, reverses arrows and G — C,(Cp(G)), we
also have C,(C,(C,(GQ))) — Cn(G), that is, C,(C,(Cr(G))) and C,(G) are homomorphically
equivalent. Let Hy, Hs denote the cores of C,,(G) and C,,(C,,(G)), respectively. We then have
H1 Ad Cn(Hg) and H2 g Cn(Hl)

Hence, if the product conjecture is false, then there exist an integer n and two core graphs
G and H such that G < C,(H) and H < C,(G).” In particular, G and H must contain
complete subgraphs of cardinality n. Thus, if G and H were connected, we would have a
contradiction to Corollary 5.8. So, we have to assume that G and H are disconnected.

An essential element of the proofs of Lemma 5.6 and Corollary 5.8 is the recognition of
‘invariants’ of a connected component of a n-colouring graph. In the proof of Theorem 5.4,
the role of these invariants is played by a parameter defined as the ‘parity’ of a 3-colouring
of an odd cycle. It seems that more invariants of this type need to be discovered if any
progress is to be made with this approach to the product conjecture. However, the product
conjecture admits interesting variations, and the methods of El-Zahar and Sauer have been
applied successfully to some of these.

Definition 5.9 A graph K is called multiplicative if for any graphs G and H such that
G+ K and H /A K, we have G x H /A K.

With this terminology, the product conjecture states that all complete graphs are mul-
tiplicative, and falls within the general problem of characterizing all multiplicative graphs.
In this respect, a circular chromatic number analogue of Hedetniemi’s conjecture has been
formulated by X.Zhu in [138]: all circular graphs are multiplicative.

Conjecture 5.10 Let G and H be graphs. Then x.(G x H) = min{x.(G), x.(H)}.

Note however that there exist graphs which are not multiplicative. For instance, if G, H
are graphs such that G 4 H and H /4 G, then K = G x H is not multiplicative.

By analogy with the definition of C,(G), we define, for any graph K, the K-colouring
graph Ci(G) of a graph G. The vertices of Cx(G) are all functions f : V(G) — V(K),
and two functions f, g are joined by an edge if and only if for all [u,v] € E(G), we have
[f(u),g(v)] € E(K). In particular, Ck, (G) = C,(G). Note that a function f € V(Cx(Q))
is adjacent to itself if and only if it is a homomorphism form G to K. Hence, Cx(G) is a
genuine (irreflexive) graph if and only if G has no “K-colourings”; in this respect, the name
“K-colouring graph” is somewhat misleading®.

®These order-theoretic properties are investigated by Duffus and Sauer [39].

If we allow loops, this relationship holds between the complete graph K, and the one-vertex graph with
a loop. If the product conjecture is true, this is the only instance.

8 Also note that the categorical product is sometimes called the tensor product, although it is not a tensor
product from the point of view of category theory.
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The essential properties of K-colouring graphs are summarized in the following statement.
Lemma 5.11 Let G, H, K be graphs. Then G x H — K if and only if H — Cx(G).

Proof Let ¢ : G x H — K be a homomorphism. We define a map ¢ : V(H) — V(Cx(G))
by putting ¢(z) = f., where f.(u) = ¢(u, z). By the definition of Cx (G), it is straightforward
to verify that 1 is a homomorphism.

Conversely, for a homomorphism ¢ : H — Cg(G), we can define a homomorphism
¢:Gx H — K by ¢(u,2) = fo(u), where f, = (). O

In particular, the relation K — Cx(G) holds for any graphs G and K. Also, a graph K
is multiplicative if and only if for every graph G such that G 4 K, we have Cx(G) — K. In
this connection, Theorem 5.4 has been generalized to the following.

Theorem 5.12 (Haggkvist, Hell, Miller, Neumann-Lara, [54]) All odd cycles are mul-
tiplicative.

In addition, the categorical product and the concept of multiplicative graphs is also in-
vestigated in the context of directed graphs. There, the approach of El-Zahar and Sauer has
some noteworthy competition, namely the concept of ‘complete sets of obstructions’, which
generalizes the role of the odd cycles in the characterization of bipartite graphs (see [54]). In
another direction, infinite graphs and infinite chromatic numbers have also been considered
with respect to the product conjecture. The categorical product of two graphs with count-
ably infinite chromatic number has countably infinite chromatic number, but Hajnal [58] has
shown that the product conjecture is false for higher cardinalities.

We conclude this section with an elegant proof of Welzl’s density theorem 2.33 that uses
the concepts presented above. This proof (to our knowledge unpublished) is due to M.
Perles [99] and is very different form Welzl’s original approach.

Proof of Theorem 2.33 Let G, H be graphs with at least one edge, and such that G — H
and H 4 G. Note that H need not be connected. However, we may assume that every
connected component of H is nonbipartite. Let m denote the maximum of the odd girths of
the connected components of H, and put n = x(Cq(H)) (since H 4 G, Cq(H) has no loops
and hence its chromatic number is well defined). It is well known that there exists a graph
L with odd girth greater than m and chromatic number greater than n (for instance, some
Kneser graphs satisfy this property, see Proposition 3.14). We then have L 4 Cg(H), and
H' / L for every connected component H' of H. Let K be the disjoint union of the graphs
G and H x L. Obviously, we have G — K — H; we show that H /4 K 4 G. Suppose
that K — G. Then H x L — G, thus L — Cg(H) by Lemma 5.11; this contradicts our
choice of L. Similarly, suppose that H — K = GU H x L. Since H 4~ G, we must have
H' — H x L for some connected component H' of H. We then have H' — [, which again
contradicts our choice of L. Therefore, we have G — K — H and H /4 K /4 G; that is, K
is homomorphically “strictly in between” G and H, and this concludes the proof. O
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5.2 The cartesian product and normal Cayley graphs

Recall that the cartesian product GOH of two graphs G and H has vertex set V(G) x V(H),
and two vertices (u1,v1),(ug,v2) are joined by an edge if either u; = ug and [v1,ve] €
E(H), or [uj,uz] € E(G) and v; = ve. Hence the projections of GOH onto its factors
are not homomorphisms (except in the case of factors with no edges). However, for any
(u,v) € V(G) x V(H), the fibers induced by the sets {u} x V(H) and V(G) x {v} are
isomorphic copies of H and G, respectively. This shows that both relations G — GOH and
H — GUOH hold. Thus, in shifting the focus from the categorical product to the cartesian
product, we find that the respective roles of the product and the factors are reversed, in
the sense that the factors admit natural maps into the product instead of the opposite.
In particular, the inequality relating the respective chromatic numbers of the product now
becomes x(GOH) > max{x(G), x(H)}. However, in the case of the cartesian product, the
analogue of the product conjecture admits a simple proof.

Lemma 5.13 ([107]) For graphs G and H, x(GOH) = max{x(G), x(H)}.

Proof Recall our convention that for any n € N, the graph K, has as its vertices the integers
{0,1,...,n — 1}. Let m = max{x(G), x(H)}. Given homomorphisms ¢ : G — K, () and
Y H — K, g), we define v : GOH — K, by v(u,r) = ¢(u) + ¢(z) mod m. This is a
homomorphism and so x(GOH) < m. Since both G and H map into GOH, we also have the
inverse inequality. O

JFrom the point of view of homomorphisms, Lemma 5.13 admits the following interpre-
tation. For any graphs G, H such that G — K, and H — K,,, we have GOH — K,,. By
analogy with the concept of multiplicative graphs (Definition 5.9), this property suggests the
following problem.

Characterize the graphs K with the property that for any graphs G, H such that
G — K and H — K, we have GOH — K.

In particular, for any graph K, we have K — K, so this property implies KOK — K.
Conversely, any pair of homomorphisms ¢1 : G — K and ¢ : H — K can be used
coordinatewise to define a homomorphism ¢ : GOH — KOK. Therefore, a graph K has
the property described above if and only if KOK — K.

Definition 5.14 A graph K is called hom-idempotent if KOK «— K.

As any graph K satisfies K — KOK, a graph K is hom-idempotent if and only if KOK —
K. This property seems very restrictive, since the projections are not homomorphisms. The
complete graphs are hom-idempotent, but a close inspection of the proof of Lemma 5.13 hints
at a construction of other examples.

Definition 5.15 A normal Cayley graph is a Cayley graph Cay(T', S) such that 2~ 'sz € S
forany z € ' and s € S.

Note that the condition = !sxz € S is satisfied whenever the group I is abelian. Thus, all
Cayley graphs of abelian groups, and in particular all circulants, are normal Cayley graphs.
The defining property of normal Cayley graphs has the following interpretation.
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Lemma 5.16 A Cayley graph Cay(T',S) is normal if and only if both the left translations
and the right translations of I' are automorphisms of Cay (L', 5).

Proof Since the left translations are always automorphisms of Cayley graphs, it suffices
to consider the right translations. Suppose that Cay(T",S) is normal. For w € T, let T :
I' — T be the right translation T'(u) = uw. For [u,v] € E(Cay(T,S)), we have u~lv € S,
so T(uw) 1T(v) = wlutvw € S and [T'(u),T(v)] € E(Cay(T,S)). Therefore, T is an
automorphism of Cay(I", S). Conversely, suppose that all right translations of a Cayley graph
Cay(I', S) are automorphisms. Then, for s € S and w € T', we have [1r,s] € E(Cay(T,S)),
so [w,sw] € E(Cay(T, S)), that is, w™lsw € S. O

Corollary 5.17 (Hahn, Hell, Poljak [55]) Let Cay(T',S) be a normal Cayley graph. Then
the map ¢ : Cay(I', S)OCay(I",S) — Cay(I',S) defined by putting ¢(z,y) = xy is a homo-
morphism. Therefore, Cay (L', .S) is hom-idempotent.

Proof The map ¢ acts as a right translation on each fiber of the first factor and as a left
translation on each fiber of the second factor. Thus, by Lemma 5.16, ¢ is a homomorphism.
O

Two classes of circulants appear respectively in the definition of the chromatic number
and the circular chromatic number, namely the complete graphs and the circular graphs.
By Corollary 5.17, these are hom-idempotent graphs, and this accounts for the identities
X(GOH) = max{x(G),x(H)} and x.(GOH) = max{x.(G),x.(H)}. In contrast, the frac-
tional chromatic number is defined using homomorphisms into Kneser graphs, which are not
hom-idempotent. It follows that in general, x ;(GOH) cannot be expressed as a function of
X¢(G) and xf(H). For instance, we have xf(C5) = x(K(2,5)) = 5/2. However, since Cj is
hom-idempotent, we have x(C50Cs5) = x¢(Cs) = 5/2, while x7(K(2,5)0K(2,5)) = 50/17,
as shown by Albertson and Collins [5].

These examples show how hom-idempotent graphs are related to parameters which are
well behaved with respect to the cartesian product. The characterization of hom-idempotent
graphs is closely related to the definition of the cartesian product of graphs as a tensor
product in the category of graphs.

Definition 5.18 Let G and K be graphs. We define the homomorphism graph Hom(G, K)
by putting

V(Hom(G,K)) = {¢:G— K : ¢ is a homomorphism},
EMHom(G,K)) = {[¢,v]: for all u € V(G),[p(u),¥(u)] € E(K)}.

It is interesting to compare this definition to that of the graph Cx(G) defined in the
preceding section. Note that Cx(G) has |K|I¢ vertices regardless of the structure of G
and K, whereas the vertices of Hom(G, K) are homomorphisms, and hence their number
depends heavily on the structure of both G and K. In particular, the number of vertices of
Hom(G, K,,) is the value pg(n), where pg is the chromatic polynomial of G. The relative
importance of structure is reversed when we consider the edge sets of Cx(G) and Hom(G, K).
The definition of E(Cx(G)) uses both definitions of E(G) and E(K), while the definition of



Graph homomorphisms 147

E(Hom(G, K)) omits that of F(G). In fact, Hom(G, K) can be viewed as a subgraph of the
categorical product of |G| copies of K. This brings forth the last point of comparison between
these graphs. The relation Hom(G, K) — K trivially holds in all cases, as for any u € V(G),
the evaluation map €, : Hom(G, K) — K defined by €,(¢) = ¢(u) is a homomorphism.
However, to decide in which cases the relation Cx(G) — K holds, amounts to characterizing
multiplicative graphs. Note, however, that the relation K — Cx(G) always holds.

Any homomorphism ¢ : GOH — K acts as a homomorphism on each of the fibers of H.
It is the kind of interplay needed between these that dictates the definition of Hom(H, K).
Formally, this means that the homomorphism graphs can be used in a characterization of the
cartesian product of graphs as a tensor product. The essential points of this characterization
are summarized in the following technical statement.

Proposition 5.19 Let G, H, K be graphs.

(i) Let ¢ : GOH — K be a homomorphism. Then the map v : G — Hom(H, K)
defined by setting (u) = ¢, is a homomorphism, where ¢, : H — K is defined by
by (V) = P(u,v).

(ii) Let vy : G — Hom(H, K) be a homomorphism. Then the map ¢ : GOH — K defined
by ¢(u,v) = ¢y (v) is a homomorphism, where ¢, = ¥ (u).

We omit the proof which is a straightforward application of the definition. Our main
interest is the hom-idempotent graphs, that is, the situation where G = H = K. Proposi-
tion 5.19 states that for a graph K, we have KOK — K if and only if K — Hom(K, K).
Since the relation Hom (K, K) — K always holds, we have the following.

Corollary 5.20 A graph K is hom-idempotent if and only if K < Hom(K, K).
We can make this characterization more precise by restricting it to core graphs.
Proposition 5.21 Let K be a core. Then Hom (K, K) is a normal Cayley graph.

Proof If K is a core, then V(Hom(K,K)) = Aut(K). Two automorphisms ¢, of K
are adjacent if and only for all u € V(K), we have [¢(u),%(u)] € E(K). Applying ¢~ *
yields [u, =1 o 9(u)] € E(K) for all u € V(K). Therefore, Hom(K, K) is the Cayley graph
Cay(Aut(K), Sk ), where

Sk ={o € Aut(K) : [u,0(u)] € Aut(K) for all u € V(K)}.

The elements of S are called the shifts of K. It remains to show that for any ¢ € Sk and any
¢ € Aut(K), we have ¢ toco¢ € Sk. For any u € V(K), we have [¢p(u), cop(u)] € E(K) by
the definition of shifts. Applying ¢~! yields [u, ¢ ' ocop(u)] € E(K). Thus, ¢ toco¢ € Sk,
and Hom(K, K) = Cay(Aut(K), Sk) is a normal Cayley graph. O

Since homomorphisms can be used coordinatewise, hom-idempotency of a graph K is
equivalent to hom-idempotency of its core. Therefore, combining the previous results with
Corollary 5.17, we get the following.

Theorem 5.22 (Larose, Laviolette, Tardif [90]) A graph is hom-idempotent if and only
if it is homomorphically equivalent to a normal Cayley graph. O
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Thus, up to homomorphic equivalence, the examples described in Corollary 5.17 represent
all hom-idempotent graphs. This is surprising in view of the fact that even for a core graph
K, the homomorphisms ¢ : KOK — K are usually not group operations. For instance, any
latin square on the vertex set of K,, defines a homomorphism ¢ : K,,0K,, — K, and only
a few of these are group operations. Of course, some always are, and K, is indeed a normal
Cayley graph. However, it is conceivable that there exists a hom-idempotent core K such
that none of the homomorphisms ¢ : KOK — K are group operations, though no such
example is known.

Since the fibers are isomorphic copies of the factors in a cartesian product of graph, we
have for any graph K and any n < m that K" — K™ (where K" is short for O ;K). In
fact, it is quite common that the relation — defines a strict order on the cartesian powers of
a graph. At the other extreme lie the hom-idempotent graphs, which have the property that
all of their cartesian powers are homomorphically equivalent. Between these two extremes,
there exist graphs which satisfy some nontrivial relations K™ — K™ but not all of them. The
next result shows that normal Cayley graphs also help to characterize all of these graphs.

Theorem 5.23 (Larose, Laviolette, Tardif [90]) Let K be a graph and m > n integers.
Then K™ — K™ if and only if there exist normal Cayley graphs Cay(I'1,S1),...,Cay(Ty, Sn)
such that Cay(I'y, Sy) — K fork=1,...,n, and K — 0O}_,Cay(I'y,, S).

We have seen in Example 3.5 that G = Cay(Zsg, {+1,£2}) and H = Cay(Z7, {£1, +2})
are two circulants such that G 4 H and H 4 G. Both of these are normal Cayley graphs.
Let K be the graph obtained from the disjoint union of these two graphs by adding an edge
between the element 0 of Zg and the element 0 of Z7. Then we have G — K and H — K.
Also, a homomorphism ¢ : K — GOH can be defined by putting ¢(u) = (u,0) if u € Zg
and ¢(u) = (1,u) if u € Z7. Therefore, we also have K — GOH.

Theorem 5.23 then states that for any m > 2, we have K™ — K?. A homomorphism
from K™ to K? can be constructed as follows. First, use ¢ : K — GOH coordinatewise to
define a homomorphism from K™ to (GOH)™. Then, note that GOH is a normal Cayley
graph (the cartesian product of normal Cayley graphs always is), so the multiplication of the
coordinates is a homomorphism from (GOH)™ to GOH. Finally, use any homomorphisms
Y1 : G — K and ¥y : H — K coordinatewise to define a homomorphism from GOH to
K2

However, there is no homomorphism from K? to K. Indeed, we have K? « GOH, and
every edge of GOH is contained in a triangle. Hence, no edge of GOH can be mapped
by homomorphism to the edge of K joining the element 0 of Zg and the element 0 of Z;.
Therefore, the image of a homomorphism from GOH to K would either be contained in G
or in H. However, this is impossible since G 4 H and H /4 G.

We now turn our attention to homomorphisms into a cartesian product of graphs. Let
¢ : G — 0O7_, Gy be a homomorphism. Then the maps pryo¢ : G — Gi,k =1,...,n,
need not be homomorphisms. However, for any k, the partition

Pr={(prio @) " (u) : u € V(Gi)}

of V(@) has the property that G/Pr — Gy, and the least common refinement of Py,..., P,
is the partition
P={¢ '(u) :u e V(OF_,Gr)}



Graph homomorphisms 149

of V(G). Hence, the essential information concerning ¢ is encoded in the family Py,...,P,
of partitions of V(G). This representation is still cumbersome, but we will be able to refine
it by using the structure of the cartesian product of graphs.

Definition 5.24

e Let ¢ : G — O}_, G be a homomorphism. The edge-labeling induced by ¢ is the map
ly: E(G) — {1,...,n},
where £4([u,v]) is the unique index k such that pry o ¢(u) # pry o ¢(v).

e Let £ : E(G) — {1,...,n} be a map. Then for k € {1,...,n}, let G/¢~(k) denote
the quotient G/Qy, where Qy is the partition of V(G) whose cells are the (vertex-sets
of) connected components of G — £~1(k).

Let ¢ : G — O} _, Gy be a homomorphism with induced edge labeling £4. Then pry o ¢
is constant on each connected component of G — E;l(k), and there exists a homomorphism
ok : G/E;l(k) — G}, (not necessarily injective) such that pryo¢ = ¢y omy (where 7, : G —
G/f;l(k‘) is the natural map) for £k = 1,...,n. In addition, we can use the natural maps
e G — G/E;l(k) coordinatewise to define a homomorphism 7 : G — DzzlG/fgl(k).
To some extent, this shows how some essential information concerning homomorphisms of G
into a cartesian product is encoded in maps from E(G) to {1,...,n} for some integer n, in
other words, in edge partitions. The following is a characterization of the maps which give
rise to a homomorphism in this fashion.

Observation 5.25 Let G be a graph, n an integer, and ¢ : E(G) — {1,...,n} a map.
Then the following conditions are equivalent.

(i) There exists a homomorphism ¢ : G — O} _ Gy, such that £y = £.
(ii) The natural map 7 : G — OF_, G/ (k) is a homomorphism.

v] of G and for any path P from w to v, there exists an edge € of

’E(e).

(iii) For any edge e = [u

P such that £(e")

Therefore, the problem of finding a homomorphism from a graph to a cartesian product
of graphs often amounts to finding a suitable edge partition. In that vein, we find the long
standing problem of characterizing the induced subgraphs of cubes (a cube is a cartesian
product of copies of K3). This problem was brought forth by Shapiro [112] along with the
first definition of the cartesian product of graphs, and has since been studied by many (see
[27, 31]). As is to be expected, the problems concerning homomorphisms into cartesian
product of graphs turn out to be as intricate as many other problems concerning graph
homomorphisms. However, a recent wave of interest in some particular homomorphisms
called isometric embeddings has given rise to interesting results concerning embeddings into
cartesian products. These and other aspects of isometric embeddings are investigated in
Section 5.4.
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5.3 The strong product and the lexicographic product

The strong product G X H and the lexicographic product G[H| bear a close resemblance
to each other. The edges of G X H are the pairs [(u1,u2), (v1,v2)] such that u; and v; are
adjacent or equal for i = 1,2. All these edges are contained in G[H], in addition to all other
edges [(u1,u2), (v1,v2)] such that [u1,v1] € E(G). In particular, G X K,, = G[K,] for any
graph G and any integer m. This identity summarizes the relation between the colouring
problems between both of these products. The problem of finding the chromatic number of
a lexicographic product of graphs reduces to that of finding the chromatic number of the
graphs G[K,], which in turn provides bounds on the chromatic number of a strong product
of graphs.

In section 4.3, we defined the n-chromatic number of a graph G as the least integer
m = xn(G) such that G admits a Kneser (n,m)-colouring, that is, a homomorphism ¢ :
G — K(n,m).

Lemma 5.26 For any graph G, and any integer n, x(G[K,]) = xn(G).

Proof Let ¢ : x(G[K,]) — [m] be a colouring. Then, we find a (n, m)-subset colouring of G
by assigning to each vertex u the set of colours used on the fiber {(u,v) : v € K,,}. Conversely,
if  : G — K(n,m) is a homomorphism, then we can m-colour G[K,] by colouring the fiber
{(u,v) : v € K,} with colours in ¢(u) for each u € V(G). O

Theorem 5.27 (Stahl [113]) For any graphs G and H, we have x(G[H|) = xn(G), where
n=x(H).

Proof By Lemma 5.26, we have x(G[H]|) < x»(G) since G[H| — G[K,]. On the other hand,
for any m-colouring ¢ : G{[H] — [m], each fiber {(u,v) : v € V(H)} uses at least n = x(H)
colours, and the fibers corresponding to adjacent vertices of G are coloured with disjoint sets
of colours. Thus, we can define a Kneser (n,m)-colouring of G by independently selecting,
for each u in V(G), a n-subset of the colours used for its fiber. O

Thus, the chromatic number of G[H] does not depend on the structure of H, only on its
chromatic number. A similar phenomenon occurs when we consider the circular chromatic
number of a lexicographic product of graphs.

Theorem 5.28 (Zhu [138]) For any graphs G and H, we have x.(G[H]) = x.(G[K,)]),
where n = x(H).

In the case of the strong product, Lemma 5.26 can be used to find lower bounds for the
chromatic number.

Lemma 5.29 For any graphs G and H,
X(G X H) > max{x,mu)(G), xw@) (H)}-

Proof Since G[Kw(H)] =~ GlXKw(H) — GNX H and H[Kw(G)] ~ H&Kw(g) — HXG ~
G X H, the result follows from Lemma 5.26. O
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It is also possible to express bounds for the chromatic number of a strong product of
graphs in terms of the chromatic numbers and clique numbers of the factors alone. If G has
at least one edge, then for any n, x,(G) > 2n. For m = x,,(G), we have G — K(n,m). By
Theorem 3.10, x(K(n,m)) = m —2n+ 2, and x(G) + 2n — 2 < m = x,(G). Therefore, we
have the following.

Theorem 5.30 (Klavzar, Milutinovié¢ [85]) IfG and H are graphs with at least one edge,
then
X(GX H) > max{x(GQ) + 2w(H) — 2, x(H) + 2w(G) — 2}. O

Note that this bound is obtained by considering subgraphs of the product which are
isomorphic to lexicographic products. Vesztergombi [124] proposed a different approach which
takes into account the full structure of the strong product of graphs. For a graph G and an
integer m, define the graph C2(G) by putting

V(CE(G)) = {¢:G — [m]: ¢ is a proper colouring},
ECH(@) = {[6,¥] : d(u) # p(u) for all u € V(G) and
d(u) # ¥(v) for all [u,v] € E(G)}.

This construction bears the same relation to the colourings of a strong product of graphs
as do the n-colouring graphs of Definition 5.3 to the colourings of a categorical product of
graphs.? Namely, the following holds.

Theorem 5.31 (Vesztergombi [124]) For two graphs G and H, GR H is m-colourable if
and only if H — CX(G).

It is clear that the chromatic number of a strong product of graphs cannot be expressed
as a function of the chromatic numbers of the factors. Thus, there is no strong product-
analogue of the product conjecture. Nonetheless, it would be interesting to know more
about the general structure of CX(G)®. In particular, Vesztergombi [124] has shown that
CB(K,)* = K(n,m), and CB(C5)* = Cs.

We now turn our attention to retracts of strong products and lexicographic products of
graphs. These are more manageable than the retracts of products we have investigated so
far. We will be particularly interested in finding out when the product of two cores is a core.
Since homomorphisms can be used coordinatewise, it is of course necessary that both factors
be cores. However, this condition is not sufficient for either of the products. Consider the
graphs K (3,9) and K3. Both are cores; however, their product K(3,9) X K3 ~ K(3,9)[K3]
is a 9-chromatic graph with a 9-clique, so its core is Kjo.

Proposition 5.32 For any connected graphs G, H, the core of G[H] is G'[H®], where G’ is
a subgraph of G which is itself a core.

Proof Clearly, G[H| < G[H®]. Let p : GI[H®*] — G[H"®]* be a retraction, and identify
G[H®]* with a subgraph of G[H*®]. Then for any v € V(G) and [v,w] € E(H®) such that
(u,v) € V(G[H®]*), p(u,w) must be adjacent to (u,v) and cannot be adjacent to (u,w).

9Note that the definition of C%(G) predates that of Cn(G).
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Since H*® is connected, it follows that p maps the fiber F, = {(u,v) : v € V(H*®)} into itself.
Since H*® is a core, this means that G[H*]* = G'[H®], where G’ is a subgraph of G. O

However note that not all retracts of G[H] are lexicographic products, since retractions
can be performed independently on the fibers of H. The situation is different in the case of
the strong product, as the following result shows.

Theorem 5.33 (Imrich, Klavzar [84]) Let G, H be connected graphs, and R a retract of
GXH. Then there exist subgraphs G' of G and H' of H such that R is isomorphic to G'XH'.

In particular, the core of G X H is a strong product of subgraphs of G and H. The
example of K (3,9)[K3] shows that neither Proposition 5.32 nor Theorem 5.33 can be refined
to the statement that these subgraphs are retracts of the respective factors. The reason lies
in the fact that the presence of triangles in the factors allows some interplay between the
factors. This is made clear by the following results.

Proposition 5.34 Let G and H be connected graphs such that G does not contain any tri-
angles. Then G[H]* = G*[H*®].

Proof By Proposition 5.32, G[H]* = G'[H*], where G’ is a core, and it remains to show that
it is the core of G. Let p : GI[H®*] — G'[H®] be a retraction. Put

S={uecV(G): p(Fy) = Fy,) for some (u) € V(H*)}.

We show that S = V(G). Clearly, S is not empty since V(G') C S. If v/ is adjacent to some
u € S, then p(F,/) cannot intersect Fy(u) since every vertex of F,/ is adjacent to all vertices of
F,. Also, since H® is connected, prs(F,/) induces a connected subgraph of G, whose vertices
are all adjacent to ¥ (u). However, G does not contain any triangles, so prg(F,/) consists of a
single vertex (u’). Then, p must map Fys to Fy ) bijectively, since all fibers are isomorphic
to the core H®. Thus, u’ € S. G being connected, this implies that S = V(G). Therefore,
¥ : V(G) — G’ is a well-defined retraction, and G’ = G°. O

Theorem 5.35 (Imrich, Klavzar [84]) Let G, H be connected triangle-free graphs, and R
a retract of GR H. Then there exist retracts G' of G and H' of H such that R is isomorphic
to G' R H'. In particular, (GR H)®* = G* K H®.

In the case of these two products, retracts and cores can be expressed as products of
subgraphs or retracts. The situation is different with other products. In particular, the
identity (G x G)®* = G* holds for all graphs, and G* cannot be expressed as a categorical
product of subgraphs of G. Also, the hom-idempotent graphs are the graphs G that satisfy
(GOG)® = G*, and G* is a cartesian product of subgraphs of G. In general, it is known (see
Tardif [117]) that if (O}_,G})® is vertex-transitive, then it is a cartesian product of subgraphs
of the factors. However, it is not known if the same holds for all cores of connected cartesian
products of graphs.
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5.4 Isometric embeddings and retracts

The distance dg(u,v) between two vertices u,v of a connected graph G is the length of a
shortest path joining them. Such a path is called a wwv-geodesic. The function dg itself is
often called the ‘geodesic metric’ or ‘shortest path metric’ of G. It is indeed a metric in the
usual sense, as it satisfies the axioms dg(u,v) = 0 if and only if u = v, dg(u,v) = dg(v,u)
and the triangle inequality dg(u,w) < dg(u,v) + dg (v, w).

The interplay between graph homomorphisms and the shortest path metric is illustrated
by the following observation. Let G, H be connected graphs, and ¢ : G — H a homomor-
phism. Then, for any u,v € V(G) and any uv-geodesic P, ¢(P) is a ¢(u)p(v)-trail, and we
see from this that dg(é(u), p(v)) < dg(u,v). This motivates the following definitions.

Definition 5.36 Let G, H be connected graphs, and ¢ : V(G) — V(H) a map.
(i) ¢ is a contraction if dy(¢p(u), #(v)) < dg(u,v) for any two vertices u, v of G.

(ii) ¢ is an isometric embedding if dg(Pp(u), p(v)) = da(u,v) for any two vertices u,v of G.

Any homomorphism between connected graphs is a contraction, but the converse fails
since contractions can map adjacent vertices to the same vertex. However, isometric embed-
dings are homomorphisms. The term ‘embedding’ is normally reserved for injective maps and
indeed, it is easy to see that any isometric embedding is a full monomorphism. The following
result shows that some important homomorphisms that we have already encountered are in
fact isometric embeddings.

Lemma 5.37 Let R be a retract of a connected graph G. Then any co-retraction v : R — G
1 an isometric embedding.

Proof Let p : G — R be a retraction such that p oy = idg. Then for any u,v € V(R), we
have

dr(u,v) = da(y(u),y(v)) = dr(p o y(u),poy(v)) = dr(u,v),

hence v is an isometric embedding. O

Therefore, metric considerations turn out to play an important role in the characterization
of retracts of graphs, though we have managed to avoid the subject up to this point. Part
of the reasons for avoiding it lie in the fact that when considering discrete metric spaces, the
natural morphisms are the contractions rather than graph homomorphisms.

Isometric embeddings into products of graphs often provide an insight into the metric
structure of a graph; this has become a flourishing topic in view of some recent applications
of graph theory to computer science. Szamkolowicz [116] has shown that there exist precisely
two products of graphs in which the distance can be expressed as a reasonably ‘nice’ function
of the coordinate distances. These are the cartesian product, where the distance is the
sum of coordinate distances, and the strong product, where the distance is the maximum
of coordinate distances. Each of these products gives rise to an interesting theory regarding
isometric embeddings and retracts. We shall present both in some detail.

Recall that Observation 5.25 shows how the analysis of homomorphisms into cartesian
products is reduced to the study of edge labelings and natural maps into products of the
quotients introduced in Definition 5.24
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Theorem 5.38 (Graham, Winkler [52]) Let G be a graph, n an integer, and £ : E(G) —
{1,...,n} a map. Then the following conditions are equivalent.

(i) There exists an isometric embedding ¢ : G — O} _ G, such that £y = (.
(ii) The natural map 7: G — OF_ G /071 (k) is an isometric embedding.
(iii) For all u,v € V(G), for all k € {1,...,n} and for all uv-geodesic P, we have

|E(P)N ¢~ 1(E)| = min{|E(Q) N ¢ (k)| : Q is a uv-path }.

(iv) If [u,v], [/, '] are edges of G such that £=1([u,v]) # £~ 1([u',2']), then

da(u,u') — dg(u,v') = dg(v,u') — dg(v,v').

In particular, condition (iv) suggests the following. Define a relation 6 on the edge set of
a connected graph G by putting

[u, v]0[u, V'] = dg(u,u’) + da(v,v") # da(u,v') + da(v, o).

This relation was introduced by Djokovié for the purpose of characterizing the graphs which
admit an isometric embedding in a cube. Note that 6 is well defined, reflexive and symmetric.
Let 6 denote the transitive closure of 8. Then @ is an equivalence relation and partitions E (G)
into classes Ei,...,E,. Define ¢: E(G) — {1,...,n} by putting ¢(e) = k if e € Ej. Then
the natural map 7 : G — 0OF_,G/¢"!(k) is an isometric embedding. This map is optimal
in the sense that if ¢ : G — O] |G, is an isometric embedding that is ‘irredundant’ (that
is, pry o ¢(G) = Gy, for all k and none of the factors Gy, is isomorphic to K7), then ¢ can be
refined to .

Thus, isometric embeddings into cartesian products of graphs admit an efficient character-
ization, contrary to homomorphisms in general. A similar treatment applies to isomorphisms
into cartesian products, which can be viewed as a particular kind of isometric embeddings
(see [83]). However, we shall not go into this subject and turn our attention to the retracts
of a cartesian product of graphs.

Recall that the cubes are the cartesian powers of Ks. These are the simplest instances of
cartesian product of graphs. No general characterization of the retracts of cartesian products
of graphs is known, but such a characterization exists for simple structures such as cubes. We
define the diameter of a graph G as the maximum distance between any two vertices of G.
For instance, the cube Q,, = O}_; K3 has diameter n. Also, the covering graph (or unoriented
Hasse diagram) of a partially ordered set (P, <) is the graph G which has P as its vertex set,
and whose edges are the pairs [p, q] such that p covers ¢, that is, p < ¢ and no element r of
P satisfies p < r < gq.

Theorem 5.39 (Duffus, Rival [37]) The diameter-preserving retracts of cubes are the cov-
ering graphs of distributive lattices.

This result may come as a surprise, since it is not clear how lattice operations can be
related to a graph structure, let alone to graph retractions. The following concept helps to
clarify these matters. A median of three vertices of a connected graph is a vertex that lies
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simultaneously on geodesics between any two of them. It often happens that three given
vertices of a graph have no median, or more than one. A graph G is called a median graph if
any triple of (not necessarily distinct) vertices of G has a unique median. For instance, trees
are simple examples of median graphs. Other examples include the cubes and the covering
graphs of distributive lattices. In fact, if G is the covering graph of a distributive lattice L,
then the median of any three vertices u, v, w of G coincides with their order-theoretic median
(uAv)V(uAw)V(vAw)in L.

Let R be a retract of a median graph G. By Lemma 5.37, any co-retraction v: R — G
is an isometric embedding. Let p : G — R be a retraction such that poy =idgr. Let u,v,w
be vertices of R, and x € V(G) the median of v(u), v(v) and y(w). Then p(x) is a median of
u, v and w, which is easily seen to be unique since v is an isometric embedding. Thus, R is
a median graph, and we have shown that the class of median graphs is closed under taking
retracts. In fact, Theorem 5.39 generalizes to the following characterization.

Theorem 5.40 (Bandelt [10]) The median graphs are the retracts of cubes.

The reader may have noticed that the essential feature of retractions that is used in this
characterization is the fact that they are contractions, not that they are edge-preserving.
Indeed, we can define a weak retract of a graph G as a graph R such that there exist con-
tractions p: G — R and v : R — G satisfying p o vy = idg. The metric properties defining
median graphs can then be relaxed to a definition of quasi-median graphs, which are the
weak retracts of Hamming graphs (that is, cartesian products of complete graphs, see Chung,
Graham, Saks [28] and Wilkeit [129]).

In view of these observations, the median graphs can also be characterized as the weak
retracts of cubes. Thus, Theorem 5.40 not only provides a characterization of the retracts
of cubes, but also shows that no other graphs are found if we allow contractions to serve as
retractions. This is a bit surprising in view of the freedom gained when considering contrac-
tions rather than homomorphisms. However, note that median graphs are bipartite, and in
the context of bipartite graphs, contractions and homomorphisms bear a special relationship
to each other, as is shown by the following result.

Proposition 5.41 Let ¢ : G — H be a contraction, where G and H are bipartite graphs.
Then there exists a bipartite graph G' and a homomorphism ¢ : G — HOG' such that

¢ =pryo.

Proof Put F' = {[u,v] € E(G) : ¢(u) = ¢(v)}, and let P be the partition of V(G) whose cells
are the connected components of G — F. Put G’ = G/P, and let the map ¢ : G — HOG'
be defined by ¢ (u) = (¢(u),m(u)), where 7 : G — G’ is the natural map. We then have
¢ = pry o

We show that ¢ is a homomorphism. Let [u,v] be an edge of G. If ¢(u) # ¢(v), then
[p(u), p(v)] € E(H) and w(u) = w(v), since [u,v] € F. Thus, [¢(u),9(v)] € E(HOG"). Now
suppose that ¢(u) = ¢(v). Since [u,v] € E(G) and G is bipartite, any uv-path P has odd
length. If E(P) N F were empty, then ¢(P) would be an odd closed trail in H, which is
impossible since H is bipartite. Therefore, v and v belong to different connected components
of G—F, and [r(u),7(v)] € E(G"). Thus, [¢(u),¥(v)] € E(HOH').

Along the the same lines, it is easy to show that any cycle of G’ must have even length.
Thus, G’ is also bipartite. O



156 G. Hahn and C. Tardif

We now turn our attention to isometric embeddings into strong products of paths. We
begin with a pleasing result that is both general and simple.

Proposition 5.42 (Quilliot [104], Nowakowski, Rival [97]) Every connected graph ad-
mits an isometric embedding into a strong product of paths.

Proof Let G be a connected graph with diameter n, and P = xg,x1,..., %, a path. For any
u € V(G), we can define a map ¢, : G — P by putting ¢, (v) = x, where k = dg(u,v).
By the triangle inequality, ¢, is a contraction. We can then use the maps ¢y, u € V(G),
coordinatewise to define a contraction ¢ : G — K,cy () P. For any v,w € V(G), we then
have

AR, vy P(A(W), ¢(v)) = max{|dg (u,v) — da(u,w)| : u € V(G)}.

This maximum is attained by putting u = v (or u = w). Thus,

A2y ey P (6(0), B(0)) = ds(v,w),

and ¢ is an isometric embedding. O

As was the case for the cubes, a characterization of the weak retracts of strong products
of paths is heavily based on some special metric properties. We use the following concepts.

Definition 5.43 Let G be a connected graph.

(i) For u € V(G) and an integer r, the ball of center u and radius r is the set

B(u,r) ={v € V(GQ) : dg(u,v) < r}.

(ii) G is a Helly graph if the family of its balls has the Helly property, that is, for any family
B(ui,r1),...,B(un,m,) of pairwise intersecting balls, we have (;_; B(ug, %) # 0.

In particular, all trees are Helly graphs, since their balls are subtrees, and these satisfy
the Helly property. The balls of a strong product of graphs are products of balls, and a
strong product of Helly graphs is a Helly graph. In particular, the strong products of paths
are Helly graphs. Also, weak retractions preserve intersecting balls, so the weak retracts of
Helly graphs are Helly graphs. All in all, the situation is very similar to the case of cubes
and median graphs, and indeed, we get the following:

Proposition 5.44 (Quilliot [104], Nowakowski, Rival [98]) The Helly graphs are the
weak retracts of strong product of paths.

The proof of Proposition 5.44 is based on the following property.

Theorem 5.45 (Extension Theorem, Quilliot [103]) Let G be a connected graph and
H a Helly graph. Let S be a subset of V(G) and ¢9 : S — V(H) a map such that
dr(po(u), po(v)) < da(u,v) for all u,v € S. Then there exists a contraction ¢ : G — H
whose restriction to S is ¢g.
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Proof We construct ¢ by gradually expanding the domain S of ¢g. If S = V(G), we are
done. Otherwise, there exists u € V(G)\S. Let S’ = S U {u} and define ¢f, : 8" — H as
follows. Put ¢p(v) = ¢o(v) if v € S, and notice that the balls B(¢o(v), da(u,v)),v € S, are
pairwise intersecting. Indeed, the condition B(¢o(v1),dg(u,v1)) N B(gpg(v2),da(u,va)) # 0
is equivalent to the condition dg(do(v1),Po(ve)) < da(u,v1) + dg(u,v2), and the latter is
fulfilled since ¢y does not increase distances. Since H is a Helly graph, there exists w €
MNves B(do(v),dg(u,v)); put ¢p(v) = w. Then, S" and ¢ still satisfy the conditions of the
theorem, so we can iterate our construction. Eventually, we get S = V(G). O

We see that Proposition 5.42 and Theorem 5.45 imply Proposition 5.44. If G is a Helly
graph, and ¢ : G — X}!_; P an isometric embedding, then it is a full monomorphism, and
we can define a partial inverse ¢ : S = ¢(V(G)) — V(G) such that ¢g o ¢(u) = u for all
u € V(G). Since G is a Helly graph, ¢ extends to a contraction ¢ : X! _, P — G, so G is a
weak retract of M}!_, P.

These results on Helly graphs show how the context of contractions and weak retractions
strays from the subject of homomorphisms. By contrast, Theorem 5.33 states that the retracts
of strong products of paths are strong products of (possibly shorter) paths. However, this
topic also brought us close to one of the earliest results concerning the retracts of graphs.

Theorem 5.46 (Hell [65]) Let T be a tree, G a bipartite graph, and v : T — G an
isometric embedding. Then T is a retract of G.

Proof Since any tree is a Helly graph, the partial inverse pg : v(V(T')) — T of 7 extends to
a contraction p : G — T'. Both G and T are bipartite, so by Proposition 5.41, there exists
a bipartite graph H and a homomorphism ¢ : G — TOH such that p = prp o ¢. We can
then properly 2-colour H to obtain a homomorphism ¢ : G — TOK5s. Since p oy = idp,
the vertices of 1 o v(T') have all the same second coordinate, say 0. We then define a map
p : TOKy — T as follows. Fix a vertex u € T with a neighbour v, and define o : T — T
by taking o(w) as the neighbour of w on the unique ww-geodesic, if u # w, and putting
o(u) = v. The map p’' : TOKy — T is then defined by putting p/((w,7)) = w if i = 0, and
P (w,4)) = o(w) if i = 1. Thus, p'o1p : G — T is a homomorphism such that p'ooy = idyp,
so T is a retract of G. O

A graph G is called an absolute retract of the bipartite graphs if it is a retract of any
bipartite graph into which it admits an isometric embedding. For instance, Theorem 5.46
states that all trees are absolute retracts of the bipartite graphs. By analogy, Theorem 5.45 is
a characterization of the Helly graphs as the ‘absolute weak retracts’ of the connected graphs.
In fact, the characterization of the absolute retracts of the bipartite graphs is similar to our
presentation of Helly graphs (see [11, 66]). Note that a categorical product of paths is not
connected; however, the connected components of categorical products of paths play the same
role in characterizing the absolute retracts of the bipartite graphs as do the strong products
of paths in that of the ‘absolute weak retracts’ of the connected graphs: Every bipartite graph
is an isometric subgraph of a connected component of a categorical product of paths, and the
absolute retracts of the bipartite graphs are precisely the retracts of connected components
of categorical products of paths.
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6 Remarks

We have concentrated on finite graphs two reasons. The first is that when an infinite graph
has finite homomorphic images, compactness comes to play. For example, if H is finite, then
an arbitrary graph G admits a homomorphism to H if and only if all of its finite subgraphs
do (see [21, 51]).

The second reason for not considering infinite graphs in this paper is the work Bauslaugh
([15, 16, 17]) and the fact that cores are fundamental to the study of homomorphisms. It
turns out that not only does Proposition 2.22 not generalize to infinite graphs, but many
problems related to cores and homomorphisms are undecidable. We survey some of this work
in [56]. Bauslaugh’s work treats directed graphs, but the cores present a problem even for
undirected ones. For an example, consider the ray whose vertices are the positive integers and
each of whose edges connects two consecutive integers. For each k£ > 1, let G be a distinct
copy of the complete graph on k vertices {v,...,v;}. Construct a graph H by identifying
k with vy for k € N. We claim this graph has no core in the sense that there is no minimal
retract. Indeed, any retraction can map G; to G only if i < j and so the retracts of H are
the infinite components of H — k, k € N. Clearly there is no minimal one.

We have also skipped some other interesting work. For example, the concept of a rigid
graph, studied by Hell, Nesetfil, Babai and others (see, for example, [2, 64, 29, 8, 9], and also
[102] for many more references), is a natural one: consider a graph whose only endomorphism
is the identity. Brewster and MacGillivray [20] have looked at graphs with the property that
every homomorphic image is a subgraph. Also, all the work, some quite recent by Hell,
MacGillivray, Bang-Jensen ([12, 13]) and others, on homomorphisms of directed graphs is
omitted, as is the large body of results on the complexity of what has become known as
H-colourings, that is, problems of the existence of homomorphisms into given graphs H.
Both the complexity and the undecidability considerations, as well as the related topics of
homomorphisms into directed graphs are treated in [56].
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