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Abstract

We introduce a novel kernel that up-
grades the Weisfeiler-Lehman and other
graph kernels to effectively exploit high-
dimensional and continuous vertex at-
tributes. Graphs are first decomposed
into subgraphs. Vertices of the subgraphs
are then compared by a kernel that com-
bines the similarity of their labels and the
similarity of their structural role, using
a suitable vertex invariant. By changing
this invariant we obtain a family of graph
kernels which includes generalizations of
Weisfeiler-Lehman, NSPDK, and propa-
gation kernels. We demonstrate empiri-
cally that these kernels obtain state-of-
the-art results on relational data sets.

1 Introduction

Renewed interest has been manifested in recent years on
graph kernels which can handle continuous (possibly high
dimensional) attributes. A vast body of literature on Graph
kernels is devoted to symbolic only structures. Which means
that vertices (and possibly edges) are labeled by a number of
discrete attributes. A popular approach to define graph ker-
nels in this case is to count the number of common sub-
structures (which we call patterns in this paper). Examples
include tree-structured patterns [Ramon and Gärtner, 2003;
Mahé and Vert, 2009], paths [Kashima et al., 2003] or short-
est paths [Borgwardt and Kriegel, 2005], cyclic and tree
patterns [Horváth et al., 2004], neighborhoods [Costa and
De Grave, 2010], or arbitrary frequent patterns [Deshpande
et al., 2005].

Graphs with continuous attributes have been much less in-
vestigated, but one graph kernel that handles continuous at-
tributes, is based on random walks (RW) labels [Kashima
et al., 2003]. The RW kernel can be computed in O(V 2).
Borgwardt and Kriegel (2005) proposed a variant based on
shortest-paths (SP), which avoids the tottering problem of RW

kernels. The SP kernel has a running time of O(V 4). This
has been recently improved by Feragen et al. (2013) who in-
troduced the GRAPHHOPPER kernel, also based on shortest-
paths, reporting a running time of O(V 2(E + log V + ∆2))

(where ∆ is the graph diameter). Kriege and Mutzel (2012)
propose graph kernels in which subgraphs are matched with a
score which computed as the product between a weight func-
tion and the kernels on vertex and edge attributes.

We upgraded existing graph kernels to continuous at-
tributes by using graph and vertex invariants. Vertex invari-
ants are functions that color vertices of a graph in a way
that is not affected by isomorphism. They form the basis for
several practical isomorphism checking algorithms [McKay
and Piperno, 2014]. We consider the commonalities be-
tween graph kernels like the Weisfeiler-Lehman graph kernel
(WLGK) [Shervashidze et al., 2011], the neighborhood sub-
graph pairwise distance kernel (NSPDK) [Costa and De Grave,
2010], the propagation kernels [Neumann et al., 2012] and
GRAPHHOPPER [Feragen et al., 2013] and summarize them
in a general formulation which we call Graph Invariant Ker-
nels (GIK, pronounce “Geek”). GIKs decompose graphs into
sets of vertices which are compared by a kernel that mea-
sures both their attribute and their structural similarity. The
structural similarity indicates to which extent vertices play
the same role in the graph they belong to. Our formulation
allows arbitrary patterns (e.g. other than the shortest paths
used by GRAPHHOPPER) and arbitrary graph and vertex in-
variants that can be obtained with color propagation schemas
(e.g. Weisfeiler-Lehman, Propagation kernel). We also pro-
pose spectral coloring which exploits eigen-decompositions.

We show that the upgrade to continuous values provided
by GIKs perform very well on a number of new and exist-
ing benchmarks. We experiment with different types of ver-
tex invariants, including Weisfeiler-Lehman and spectral col-
ors and compare the shortest paths used by GRAPHHOPPER

with neighborhood subgraphs.

2 Notation and definitions

We consider undirected graphs G = (V,E) where V is the
vertex set and E the edge set. Both vertices and edges may
be labeled. ℓ : V 7→ X is the vertex labeling function where
X may incorporate both discrete and continuous attributes.
When necessary, we distinguish continuous and discrete la-
bels as ℓc(v) and ℓd(v), respectively. Similarly, we denote
by l : E 7→ Z the edge labeling function. When needed
we represent the connectivity of the graph G with the adja-
cency matrix A. Two graphs G and G′ are isomorphic, writ-
ten G ≈ G′, if there exist a bijection f : V 7→ V ′ (called an
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isomorphism) such that {u, v} ∈ E iff {f(u), f(v)} ∈ E′.
In the case of labeled graphs, we also require ℓ(v) = ℓ(f(v))
and l(u, v) = l(f(u), f(v)). An invariant I is a function on
graphs such that G ≈ G′ implies I(G) = I(G′). If the re-
verse implication is also true, then I is called a complete in-
variant. A vertex invariant is a function L : V 7→ C that
assigns each vertex v of G a value L(v), called the color of v,
that is preserved under isomorphism f , i.e. L(v) = L(f(v)).
The symbol � denotes the lexicographical order on discrete
colors.

3 Graph Invariant Kernels

GIKs measure the similarity between two attributed graphs
G and G′ by comparing their vertices with a suitable kernel
function kATTR(v, v

′) between the continuous attributes ℓc and
reweighing their similarity with a function w(v, v′):

k(G,G′) =
∑

v∈V (G)

∑

v′∈V (G′)

w(v, v′)kATTR(v, v
′). (1)

We define w(v, v′) as a count on common graph invariants:

w(v, v′) =
∑

g ∈ R−1(G)
g′ ∈ R−1(G′)

kINV(v, v
′)
δm(g, g′)

|Vg||Vg′ |
1{v ∈ Vg ∧ v′ ∈ Vg′}.

(2)
The weight w(v, v′) measures the structural similarity

between vertices and can be designed combining an R-
decomposition relation [Haussler, 1999], a function δm(g, g′)
and a kernel on vertex invariants kINV.

An R-decomposition relation is a binary relation R(G, g)
which encodes that “g is part of G” and specifies a decompo-
sition of G into its parts (patterns). We denote with R−1(G)
the multiset of all patterns in G.

According to Equation 2 the weight between a pair of ver-
tices increases whenever the two vertices appear in the same
pattern with the same structural role.

The function δm(g, g′) is used to determine whether
the two patterns match, while the indicator function
1{v ∈ Vg ∧ v′ ∈ Vg′} is introduced to select only the sub-
graphs g and g′ in which the vertices v and v′ are involved
respectively.

The kernel function kINV is used to measure the similar-
ity between the colors produced by a vertex invariant L and
encodes the extent to which the vertices play the same struc-
tural role in the pattern. A complete vertex invariant gives
the most fine-grained matches and has the same effect as us-
ing an isomorphism map f , while weaker invariants induce
spurious matches. Weaker invariants can be desirable because
they allow to compare non isomorphic graphs. Vertex invari-
ants can be weakened by exploiting the R-decomposition re-
lation and computing the vertex invariants with respect to the
patterns. We specialize the notation for kINV(v, v

′) into local
kgINV(v, v

′) and global kGINV(v, v
′) as to distinguish whether

the vertex invariants in question were computed with respect
to the patterns g ∈ R−1(G) or the whole graph G respec-
tively. We now explain how a suitable δm(g, g′) function can
define a hard-match between subgraphs generated by some

R-decomposition relation, while we refer the reader to Sec-
tion 4 for the vertex invariants that can be used to define struc-
tural similarity kINV(v, v

′) between vertices.

3.1 Hard-match kernels for discrete labels

If graphs are labeled by discrete symbols, a simple choice for
δm(g, g′) is the hard match function

δ(g, g′)
.
=

{

1 if g ≡ g′

0 otherwise
(3)

for a suitable definition of the equivalence relation ≡. By in-
stantiating the definition of R and ≡, we can obtain a fairly
large family of hard pattern-match graph kernels. For exam-
ple, in the case of SP kernels [Borgwardt and Kriegel, 2005]

R(G, g) iff g is a shortest-path between some pair of vertices
u and v in G. If edges are unlabeled, then a special case of the
kernel presented in [Borgwardt and Kriegel, 2005] can be in-
terpreted as a hard pattern-match kernel by defining g ≡ g′ iff
the two serializations (obtained by concatenating the vertex
labels) of g and g′ are identical. A second example is the ker-
nel described in [Horváth et al., 2004], where R(G, g) iff g is
either a cycle in G, or a tree in the forest obtained by deleting
all cycles from G. For this kernel, the equivalence g ≡ g′ is
established by taking all possible serializations (for example
all cyclic permutations in the case of cycles) and checking
that the lexicographical minima are identical. As a last exam-
ple, in the NSPDK [Costa and De Grave, 2010] the decompo-
sition relation is parameterized by two natural numbers r and
d and Rr,d(G, g) iff g is a pair of neighborhood subgraphs
of G, g1 and g2, rooted at vertices v1 and v2, respectively,
such that the two following conditions hold: (1) the shortest-
path distance between v1 and v2 is d, and (2) for i = 1, 2, gi
is the neighborhood subgraph rooted in vi. A neighborhood
subgraph rooted in vi consists of the subgraph induced by all
vertices of G whose shortest-path distance from vi is at most
r. In [Costa and De Grave, 2010], ≡ is defined as the graph
isomorphism relation, approximated by hashing a canonical
representation of the patterns.

A weaker hard-match kernel can be obtained using a graph
invariant I, i.e. g ≡ g′ if I(g) = I(g′). A simple graph in-
variant IV is the number of vertices of a graph. Vertex col-
ors can be used to construct stronger graph invariants be-
cause they are preserved under graph isomorphism. A graph
invariant can be obtained as the lexicographically sorted set
of vertex colors or edge colors, where the color of an edge
{u, v} ∈ E can be represented as (L(u),L(v), l(u, v)). The
latter method was introduced by [Costa and De Grave, 2010]

combined with distance coloring as in Section 4.3. Graph in-
variants are hashed to integers so that we can compute the
subgraph match function δm(g, g′) in constant time. Colli-
sions due to hashing can only weaken the graph invariant.

On the other hand graph invariants used by δm are always
computed on patterns (i.e. at local level). Computing δm at
the global level would not allow to capture meaningful cor-
relations between a pair of graphs G and G′ leading to poor
generalization performance.

GIKs can also be expressed as R-convolutional kernels
on graphs [Haussler, 1999] so they are positive semidefinite
(PSD).
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4 Vertex invariants

In this section we review some possible vertex invariants to
construct specific instances of the vertex coloring kernel.

4.1 Weisfeiler-Lehman coloring

The 1-dimensional Weisfeiler-Lehman (WL) refinement algo-
rithm [Weisfeiler, 1976] finds a partition of the vertices of a
graph in an iterative fashion:

• Initialization: All colors are initialized using vertex la-

bels, i.e. ∀v ∈ V L(0)(v)
.
= ℓd(v)

• Recoloring step: ∀v ∈ V

L(t+1)(v) = id({L(t)(w)|w ∈ NG(v)}) (4)

where N (v) is the set of vertices adjacent to v and the
function id returns the string of the vertex colors of the
neighbors sorted in lexicographic order. Often a hash
function is used to represent this string with an integer.

• Termination criterion: recoloring converges when the
number of distinct colors stops increasing, which means
that the vertices in the graph cannot be further parti-
tioned. In practice the recoloring process is stopped after
a predefined number h of iterations.

The 1-dimensional WL color of a vertex is finally ob-
tained as the concatenation of the colors at all time steps:

L(v) =
[

L(0)(v)| . . . |L(h)(v)
]

(5)

For edge-labeled graphs, we propagate the vertex colors of
the neighbors together with the edge labels:

L(t+1)(v) = id({(L(t)(w), l(v, w))|w ∈ NG(v)}) (6)

The positive definite kernel on this kind of vertex invariant
can be defined as:

〈L(v),L(v′)〉 =
h
∑

i=0

1

{

L(i)(v) = L(i)(v′)
}

(7)

4.2 Label updates in propagation kernels

When introducing propagation kernels (PROP), Neumann et
al. (2012) proposed two WL-like label update approaches:

• Diffusion updates:

L(t+1)(vi) =
∑

vj∈NG(vi)

TijL
(t)(vj) (8)

where T = D−1A is the transition matrix derived from
the normalization of the rows of the adjacency matrix,

and D is the diagonal degree matrix Dii =
∑V

k=0 aik

• Label propagation: as above except that before each it-
eration t + 1 the labels ℓd(vi) of the originally labeled

vertices overwrite the value assigned to L(t)(vi) by the
propagation process.

4.3 Distance coloring

This method was initially suggested in [Costa and De Grave,
2010] to compute the NSPDK and assumes connected and
rooted patterns, i.e. g has a distinguished vertex r.

• Starting from r, a breadth-first visit is used to compute
all-pairs distances d(v, w) between the vertices.

• Each vertex is colored as follows:

L(v) = id({(ℓx(w), d(v, w))|w ∈ V (G)}) ∀v ∈ V (G) (9)

Information about the root of the subgraph can be included
by adding to each vertex color information about its distance
from the root vertex.

4.4 Spectral coloring

Eigenvalues and eigenvectors of a graph adjacency matrix
are insensitive to vertex permutation. For this reason, starting
from the seminal work of Umeyama (1988), spectral meth-
ods have been popular in pattern recognition as graph match-
ing tool. Spectra can be also used for isomorphism testing if
eigenvalues have bounded multiplicity [Babai et al., 1982].

A weighted adjacency matrix W can be defined by using
vertex labels ℓc(v), assuming that X is a metric space en-
dowed with a distance function d:

wij = aije
−γd2(ℓc(vi),ℓc(vj)) (10)

where aij are the entries in the adjacency matrix A of the
graph and γ is a non-negative scalar hyperparameter of the
heat kernel. In spectral coloring, a vertex invariant is obtained
from the the Laplacian embedding of the graph as follows.
Let L

.
= D −W denote the graph Laplacian matrix, with D

the diagonal degree matrix. The embedding X ∈ R
V×V is

the solution of

min
X:XtX=I

V
∑

i=1

V
∑

j=1

‖x(vi)− x(vj)‖
2wij . (11)

This equation finds vertex coordinates x(v) (rows of X)
whose euclidean distance preserves the graph connectivity
and is equivalent to:

min
X:XtX=I

tr(XtLX) (12)

the solution can be obtained by solving an eigenvalue prob-
lem:

Lxi = λixi (13)

where the eigenvectors xi (columns of X) are sorted accord-
ing to the corresponding eigenvalues, i.e. 0 = λ1 ≤ λ2 · · · ≤
λV . The row x(v) of X is the embedding coordinate of the
vertex v in the graph. The Spectral vertex invariant is obtained
by switching to zero the λ-eigenvectors whose eigenvalue λ
has multiplicity µ > 1 and taking the absolute value of the
components of the eigenvalues otherwise.

L(i)(v) =

{

|xi(v)| if µi = 1
0 if µi > 1

(14)

Some lifted inference approaches [Mladenov et al., 2012]

perform color passing on factor graphs to cluster symmet-
ric variables and speed up intractable inference problems. We
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solve a complementary problem, and propose the canonized
Laplacian embedding to reveal the symmetries between the
vertices of a graph. The graph Laplacian is preferred over the
one of the adjacency matrix because its spectrum gives more
insight on the connectivity of the graph. The smallest eigen-
value λ1 of the Laplacian spectrum of a connected graph is
0, has multiplicity 1 and its λ1-eigenvector is constant. All
the other eigenvectors are orthogonal to the constant eigen-
vector and thus balanced. It is this appealing property that al-
lows spectral coloring features to encode the symmetries of a
graph. From an implementation point of view it is possible to
limit the dimensionality of the embedding to the first h com-
ponents. In case there are less than h vertices the embedding
can be padded with zeros.

5 Algorithmic issues and running time

We limit our analysis to kernels that use an R-decomposition
relation that generates connected subgraphs whose enumera-
tion scales linearly with the number of vertices in the graph
G. The time complexity of our method is V 2(C1 + C2τV

2
g )

where V is the number of vertices, Vg is the number of ver-
tices in a subgraph, C1 and C2 are two costs and τ is the
subgraph matching count:

τ =
∑

g∈R−1(G)

∑

g′∈R−1(G′)

δm(g, g′). (15)

We assume that the cost of computing kINV or kATTR scales
with the dimension dINV and dATTR of the corresponding fea-
tures. According to Equation 2 we have C1 = dATTR and
C2 = dgINV. If we use global instead of local graph invariants
we can rewrite Equation 2 as:

w(v, v′) = kGINV(v, v
′)

∑

g ∈ R−1(G)
g′ ∈ R−1(G′)

δm(g, g′)

|Vg||Vg′ |
1{v ∈ Vg ∧ v′ ∈ Vg′}

(16)
and thus we obtain C1 = dATTR + dGINV and C2 = 1.

The worst case scenario for τ occurs when the subgraph
matching function δm(g, g′) is always 1, in this case we have
τ = V 2. This can happen in two cases: 1) when the graph
invariant I is constant and every pair of patterns matches and
2) when the patterns are all identical. In the former case we
should resort to a more selective invariant, while in the latter
case we should avoid computing w(v, v′) because its value
is constant. This case in which all the patterns are identi-
cal is verified for 0-neighborhood subgraphs (vertices) or r-
neighborhood subgraphs in which r ≥ ∆

2 , where ∆ is the di-
ameter of the G. When the radius r is at least twice the diam-
eter ∆ of the graph G, all the corresponding r-neighborhood
subgraphs are the graph G itself. In both cases there is no
structural contribution, these cases are easy to detect and be-
ing aware of this fact we can compute the kernel in O(V 2C1).
Another option is to add structural information in order to
avoid the extreme cases. We can incorporate discrete labels if
present when r = 0 and root information when r ≥ ∆

2 . Two
rooted patterns must have both same graph invariant and same
root vertex invariant in order to match . We obtain an upper

bound on the number of vertices Vg of a r-neighborhood sub-
graph with maximum vertex degree d and diameter ∆ = 2r
using the Moore bound [Miller and Širán, 2005]:

Vg ≤ 1 + d
∆−1
∑

i=0

(d− 1)i = d∆ +O(d∆−1) (17)

So Vg ∈ O(d2r) and the complexity of our method is

O(V 2(C1 + C2τd
4r)).

6 Experimental evaluation

We answer the following experimental questions:

Q1 How do GIKs compare to the state of the art?

Q2 Do our kernels produce more accurate classifiers when
continuous attributes are introduced?

Q3 Can the graph representation of a sentence benefit from
word vector attributes instead of discrete word at-
tributes?

Q4 What are the best graph invariants?

6.1 Datasets

PROTEINS and ENZYMESSYMM are sets of proteins from
Dobson and Doig (2003) and from the BRENDA database
[Schomburg et al., 2004], respectively. Vertices are secondary
structure elements as in [Borgwardt et al., 2005].

SYNTHETICNEW is a dataset of 300 examples with two
classes, it is based on a random graph G with 100 nodes
and 196 edges, whose vertices were annotated with scalar at-
tributes sampled from N (0, 1). It was introduced in [Feragen
et al., 2013].

FRANKENSTEIN is a dataset created by the fusion of the
BURSI and MNIST datasets. BURSI is made by 4337 molecules
with mutagenicity (AMES) classification, with 2401 mutagens
and 1936 nonmutagens [Kazius et al., 2005]. Each molecule
is represented as a graph whose vertices are labeled by the
chemical atom symbol and edges by the bond type.

FRANKENSTEIN is a modified version of the BURSI

dataset: we discarded bond type information and remapped
the most frequent atom symbols (vertex labels) to MNIST digit
images. The original atom symbols can only be recovered
through the high dimensional MNIST vectors of pixel inten-
sities, in this sense this is a challenging problem for a graph
kernel that can handle continuous attributes.

QC and WEASEL are natural language processing datasets:
QC is a dataset for question classification with fixed split
(5452 train / 500 test) originally proposed in [Li and Roth,
2002]. We consider the classification task with six coarse la-
bels. WEASEL is part of the CoNNL-2010 shared task dedi-
cated to the detection of hedge cues, it is a binary classifica-
tion task with fixed split (11111 train / 9634 test).

For both QC and WEASEL we represent a sentence as
a graph whose vertices are tokens annotated with 300-
dimensional word-vector attributes, and whose edges repre-
sent the word adjacency and the typed dependency relations
extracted with the Stanford dependency parser [De Marn-
effe et al., 2006]. Word vectors were obtained using the
WORD2VEC software [Mikolov et al., 2013] and the whole
Wikipedia corpus for training.
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ENZYMESSYM PROTEIN SYNTHETICNEW FRANKENSTEIN QC

WITHOUT WITH WITHOUT WITH WITHOUT WITH WITHOUT WITH WITHOUT WITH

CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT.

NSKV 25.9± 1.1 71.8± 1.0 72.1± 0.4 74.2± 0.7 78.4± 1.9 81.9± 1.1 67.9± 0.2 72.9± 0.3 37.8 92.6
NSKWL 56.5± 1.1 72.2± 0.8 71.7± 0.4 76.2± 0.4 50.0± 0.0 50.0± 0.0 74.2± 0.3 77.3± 0.1 47.8 91.0
GWLV 55.7± 1.0 72.6± 0.8 74.9 ± 0.6 76.1± 0.8 80.8 ± 1.2 82.8± 1.0 73.5± 0.3 77.3± 0.2 49.8 93.6

GWLWL 58.6 ± 1.4 71.3± 1.1 73.6± 0.5 75.8± 0.6 50.0± 0.0 50.0± 0.0 75.1 ± 0.2 78.9 ± 0.3 48.6 89.6
LWLV 54.5± 1.1 73.3 ± 0.9 74.4± 0.4 76.6 ± 0.6 80.6± 1.5 83.0 ± 1.0 73.0± 0.2 77.6± 0.2 47.2 94.6

LWLWL 57.0± 1.1 72.0± 0.9 71.9± 0.6 76.5± 0.5 50.0± 0.0 50.0± 0.0 74.1± 0.2 78.3± 0.3 47.4 91.8
GSGKV 29.8± 0.6 71.8± 1.0 73.2± 0.3 74.7± 0.5 78.2± 2.1 82.4± 0.9 70.1± 0.3 74.0± 0.3 44.4 92.6

GSGKWL 56.7± 1.2 72.2± 0.7 72.9± 0.5 76.4± 0.4 50.0± 0.0 50.0± 0.0 75.0± 0.3 77.6± 0.2 47.8 91.0
LSGKV 31.9± 1.0 71.9± 1.0 72.3± 0.4 74.4± 0.6 78.7± 2.0 82.2± 1.1 72.1± 0.2 74.9± 0.2 42.4 92.2

LSGKWL 56.6± 1.3 72.1± 0.8 71.7± 0.3 76.1± 0.5 50.0± 0.0 50.0± 0.0 74.2± 0.2 77.4± 0.2 51.4 91.0
GRAPHHOPPER 69.5± 0.7 72.7± 0.3 73.9± 1.7 68.7± 0.4 91.4

Table 1: Comparison between different GIKs and GRAPHHOPPER

6.2 Kernels

We combined vertex invariants to construct some GIKs that
can handle continuous attributes (see also Table 2).

NSK [Costa and De Grave, 2010] was instantiated using an
R-decomposition relation that generates neighborhood sub-
graphs (NS) of increasing radius r = 0, . . . , R and δm as
an indicator function that matches two r-neighborhood sub-
graphs only if they have the same radius r and IWL subgraph
invariant. Costa and De Grave (2010) originally used distance
coloring IDC.

LWL and GWL are the local and global variant of the
WL subtree kernel respectively. Strictly speaking, GWL is not
equivalent to the WL subtree kernel. In fact instead of using
an R-decomposition relation which generates vertex patterns
we used r-neighborhood subgraphs.

LSGK and GSGK are local and global version of Spectral
Graph Kernel in which we used our spectral coloring method.

kernel kINV(v, v
′)

NSK 1 global

GWL 〈LG
WL(v),L

G
WL(v

′)〉 global
LWL 〈Lg

WL(v),L
g
WL(v

′)〉 local

GSGK e−γ‖LG
SC(v)−LG

SC(v
′)‖2

global

LSGK e−γ‖Lg

SC
(v)−Lg

SC
(v′)‖2

local

Table 2: Some instances of GIKs

Each GIK was instantiated in combination with two differ-
ent kernels on subgraph invariants: IV and IWL. IWL is more
selective and reduces the subgraph matching count τ . When
necessary we use the subscript to specify which subgraph in-
variant was employed. We used an R-decomposition relation
which generates neighborhood subgraphs of increasing radius
r = 0, . . . , R. Based on preliminary experiments, we fixed
R = 3. The Gram matrices were normalized as proposed
in [Costa and De Grave, 2010]: for each radius a different
Gram matrix is extracted then normalized, we compute their
sum and apply normalization again. For ENZYMESSYMM, PRO-
TEINS, SYNTHETICNEW we chose the parameter γ of the RBF

kernel as in [Feragen et al., 2013], to be 1/dATTR which is
the inverse of the number of dimensions of the attributes. We

did the same for the γINV of the RBF kernel on the contin-
uous vertex invariants derived from spectral graph coloring
LSC. The number of dimensions dINV of LSC was set equal
to the average number of vertices in a graph for GSGK and
to the average number of vertices in a 3-neighborhood sub-
graph for LSGK. For FRANKENSTEIN we set γ = 0.0073, this
value was taken from [Sevakula and Verma, 2012], while for
QC we set γ = 1. This value was found during preliminary
experiments in which we used the n-grams of word vectors
(n = 1, 2, 3) matched with the RBF kernel.

ACCURACY

KERNEL T = 1 T = 2 T = 3
WL 89.2 89.0 88.0
PROP (w = 0.01) 86.8 88.0 85.4
PROP (w = 0.1) 77.4 78.2 79.8
PROP (w = 1.0) 58.0 58.0 57.2
PROPTV (w = 0.01) 87.8 89.0 88.6
PROPTV (w = 0.1) 87.8 88.6 88.4
PROPTV (w = 1.0) 79.0 81.8 81.0

Table 3: QC dataset using words as features

6.3 Experiments

E1 In Table 1 we show the classification accuracy that we
achieved without (kATTR = 1) and with (kATTR = RBF(γ)) ker-
nel on continuous attributes. We use the bold font for the best
results of each column. For FRANKENSTEIN we also mea-
sured the area under the roc curve (AUROC) which is 0.74
for GRAPHHOPPER with continuous attributes. With GWLWL

we obtained 0.82 AUROC without continuous attributes and
0.86 with continuous attributes. For all datasets we used
SVM-classifiers. Except for QC and WEASEL the accuracy
was estimated by 10-times 10-fold cross-validation reporting
means and standard deviations [Feragen et al., 2013]. QC and
WEASEL have predefined train-test splits. The SVM regular-
ization parameter was selected with an internal k-fold cross-
validation on the training data (k = 3 except k = 10 for QC

and WEASEL).
E2 In Table 3 we report the accuracies obtained on the orig-

inal implementations of WL and PROP using words instead of
word vectors. The symbol T denotes the number of iterations
and TV and w are parameters (see [Neumann et al., 2012]).
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These results can be compared with Table 1.
E3 In Table 4 we show the results on WEASEL for LWLV

and GRAPHHOPPER. We used word vectors and no task spe-
cific knowledge. We compare to the state of the art which
exploits task specific knowledge encoded in word lists. We
set the radius of the r-neighborhood subgraphs to r = 0, 1 as
done by Verbeke et al. (2012).

METHOD F1-SCORE

LWLV (r = 0, 1) 55.7%
LWLV (r = 0) 41.9%
LWLV (r = 1) 58.3%
GRAPHHOPPER 48.8%
[Verbeke et al., 2012] 61.5%

Table 4: WEASEL sentence classification

The experiments were run on a 16 cores machine (Intel
Xeon CPU E5-2665@2.40GHZ and 96GB of RAM). The
code of GIKs was written in the Python programming lan-
guage, while for GRAPHHOPPER we used the MATLAB im-
plementation from Feragen et al. The difference between the
programming languages makes hard to perform fine-grained
time measurements. We measured the wall-clock execution
time.

DATASET MOST ACCURATE GRAPH-
AND FAST GIK HOPPER

ENZYMESSYMM NSKWL 2’ 36” 4’ 53”
PROTEIN NSKWL 11’ 00” 35’ 27”
SYNTHETICNEW GWLV 15’ 22” 9’ 48”
FRANKENSTEIN GWLWL 1h 20’ 2h 5’
QC LWLV 2h 30’ 1h 30’

Table 5: runtime of GIKs vs GRAPHHOPPER

In Table 5 we show the runtime of our most accurate and
fast GIK selected from Table 1 compared to the runtime of
GRAPHHOPPER. The experiment that had the highest run-
time was on the dataset WEASEL: LWLV terminated in 73h 47’
while GRAPHHOPPER terminated in 75h 43’. We also men-
tion that the spectral kernels tend to be slower and in some
cases (e.g. on FRANKENSTEIN) can have a slowdown of a
factor of 2 with respect to GRAPHHOPPER.

6.4 Discussion

A1 Our experiments show that we obtained state-of-the-art
results for all the datasets in Table 1. ENZYMESSYMM, PRO-
TEINS, QC and WEASEL are are real-world datasets. On SYN-
THETICNEW we verified that its random nature combined with
the graph invariant IWL leads to diagonal kernel matrices and
this explains the poor classification performance. On the other
hand if we use the subgraph invariant IV, we outperform
GRAPHHOPPER on its own artificial benchmark. In our ex-
periments on FRANKENSTEIN (see Table 1), in some cases
(GWLWL) we have an increase of 0.12 points of AUROC with
respect to GRAPHHOPPER. This performance mismatch is
also due to the nature of the dataset from which FRANKEN-
STEIN was originated. Indeed neighborhood subgraphs are

known to perform well on BURSI [Costa and De Grave, 2010],
and shortest paths are probably not the best pattern for this
kind of dataset. We consider as upper bound the result ob-
tained with NSPDK (R = 3, D = 0) on BURSI, which is
0.91 AUROC score. The best result obtained on FRANKEN-
STEIN with continuous attributes (0.86 AUROC score) is sig-
nificantly higher than the best result obtained without (0.82
AUROC score). On QC we obtain the 94.6% (see Table 1)
which is the state of the art. Our result can be compared to
the 94.8% obtained by Croce et al. (2011), when they com-
bine kernels on lexical centered trees LCT with a word vector
representation obtained with latent semantic analysis. Never-
theless GIKs are a generic tool, not specialized for natural lan-
guage as LCT and we did not rely on manually built word lists.
The 58.3% f1-score (see Table 4) obtained on WEASEL with
r = 1 is comparable with the top five results of the CoNNL-
2010 shared task. The state of the art for the task is 61.5%
and was obtained by Verbeke et al. (2012) also exploiting task
specific word lists not used by GIKS. The runtime measure-
ments in Table 5 show that we could always instantiate GIKs
obtaining comparable or higher accuracy with the same or in-
ferior runtime except for SYNTHETICNEW and QC in which the
higher runtime is compensated by higher accuracies.

A2 Comparing the results in Table 1 we see that it is always
the case that continuous attributes increase the accuracy.

A3 On QC WL and PROP use words as discrete attributes
and cannot obtain more than 89% of accuracy (see Table 3).
GIKs successfully use word vectors, indeed LWLV achieves
state-of-the-art results (see Table 1).

A4 If we consider the results in Table 1 we notice that
LWLV generally tends to give the best results, indeed local
versions favor spurious matches and also the subgraph invari-
ant IV is weaker than IWL. Weaker invariants lower down the
dimensionality of the kernel and thus make the learning sys-
tem less prone to overfitting. This effect was probably bene-
ficial due to the relatively small size of some of the datasets
that we used. The spectral color invariant can obtain good re-
sults, but other GIKs yield equally or more accurate classifiers
and have better runtime. What makes spectral color invariants
interesting is the nice property of providing vertex invariants
embedded in the euclidean space. This makes Spectral Graph
Kernel amenable for future work on improving scalability us-
ing sketching techniques.

7 Conclusion

The GIK reformulation of well known graph kernels allows
to obtain more insights in the exploration of graph kernels
with continuous attributes. The underlying idea was to em-
ploy vertex invariants for soft subgraph matching. We con-
tributed new insights into graph kernels and to upgrade ex-
isting ones for use with continuous attributes. Several graph-
kernel instances were then empirically evaluated on a number
of new and existing benchmark datasets. The results showed
that some combinations of graph and vertex invariants with
continuous attributes lead to excellent performance. For fu-
ture work we plan to improve runtime and scalability focus-
ing on the local GIKs and spectral coloring which are more
appealing for sketching.
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