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Abstract: We introduce a connection between a near-term quantum computing device, speci�cally a Gaus-
sian boson sampler, and the graph isomorphism problem. We propose a scheme where graphs are encoded
into quantum states of light, whose properties are then probed with photon-number-resolving detectors. We
prove that the probabilities of di�erent photon-detection events in this setup can be combined to give a com-
plete set of graph invariants. Two graphs are isomorphic if and only if their detection probabilities are equiv-
alent. We present additional ways that the measurement probabilities can be combined or coarse-grained
to make experimental tests more amenable. We benchmark these methods with numerical simulations on
the Titan supercomputer for several graph families: pairs of isospectral nonisomorphic graphs, isospectral
regular graphs, and strongly regular graphs.

Keywords: Gaussian boson sampling, graph isomorphism, hafnian, quantum GI algorithm, strongly regular
graph

MSC: 05C50, 05C60, 15A15, 68Q12, 81P68

1 Introduction
The problem of graph isomorphism (GI) lies at an interesting point in the landscape of computational com-
plexity theory. Though algorithms have been recently proposed which run in ‘quasi-polynomial’ time [3, 27],
it is still an open question in theoretical computer science whether there exists a polynomial-time algorithm
that can determine whether two graphs are isomorphic; indeed, graph isomorphism is likely to belong to the
class of NP-intermediate computational problems. Two other well-known problems which have similar sta-
tus in the complexity landscape are integer factoring and the discrete logarithm problem. Famously, while
no classically e�cient algorithm for these two problems is known, they can be solved in polynomial time
on quantum computers [36, 37]. Quantum algorithms with a superpolynomial runtime advantage have also
been proposed for linear systems [16, 26], semide�nite programming [11, 12], knot invariants [19, 20, 42], and
partition functions [2, 23, 40], among many others. Boson sampling is a strong candidate to demonstrate the
quantum computational advantage [1]. Zhong et al. measured a sampling rate that is about 1014-fold faster
than using state-of-the-art classical simulation strategies and supercomputers [43]

Given these other success cases, it is natural to hypothesize that may also be useful for the graph isomor-
phism problem.

Over the last several years, several works have explored this problem, with quantum algorithms for tack-
ling graph isomorphism proposed based on quantum annealing [15, 21, 44] and quantum graph states [32].
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However, the bulk of quantum algorithm proposals to distinguish non-isomorphic graphs have utilized the
time-evolution of a quantum walker to calculate ‘graph invariants’ or ‘graph certi�cates’ which, ideally, pro-
duce identical results for two graphs if and only if they are isomorphic. Of the algorithms proposed, they
di�er mainly in the number of particles involved, the presence of interactions, localised perturbations, and
construction of the GI certi�cate [7, 17, 18, 33, 41]. It has subsequently been proven using this approach that
conventional quantum walk algorithms, both discrete-time and continuous-time, with interactions and per-
turbations, cannot distinguish arbitrary non-isomorphic graphs [31, 33, 34].

To test the distinguishing ability of proposed quantumGI algorithms, a common benchmark has become
their capacity to distinguish nonisomorphic strongly regular graphs (SRGs) with the same graph parameters.
This provides an analytic approach to investigate the e�ectiveness of graph isomorphism proposals; if a par-
ticular certi�cate will always fail to distinguish two non-isomorphic SRGs, this can be shown to be because
all elements of a certi�cate, as well as their multiplicities, are functions of SRG family parameters [22].

In this work, we present an approach to graph isomorphism which uses a near-term quantum compu-
tational device, namely a photonics-based Gaussian boson sampling apparatus [25, 29]. For this method,
graphs are encoded into quantum-optical states of light – speci�cally Gaussian states – which are then sub-
jected to photon-number-resolvingmeasurements. Mathematically, we show that the resultingmeasurement
outcome probabilities can be combined to give a complete set of graph invariants. Two graphs are isomor-
phic if and only if these graph invariants are equal. We also present several ways that these measurement
probabilities can be combined and coarse-grained to obtain new quantities which can be used to distinguish
nonisomorphic graphs. Finally, we perform classical numerical simulations of our proposed method on the
Titan supercomputer. Using these results, we are able to distinguish 3852 out of 3854 nonisomorphic graphs
using only a subset ofmeasurement events. The remaining two graphswere distinguished by failing to satisfy
a necessary condition introduced here as well.

2 Main results summarized
Our main result is a necessary and su�cient condition to distinguish isospectral nonisomorphic graphs by
virtue of comparing the probabilities of themeasurement patterns of the graphs encoded in a Gaussian boson
sampling (GBS) apparatus. We discovered the vital role played by a matrix function called the hafnian [14],
applied to an adjacencymatrix, for the GI problem. It leads to a complete set of graph invariants. The hafnian
belongs to the family of matrix functions such as the determinant, permanent and pfa�an [6]. It has been
established that photon detection probabilities can be expressed in terms of the hafnians of a collection of
graphs related to the original graph [9]. Multiphoton detection probabilities are handled by introducing a
new matrix product related to the Kronecker product and by showing how the output probabilities depend
on the hafnian of the graph adjacency matrix as well. We further strengthen our graph invariant results by
introducing the so-called symmetrized graphs invariants and showing that they correspond to coarse-grained
measurement events in GBS. The measurement events are given by the strati�cation according to the total
photon number and partitioned into the orbits of the permutation group. Their hafnian-based coarse-grained
probabilities are again su�cient to distinguish isospectral nonisomorphic graphs. We extend these insights
by deriving necessary conditions for isospectral graphs to be isomorphic by comparing the coarse-grained
partition-averaged photon distribution from the Gaussian boson sampler.

Our method di�ers from previous quantum GI algorithm proposals. A great majority have utilized quan-
tum walks, either using discrete-time quantum walks (DTQWs) [7, 18] or continuous-time quantum walks
(CTQWs) [22, 31, 33, 34]. Although the graph invariants constructed via quantum walk propagation on graph
structures have shown success in distinguishing various families of SRGs, it has been proven that this dis-
tinguishing power is not universal — there will always exist graphs which (current) quantum walk-based
algorithms cannot distinguish [38]. In order to execute a quantumwalk-based algorithm in a universal quan-
tum photonic platform, it is necessary to implement a non-Gaussian operation as a vertex-dependent shift
or via multiple interacting walkers. This is a major obstacle with the current and near-term technology our
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proposal does not su�er from. GBS is a Gaussian circuit followed by an array of photon-number-resolving de-
tector (PNR) representing a non-Gaussian element. Unlike non-Gaussian unitary transformations, the PNRs
are available in the state-of-the-art laboratories.

The most comprehensive simulations of quantum methods for GI were performed in [17] and [33]. We
successfully tested three types of isospectral graphs: pairs of isospectral nonisomorphic graphs (PINGs) as
the �rst examples of such graphs [5], isospectral regular graphs [30] and mainly SRGs. There are numerous
resources available detailing the SRG families containing more than one non-isomorphic graph [13, 39]; as a
result, SRGs have become a common benchmark in studying the distinguishing powers of the GI algorithms.
Note that theremaybe other graph classes (such as k-equivalent graphs)whichhave beenproven to be harder
to distinguish than strongly regular graphs for particular quantum GI algorithms [38] — however, SRGs re-
main an ideal testing set, simply due to the large number of relatively small non-isomorphic graphs present
in speci�c families [13, 39]. The largest tested and distinguished family by our approach was SRG(35,18,9,9)
containing 3854 isospectral graphs. This family is supposedly tested in [33]. However, the size of the family
is mistakenly taken to be only 227 graphs (see Table I.). The same error appears in [17]. Ironically, another
SRG family considered there (SRG(35,16,16,8)), that happens to be complementary to SRG(35,18,9,9) and thus
containing 3854 graphs as well, is counted properly and analyzed (see Table 1.).

Section 3 contains all necessary de�nitions and previous results used in the paper including a detailed
GBS description and a formal introduction of SRGs. Section 4 contains the main result and is split into four
subsections: In 4.1 we gather several supporting results followed by the main results in Sections 4.2, 4.3
and 4.4. Section 5 contains the simulation results and Section 6 concludes with a scalability discussion and
other open questions. In Appendix A we informally introduce the hardware setup (Gaussian boson sampler)
where studied graphs are encoded. In Appendix B we present the GBS quantum GI algorithm applied to vari-
ous SRG families and other isospectral graphs. In Appendix C we summarize with a table the most important
symbols and their meaning.

3 Notation and preliminaries
In the following text the symbol Jk,` denotes an all-ones rectangular matrix of size k × ` and Jk ≡ Jk,k. The
following notation is extensively used: ∂nx ≡ ∂x,...,x = ∂n

∂xn and ∂nixi ,xi =
∂ni
∂xnii

∂ni
∂xnii

. Letting n = (n1, . . . , nM), x =

(x1, . . . , xM), we occasionally write
∏M
i=1 ∂

ni
xi = ∂

|n|
x and

∏M
i=1 ∂

ni
xi ,xi = ∂

|n|
x,x. The symbol df= stands for ‘de�ned’

and a positive-de�nite matrix A will be denoted by A � 0. Recall that any Gaussian n-dimensional real dis-
tribution with zero mean, denoted as GΣ, is given by

1
(2π) n2

√
det Σ

exp [−12x
>Σ−1x].

Here, Σ is a positive de�nite matrix which is the covariance matrix of the Gaussian variables X1, . . . , Xn.
Since Σ is positive de�nite, there exists a unique positive de�nite matrix A such that Σ = A2. Let

us change the variables y = A−1x. That is, x = Ay. Hence the determinant of the Jacobian is detA. As
det Σ = (detA)2 we get that the density distribution for (Y1, . . . , Yn) is the standard normal density distri-
bution 1

(2π)
n
2
exp [−12 y

>y]. Therefore Y1, . . . , Yn are independent standard random variables. Assume that
A = [aij] is a positive de�nite symmetric matrix. Then

Xi =
n∑
j=1

aijYj , i ∈ [n]

and

E[XiXj] = E
[( n∑

p=1
aipYp

)( n∑
q=1

ajqYq
)]

=
n∑

p,q=1
aipaiqE[YpYq] =

n∑
p=1

aipajp = Σij .
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Observe the well known fact that the odd moments E[
∏n
i=1 X

mi ], where (m1, . . . ,mn) ∈ Zn+ and
∑n

i=1 mi is
odd, are zero. A polynomial p(x), x = (x1, . . . , xn) ∈ Rn is called symmetric if for each permutation σ : [n]→
[n] = (1, . . . , n) we have the equality p(x) = p(xσ), where xσ = (xσ(1), . . . , xσ(n)).

Denote by Sn the symmetric group of bijections σ : [n] → [n]. Denote by Pn ⊂ Rn×n the group of n × n
permutation matrices. So P(σ)x = xσ.

Recall that two square matrices A, B are permutationally similar, if B = PAP>, where P is a permuta-
tion matrix. In this case P−1 = P>. Two Gaussian distributions corresponding to positive de�nite covari-
ance matrices Σ, Σ′ ∈ Rn×n are called isomorphic, if Σ′ = P>ΣP for some permutation P = P(σ). That is
x>(Σ′)−1x = x>σ (Σ)−1xσ, where σ ∈ Sn, for all x ∈ Rn.

Denote by HN ⊃ H+,N ⊃ H++,N the real space of N × N hermitian matrices, the closed cone of posi-
tive semide�nite hermitian matrices, and the open set of positive de�nite hermitian matrices. For F ∈ HN
denote by λ1(F) ≥ · · · ≥ λN(F) the N eigenvalues of F. Recall that the spectral norm of F is given by
‖F‖2 = max(λ1(F), −λN(F)). For X, Y ∈ HN we denote X � Y and X ≺ Y if Y − X ∈ H+,N or Y − X ∈ H++,N ,
respectively.

3.1 Gaussian Boson Sampling

De�nition 1. Let C = [cij] ∈ R2M×2M be a symmetric matrix and letM2M denote all partitions ς to unordered
disjoint pairs. Then

haf C df=
∑

ς∈M2M

∏
(uv)∈ς

cuv (1)

is the hafnian of C [14].

Given a detection event n, its measurement probability was shown in [25] to be

p(n) = 1
n!
√
det σQ

∂|n|
β,β
e

1
2γ
>Cγ ∣∣

γ=0, (2)

where n! = n1! × · · · × nM! and γ
df= (β, β) = (β1, . . . , βM , β1, . . . , βM) ∈ C2M which we view as a column

vector (even though β is a complex conjugate of a complex β (entrywise), we consider βi as a new variable).
We denote

X2M =

[
0 IM
IM 0

]
. (3)

Then
σQ = (I2M − X2MC)−1 (4)

and σ = σQ − I2M/2 is the covariance matrix in Eq. (62).
Note that in order for σ to be a covariance matrix, C has to satisfy certain restrictions which will be elab-

orated on later. We call a GBS detection event corresponding to the measurement pattern n df= (n1, . . . , nM)
of anM-mode matrix C of size 2M pure if ni = nj , ∀i, j andmixed otherwise. For n = (1, . . . , 1) Eq. (2) reduces
to (63) [25].

3.2 Graphs: eigenvalues, isospectral graphs, strongly regular graphs and graph
isomorphism

We now recall brie�y some well known results on graphs that we use in this paper. An undirected simple
graph consist of a set of n-vertices V = {v1, . . . , vn} which we identify with [n]. The set of edges E(G) = E =
{e1, . . . , em} is the set of unordered pairs e = (u, v) where u = ̸ v ∈ V. We say that e connects u and v, or e is
adjacent to u and v. A simple path in G is an ordered subset of E: (u1, u2), . . . , (uk , uk+1). A graph G is called
connected if for each pair of vertices u ≠ v there is simple path such that u1 = u and uk+1 = v.
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A compete graph on n-vertices is denoted by Kn, so the cardinality of its edges is |E(Kn)| = n(n − 1)/2.
Given a simple graph G on n-vertices then E(G) is a subset of E(Kn). Hence m ≤ n(n − 1)/2. The complement
of G, denoted as Gc, is a graph on [n] vertices with the edges E(Gc) = E(Kn)\E(G). Thus the complement of Kn
is a graph with no edges, the null graph. Given a subsetW ⊂ V the induced subgraph G(W) = (W , E(G(W)),
where E(G(W)) is the subset of edges in V that connect two vertices inW. A clique is a subgraph G(W)which
is a complete graph onW. A graph G is called regular (or k-regular) if each vertex v ∈ V is adjacent to exactly
k-edges. A graph G is called bipartite if V is a union of disjoints subsets of vertices V1, V2 where the edges E
connect vertices in V1 to vertices in V2.

The adjacencymatrix A(G) = A = [aij] is an n×n symmetric matrix with zero diagonal whose o� diagonal
entries are zero or one. Then aij = 1 if and only if (i, j) ∈ E(G). If we relabel the vertices of G, i.e., apply a
bijection σ : [n]→ [n], then the new adjacency matrix Ã is PAP> for some permutation matrix P ∈ Pn. As A
is real symmetric it has n real eigenvalues, counted with their multiplicities: λ1(G) = λ1 ≥ · · · ≥ λn(G) = λn. As
A is a nonnegativematrix the Perron-Frobenius theorem yields that λ1 ≥ |λn|. If G is connected equality holds
if and only if G is bipartite. If G is connected then λ1 > λ2, that is, λ1 is a simple eigenvalue of G. Furthermore,
if G is a k-regular graph then λ1 = k. Since Pn is a subgroup of the group of orthogonal matrices, it follows
that the eigenvalues of G do not depend on the labeling of the vertices of G.

A graph H on n-vertices is called isomorphic to G, if H is a relabeling G. That is, if A(H) = PA(G)P> for
some P ∈ Pn. Thus a necessary conditions for two graph to be isomorphic is to be isospectral, i.e., to have
the same sequence of eigenvalues. That is, A(G) and A(H) have the same characteristic polynomial. Hence
we can check in polynomial time if G and H are isospectral. As we pointed out in Introduction, the problem
of graph isomorphism (GI) lies at an interesting point in the landscape of computational complexity theory.

In studying the graph isomorphism problem, it is convenient to consider a class of graphs known to
be classically intractable to distinguish. An important tractable feature is the graph eigenvalues and the �rst
examples of isospectral graphswere pairs of isospectral nonisomorphic graphs (PINGs) [5]. The smallest con-
nected example of a PING is on six vertices, see Fig. 1. PINGs may have some tractable features enabling one

Figure 1: PING on six vertices.

to easily decide that they are not isomorphic.
One of best knownpositive results in graph isomorphism is the following result of Babai-Grigoryev-Mount

[4]: Let k be a �xed integer. Assume that G and H are isospectral, and the multiplicity of each eigenvalue is
at most k. Then there exists a polynomial time algorithm that decides if G and H are isomorphic.

The situation gets complicated for graphs with symmetries such as strongly regular graphs (SRGs), de-
�ned as follows [24].

De�nition 2. Let G(V , E) be a regular graph of degree k consisting of N vertices and adjacency matrix A,
that is neither a complete graph (A = ̸ JN − IN) nor a null graph. G is then said to be strongly regular with
parameters SRG(N, k, λ, µ) if every pair of adjacent vertices have exactly λ common neighbours, and every
pair of non-adjacent vertices have exactly µ common neighbours.

Recall also that an SRG graph has three distinct eigenvalues: simple eigenvalue λ1 = k, and other two eigen-
values with high multiplicity: at least one eigenvalue of multiplicity at least (n − 1)/2.

Lemma 1. Let vi ∈ V be a vertex in SRG(N, k, λ, µ). Then k(k − λ − 1) = µ(N − k − 1). Thus the SRG parameters
are not independent.
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Proof. Consider a vertex v in a graph with parameters SRG(N, k, λ, µ), and count in two ways the number of
edges from vertices adjacent to v to vertices non-adjacent to v.

If multiple non-isomorphic strongly regular graphs share the same set of SRG parameters, we refer to this
graph set as an SRG family, often simply denoted by the SRG parameters (N, k, λ, µ). Graphs within the same
SRG family share various properties that are dependent only on the SRG parameters. The spectrum is rather
special, consisting of just three eigenvalues with knownmultiplicities. SRG families contain non-isomorphic
graphs which are isospectral, and di�cult to distinguish using common classical measures [24].

4 Graph isomorphism via Gaussian boson sampling

4.1 Multiphoton contributions in GBS – supporting results

We start with the exploration of how to interpret Eq. (2) for the detection events nwhere ni > 1 for some i. This
corresponds to amultiphoton contribution of the output probability function. Themultiphoton contributions
play a vital role in our analysis.

De�nition 3. Assume that A = [aij] ∈ Rm1×m2 and in total m1 × m2 matrices B = [Bij] where each Bij is an
ni × nj matrix. Then the reduced Kronecker product C = A /⊗B will denote a block matrix C partitioned as B
and the blocks are C = [aijBij].

Remark. The dimension of A /⊗B is the dimension of thematrix B. Then A /⊗B is a submatrix of the Kronecker
tensor product of two matrices A ⊗ B = [aijB]. The matrix B in this paper will always be assembled from
Bij = Jni ,nj ∈ Rni×nj where n is a measurement pattern. In this case we will write B = J|n| ∈ R|n|×|n| where
|n| =

∑M
i=1 ni. Note that if n is a pure event then the reduced Kronecker product /⊗ becomes the ordinary

Kronecker product A ⊗ Jn1 . Also note that if dim Bij = 1, ∀i, j the reduced Kronecker product becomes the
Hadamard (Schur) product.

Example. Let n = (3, 2, 1, 4) and A an adjacency matrix of a simple weighted graph (without loops). Then

A /⊗J|n| =



0
a12 a12
a12 a12
a12 a12

a13
a13
a13

a14 a14 a14 a14
a14 a14 a14 a14
a14 a14 a14 a14

a12 a12 a12
a12 a12 a12

0 a23
a23

a24 a24 a24 a24
a24 a24 a24 a24

a13 a13 a13 a23 a23 0 a34 a34 a34 a34
a14 a14 a14
a14 a14 a14
a14 a14 a14
a14 a14 a14

a24 a24
a24 a24
a24 a24
a24 a24

a34
a34
a34
a34

0



.

The reason for introducing anewkind of structure is a compact expression for the probability ofmeasurement
of a mixed multiphoton event n as a hafnian function not unlike Eq. (63) for n = (1, . . . , 1).

De�nition 4. A 2M × 2M-dimensional real symmetric matrix R will be called GBS encodable if we can �nd a
covariance matrix σQ such that

R = X2M
(
I2M − σ−1Q

)
. (5)

Ref. [9] introduced a necessary criterion for R to be GBS encodable. For some real symmetric R̃ not satisfying
the conditions a general procedure was created to produce a matrix related to R̃ that is GBS-encodable. It
consists of taking R̃ 7→ R df= c(R̃ ⊕ R̃) where 0 < c < 1/‖R̃‖2.
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Even though this procedure is always guaranteed to succeed in creating a Gaussian covariance matrix, it
is not a necessary condition. Here we strengthen this previous result by loosening the requirements on R.

Lemma 2. Let G ∈ HN and assume that G = (IN − F)−1 − 1
2 IN . Then

1. G � 0 if and only if ‖F‖2 < 1.

2. Suppose that N = 2M, F =
[
F11 F12
F21 F22

]
. Then the following conditions hold

G � 0, G + 1
2

[
IM 0
0 −IM

]
� 0 (6)

if and only if ‖F‖2 < 1 and F22 � 0.

Proof.

1. Clearly we need to have that (IN −F)−1 � 0. This equivalent to λ1(F) < 1. The assumption that (IN −F)−1 � 1
2 IN

is equivalent to λN((IN − F)−1) > 1
2 . This is equivalent to λN(F) > −1. Therefore the claim follows.

2. Use (1) to get the assumption that G � 0 is equivalent to ‖F‖2 < 1. The assumption that G+ 1
2

[
IM 0
0 −IM

]
� 0

is equivalent to (IN − F)−1 �
[
0 0
0 IM

]
. This is equivalent to

IN � (IN − F)
1
2

[
0 0
0 IM

]
(IN − F)

1
2 � 0.

This inequality is equivalent to

1 ≥ λ1
(
(IN − F)

1
2

[
0 0
0 IM

]
(IN − F)

1
2

)
= λ1

(
(IN − F)

[
0 0
0 IM

])
.

Observe next that

(IN − F)
[
0 0
0 IM

]
=

[
0 −F12
0 IM − F22

]
.

Hence

1 ≥ λ1
(
(IN − F)

[
0 0
0 IM

])
= 1 − λM(F22)

is equivalent to λM(F22) ≥ 0, that is F22 � 0.

Corollary 3. Let R ∈ R2M×2M be a nonzero real symmetric matrix with the following partition toM ×M blocks:

R =

[
R11 R12
R21 R22

]
. Then there exists a Gaussian covariance matrix σ such that cR = X2M[I2M − (σ+ 1

2 I2M)] if and

only if:

1. R11 = R22 and R12 = R21.
2. R12 � 0.
3. c ∈ (0, 1

‖R‖2 ).

Part (3) follows from the observation the singular values of R and X2MR are the same. Hence ‖R‖2 = ‖X2MR‖2.

Remark. The previous lemma was presented for the sake of completeness. In the rest of the paper we use
the construction of GBS-encodable matrices introduced already in [9].
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For future reference we recall the following straightforward result [9].

Lemma 4. Let M be even and C = A ⊕ A a real symmetric matrix of dimension 2M × 2M. Then

haf [c(C + kI2M)] = cM haf 2 A, (7)

where c > 0 and k ∈ R.

Lemma 5. Assume C = [cij] ∈ R2M×2M is a symmetric and GBS-encodable matrix. Then the probability of
sampling in the GBS event, Eq. (2), can be expressed as

p(n) = 1
n!
√
det σQ

haf [C /⊗J2|n|]. (8)

Proof. To prove this equality we assume that C = A⊕ A where A is an arbitrary symmetric matrix of orderM.
Let p̃(n) be de�ned by the right-hand side of (2). We will show that p̃(n) = p(n). Consider J2|n| as a 2M × 2M
block matrix [Jni ,nj ]where ni+M = ni. Hence C /⊗J2|n| = A /⊗J|n|⊕ A /⊗J|n|. We now consider the quadratic form
γ>(C /⊗J2|n|)γ and focus on β>(A /⊗J|n|)β (the ‘second half’ is treated in exactly the same way). We substitute

βi 7→ (αi1, . . . , αini ). (9)

in (2). We de�ne its action for the quadratic form to be

β>Aβ =
∑
ij
βiβjaij 7→

∑
ij
(αi1 + · · · + αini )(αj1 + · · · + αjnj )aij = α

>[aijJninj ]α ≡ α>(A /⊗J|n|)α, (10)

where we used Def. 3 by setting Bij = Jni ,nj . We further set ∂niβi = ∂αi1 ,...,αini , ∀i (and similarly for the conjugated
variables βi and the corresponding αini ) and write

p̃(n) = 1
n!
√
det σQ

M∏
k=1

∂αk1 ,...,αknk e
1
2 α
>(A /⊗J|n|)α

∣∣∣
α=0

. (11)

It remains to show that p(n) = p̃(n). Indeed, the higher-order partial derivatives in (2) result in the same
expression as the �rst-order ones in (11) whenever we set α = β = 0 at the end of the calculation. This is a
consequence of the elementary properties of the di�erential operator, namely,

∂xk1 ,...,xk1 f (
∑nk

`=1xk`) = ∂xk1 ,...,xknk f (
∑nk

`=1xk`), ∀k (12)

and the chain rule for the n-th derivative given by Faà di Bruno’s formula for (f ◦ g)(n)(x) in the special case
of g(x) = x + K where K is a constant:

f (n)(x + K) = h(x + K) (13)

whenever f (n)(x) df= h(x). Now we put all the pieces together. The RHS of (12) is identi�ed with (11) through
(xk1, . . . , xknk ) 7→ (αk1, . . . , αknk ) (or its conjugate) for a given 1 ≤ k ≤ M and so f (

∑M
k=1
∑nk

`=1αk`) =
e

1
2 α
>(A /⊗J|n|)α. But then, according to the LHS of (12) we may write (11) as

p̃(n) = 1
n!
√
det σQ

M∏
k=1

∂αk1 ,...,αk1e
1
2 α
>(A /⊗J|n|)α

∣∣∣
α=0

. (14)

The RHS of (14) is identi�ed with the LHS of (13) by setting x = αk1, n = nk and K =
∑nk

`=2 αk` for a given k.
Since

h(β1) =
dn

dβn1
e

1
2 β
>Aβ

forms p(n) and from (11) we get

M∏
k=1

∂αk1 ,...,αknk e
1
2 α
>(A /⊗J|n|)α

∣∣∣
α=0

= haf [A /⊗J|n|]
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we may conclude that p̃(n) = p(n) due to f (n)(β1)|β1=0 = f (n)(αk1 + K)|αk1=K=0. This follows from (13) and the
de�nition of h(x).

Interestingly, many of the detection events have probability zero:

Lemma 6. Let C = c(A ⊕ A) ∈ R2M×2M and let n be a detection event where |n| =
∑M

i=1 ni. If there is any
ni > |n|/2 then p(n) = 0.

Proof. Herewemay assume c = 1 and so C = A⊕A. The probability expression (Eq. (8)) contains haf [A /⊗J|n|]
and if ni > |n|/2 thenA /⊗J|n| contains a zeromatrix of size greater than bM/2c (placed in the lower right corner
of A /⊗J|n|), see De�nition 3. The hafnian of such a matrix is zero. This follows from the hafnian de�nition
(Def. 1) where the hafnian of a 2M × 2M matrix is a sum of products of M entries aij. Since i < j and none
of the indices repeats for any summand then inevitably at least one of the aij’s in every summand equals
zero.

We prove several useful properties of the reduced Kronecker product /⊗.

Lemma 7. Let C = [cij] ∈ R2M×2M and c ∈ R. Then

haf [(cC) /⊗J2|n|] = c|n| haf [C /⊗J2|n|]

where |n| =
∑M

i=1 ni.

Proof. FromDef. 3 we �nd (cC) /⊗J2|n| = c(C /⊗J2|n|). This trivially follows from [(ccij)Bij] = [c(cijBij)]. We then
observe that dim [C /⊗J2|n|] = 2|n| and the claim follows.

Remark. For ni = 1, ∀i we recover haf [cC] = cM haf C since |n| = M.

Lemma 8. Let A, B, C be matrices and assume that A /⊗C and B /⊗C are de�ned. Then (A ⊕ B) /⊗(C ⊕ C) =
(A /⊗C)⊕ (B /⊗C).

Proof. The ordinary Kronecker product satis�es (A ⊕ B) ⊗ C′ = A ⊗ C′ ⊕ B ⊗ C′. By removing columns and
the corresponding rows from A, B on both sides of the expression we arrive at the claimed result.

Lemma 9. Let Pπ be a permutation matrix. Then the following diagram commutes for any matrix A and a de-
tection event n

A A /⊗J|n|

Ã Ã /⊗J|m|

/⊗J|n|

Pπ P̂π
/⊗J|m|

where P̂π is another permutation matrix andm = π(n).

Proof. Following the lower route, the spanning basis β = (β1, . . . , βk) of A becomes π(β) = (βπ(1), . . . , βπ(k))
for Ã. The new basis is then expanded by considering

βπ(i) 7→ (απ(i)1, . . . , απ(i)mπ(i)
) (15)

and so π(α) is a spanning basis of Ã /⊗J|m|. Going through the upper route, we observe that β 7→ α by the
action of

βi 7→ (αi1, . . . , αini ). (16)

Then, a permutationmatrix exists transforming (16) into (15). Its construction is straightforward. The reorder-
ing (permutation) (αi1, . . . , αini ) 7→ (απ(i)1, . . . , απ(i)nπ(i) ) is followed by setting nπ(i) = mπ(i). Naturally, the
overall transformation is an action of a permutation matrix we denoted by P̂π.
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We use another result from [9] to prove the following lemma.

Lemma 10. The matrices σQ,Gi of two isospectral graphs G1, G2 encoded as adjacency matrices A1, A2 of
dimension 2M satisfy

det σQ,G1 = det σQ,G2 .

Proof. In order to encode an arbitrary graph we take two copies of a graph’s adjacency matrix [9]. Also, it is
advantageous to rewrite (4) as

σAi =
1
2(I2M + X2MAi)(I2M − X2MAi)−1 =

1
2(I2M − X2MAi)

−1(I2M + X2MAi). (17)

The matrix Ai commutes with X2M [9] and so the eigenvalues of X2MAi are products of eigenvalues of the
constituents. Furthermore, using the second equality in (17) and σQ,Gi = σAi + I2M/2 we conclude by a di-
rect calculation that the eigenvalues of σQ,G1 and σQ,G2 coincide. The claim follows from the fact that the
determinant is a product of eigenvalues.

4.2 GBS and a complete set of graph invariants

Remark. Wewill use the transformation A 7→ C = A⊕A for the application of GBS to the graph isomorphism
problem. We recall C ∈ R2M×2M. By ‘doubling’ A, one copy is conveniently spanned by (β1, . . . , βM)whereas
the second one by (β1, . . . , βM). Moreover, to make the matrix C GBS-encodable (see Def. 4) we simply take
R = c(C + kI2M) = c(A⊕ A + kI2M)where 0 < c < 1/(‖A‖2 + k) for k ≥ 0. The additional multiple of an identity
on the diagonal does not a�ect the hafnian of A⊕A as follows from Lemma 4 but it will become useful in the
next sections.

GBS and Moments of Multivariate Gaussians

The moments µn1 ,...,n2M (Σ) of a (zero-mean) 2M-dimensional multivariate real normal distribution N (0, Σ)
are given by the following formula:

µn1 ,...,n2M (Σ) = ∂
|n|
x e

1
2 x
>Σx∣∣

x=0, (18)

where Σ is the covariancematrix. This follows from the fact that exp [ 12x
>Σx] is themoment-generating func-

tion of the multivariate normal.
Let R = c(A ⊕ A + kI2M) be GBS encodable for k su�ciently high so that R � 0. Then

p(n) = 1
n!
√
det σQ

∂|n|
β,β
e

1
2γ
>Rγ ∣∣

γ=0. (19)

is exactly the moment µn(R) of the 2M-dimensional (zero-mean) multivariate normal distributionN (0, R) if
we ignore the prefactor (n!

√
det σQ)−1. For clarity, we have changed variables so that xj = βj and xM+j = βj

for j = 0, . . . ,M.
From the above equations, it is clear that the di�erent photon-counting probabilities of a GBS setup are

directly related to various moments of a multivariate normal distribution. Importantly, however, they do not
give us all moments (µn1 ,...,nm ,nm+1 ,...,n2M (R)), but rather the smaller set
(µn1 ,...,nM ,n1 ,...,nM (R)). This is something we need to be careful of. In [10] the authors relate these moments to
the matching of the prism graph induced by the graph G.

The moment-generating function factorizes:

exp [ 12x
>Rx] = exp [ c2 (x

(M))>(A + kIM)x(M)] × exp [ c2 (x
(2M))>(A + kIM)x(2M)], (20)

wherewehaveused thenotation x(M) df= (x1, . . . , xM) and x(2M) df= (xM+1, . . . , x2M).We set c = 1 (sinceweomit
the determinant prefactor where it otherwise plays a role) and also k = 0. This step will cost us the positive-
de�niteness of A but at themoment this is just a formality to properly de�ne themoment generating function.
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We would have set k = 0 afterwards anyway to recover the correct probability expression. The moments of
this factorized distribution are then

µn1 ,...,nM ,nM+1 ,...,n2M (A) = ∂
|n|
x
[
exp [ 12 (x

(M))>A x(M)] × exp [ 12 (x
(2M))>A x(2M)]

]∣∣
x=0 (21)

Rewriting, we �nd

µn1 ,...,nM ,nM+1 ,...,m2M (A) =
[
∂|n|x(M) exp [ 12 (x

(M))>A x(M)]
]∣∣
x(M)=0

[
∂|n|x(2M) exp [ 12 (x

(2M))>A x(2M)]
]∣∣
x(2M)=0

= µn1 ,...,nN (A) × µnN+1 ,...,n2N (A), (22)

where µn1 ,...,nM (A) and µnM+1 ,...,n2M (A) are moments of the M-dimensional normal distributionsN (0, A).
Connecting back to photon-counting probabilities, we recover c and conclude that, for the considered

case of block-diagonal R,

p(n) = c|n|

n!
√
det σQ

µ2n1 ,...,nM (A). (23)

Finally, we note that the moments are exactly the hafnian of some appropriate matrix, so

p(n) = c|n|

n!
√
det σQ

haf [A⊕2 /⊗J2|n|] =
c|n|

n!
√
det σQ

haf 2 [A /⊗J|n|], (24)

where the second equality also follows from Lemma 4 and 8.

Proposition 11. Suppose we have two isospectral graphs G1 and G2. Assume we can encode the adjacency
matrices Ai of either graph into a Gaussian boson sampling setup. Then these graphs are isomorphic i� the
hafnians are related by a permutation, haf [A1 /⊗J|n|] = haf [A2 /⊗J|π(n)|], for all n. Furthermore, the permutation
π must be the same for all n.

Proof of⇒:. Suppose G1 and G2 are isomorphic. Equivalently, their adjacency matrices are related by a per-
mutation

A1 = P>A2P, (25)

where Pπ(i)i = δi,π(i) for some permutation π. If we encode these adjacency matrices directly into the co-
variance matrices of two Gaussian states, then graph isomorphism is equivalent to the multivariate normal
distributions corresponding to these two Gaussian states being related by a permutation of coordinates:

N (0, A1 ⊕ A1) = N (0, (P>A2P)⊕ (P>A2P)) = N (0, (P⊕2)>(A2 ⊕ A2)(P⊕2)). (26)

All moments of these 2M-dimensional distributions must correspondingly be related by the permutation π⊕
π,

µn1 ,...,nM ,nM+1 ,...,n2M (R1) = µ(π⊕π)(n1 ,...,nM ,nM+1 ,...,n2M)(R2), ∀ (n1, . . . , n2M), (27)

where Ri = Ai ⊕ Ai are made into GBS encodable matrices (we keep on omitting the c factors). Looking back
to Eq. (22), we have

µn1 ,...,nM (A1)µnM+1 ,...,n2M (A2) = µπ(n1 ,...,nM)(A2)µπ(nM+1 ,...,n2M)(A2), ∀ (n1, . . . , nM), (nM+1, . . . , n2M). (28)

These moments must be equal for any choices p = (n1, ..., nM) and q = (nM+1, ..., n2M). Thus, we conclude
that

haf [A1 /⊗J|p|] haf [A1 /⊗J|q|] = haf [A2 /⊗J|π(p)|] haf [A2 /⊗J|π(q)|]. (29)

In particular, for p = q = n, where n is arbitrary, we get haf 2 [A1 /⊗J|n|] = haf 2 [A2 /⊗J|π(n)|]. We now use the
fact that adjacency matrices A contain only 0s or 1s, so haf [A /⊗J|n|] ≥ 0 for any possible A or n. This leads to

haf [A1 /⊗J|n|] = haf [A2 /⊗J|π(n)|], ∀ n, (30)

which proves the statement.
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4.2.0.1 Proof of⇐:
Eq. (30) immediately implies Eq. (29), even when the hafnians are not positive. Furthermore, Eqns. (25)-(29)
are all equivalent. Hence, the graphs having adjacency matrices A1 and A2 are isomorphic.

GBS and Symmetrized Moments of Multivariate Gaussians

In this part we �nd a new criterion for isomorphism of two isospectral graphs by showing that symmetrized
moments are also complete invariants for graph isomorphism:

Theorem 12. Let G1 and G2 be two isospectral graphs on an even number of vertices M. Denote by p1(n) and
p2(n), the probabilities corresponding to G1 and G2, given in Eq. (2). Then G1 and G2 are isomorphic if and only
if the symmetrized sums ∑

σ∈Sn

√
p(nσ)

are the same for the two graphs for all possible n.

To avoid a notational clash in this section we use nσ instead of σ(n) used in the previous sections. We start
with the following result.

Theorem 13. The following statements are equivalent for two Gaussian distributions with zero mean and pos-
itive de�nite covariance matrices Σ, Σ′ ∈ Rn×n:

1. The two Gaussian distributions are isomorphic.
2. The matrices Σ and Σ′ are permutationally similar.
3. The matrices Σ−1 and (Σ′)−1 are permutationally similar.
4. For each homogeneous symmetric polynomial p(x) of even degree the expected value of p(x) is the same for

the two Gaussian distributions.
5. The symmetrized moments of the two Gaussian distributions are the same.

Proof. For a given Gaussian distribution with zero mean and the covariance matrix Σ let us denote by HΣ the
distribution with the following density

hΣ(x) =
1
n!
∑
σ∈Sn

exp [−x>P>(σ)Σ−1P(σ)x]. (31)

By GΣ we denote the density function of the normal distribution exp [−x>Σ−1x].
Clearly if Σ and Σ′ are permutationally similar then hΣ(x) = hΣ′ (x) for each x. So we need to prove the

other direction. Let p(x) be a monomial xm1
1 · · · xmn

n of even degree. We denote m = (m1, . . . ,mn). Consider
the moments

µGΣ (m) = EGΣ [X
m1
1 · · · Xmn

n ],

µHΣ (m) = EHΣ [X
m1
1 · · · Xmn

n ].

Then
µHΣ (m) =

1
n!
∑
σ∈Sn

µGΣ (mσ).

We call µHΣ (m) the symmetrized moments of GΣ. Clearly, µHΣ (m) = µHΣ (mσ) for each σ ∈ Sn. Thus if two
Gaussian distributions are isomorphic, then HΣ = HΣ′ and the corresponding density functions are the same.
In particular, the moments of HΣ and HΣ′ are the same.

Our �rst main result is the claim that if the moments of HΣ and HΣ′ are the same then HΣ = HΣ′ . It is
not true that the equality of the moments yield that the distribution are the same. However, it is true for all



178 | K. Brádler et al.

distributions that have the form ofHΣ. Indeed a su�cient condition isM(u) = E[exp [〈u, X〉]] is awell-de�ned
vector for all u ∈ Rn [28]. This condition is satis�ed for HΣ, where Σ is a positive de�nite matrix.

It is left to show that if HΣ = HΣ′ then Σ and Σ′ are permutationally similar. We �rst analyze the behavior
of the n! numbers

exp [−x>P>(σ)Σ−1P(σ)x], (32)

for a �xed but arbitrary vector x ∈ Rn and σ ∈ Sn.
Let orb Σ be all pairwise distinct matrices of the form P>(σ)ΣP(σ) for σ ∈ Sn. Recall that | orb Σ| divides

n! and n!/| orb Σ| is the cardinality of the automorphism group, i.e., all σ ∈ Sn such that P>(σ)ΣP(σ) =
Σ. Let A1, A2 be two real symmetric matrices of order n. De�ne two corresponding quadratic forms f1(x) =
xTA1x, f2(x) = x>A2x. Assume that A1 = ̸ A2. Then f1(x) = f2(x) if and only if h(x) = x>(A1 − A2)x = 0.
Hence for generic, (randomly selected x) we have that f1(x) = ̸ f2(x). Similarly: let A1, . . . , Ak be k pairwise
distinct symmetric matrices. Set fi(x) = x>Aix for i ∈ [k]. Then for generic x, fi(x) ≠ fj(x) for i ≠ j. Since any
two pairs of matrices in orb Σ are pairwise distinct it follows that for a generic x we will have exactly | orb Σ|
distinct values in (31) and each value is repeated n!/| orb Σ| times.

Assume now that for each x ∈ Rn in (31) we have the equality hΣ(tx) = hΣ′ (tx):∑
σ∈Sn

(
exp [−x>P>(σ)Σ−1P(σ)x]

)t2 = ∑
σ∈Sn

(
exp [−x>P(σ)>(Σ′)−1P(σ)x]

)t2 (33)

for some �xed t ≥ 0. Fix x in general position. Then for t = 1 we get that the number of distinct values in (31)
is | orb Σ| for Σ and | orb Σ′| for Σ′, respectively. Let

a(σ) = exp [−x>P(σ)>(Σ)−1P(σ)x], (34)

a′(σ) = exp [−x>P(σ)>(Σ′)−1P(σ)x] (35)

for σ ∈ Sn. In the equality (33) set t =
√
k for k = 0, 1, . . . , n!. Thus we have the equalities:∑
σ∈Sn

a(σ)k =
∑
σ∈Sn

a′(σ)k

for k = 1, . . . , n!. These equalities yield that the two multisets {a(σ), σ ∈ Sn} and {a′(σ), σ ∈ Sn} are the
same. Hence the n!moments of discrete distributions equally distributed on n! points given in (32) for Σ and
Σ′ are the same. Hence these two multisets are the same. First it yields that | orb Σ| = | orb Σ′|. Moreover there
exists P(σ) such that x>P>(σ)Σ−1P(σ)x = x>(Σ′)−1x. Moreover, for each Σi = P>i ΣPi in the orbit of Σ (under
the action of the group of permutations) we have a permutation Qi such that x>Q>i (Σ′i)−1Qix = x>Σ−1i x. Now
if we change x to y we still have the same equality y>P>(σ)Σ−1P(σ)y = y>(Σ′)−1y. This �nally shows that
P>(σ)Σ−1P(σ) = Σ′. So indeed the covariance matrices are permutationally similar.

Let ei = (δi,1, . . . , δi,M), where δi,j is the Kronecker delta function. Assume that n = (n1, . . . , nM) ∈ ZM+ . Let
B = [bi,j] be a real symmetric matrix and recall the “n-th moment corresponding to B” from the beginning of
this section as

µ(n, B) = ∂|n|
∂xn exp

[1
2x
>Bx

]∣∣∣
x=0

= 1
(|n|/2)!

∂|n|
∂xn

(1
2x
>Bx

)|n|/2∣∣∣
x=0

. (36)

(If B � 0 then E(Xn11 · · · X
nM
M ), the n-th moment of the Gaussian distribution given by the covariance B, is

equal to µ(n, B) up to a multiplicative constant.)
To proceed, we also recall the generalization of the classical Leibniz’s formula of the derivative of the

product of m functions in one variable:

(
m∏
i=1
fi)(n) =

∑
a1 ,...,am∈Z+ ,

∑m
i=1 ai=n

(
n

a1, a2, . . . , am

) m∏
i=1
f (ai)i ,

(
n

a1, a2, . . . , am

)
= n!
a1! × . . . × am!

.
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Assume now that f1 = · · · = fm = f (x) = f (x1, . . . , xM). Then for n = (n1, . . . , nM) ∈ ZM+ we denote by
∂n = ∂n11 · · · ∂

nM
M . For n, a ∈ ZM+ let

(n
a
)
=
∏M
i=1
(ni
ai
)
. Then Leibniz’s formula yields the multilinear Leibniz’s

formula:

∂n(fm) =
∑

∑m
i=1 ai=n

(
n

a1, a2, . . . , am

) m∏
i=1

(∂ai f ), (37)

where (
n

a1, a2, . . . , am

)
=

M∏
j=1

(
nj

a1,j , a2,j , . . . , am,j

)
(38)

and ai = (ai,1, . . . , ai,M) and i ∈ [m]. We now apply this formula for f (x) = 1
2x
>Bx and m = |n|/2. Then in

(37) we need to consider only the case where |ai| = 2 for each i ∈ |n|/2. So

µ(n, B) = 1
(|n|/2)!

∑
∑|n|/2

i=1 ai=n,|a1|=...=|a|n|/2|=2

(
n

a1, a2, . . . , a|n|/2

) |n|/2∏
i=1

∂ai (1/2(x>Bx)). (39)

We have two kinds of ai. Namely, either ai = 2ep or ai = ep +eq, where 1 ≤ p < q ≤ n. Let us discuss brie�y all
possibilities for the decomposition of n as n =

∑|n|/2
i=1 ai. We claim that the set {a1, . . . , a|n|/2} corresponds

to the following multigraph G = G(a1, . . . , a|n|/2) with multiple edges and self loops. Each ai = ep + eq,
where 1 ≤ p < q ≤ n corresponds to an edge {p, q}. Each ai = 2ep corresponds to a self loop on vertex p
(the degree of a self loop is 2). So A(G) = [cpq(G)], the adjacency matrix of G, is a symmetric matrix whose
entries are nonnegative integers with the following properties. Each diagonal entry cpp(G) is an even integer.
cpp(G)/2 is the number of ai of the form 2ep. For 1 ≤ p < q ≤ M the integer cpq(G) is the number of ai of the
form ep + eq.

Let 2k =
∑M

p=1 cpp be a nonnegative integer. That is, the set {a1, . . . , a|n|/2} has k vectors of the
form 2ep for all possible p ∈ [n]. Assume that k = 0. Then {a1, . . . , a|n|/2} correspond to a given multi-
graph G = G(a1, . . . , a|n|/2) with no loops. If one permutes the vectors a1, . . . , a|n|/2 one obtains the
same loopless multigraph G, whose degree sequence is n = (n1, . . . , nM), where ni =

∑M
p=1 cip. Let G(n)

be all loopless multigraphs G whose degree sequence is n. We arrange the edges of G in a �xed (say lex-
icographic order): (1, 2), . . . , (1,M), (2, 3), . . . , (M − 1,M). For example the sequence of edges on 3 ver-
tices (2, 3), (1, 3), (1, 2), (1, 3) is arranged as (1, 2), (1, 3), (1, 3), (2, 3). It corresponds to a degree sequence
n = (3, 2, 3).

We denote by SM,0 allM ×M symmetric matrices with zero diagonal. Assume that A ∈ SM,0. Note that for
f = 1/2(x>Ax) we get that ∂2i f = 0 for each i.

Lemma 14. Let A ∈ SM,0. Then

µ(n, A) =
∑

G(a1 ,...,a|n|/2)∈G(n)

1∏
1≤p<q≤n cpq(G(a1, . . . , a|n|/2))!

(
n

a1, a2, . . . , a|n|/2

) |n|/2∏
i=1

(∂ai f ). (40)

Proof. Given a decomposition
∑|n|/2

i=1 ai = n, corresponding to the graph G(a1, . . . , a|n|/2), howmaydi�erent
decompositions are there? Since the edge {p, q}, 1 ≤ p < q ≤ M appears cpq(G(a1, . . . , a|n|/2)) times, the
number of di�erent decompositions is (|n|/2)!∏

1≤p<q≤n cpq(G(a1 ,...,a|n|/2))!
. Use (39) to deduce (40).

For a given k ∈ [|n|/2] denote by

Fk(n) =
{
(j1, . . . , jk) ∈ Nk , 1 ≤ j1 ≤ · · · ≤ jk ≤ M, 2

k∑
l=1

ejl ≤ n
}
.

For each (j1, . . . , jk) ∈ Fk(n) and i ∈ [M] denote mi(j1, . . . , jk) the number of jl that are equal to i. So∑M
i=1 mi(j1, . . . , jk) = k.
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Lemma 15. Let A ∈ SM,0 and t ∈ R are given. Assume that |n| is even. Then

µ(n, tIM + A) = µ(n, A) (41)

+
|n|/2∑
k=1

tk
∑

(j1 ,...,jk)∈Fk(n)

( M∏
i=1

di!
mi(j1, . . . , jk)!2mi(j1 ,...,jk)(di − 2mi(j1, . . . , jk))!

)
µ(n − 2

k∑
l=1

ejl , A).

Here µ(0, A) = 1.

Proof. We consider the formula (39). Suppose we have {a1, . . . , a|n|/2} satisfying: (i) |al| = 2 for each l, and,
(ii)
∑|n|/2

l=1 al = n. These terms de�ne G = G(a1, . . . , a|n|/2). In how may di�erent ways can we represent n
corresponding to G(a1, . . . , a|n|/2)? We can do it by permuting the factors a1, . . . , a|n|/2. As in the proof of
Lemma 14 it is

(|n|/2)!∏
1≤p<q≤M cpq(G(a1, . . . , a|n|/2))!

∏M
p=1(cpp(G(a1, . . . , a|n|/2))/2)!

.

The entry cpq(G(a1, . . . , a|n|/2)) stands for the number of times the edge {p, q} appears. The number of self-
loops (p, p) is cpp(G(a1, . . . , a|n|/2))/2). Dividing by (|n|/2)!we see that the contribution of G(a1, . . . , a|n|/2)
is

1∏
1≤p<q≤M cpq(G(a1, . . . , a|n|/2))!

∏M
p=1(cpp(G(a1, . . . , a|n|/2))/2)!

×

(
n

a1, a2, . . . , a|n|/2

) |n|/2∏
i=1

∂ai (1/2(x>Bx)).

Let k be the number of terms in {a1, . . . , a|n|/2} of the form 2ei. The contribution of all terms {a1, . . . , a|n|/2}
for which k = 0 is µ(n, A). Let us assume that k ∈ [|n|/2]. Without loss of generality we can assume that
al = 2ejl for l ∈ [k]. So al = ep(l) + eq(l), p(l) < q(l) for l > k. Clearly, ∂

al f = t for l ∈ [k]. Hence
∏k
l=1 ∂

al f = tk.
The sum of all

1∏
1≤p<q≤M cpq(G(ak+1, . . . , a|n|/2))!

(
n − 2

∑k
l=1 ejl

ak+1, . . . , a|n|/2

) |n|/2∏
l=k+1

∂al f ,

where al = ep(l) + eq(l) for l > k, and n − 2
∑k

l=1 ejl =
∑|n|/2

l=k+1 al is exactly µ(n − 2
∑k

l=1 ejl , A). It is left to
justify the coe�cient

∏M
i=1

ni !
mi(j1 ,...,jk)!2mi (j1 ,...,jk )(ni−2mi(j1 ,...,jk))!

in front of µ(n − 2
∑k

l=1 ejl , A). This comes from
the equality

1∏
1≤p<q≤M cpq(G(a1, . . . , a|n|/2))!

∏M
p=1(cpp(G(a1, . . . , a|n|/2))/2)!

(
n

a1, a2, . . . , a|n|/2

)

=
( M∏
i=1

ni!
mi(j1, . . . , jk)!2mi(j1 ,...,jk)(ni − 2mi(j1, . . . , jk))!

) 1∏
1≤p<q≤M cpq(G(ak+1, . . . , a|n|/2))!

×

(
n − 2

∑k
l=1 ejl

ak+1, . . . , a|n|/2

)
.

Weneed to see this equality on the level of thederivativewith respect to the variable xi. Letmi = mi(j1, . . . , jk).
If mi = 0, then (n − 2

∑k
j=1 ejl )i = ni for the coordinate i we have obvious equality. Assume now that mi ≥ 1.

Then on the left-hand side of the above equality we the factor ni !
(2!)mimi !

. The factor mi! is equal to (cii(G)/2)!.
On the right-hand side we have the factors:

ni!
mi!(2!)mi (ni − 2mi)!

(ni − 2mi)!.

We are now ready to give the proof for the main result of this section.



Graph isomorphism and Gaussian boson sampling | 181

Proof of Theorem 12.. We write the symmetrized sums of µ(n, A) as

µsym(n, A) =
∑
σ∈Sn

µ(n, P>(σ)AP(σ)). (42)

Now assume µsym(n, A1) = µsym(n, A2), ∀n for two isospectral graphs A1, A2. Then from (41) we get
µsym(n, B1) = µsym(n, B2), ∀n. Finally, Theorem 13 yields that B1 and B2 are permutationally similar and
so are A1 and A2.

Example. Let us illustrate Lemma 15 and Theorem 12 on an example of a graph whose adjacency matrix is
A⊕ A of size 2M = 6 for orbit of n = (2, 3, 3). Since |n| = 8 it is clear that only the fourth power (|n|/2 = 4) of
(x(M))>A(t)x(M) survives an encounter with the partial derivatives. So, following Lemma 15, we write

1
244!

∂8

∂x21∂x32∂x33
((x(M))>A(t)x(M))4 = 1

244!
∂8

∂x21∂x32∂x33

4∑
k=0

(
4
k

)
tk|x(M)|2k((x(M))>Ax(M))4−k (43a)

x=07→ 36a12a13a223 + 6ta23(3(a212 + a213) + a223) + 18t2a12a13 + 9t3a23. (43b)

Each tk coe�cient corresponds to a polynomial of the matrix entries in the exponential of some µ(n −
2
∑k

l=1 ejl , A) ≡ µ(m, A). In accordance with Eq. (41) we get, for example for t2,m = (2, 1, 1) since

1
16

∂4

∂x21∂x2∂x3
(
(x(M))>Ax(M))2∣∣∣

x=0
= a12a13.

As the �nal step, we symmetrize the orbit represented by n (in this case the orbit size equals 3) which causes
a permutation of indices in (43b).

It is advantageous to stratify the measurement events of an M-mode interferometer according to the total
photon number |n| ≥ 0. Once M and |n| are �xed, all possible detection events can be split into the orbits Oi
(equivalence classes under permutation) that partition the set of all events for a �xedM and |n|.We choose the
class representative to be a detection event n = (nj)Mj=1 such that ni ≤ nj , ∀i, j and denote by Gn its stabilizer.
Clearly Gn ⊂ G = SM and the orbits are generated by the left action of the coset G/Gn. In order to �nd
the orbits with a great number of detection events (presumably the most likely ones) we count the orbit size
according to |On| = |SM|/|Gn| =

( M
k0 ,k1 ,...,k`

)
, where kj are themultiplicities of the j-th photon events satisfying∑`

j=0 jkj = |n| and ` ≤ M. The probability of measurement of a given pattern (n1, . . . , nM) is given by p(n) in
Eq. (8) (or, more precisely, by its doubled version, Eq. (24), see Lemma 4 and the remark on page 175), where∑M

i=1 ni = |n|. Hence the probability of orbit On for a graph G reads

pG(On) =
1√

det σQ,G
c|n|
n!

|On|∑
n∈On

haf 2 [A /⊗J|n|]. (44)

How does the number of orbits increase with |n|? This is equivalent to the question of integer |n| partition,
that is, in how many ways one can write

λ1 + · · · + λm = |n|, (45)

where the order of the sum plays no role and the number of parts is 1 ≤ m ≤ M. We naturally order the
parts such that λi ≤ λi+1, ∀i. Suppose M ≥ |n| �rst. No closed formula is known but the generating function
for integer partition provides the number of orbits for a given |n|. Also, very precise estimates have been
uncovered and the growth of the number of orbits is exponential in |n|. ForM < |n|, not all number partitions
can be realized and the counting is given by the generating function for the number of integer partitions into
exactly M parts. Note that we only partition even numbers in this paper, since GBS assigns zero probability
for odd |n|.

Corollary 16 (of Lemma 6). pG(On) = 0 whenever p(n) = 0 for the orbit representative n.
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Curiously, if we try to coarse-grain the probability distribution further and introduce the partition probability

pG(|n|)
df=

∑
n s.t. |n| �xed

p(n) = 1√
det σQ,G

∑
n1+···+nM=|n|

1
n!

|On|∑
n∈On

haf 2 [A /⊗J|n|], (46)

where the �rst sum on the RHS is over the partitions of |n| and the second sum over the orbit elements. We
�nd

Lemma 17. pG1 (|n|) = pG2 (|n|) for all |n| whenever the graphs G1, G2 are isospectral.

Proof. Any undirected graph G on 2M vertices can be encoded as a pure covariance matrix whose circuit
decomposition consists of an array ofM single-mode squeezing transformation S(rk) (0 ≤ k ≤ M) followed by
an M-mode linear interferometer U [9]. For each S(rk) we �nd

S(rk) |0〉 =
1√

cosh rk

∞∑
n=0

√
(2n)!
2nn! tanhn rk |2n〉 (47)

and so
M⊗
k=1

S(rk) |0〉 =
∞∑

n/2=0

(|n|/2+M−1|n|/2 )∑
i=1

αin(r1, . . . , rM) |(n,M)〉i , (48)

where |(n,M)〉 carry all completely symmetric representations of su(M) (each representation labeled by n/2).
Given λk(A) and 0 < c < 1/‖A‖2 for G’s adjacencymatrix A ([9], see also Lemma 2) we canwrite cλk = tanh rk.
Therefore αin(r1, . . . , rM) = αin(λ1, . . . , λM). Since the interferometer U preserves the number of particles |n|
the partition probability pG(|n|) is una�ected by it. Then

pG(|n|) =
(|n|/2+M−1|n|/2 )∑

i=1
|αin(r1, . . . , rM)|2 =

(|n|/2+M−1|n|/2 )∑
i=1

|αin(λ1, . . . , λM)|2.

However, the RHS is independent on the graph (depends only on λk common for isospectral graphs) and the
claim follows.

Remark. Note that the similar argument does not hold for the less coarse-grained probability pG(On) in
Eq. (44) since the interferometer ‘mixes’ the orbits.

Even though the coarse-grained probability, Eq. (46), cannot be used to distinguish nonisomorphic graphs,
not all hope is lost. Possible strategies and the closely related problem of scalability is discussed in Sec. 6.

4.3 Modifying the results for C = A ⊕ A and beyond

Given A of even order consider p(n, C) in (2) and µ(n, C). If for the two graphs A and B we have the equalities
for the symmetrized sums ∑

σ∈Sn

p(nσ , A ⊕ A) =
∑
σ∈Sn

p(nσ , B ⊕ B),

what can we say? If instead of considering just the matrix A we will consider the matrix A ⊕ A then we can
conclude that our bigger graph is a disjoint union of two isomorphic graphs. So if the union of two isomorphic
graphs is isomorphic to the union of another two isomorphic graphs, then the twographs are also isomorphic.
If we consider the functions µ(m, A⊕A). Note thatm = (m1, . . . ,m2M) = (n, n′)where n = (n1, . . . , nM), n′ =
(nM+1, . . . , n2M). It now follows that

p((n, n′), A ⊕ A) = p(n, A)p(n′, A).
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Hence, if γ = (x, y, x, y) then

exp
[1
2γ
>(C ⊕ C)γ

]
= exp

[1
2(x

(M))>Ax(M)] exp [12(y(M))>Ay(M)] exp [12(x(M))>Ax(M)] exp [12(y(M))>Ay(M)].
Therefore, if we have equalities for the symmetrized sums, we get a whole hierarchy of necessary conditions
by considering A⊕k for k > 2.

4.4 Partition-averaged photon distribution as a necessary condition for graph
isomorphism

The main result of this section will be a simpler necessary condition for isospectral graphs to be isomorphic.

De�nition 5. Let A be the adjacencymatrix of anM-vertex graph G and 1 ≤ k ≤ M. Thenwe call the partition-
averaged photon distribution of the k-th detector the function

〈nk〉G
df=
|On|∑
n∈On

nkp(n) =
1√

det σQ,G
1
n!

|On|∑
n∈On

nk haf 2 [A /⊗J|n|] (49)

and its coarse-grained version reads

〈〈nk〉〉G = 1√
det σQ,G

∑
n1+···+nM=|n|

1
n!

|On|∑
n∈On

nk haf 2 [A /⊗J|n|]. (50)

Remark. The complexities of coarse-grained probability pG(On) in Eq. (44), of the partition-averaged photon
distribution of the k-th detector (49), and its coarse-grained version (50) are NP-hard, as we need to sum on
the number of elements in On, which may be of order M!.

Theorem 18. The partition-averaged photon distributions introduced in De�nition 5 of two isomorphic graphs
are identical up to a permutation of output modes which can be veri�ed in polynomial time in M.

Proof. Givenpartition-averagedphotondistribution of a graphGwe replace it by adistribution 〈ñk〉G , k ∈ [n],
where 0 ≤ ñ1 ≤ · · · ≤ ñM. Clearly, this rearrangement can be done in O(M2), actually O(M logM), time. Two
isomorphic graphs will have the same rearranged partition-averaged photon distribution.

Lemma 19. Let GA and GÃ be isomorphic graphs. Then the output probability distribution from GBS with en-
coded graphs is related by a permutation.

Proof. Consider pure events �rst where we present two proofs. A graph Ã is isomorphic to A i� there exists a
permutation π such that Ã = P>π APπ. Ignoring the prefactor c|n|/(n!

√
det σQ) in Eq. (24) (it is identical for A

and Ã – see Lemma (10)), it follows that Ã⊕2⊗J2|n| is also a permutation of A⊕2⊗J2|n| since /⊗ ≡ ⊗ for pure
detection events (see Remark below Def. (3)). Hence haf [Ã⊕2 ⊗ J2|n|] = haf [A⊕2 ⊗ J2|n|] and the probability
expressions are invariant.

We prove the same statement by using Eq. (2) where C = c(A⊕A), C̃ = c(Ã⊕ Ã) and we can ignore c here
by setting c = 1. We introduce P df= Pπ ⊕ Pπ and write

∂|n|
β,β
e

1
2γ
> Ã⊕2γ = ∂|n|

β,β
e

1
2 (Pγ)

>A⊕2(Pγ) (51)

But that implies that the probability of a pure event remains the same since Pβ by de�nition merely relabels
the output modes and the partial derivatives do not care:

∂|n|
β,β
e

1
2 (Pγ)

>A⊕2(Pγ) = ∂|n|
β,β
e

1
2γ
> Ã⊕2γ . (52)
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For mixed detection events the situation is di�erent. If one of the ni’s in

∂|n|
β,β
e

1
2 (Pγ)

>A⊕2(Pγ)

is di�erent from the rest, the corresponding partial derivative breaks the symmetry and unlike the pure case
one concludes that

∂|n|
β,β
e

1
2 (Pγ)

>A⊕2(Pγ) = ̸ ∂|n|
β,β
e

1
2γ
>A⊕2γ . (53)

However, if we permute the derivative variables (symbolically written as ∂βi ,βi 7→ ∂(Pπβi),(Pπβi)), we �nd the
desired equality

∂|n|
Pπβ,Pπβ

e
1
2 (Pγ)

>A⊕2(Pγ) = ∂|n|
β,β
e

1
2γ
>A⊕2γ . (54)

Next, using map (16), we rewrite the both sides of the last equation as

M∏
i=1
∂(P̂παi),(P̂παi)e

1
2 (P̂δ)

>(A⊕2 /⊗J2|n|)(P̂δ) =
M∏
i=1
∂αi ,αi e

1
2 δ
>(A⊕2 /⊗J2|n|)δ . (55)

where δ df= (α, α) and P̂ df= P̂π ⊕ P̂π was introduced in Lemma 9. We used Eq. (8), Lemma 8 and Lemma 9
(the upper route in the commutative diagram to go from the LHS of (54) to the LHS of (55)). But since
(P̂δ)>(A⊕2 /⊗J2|n|)(P̂δ) = δ

>(P̂>(A⊕2 /⊗J2|n|)P̂)δ and P̂ is a permutation, the hafnian is preserved and the
output probability distribution is merely permuted.

To conclude the proof we notice that the overall detection probability is a sum of invariant (for pure
events) or permuted (for the mixed ones) probability distributions where the permutation is the same for all
mixed n’s.

To simplify the notation in the rest of the sectionwewritehaf 2G (n) ≡ haf 2 [A /⊗J|n|] in Eq. (50). Given the strat-
i�cation into orbits, it is advantageous to collect nk together with the factorial coe�cients and the (squared)
hafnians of a graph G to N and hafG, respectively, and rewrite (50) as

nG = 1√
det σQ,G

N hafG , (56)

where nG is M-tuple of numbers.

Example. Let us illustrate (56) for a graph G on M = 4 vertices and for |n| = 2. There are two orbits repre-
sented by (0, 0, 0, 2) and (0, 0, 1, 1). Since the graph is doubled, we have M = 4 detectors and then

nG = 1√
det σQ,G


2/2! 0 0 0 1 1 0 1 0 0
0 2/2! 0 0 1 0 1 0 1 0
0 0 2/2! 0 0 1 1 0 0 1
0 0 0 2/2! 0 0 0 1 1 1





haf 2G (2000)
haf 2G (0200)
haf 2G (0020)
haf 2G (0002)
haf 2G (1100)
haf 2G (1010)
haf 2G (0110)
haf 2G (1001)
haf 2G (0101)
haf 2G (0011)



. (57)

Wecan clearly identify the sumson theRHSof (50).Note that due toCorollary 16 thehafnians of the (0, 0, 0, 2)
orbit are zero and so are the corresponding contributions to nG.

The following proof is best viewed together with the above example.
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Proof of Theorem 18. Lemma 19 shows that, if graphs G1 and G2 are isomorphic, then the ordered set of haf-
nians for one graph is a permutation of the same ordered set for the other graph. This statement translates
into a permutation of hafG introduced earlier: hafG2 = π(hafG1 ). Note that the pure orbit elements are �xed
points of π. Now we observe that the i-th row of N by construction coincides with the sequence assembled
from the i-th elements of all n (see (57)). So instead of swapping the rows of Nwe correspondingly swap these
sequences in the argument of all haf 2G forming hafG. But this transformation is a permutation of the set of all
n’s for a �xed |n| since it preserves the photon number. Hence

N π(hafG1 ) = Pπ(N)hafG1 , (58)

where Pπ swaps the rows of N. Since NhafG2 = N π(hafG1 ) we get

NhafG2 = Pπ(N)hafG1 (59)

and thanks to Lemma 10 we can rewrite the equality as

1√
det σQ,G2

NhafG2 =
1√

det σQ,G1

Pπ(N)hafG1 . (60)

But the LHS is nG2 and the action of a permutation Pπ on the RHS implies that it is equal to π(nG1 ). Therefore

nG2 = π(nG1 )

which is the main result.
To conclude the proof we observe that it takes only a polynomial number of steps to uncover how the

partition-averaged photon distribution is permuted. We order nG1 and nG2 in an increasing order and if the
two ordered sets di�er the graphs cannot be isomorphic

One could be tempted to argue that the opposite is true (that is, if the partition-averaged photon distributions
the same then the graphs are isomorphic). The following counterexample shows that there is no hope for the
converse of Theorem 18.

Example (Counterexample based on SRG(16,6,2,2)). SRG(16,6,2,2) is the smallest family of SRGs containing
two isospectral graphs on 16 vertices. Let |n| = 4 which can be partitioned in �ve di�erent ways. Orbits rep-
resented by n = (1, 3) and n = (4) (zeros omitted) do not contribute in accord with Corollary 16. Calculating
Eq. (50) we �nd 〈〈nk〉〉G1 = 〈〈nk〉〉G2 . What about the less coarse-grained version, Eq. (49). Let’s check the
orbit of n = (1, 1, 1, 1) where |On| = 1820. Here the situations is quite interesting and generic for SRGs. The
sets of hafnians di�er: hafs[G1] = (0992, 1768, 260) and hafs[G2] = (0984, 1792, 236, 38) where the subscripts
count the hafnian. Yet, we �nd 〈nk〉G1 = 〈nk〉G2 .

Remark. Note that since the hafnian sets di�er in the previous example we know that the graphs are not
isomorphic. It just can’t be concluded from comparing the partition-averaged photon distributions for |n| =
4 and it can’t even be concluded from (44) since pG1 (On) = pG2 (On) for all orbits for |n| = 4 (including
n = (1, 1, 1, 1) again!). The �rst di�erences both in 〈nk〉G and pG(On) appear for some orbits of |n| = 8.
Interestingly, 〈nk〉G is always uniform for SRGs and when it di�ers for two nonisomorphic SRGs, it di�ers in
a magnitude.

Remark. Similarly to the partition (46), the coarse-grained partition-averaged photon distribution 〈〈nk〉〉G is
e�ciently calculable.

5 Simulations for isospectral graphs
In the following section, we present the results of the GBS quantumGI algorithm applied to various SRG fam-
ilies and other isospectral graphs. The algorithm itself is presented in the Appendix B. Among other graphs,
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we examine the SRG(35,18,9,9) family, and show that, using various detection patterns, the GBS fully distin-
guishes all 3854 graphs in this family. Due to the large number of photon event permutations required to
calculate the probability of detection, and the classically intractable graph hafnian calculation, the results
were computed in parallel using the Python Hafnian library [8] and the Titan supercomputer ¹. Recall our
convention for GBS encodable graphs: C = c(A ⊕ A) ∈ R2M×2M where we set c = 1 whenever we are allowed
to.

Example. Let us start with the smallest connected PING in Fig. 1. The hafnians of the adjacencymatrices co-
incide so we have to look to all possible GBS-measurable submatrices. These correspond to all measurement
patterns with at most one photon per mode (in this example we won’t study the multiphoton contributions
coming from A /⊗Jn). Hence, we can measure in total

(6
4
)
= 15 graphs on 4 vertices as well as 2 vertices (the

subgraphs with an odd number of vertices have zero perfect matchings and therefore zero hafnian). The haf-
nians of the latter (let’s call them 2-hafnians) do not di�er but the 4-hafnian sets do di�er:

4-haf AG1 = (0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2) ≡ (07, 17, 21), (61a)

4-haf AG2 = (08, 17). (61b)

Example. Consider another example of a PING [5] in Fig. 2, this time on nine vertices. Their hafnians are

Figure 2: PING on nine vertices.

zero since the number of vertices is odd but also all (8,6,4,2)-hafnians are identical (that is, all subgraphs
accessible to GBS have the same number of perfect matchings). We thus have to change the strategy and
systematically investigate multiphoton detection events by using the strati�cation according to the overall
photon number and analyze all detection events, both pure andmixed. This is the way we will proceed in the
upcoming examples. Here it turns out that the �rst di�erences between the two graphs happen for |n| = 6. Ta-
ble 1 on page 187 summarizes the result. The leftmost column contains all partitions of |n| = 6 (see (45)) where
eachpartition is representedby anaturally ordered orbit representative. The orbit size is in the second column
in accordance with the discussion preceding Eq. (44). In experimental terms, an orbit consists of a measure-
ment pattern and all of its permutations. The two rightmost columns contain the hafnians haf [A /⊗J|n|]. We
notice a di�erence in three orbits (greyed): (1, 1, 1, 1, 2), (1, 1, 2, 2) and (1, 1, 1, 3) (the zeros omitted). Also
note that the last four rows corresponding to events which do not occur as predicted by Lemma 6. For another
graph G3, isomorphic to G2, we get the same hafnians for all orbits as an additional check.

Another interesting piece of information is the actual partition-averaged photon distribution for a given
orbit providedby (49) or (50) (weomit the determinants in this example). For non-SRGs thepartition-averaged
photon distribution is typically non-�at. To illustrate (49) let’s choose an orbit where no di�erencewas found:
On for n = (1, 2, 3). The �rst two plots in Fig. 3 are clearly di�erent (that is, non-permutationally invariant).
In accordance with the result of Section 4.4, namely Theorem 18, this is enough to decide that the two graphs

1 https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/

https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
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Table 1: All measurement patterns and their permutations On (orbits) for the PING on nine vertices in Fig. 2 for |n| = 6. The
second column is the orbit size and in the last two columns we list the hafnians whose total number (the sum of subscripts)
equals |On|. Note that the notation we are using for the hafnian sets is de�ned in (61).

Orbit representative of On |On| hafs[G1] hafs[G2]

(0, 0, 0, 1, 1, 1, 1, 1, 1)
(9
6
)

(069, 113, 22) (069, 113, 22)

(0, 0, 0, 0, 1, 1, 1, 1, 2)
(9
5
)(5

1
)

(0586, 241, 43) (0585, 242, 43)

(0, 0, 0, 0, 0, 1, 1, 2, 2)
(9
4
)(4

2
)

(0698, 242, 412, 64) (0700, 242, 410, 64)

(0, 0, 0, 0, 0, 0, 2, 2, 2)
(9
3
)

(084) (084)

(0, 0, 0, 0, 0, 1, 1, 1, 3)
(9
4
)(4

1
)

(0500, 64) (0499, 65)
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are not isomorphic. For a graph G3 isomorphic to G2 we notice a mere permutation of bars in the rightmost
panel of Fig. 3 again in accordance with Theorem 18.

A similar conclusion follows from the analysis of (50) and the situation is depicted in Fig. 4 for |n| = 8.

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
0
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100
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200
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Figure 3: Partition-averaged photon distribution, Eq. 49, for G1 , G2 and G3 ' G2 for the orbit of n = (1, 2, 3). The x axis labels
the detectors. Note that since we omitted the determinantal prefactor and set c = 1 the distribution is not normalized.

Example. Regular isospectral nonisomorphic graphs appear to be somewhere between PINGs and SRGs in
terms of the di�culty to distinguish them. We analyzed a pair of graphs on ten vertices introduced in [30,
page 110, (a) and (b)]. Neither the coarse-grained photon distribution, Eq. (50), nor its probability equivalent
di�er for the two graphs for any tested orbit of n. This is what wewitnessed for all examined SRGs aswell. But
there is a di�erence, most likely related to the fact that regular graphs have less symmetry than SRGs. First,
a di�erence in 〈nk〉G but not in pG(On) appears for some orbits of |n| = 6. For |n| = 8 both quantities di�er in
an ever increasing number orbits. Whatmakes regular graphs di�erent from SRGs is that 〈nk〉G is not uniform
(c.f. with the example and remark at the end of Section 4.4). This is more similar to the PINGs we mentioned
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Figure 4: Coarse-grained partition-averaged photon distribution, Eq. 50, for G1 , G2 and G3 ' G2 for all orbits contributing to
|n| = 8. The x axis labels the detectors. Note that since we omitted the determinantal prefactor and set c = 1 the distribution is
not normalized.

previously. So we may get some information on the actual permutation operation from 〈nk〉G1,2 if we cannot
�nd any di�erence for any n.

SRG(29,4,6,17)

1-41

1,2,30,37 3-29,31-36,38-40 41

3,5,12,18-20,31,32,36,38 6,7,16,39 22,25,34,35 23,27 26,29 15,21 10,11 24,28

1 2 4 8 9 13 14 17 30 33 37 40

all distinguished

n = (1, 1, 1, 1)

n = (2, 2, 2, 2)

n = (2, 2, 2, 2, 2)

n = (2, 2, 2, 2, 2, 2)

Figure 5: The SRG(29,14,6,7) family of 41 isospectral graphs can be fully distinguished by considering orbit (2, 2, 2, 2, 2, 2). The
numbers in the rectangular boxes label the graphs according to [39]. Considering ‘smaller’ orbits (in terms of |n| or the number
of nonzero ni ’s) typically leads to a partial separation. Orbit (2, 2, 2, 2, 2, 2)may not be the smallest one to distinguish all the
graphs.

Example (SRG(29,14,6,7)). Fig. 5 summarizes the path to distinguish all 41 isospectral graphs. As the starting
point we took orbit On for n = (1, 1, 1, 1). This orbit has no distinguishing power. This is indicated by a single
square box containing all graphs. One could start with ameasurement event containingmore single photons
but the problem is, as the number of vertices increases, the orbit size grows rapidly making the simulations
rather resource-expensive. Also, it is desirable to �nd the orbit with the smallest possible |n| distinguishing
all graphs to (i) heuristically assess the performance of our algorithm and (ii) make sure that the physical
resources needed to run the algorithm are not excessive. This is because the smaller |n| is the less squeezing
we need in an actual experiment. Sometimes, however, a smaller |n| does not guarantee a faster simulation.
In the current example the orbit of n = (2, 2, 2, 2, 2, 2)where |n| = 12 ismuchmore computationally feasible
than n = (1, 2, 3, 4)where |n| = 10. This is because |On| = 475020 for the former but |On| = 11400480 for the
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SRG(35,18,9,9)

3848 graphs 6 graphs

1405 graphs 2443 graphs

298 graphs 1107 graphs

21 graphs 277 graphs

2 graphs

n = (4, 4, 4, 4)

n = (4, 4, 4, 4, 4)

n = (2, 2, 2, 2, 2, 2)

n = (2, 2, 2, 2, 2, 2, 2)

n = (2, 2, 2, 2, 2, 2, 2, 2, 2)

Figure 6: The SRG(35,18,9,9) family of 3854 isospectral graphs can be fully distinguished by starting with the orbit of n =
(4, 4, 4, 4) up to n = (2, 2, 2, 2, 2, 2, 2, 2, 2).

latter. So perhaps the orbit of n = (1, 2, 3, 4) distinguishes them all. Hence without exploring all alternative
routes we cannot claim optimality (here and in any other example).

Example (SRG(35,18,9,9)). The analysis of the biggest family of SRGs we studied is summarized in Fig. 6.
Starting from the top, the orbit representatives on the left indicate how successful they are in distinguishing
the graphs. The right box contains thenumber ofnewlydistinguishedgraphswhereas the left box contains the
number of remaining graphs. The e�ect is cumulative so for example the orbit of n = (4, 4, 4, 4, 4) together
with n = (4, 4, 4, 4) distinguishes 2443 graphs. Our computational resources were not enough to distinguish
the two remaining graphs using Theorem 12. The necessary condition developed in Sec. 4.3 was used instead.

Example (SRG(16,6,2,2)). The two graphs can be easily distinguished by our method but in this case we
illustrate the probability function for all partitions and their orbits up to |n| = 14. In Fig. 7 we plot Eq. (44) for
orbits whose probability is nonzero (so their number is less than given by partitioning |n|). The x axis labels
these orbits and in the plot we indicate the actual partitioning bywhite and gray background. Even for a �xed
|n| some orbits are more likely than others. We observed that the probability is correlated to the size of the
orbit. This con�rms our intuition from the paragraph before Eq. (44).

6 Open problems and Discussion

6.1 Open questions

Q1. Can we replace in Theorem 12 the quantity
∑

σ∈Sn

√
p(nσ) with

∑
σ∈Sn

p(nσ)?
Q2. The main result of this paper is a necessary and su�cient condition for two isospectral graphs to be iso-

morphic. We found a complete set of graph invariants. However, this is only half satisfactory because we
don’t know where the di�erence between two graphs ‘kicks in’. Without this knowledge we can use the
i� condition only in one direction. The ideal situation would be to have a deterministic or probabilistic
criterion for the existence of such a threshold orbit as a polynomial function of the graph size. The nu-
merical experiments are favorable as far as the polynomial growth goes – there is no indication that the
threshold value grows fast. As the SRG example at the end of Section 4.4 shows, this is actually a more
subtle problem: the set of hafnians may be di�erent which is one su�cient condition as shown in Sec-
tion 4.2 but their sum of squares is forming pGi (On) (the coarse-grained probability as another su�cient
condition) is the same. The latter often comes ‘later’, that is, for higher orbits than the former.
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Figure 7: Probabilities of various orbits. Each point is a probability of an orbit On given by Eq. (44) for one of the graphs from
the SRG(16,6,2,2) family. The prefactor in (44) is 1/

√
det σQ,G = ((−1 + 4c2)15(−1 + 36c2))1/2 where we set c=1/6.9. Orbits

whose probability is zero are omitted.

Q3. When a threshold orbit n is reached we made the following observation: upon examining orbits m for
|m| > |n| satisfying m > n (mi ≥ ni , ∀i and at least one ni = ̸ mi) the set of hafnians is again di�erent.
We call this a branching e�ect. It seems to be a probabilistic e�ect but from our experiments it holds
overwhelmingly. This results in a dramatic increase of orbits with di�erent hafnian sets as we increase
|m| and greatly helps in the practical use of our algorithm. The intuition behind this behavior is that
when the hafnian sets di�er for an orbit of n, then another orbit of m > n (obtained by adding two new
rows/columns or copies thereof to the adjacency matrix corresponding to n) contains as its subgraphs
all the graphs that already had di�erent hafnian sets. The question to answer is how likely this e�ect is
to occur.

Q4. A problem closely related to the previous question is how long it takes to approach a true probability dis-
tributionwithin a given precision for a chosen orbit of interest. This is typically answered by themethods
that are standard in random graph and probability theory.

Q5. We did not address two related experimental points in this paper. The �rst one is the photon losses,
whichwillmake the statistics of two isomorphic graphs di�erent. Hence one needs to comeupwith cuto�
estimates for distinguishing nonisomorphic graphs. The second one is how easy to estimate probabilities
of photon counting experiments.

6.2 Scalability discussion

As discussed in the previous subsection, we don’t know at what point two non-isomorphic graphs start to dif-
ferwhen sampledusing aGBSdevice. Presumably this critical |n| growswith the graph size and thenumerical
evidence suggests that the growth is not exponential or even fast in general in the graph size. Nonetheless,
even a moderate rate of growth of the threshold orbit n with the graph sizeM could be fatal for large graphs.
This is because the physical interpretation of 0 < c < ‖A‖2 that directs the amount of squeezing – a quantity
directly related to |n|. As we see from Fig. 7, the class with a (nearly) maximal probability (a single orbit in
fact) is n = (0)M and this is a generic case.We can tune the c parameter by increasing squeezing such that the
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probability of a di�erent (desired) orbit On increases. This typically makes the vacuum contribution smaller
but still dominating the probability landscape. What happens is that the desired orbit’s probability pGA (On)
increases with respect to the vacuum and other lower contributions but the probability �attens and therefore
its values are inevitably impractically low to gather enough statistics reasonably fast. To put it di�erently,
there is no signi�cant peak (or a concentration e�ect) for the desired orbit On. The situation is a bit alleviated
by a heuristic observation that beyond the threshold orbit On, where the di�erence in the hafnian set is �rst
observed, the orbits Om where n < m overwhelmingly add to distinguishability. But it is tempting to avoid
this ‘probability dilution’ altogether. The rise of the number of orbits for a �xed |n| is equivalent to the integer
partition problem brie�y discussed towards the end of Section 4.2.

Let us look closer at this problem. Any graph GA can be encoded as a pure covariance matrix whose
circuit decomposition consists of an array of M squeezers S followed by an interferometer U on M modes.
Since the eigenvalues (more precisely the singular values) of A are related to the squeezing parameters, two
isospectral graphs, GA , GÃ, have the same S – the fact already used in Lemma 17. The input to the interfer-
ometer is given by (48). Suppose that we know or suspect that a given |n| contains orbits that are di�erent
if two graphs are not isomorphic. Since an interferometer is a passive unitary operator we know the input
state responsible for it – it is the state whose coe�cients are αin(r1, . . . , rM) from (48). So the task becomes
to prepare such a state. This could be a computationally hard task. Even though

⊗M
k=1 S(rk) |0〉 is factorized

the states
∑(|n|/2+M−1|n|/2 )

i=1 αin(r1, . . . , rM) |(n,M)〉i living in the completely symmetric subspaces are, in general,
entangled. There are two problems, though. First, generation of such states could potentially require a cir-
cuit of a great depth. Second, even if n scales favorably with M, the number of coe�cients αin(r1, . . . , rM)
can be overwhelming to work with for M � 0 and so we may run into the issue of tractability to describe
the necessary unitary operation. If these issues were resolved we would gained a complete control over the
output distribution behavior. But we would also switch from GBS to a generalized (multiphoton) boson sam-
pling (BS) [1]. The orbit representative is a state with a given photon number per input mode. The di�erence
compared to BS is that we do not require the input/output state to be in the 0,1 subspace per mode. Hence we
arrived (by a detour) to the output probability function whose form is most likely governed by some perma-
nent function [35] – a form which will most likely be a variation on the reduced Kronecker product we have
introduced in Sec. 4.1.

The use of a �xed input photon distribution will dramatically change the odds of detecting the di�erence
in the probability distribution. We can take a look at Fig. 7 for, say, |n| = 14 and pGA (On) for all orbits in this
partition will be considerably higher with their mutual ratio preserved. We leave for a future exploration
the question if the probability distribution is always skewed (or even concentrated) such that some events
(preferably the ones where there is a di�erence) are overwhelmingly likely than the others. What can we do
if this is not the case? The thing we cannot do is to coarse-grain the probability more than in Eq. (44) due to
lemma 17. Then, one option would be to coarse-grain the probability more than in (44) but less than in (46).
The reason for this e�ort is to have a favorable scaling. Recall that the number of partitions of |n| grows
exponentially with |n|. If we partially coarse-grain a given orbit we may keep the scaling polynomial and
still detect a di�erence for non-isomorphic graphs. The question is how to split a given orbit. At this point
we can o�er only certain heuristic rules based on our simulations.
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A Basic hardware setup
The basis for our graph isomorphism method is a near-term photonic quantum processor, speci�cally a GBS
apparatus. This apparatus consists of three main components. First, squeezed states are generated in M
quantum-optical modes. These states are then sent through an M-port linear-optical interferometer. Finally,
a photon-number-resolving measurement is performed on each of the M output modes. The �rst two steps
lead to the preparation of a zero-mean quantum-optical Gaussian state, which can be described e�ciently
using a covariance matrix. For a single mode, the covariance matrix has dimension 2 × 2, and encodes the
covariances of the canonical quadrature operators (x̂, p̂) of that mode:

σij = 1
2 〈ξ̂i ξ̂j + ξ̂j ξ̂i〉 − 〈ξ̂i〉〈ξ̂j〉, (62)

with ξ̂k ∈ {x̂k , p̂k}. ForMmodes, we haveM pairs of quadrature operators and an 2M×2M covariancematrix
built from the set ξ̂ ∈ {x̂1, p̂1, . . . , x̂M , p̂M}.

Multimode Gaussian states themselves are of limited interest in quantum computing. While they can
be prepared with quantum hardware and exhibit entanglement, the covariance matrix scales linearly in the
number of modes, so they can be e�ciently simulated classically. However, when we introduce the photon-
number measurement, the story changes. A single photon-number measurement in mode k will return a
nonnegative integer nk ∈ N+, representing the number of photons which were detected. For measurement on
Mmodes, we denote the collective photon-number output pattern by n = (n1, . . . , nM) and call it a detection
event. From [25], whenever ni = 1, ∀i the probability of this detection event is proportional to a function
called the hafnian [14] (see Def. 1):

p(1, . . . , 1) = 1√
det σQ

haf C, (63)



194 | K. Brádler et al.

where the matrix C is obtained from σQ by basic matrix transformations (see Eq. (4)).
Unlike the simulation of Gaussian states, computing the hafnian is a #P-hard problem. In addition,

approximating the GBS photon-number distribution is believed to be computationally hard [25]. Thus, by
combining Gaussian states with photon-number measurements – representing the wavelike and particle-
like properties of light, respectively – we have a physical sampling apparatus whose behaviour is classically
hard to replicate. This paper explores the question of how we can leverage this GBS device for the graph iso-
morphism problem, speci�cally, how we set the squeezing and interferometer parameters to represent the
problem, and how to interpret the photon-number measurement outcomes to solve the problem.

B Algorithm

Algorithm 1 GBS graph isomorphism algorithm: returns the GI invariant of adjacency matrix A with respect
to orbit o, considering hafnians’ to the nth power.
1: function GBS_cert(A, o, n)
2: . Generate a list of unique permutations of the orbit
3: perms← unique_permutations(o)
4: result← array[len(perms)]
5: for p ∈ perms do
6: . Generate the reduced Kronecker product of matrix A
7: Ap← kron_reduced(A, p)
8: . Append the hafnian to the nth power
9: result← append(result, haf(Ap)n)

10: end for
11:
12: . Calculate the sum of hafnians
13: hafSum← sum(results)
14:
15: . Calculate the mean photon distribution for the orbit
16: phDist← array[len(o)]
17: for i ∈ len(perms) do
18: for j ∈ len(o) do
19: phDist[j]← phDist[j] + perms[i, j]*result[i]
20: end for
21: end for
22: end function
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Algorithm 2 Function to return the reduced Kronecker product of matrix A, given a sequence of integers n
indicating the multi-mode photon detection event.
1: function kron_reduced(A, n)
2: rows← array()
3: for i ∈ len(n) do
4: for j = 0, n[i] do
5: rows← append(rows, i)
6: end for
7: end for
8: return A[rows][rows]
9: end function

Algorithm 3 Function to return unique permutations of an orbit
1: function unique_permutations(orbit)
2: if len(orbit) = 1 then
3: . If orbit is length 1, return the value
4: return orbit[0]
5: else
6: . Else, store the list of unique elements in the orbit
7: elements← drop_duplicates(orbit)
8: for e ∈ elements do
9: . Unique elements except e

10: remaining← elements - e
11: for p ∈ unique_permutations(remaining) do
12: . Use recurrence to concatenate element e with all remaining permutations of elements
13: return e + p
14: end for
15: end for
16: end if
17: end function
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C List of symbols
In this appendix we summarize with a table the most important symbols and their meaning.

description notation de�ned at page
vectors n = (n1, . . . , nM), x = (x1, . . . , xM) page 3
partial derivative operator ∂nixi ,xi =

∂ni
∂xnii

∂ni
∂xnii

page 4

symmetric group of bijections σ : [n]→ [n] Sn page 4
N × N hermitian, psd and positive de�nite HN ⊃ H+,N ⊃ H++,N page 4
hafnian haf C page 4
measurement probability of n p(n) page 4
covariance matrix σQ page 5
graph G page 5
i − th eigenvalue of G λi(G) page 5
strongly regular graph with parameters SRG(N, k, λ, µ) page 6
all-ones |n| × |n|matrix J|n| page 7
reduced Kronecker product A /⊗J|n| page 7
moments of Gaussian distribution induced by Σ µn1 ,...,n2M (Σ) page 11
multinomial coe�cients

( n
a1 ,a2 ,...,am

)
page 15

symmetrized sums µ(n, A) page 16
probability of orbit On pG(On) page 18
coarse-grain probability distribution pG(|n|) page 19
k-mode partition-averaged photon distribution 〈nk〉G page 20
coarse-grained version 〈〈nk〉〉G page 20
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