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The support vector machine algorithm together with graph kernel functions has recently been introduced to
model structure-activity relationships (SAR) of molecules from their 2D structure, without the need for
explicit molecular descriptor computation. We propose two extensions to this approach with the double
goal to reduce the computational burden associated with the model and to enhance its predictive accuracy:
description of the molecules by a Morgan index process and definition of a second-order Markov model for
random walks on 2D structures. Experiments on two mutagenicity data sets validate the proposed extensions,
making this approach a possible complementary alternative to other modeling strategies.

1. INTRODUCTION On the methodological side, working directly with this
representation requires the analysis, comparison, and clas-
ification of labeled graphs. Among the many different ways
o tackle this problem, two mainstream research directions
have emerged during the past decades. One direction involves
' the use of graph algorithms to compare or classify graphs,

' for instance by finding maximal or frequent common
subgraphs. Such approaches usually suffer from their com-
putational complexity (NP-hardness of subgraph isomor-
phism, exponential number of potential subgraphs) and are
usually based on heuristics or restricted to small-size graphs
and data banks. The second mainstream direction, particularly
toxicity properties, or theirADME (Absorption, Distribution, l?e?:?srr:()lg(r)\rgmri{glzcﬁ;rs |Ztesstzfritpr)?grssf'oer;;r:)%hzgg;ri)gg |tnhtg
Metabol!sm, Excretion) PfOpert'es- o . whole panoply of statistical or machine learning tools to the
To build a model relating structure to activity, machine yector representations. This usually requires the selection of
learning methods require a set of molecules with known g small number of features of interest, which is known to be
activity, usually called theraining set Once adjusted on g difficult task, especially for noncongeneric data dets.
the training set, the model can then be used to predict the  an giternative direction has been explored recently in the
actmpy of new m'olt_ecules. Decades of research in machme pioneering papers refs 2 and 3, using the theory of positive
learning and statistics provide many different methods to fit yafinite kernels and support vector machines (SVM).
a m_odel. Each _of them has its own specificities, and_ the SVM, an increasingly popular classification method in
choice of a particular model is usually related to the final ,5:hine learning and chemoinformafiésfor its good

objectivgs of the ar_lglysis (e.g., efficiency of the prediction performance on many real-world problems, possesses two
versus interpretability of the model). Nevertheless, an jmnortant properties. First, it theoretically allows learning
important topic common to all models concerns the way , very high—potentially infinite—dimensions thanks to a
chemical compounds are represented. heavy use of regularizatichsecond, instead of an explicit
While many descriptors related to global physicochemical representation of data as vectors, it only requires inner
properties or to the 3D structures of molecules are often used,products between such representations, through what is
we focus in this paper on the simpler 2D representation of ysually referred to as a positive definite kernel function.
molecules, which we see as a labeled graph with atoms asyshering in the avenue opened by SVM to implicitly map
vertices and covalent bonds as edges. While this representamolecules to infinite dimensional spaces, refs 2 and 3
tion might appear too restrictive for some applications, it introduce positive definite kernels between labeled graphs,
appears sufficient to build state-of-the-art predictors for pased on the detection of common fragments between

Accurate predictive models applied early during the drug
design process can lead to substantial savings in terms o
time and costs for the development of new drugs. While
processing of chemical data involves many different tasks
including for instance clustering, regression, classification
or ranking, most of them are related Sructure-Activity
Relationship (SAR) analysithat is, finding a relationship
between thestructuresof molecules and theiactivity. We
employ the term activity here in a broad sense to refer to a
particular biological property the molecules exhibit, such as
their ability to bind to a particular biological target, their

properties such as mutagenicty. different graphs. These kernels correspond to a dot product
- : between the graphs mapped to an infinite-dimensional feature
* Corresponding author phone:+g3) 1 64 69 49 94; e-mail:  gpace indexed by all possible finite-length fragments but can

piefe. mane@ensmp.lt.  ric. be computed in polynomial time with respect to the graph
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approach might be a valid alternative to the two mainstream A
directions. o
These graph kernels, however, are subject to several
limitations. First, the graph kernel has a computational
complexity roughly proportional to the product of the sizes
of the two graphs to be compared, which results in slow
implementation for real-world problems. Second, it might
not be optimal to use all fragments to characterize each graph
for at least two reasons: on one hand, some fragments may
contain relatively little information (e.g. a sequerCe- C
— C), while on the other hand, many fragments as defined
in refs 2 and 3 are irrelevant because they represent “totterin
paths” on the graph, that is, paths whic%/ re?urn toa visitedg .

vertex immediately f':\fter Iea\(lng it . Figure 1. SVM finds the hyperplanay, x{+ b = 0 that separates
The purpose of this paper is to propose two extensions of yositive (white circles) and negative (black circles) examples with

the original graph kernel, which try to address these issues.a maximum marginy. Here, a new example represented by the
The first extension is to relabel each vertex automatically in white (respectively black) square is predicted as positive (respec-
order to insert information about the environment of each tively negative).
e s o 1AL bt Geometicaly a yperla b= 0separats
tion abou£ the environr%ent of each atom, and computation the input space?”into two half-spaces, and the prediction
time, because the number of identical fragments between twomc the class of a new point depends on the position of the

molecules significantly decreases. Second, we show how topOint on the one oron the other side of the hyperplgne. When
modify the random walk model proposed in ref 2 in order the data set iseparablei.e., when a hyperplane exists such

to remove totters, without increasing the complexity of the that the positive and negative examples lie on distinct sides

. . ) . of the hyperplane, SVM chooses among the infinity of
|mplementat|on. Each m?‘”.“’d IS vghgjated on two benchmark separating hyperplanes the one with the largest distance to
experiments of mutagenicity prediction, showing the poten-

tiality of this approach by improving the original graph kemel 1€ closest data point. This distance is known ashegin
botLyin termsch))f spee dyan dpaccu?ac ang reaghirg) state-of-Of the hyperplane, and this particular hyperplane defines the

'S Of Sp y 9 maximum margirclassifier, as illustrated in Figure 1.
the-art prediction performance.

h . zed as foll ﬁ brief revi ¢ More generally, in particular for nonseparable data sets,
The paper is organized as follows. After a brief review of e gy algorithm finds the separating hyperplane by
support vector machines and kernels in section 2, section 3

solving the following optimization problem
presents the graph kernels introduced in refs 2 and 3. The g gop P

following two sections introduce two extensions to these 1 n
graph kernels, with the double goal to reduce their compu- min—||w||* + C (y;(Ov, x,[(H-b) — 1), 1)
tational complexity and to increase their relevance as a w,b 2 i=

similarity measure. Finally, we conclude with experimental . .
results in section 6. The current work is an expanded versionWhereC is a parameter andi), = max(, 0). The rational
of a conference proceeding paféie have included new  behind this optimization problem is to find a linear classifier

experimental results and a more thorough discussion. that reaches a tradeoff between the amount of errors on the
training set (as quantified by the second term of this sum)
2 SUPPORT VECTOR MACHINE and the smoothness of the classifier (as quantified by the

first term). In the extreme case, whén= +co and the data
SVM* ¢ is a machine learning framework for supervised set is separable, then no error is allowed on the training set,
binary classification originally developed in the 1990s by and the classifier with largest margin is found. Classical
V. Vapnik and co-workers, although extensions to multiclass Lagrangian optimization theory shows that this problem is
classification, regression, and density estimation also exist.equivalent to the following dual problem:
We focus here on support vector machines for binary

classification, the task considered in our experiments. n n
Interested readers can find a more thorough presentation of maxy a; — — » o4o5y;y; ¥, U
this algorithm and many related ones in ref 6. o= 2i=
Formally, given a set ofi objects (e.g., molecules), ..., n
Xn € .4, and associated binary labels (e.g., active/nonactive, subjectto oy, =0and 0= o; < C,i € [1:n] (2)

toxic/nontoxic) denotegl, ...,y, € {—1, 1}, SVM produces =

a classifierf: 4 — {—1, 1} that can be used to predict the

class of any new datx € 2. As mentioned in the When the optimunac* is met, w writes asv = ;04X
Introduction, the common approach in chemoinformatics and the decision functiohbecomed (x) = sign(;_ ;0 X,
consists of representing a molecule by a set of descriptors,x[H- b*), the valueb* being computed from the;" and the

and the molecular spac@ usually corresponds to the x.

Euclidian space ® In such vector spaces, the classifier A striking point of SVM lies in the fact that they can be
output by SVM is based on the sign of a linear function: generalized to nonvectorial spacgs and in particular to

f (X) = sign(@v, xd+ b), for some (, b) € X" x R defined the space of molecular compounds represented by their 2D
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Ma Figure 3. A chemical compound seen as a labeled graph.
NAVa ©
A @ ° to be represented by their 2D structures. Similarity is usually
AN o | assessed by walks occurring concurrently in the graphs, since
Chemical space X Feature space RAd subgraphs characterization suffers from computational com-
Figure 2. A feature map® from the chemical space to the plexity. The first approgch is to sm_lply count the number of
vector space R common walks. Ganer introduced in ref 11 several kernels

that count the number of walks with identical starting and
or 3D structures, by embedding them to a vector space ending nodes, and in ref 3, he defines with co-workers
(often called the feature space) through a mapgng — another family of kernels counting globally identical walks.
' and applying the linear SVM ir¥/to the training points A somehow similar but more flexible approach is proposed
®(x), i =1, ...,n. Figure 2 illustrates this mapping process. in ref 2 where the graph similarity is defined as the sum of
[Note that the step of feature extraction usually required by pairwise similarities of walks found in the two graphsy
machine learning algorithms can be seen as a particulanyeighted by a coefficient standing for the probability that
mapping¢: X — %'= R%.] Indeed, an important remark is  this particular pair of walks occur simultaneously in the two
that in the dual formulation (2), the data are only present graphs. This formulation, which forms the starting point of

through dot-products: pairwise dot-products between the our work, is presented in more details in the next section.
training points during the learning phase, and dot-products

between a new data and the training points during the test 3. MARGINALIZED GRAPH KERNELS
phase. This means that instead of explicitly knowih(x) ) , , . ) ,
for anyx e ., it suffices to be able to compute inner products ' this section we define the basic notations and briefly
of the formk(x, X') = [@(x),®(x)0for any x, X € % in review the graph kernel mtrqduced in rt_efs 2 and 3, upon
which case the optimization algorithm rewrites which are based the extensions that will be presented in
sections 4 and 5.
n 10" 3.1. Labeled Graphs.A labeled graph G= (V, E) is
malemi - = z o405y Y;K(%, %) defined by a finite set ofertices \ a set ofedges EC V x
o= 2= V, and a labeling functioh: V U E — A which assigns a
label I(x) taken from an alphabé¥ to any vertex or edgg.
We let|V| be the number of vertices &, and|E| its number
of edges. We assume below that a set of laBeffms been
fixed and consider different labeled graphs (each labeled
and the classification function becomd) = sign graph corresponding to a particular molecular compound).
(3 05°K(x, ) + b*¥). The functionk is called a kernel. A More precisely, if we associate a labeled graph to a chemical
classical result states that any function? ' x @ — R can ~ compound, the set of verticés corresponds to the set of
be plugged in the SVM optimization problem as long as it atoms of the molecule, the set of edgeso its covalent
is symmetric and positive definite, the key point being that bonds, and these graph elements are labeled according to an
it is sometimes easier to compute directly the kernel betweenalphabetA consisting of the different types of atoms and
two points than computing their explicit representations as bonds. Note that we consider directed graphs here, so that a
vectors in%. pair of edges of opposite direction is introduced in the graph
This property offers at least two major advantages. First, for each covalent bond of the molecule. Figure 3 shows a
it enables the straightforward extension of the linear SYM chemical compound seen as a labeled graph.
to model nonlinear decision functions by using a nonlinear  For a given graptG = (V, E), we denote byd(») the
kernel, while keeping its nice properties intact (e.g. unicity number of edges emanating from the vertexi.e., the
of the solution, robustness to overfitting, etc.). Second, it number of edges of the formy,(u)), and byv* = U>_; V"
offers the possibility to directly apply SVM to nonvectorial the set of finite-length sequences of verticepath he V*
data, provided a kernel function exists to compare them. Foris a finite-length sequence of vertichs= v, ... v, with the
these reasons, an important research topic has emerged iproperty that ¢, vi+1) € Efori =1, ...,n — 1. The length
the past few years, focusing on the design of kernel functionsof a path is equal to the number of edges it is made of, and
dealing with structured datdsuch as strings, trees, or graphs. we note|h| is the length of the path. We defineH(G) c
Clearly choosing a kernel amounts to choosing an implicit V* to be the set of all paths of a graph. The labeling
representation of the objects, and prior knowledge might functionl: V U E— A can be extended as a functibii(G)
serve as a guide to design a suitable representation for a giver~ A* where the label(h) of a pathh = v1 ... v, € H(G) is
problem. A second and often contradictory constraint to take the succession of labels of the vertices and edges of the

n
subjectto) oy, =0and0< o, = C,ie[1: n] (3)

into account is the necessity to have fast kernel computations path: 1(h) = (I(v1), [(v1, v2), 1(v2), ..., l(tn-1, vn), I(vn)) €
as a naive SVM implementation might require the computa- A>"" 1,
tion of n(n + 1)/2 kernel values. 3.2. Marginalized Graph Kernels. As briefly mentioned

In particular, different families of kernels for graphs have in the previous section, the kernel introduced in ref 2 is
recently been proposed, that naturally allow the molecules derived from the generaharginalized kernelformulation!?
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Marginalized kernels define a global similarity measure by
means of a simpler one expressed on auxiliary variables

: 0.25%0.1
: 0.25%0.1

introduced in the problem. In our case, these latent variables :

consist of substructures of the graphs, and more precisely Vs C-H : 0.25%0.3%0.1
they are paths, which are easier to handle than subgraphs. 0-3/‘0 P

In labeled graphs, label sequences are associated with the le 22 ‘6%9 ::> e-0 : 0.0

paths of the graph, and their similarity is assessed by a string T \Xs 3

kernel. Moreover, paths are here considered as random walks, 03 C|VA H-C-0 : 0.0

so that probability distributions are associated with the set oS0 o000t

of paths of the graphs. The kernel between two graphs is
then defined as the expectation of the pairwise paths
similarity, according to their probability distributions.

The kernel introduced in ref 2 boils down to the following
formula whereps; and pg; are probability distributions on

z Pe1(M)Pea(M)KL(1(hy).I(hy) (4)

(hihp)eVy x V'

H 0.25'0.3'043*07

Figure 4. A molecular graphG (left) and its feature-space
representationp(G) (right). Here, Oi, pg(vi) = 0.1, pa(yjlvi) =

1d (v) iff (v, v) € E, and pp can be chosen to be the
unifom distribution, i.e.po(z;) = 1/|V| = 0.25. The values (+
Po(vi))Pa(vj|vi) are shown along each edge ¢;) of the graph. (Note

that Y jpa(vjlvi) = 1 Oi). For the path = (v1, v, v3), we therefore
havel(h) = (H, —, C, =, O) andp(h) = 0.25*0.9* 0.3 *0.1. The
right-hand side of the picture shows such examples of paths possibly
occurring in the graph, together with their associated probabilities.

K(G, G,) =

the set of path¥/," andV,", and the functioK :A* x A* —
R is a (string) kernel between label sequences.
Reference 2 focuses on the particular case where the kernebased on the molecular fragments/of
Ky in (4) is the Dirac functior)
_ K(Gy, Gy) = ®(G,).®(G))
1 ifl, =1,

Ki(ly 1) =0(1, 1) = {0 otherwise

®) = Y $(G)¢4G,)

se(A)
thus accounting for a perfect similarity between paths if they

share the same label and null otherwise; and where, for a The kernel (4) therefore maps the graphs into an infinite-
graphG = (V, E), the probabilityps on V* factorizes as a  dimensional space where each dimension corresponds to a
first-order random walk model: particular substructure. This shows an analogy with the
fingerprints characterization of molecules widely used in
chemoinformaticd?® Molecular fingerprints encode a mol-
ecule as a (finite length) vector where each dimension
corresponds to a particular molecular substructure. Each
substructure is represented by a bit or an integer, that either
indicates the presence of the substructure in the molecule or
counts the number of times it appears.

There are however several important differences with the
approach illustrated above. First, while marginalized kernels
take into account every single molecular fragment to compare
the molecules, which is equivalent to dealing with an infinite-
dimensional feature vector, fingerprints only involve a
smaller number of features. [Usually between 150 and 2500,
but hashed-fingerprints provide a way to consider a much
larger number of features.] These substructures are carefully
chosen (based on prior chemical knowledge), and by focusing
on a restricted set of substructures, fingerprint description
of molecules may be more efficient if these features are
Under these conditions it can easily be checked that (6) is aindeed relevant according to the learning task to perform.
probability distribution onV* corresponding to a random  On the other hand, because they consider a larger set of
walk on the graph with initial distributiorpo, transition substructures, marginalized kernels can detect features not
probability p., and stopping probabilitpy at each step. In  taken into account by standard fingerprints that may be useful
particular, this implies that only paths have positive prob- to account for molecular similarity. Another important
abilities undem: pg(h) > 0= h € H(G). Figure 4 shows difference lies in the way of dealing with the substructures.
an example of this particular probabilistic model. Instead of just checking the presence of molecular fragments,

Following the definition introduced in ref 1, we let(A) marginalized kernels can quantify their occurrence in the
be the set oflinear molecular fragmentgaken from A, graph according to probability distributions. This approach
i.e., the set of sequences of bonds-connected atoms basedffers a more flexible way to evaluate the influence of the

Pe(vy - vn) = Po(1) Upt (vilvi—y) (6)

To ensure that (6) defines a probability distribution\éh
(i.e., Y ewps(v) = 1), we must impose constraints on the
emission and transition probabilitigg and p..

This can be done, for example, by choosing parameters 0
< py(v) < 1 for v €V, an initial probability distributiorpg
onV (3.evpo(v) = 1), a transition matrixp, on V- x V
(Suevpa(uly) = 1 for v € V) positive only along edges
(pa(v|u) > 0= (u, v) € E), and by setting, for any, v € V2

pS(U) = pO(U)pq(U)f
1- pq(U)

p(ul ) = Wpa(ulv)pq(u)

on the labels ofA. For a given fragmens € J(A) we
introduce a mappings.2 — R defined for a given graph

G as ¢(G) = YnherePe(h)o(l(h),s). If we let K. be the
Dirac kernel, eq 4 can be written as a standard dot-product

substructures in the graph similarity. Note that the method
presented in ref 3 is equivalent to defining an infinite-
dimensional fingerprint counting the frequency of appearance
of the molecular fragments in the graphs.
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3.3. Graph Kernel Computation. While the kernel nonzero elements of a matriM, and d(M) its maximum
definition (4) involves a summation over an infinite number number of nonzero elements per line, computing the product
of paths, it can be computed efficiently using product graphs of two (n x n) sparse matrice& andB has a complexity of
and matrix inversions introduced in ref 3 and briefly recalled O(]A|d(B)). Moreover, if we notel = d (A), we haved (A¥)
below. < min(d¥, n). From these two observations, it follows that

Given two labeled graph&, = (Vy, E1) andG; = (V2, computing the sumy;L, A has a complexity ofO(|A|
Ez), their product graphis defined as the labeled grapte= SN Imin(d', n)).24 Note that if no hypothesis is made about
(77 &) whose vertices/’ C V1 x V are pairs of vertices  the value ofd, this complexity reduces t®(/AInN).

with identical labels (y, v2) € 7iff 1(v1) = I(z2)), and an By construction of the product graph = G; x Gy, we
edge cpnnects the verticas,(up) and @1, vo) iff (U, v) € have| 7’ | < [Vi| x [V and| &| < |E4| x |Ea|. Moreover,
E, fori =1, 2, andl(uy, 1) = I(Uz, v2). if dy andd, are the maximum degrees of the node<Gef
Let us now define a functionat on the set of pathsi() andG,, it follows that the maximum degree of the nodes of
by the graph¢is less or equal thad,;d,. This means that the

size of the matriX1; is bounded byV;| x V5|, its maximum
number of nonzero elements (8| x |E|, and its maximum

n nonzero elements per line layd,. It therefore follows that
LZACHD] N EA(CRD]CRETRZEEY) the approximation of the matrix (- IT)"* by the firstN

= terms of its power series expansion has a complexity of

.7'[((U1, Ul)(UZ’ UZ) (un! Z)n)) =

with O(|Exl | Ezl 3=y min((chc)' | Val [ Va)).
In the case where many vertices have identical labels, the
Uy, Uy) = p(sl)(ul)p(sz)(uz), product graph used to compute the graph kernel has many
7y, v)I(Uy, U)) = p%”(vllu 1)p§2)( v,lU) vertices too, since the number of vertices in the product graph

corresponds to the number of pairs of vertices with identical
labels. As a result, the computation of the graph kernel can
be time-consuming, and this method may be difficult to use
on large chemical data banks involving several hundred
thousand molecules. As an example, the computation can
d take several hundred milliseconds on a recent desktop
computer to compute the kernel between two chemical
compounds with a moderate number of atoms (typically

where p" and p{! (respectivelyp® and p/?) are the
functions used to define the probabilities of random paths
in (6) on the graplG; (respectivelyG,).

If the label kerneK_ is chosen to be the Dirac kernel (5),
then the kernel (4) only involves paths that can be foun
concurrently in the two graphs. By construction of the

r raph, there i ijection ween thi f :
Eo?r?r%(gn %;ES ’argdethee sset?)f?)élilf(;; of ?ﬁé perzgdu::t gsra?it. © between 10 and 50). Moreover, one might expect the search

Using the definition of the functionat, it can then be shown of common path labels FO be t00 naive to detect interesting
that patterns between chemical compounds.

These two points constitute important issues to tackle in
K(G,, G, = z 7(h) orde_r tq use this type of graph kerne!s in' real-world
hefit) applications. We now present two modifications of the
original kernel with the goals to increase its relevance as a
Define now the|7’| x |7’| transition matrixIT, = similarity measure between molecular compounds, usually

(77(v|W)) e 2 Paths in the product graph can be generated denoted as its expressive power, and to reduce its compu-
by raising this matrix to a particular power. If one now tational complexity.

defines thg 7’|-dimensional vectorrs = (71(v)),c», it can

be checked that 4. LABEL ENRICHMENT WITH THE MORGAN INDEX
a(h) = nSTHt”l One possibility to address both issues simultaneously is
heH(&)Th| = n to increase the specificity of labels, for example by including

. D _ _ _ contextual information about the vertices in their labels. This
wherel is the| 77 |-dimensional vector with all entries equal  has two important consequences. First, as the label specificity

to 1 and therefore increases, the number of common label paths between graphs
o automatically decreases, which shortens the computation
K(Gy, G,) = Z( Z () ]tclme. Second, this is likely to increase the relevance of the
=1 heH(ATh =n eatures used to compare graphs, as paths are replaced by
paths labeled with their environment.
= JIST(| - Ht)_ll For the kind of applications we focus on in this paper

classification of chemical compound# seems natural to

The direct computation of a matrix inversion has a consider the chemical environment of atoms. For instance it
complexity cubic in the size of the matrix. In the case of a makes sense to distinguish between atoms with similar labels
product graph, the size of the matik is at worst|V;| x but that belong to different functional groups. As a first
|V2|, and this approach can be time-consuming. However, attempt to define such a local environment, we propose to
this matrix is typically sparse, and savings can be achievedintroduce information related to the topological environment
using an approximation of the matrix inverse based on the of the vertices in the labeling function of the graphs.
first terms of its power series expansiont | IT)™* ~ To do so, we compute for each vertex of the graph an
ZiNZOHt‘. Generally speaking, if we not®1| the number of index called theMorgan index!® that is defined by a simple
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2 4 v2
2 2 4 5 @ path h1l
2 3 5 7
- ) - 5 / \
g g ¢ s @ path h2 @
vl v3
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0% \\O 104 \\01 30/ \\03 Figure 6. lllustration of the process of prevention of the tottering

paths on a toy example. Pathisandh, are both labeled as-G@C—

ORIGINAL COMPOUND AFTER 1 ITERATION AFTER 2 ITERATIONS A
C, but pathh, corresponds to a tottering path.

Figure 5. Morgan index process.
5.1. Modification of the Random Walk. A natural way

to carry out this modification is to keep the general kernel

definition (4) but modify the probability model (6) as follows

iterative procedure. Initially, the Morgan indices are equal
to 1 for every vertex. Then, at each iteration, the Morgan
index of each vertex is defined as the sum of the Morgan
indices of its adjacent vertices. Mathematically, if weNgt n
be the vector of the Morgan indices computed at itie p(vy ... v, = ps(ul)pt(uzwl)|_!pt(ui|ui_2, vi_y) (1)
iteration, this read®o = 1 andMn11 = AgM,, whereAy is =

the graph adjacency matrix arfdthe unity vector. This

process is illustrated in Figure 5. The Morgan index was Wherepi(), p(1.), andp(.|...) satisfy for any §, v) € V2

initially developed to determine canonical representations of ’ _ ©)
molecules and is considered a good and fast solution to detect ps(v) = po(U)pq (@),
graph isomorphism. 1- ff)(u)
Note that the Morgan index associated with a particular p(uly) = Tpa(l'” v)Py(U),
vertex aftem iterations actually counts the number of paths Pq (@)
of lengthn that start in that vertex and end somewhere in _1-py@)
the graph. This vertex descriptor has already been studied Pul w, v) = 0 Pa(Ul W, v)Pg(u)
in chemical graph theory and is known as #temic length-n d

walk-countdescriptor in the literaturt. 0
Finally, given the Morgan indices afteriterations, we ~ Here we assume that € py(v), p;’(v) < 1 for each vertex
propose to augment the label of a vertex by its value, before #» Pa(*|2) is @ probability onV that is only positive on the
computing the marginalized graph kernel. This results in a nNeighbors ofv, andpq(-|w, ») is a probability onV that is
family of kernels Ky).-o, indexed by the number of iterations ~ Only positive on the neighbors of different fromw. This
for the Morgan index computation. model is S|mply the distribution of_a second—order_ Markov
When the number of iterations increases, the topological andom walk, killed at each step with some probabitiie)
information vehiculated by the Morgan index becomes more (0r péo)(z/) after the first vertex, see section 6), which cannot
and more specific to the graphs. Pairs of vertices having atfollow excursions of the fornu — » — u. In other words,
the same time identical atom type and topological properties only paths belonging to
are therefore less and less likely to occur. This results in a ) .
systematic decrease of the computation time, because theHo(@) ={h=vi vyt vy = v 1 =1,...,n =2} (8)
number of nodes of the product graph automatically de-
creases, but, on the other hand, the similarity between
molecules may be difficult to assess if their description
becomes too specific. This suggests that the step of the
Morgan process that performs the optimum trade off between
the uniform and the molecular-specific descriptions of
vertices needs to be found.

can have a positive probability under this model. Given this
new random walk model, the function (4) is still a valid
kernel, but the implementation described in section 3.3 cannot
be used directly anymore.

5.2. Computation of the New Kernel.While paths have
been previously defined as the succession of vertices they
are made of, one can see a path as a starting vertex followed
by a succession of connected edges. In such a definition, a

5. PREVENTING TOTTERS pair of connected edges provides information about a triplet

A second avenue to modify the original graph kernel is to of vertices of the path: the starting vertex of the first edge,
modify the probability (6). This probability is the distribution  the vertex that connects them, and the ending vertex of the
of a first-order Markov random walk along the edges of the second edge. A second-order information about the succes-
graph, killed with some probability after each step. We sion of vertices therefore resumes to a first-order one based
propose to modify the random walk model to prevent on the succession of edges. This suggests it should be
“totters”, that is, to avoid any path of the forim= vy, ..., v, possible to deal with second-order “vertex-based” random
with »; = vy, for somei. The motivation here is that such  walks models by means of a first-order ones involving edges
excursions are likely to add noise to the representation of of the graphs.
the graph. For example, the existence of a path with labels Based on this consideration, we now derive an explicit
C—C—C might either indicate the presence of a successionway to perform the computation of the kernel (4) under the
of 3 C-labeled vertices in the graph or just a succession of model (7). To do so, we introduce a graph transformation
2 C-labeled vertices visited by a tottering random walk. By such that the second-order random walk (7) in the original
preventing totters, the second possibility disappears. Figuregraphs factorizes as a first-order Markov process (6) in the
6 illustrates this idea. transformed ones.
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More precisely, for a grap@ = (V, E), let the transformed
graphG' = (V', E') be defined by

V'=VUE
and

E ={(v.(v,1)|veV,(vt) e E} U
{((u, 2),(, I, )., ) eE,u=1} (9)

The vertices of the transformed grag@ can therefore
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Figure 7. The graph transformation. (I) The original molecule.

correspond either to edges or vertices of the original graph (11) The corresponding grap = (V, E). (lll) The transformed

G. Among all pathH(G') on G, let us consider the subset
of paths that start on an arbitrary vertex\inthat is the set
H,(G)={h"=7v]..0,e HG): v;eV} (10)

Note that from the definition of the transformed graph edges,
it is easy to check that any pattt = v ... v, € H(G')
starting with a vertexs; € V must be made of edges:
vi € E,i=2,...,n. This construction is illustrated in Figure
7.

We define the labeling functidhof the transformed graph
G' as follows:

— for a nodev' € V' the label is eithel' (v') = I(") if v/
eVorl'(@)=I@)if v/ = (u,v) € E

— for an edgeg’ = (v, ;) between two vertices; € V
U E and?, € E, the label is simply given by (€) = I(v5).

This labeling is also illustrated in Figure 7.

Let us consider the mafp Ho(G) — (V')* defined by

f(vy...0) = vy ... v
with

! —
Vi=v €V,

vi=(_,v)eEfori=2,..,n 11

This definition gives rise to the following proposition,
whose proof can be found in the Appendix.

Proposition 1.f is a bijection between #G) and H(G')
and for any path he Ho(G) we hae I(h) = I'(f (h)).

Finally, let the functionap’: (V')* — R be derived from
(7) by

n

Py o) = P | |Pi#ilvi-)

(12)

with
/ N — pS(U,) If U’EV,
ps(”)_{o if /' eE
and
p(vl U) if eV

andys' = (U, v)eE,
p(vl t,u) if U = (t, u)eE
andv' = (u, v)eE

P |u) =

Note that only paths belonging td,(G’) have a positive
value underp'.

graph. (IV) The labels on the transformed graph. Note that different
widths stand for different edges labels, and gray nodes are the nodes
belonging toV.

Based on the definitions df and p’, we can state the
following result, whose proof is postponed in the Appendix.

Theorem 1.Under the bijection:fHo(G) — H1(G') defined
in (11), for any path he Ho(G) we hae ph) = p'(f (h)).

We have defined a graph transformation showing a one
to one correspondence between a particular subset of the
paths of the transformed graph (the bk{G')) and the set
of nontottering paths of the original graph (the sg{G)).
Moreover we introduced a first-order Markov functional (12)
on the transformed graph, positive only on this particular
subset of pathBl;(G'), that corresponds to the second-order
probability distribution (7) that was previously defined on
the original graph to prevent totters. We can therefore
immediately deduce the following.

Corollary 1. For any two graphs Gand G, the kernel
(4) can be expressed in terms of the transformed graphs G
and G' by

K(G,, Gy = PL(h)pa(h) K (I (h), '(h3))
(e (vy*

This shows that computing th§ G, G,) under the second-
order Markov model (7) for the random walk is equivalent
to computing a kernel between the transformed graphs
and G, under a first-order Markov random walk (12). This
can therefore be carried out using the computation scheme
described in section 3.3, at the expense of an increased
complexity.

More precisely, consider a grap@ = (V, E), whose
maximum node degree @, and the graplG' = (V', E)
resulting from its transformation. By definition df, |V'|
V| + |E|. Moreover, from the two steps appearing in the
definition of E', we also haveE'| < |E| + (d — 1)|E| =
d|E|. Finally, it is easy to check that the node of maximum
degree in the transformed graph is precisely the node of
maximum degree in the original graph. This is due to the
fact that the nodes d&' corresponding to nodes & have
the same degree that their homologues and that the nodes in
G’ corresponding to edges Gfhave a degree equal to those
of the nodes being reached by the edge& iminus one (to
prevent tottering). From section 3.3, the complexity of the
kernel between two graplt; = (Vi, E;) andG; = (Vz, Ey)
writes asO(|Ey||Ezl ¥ N 'min((didy)’,|Va||Va])). As a result,
if we now consider the grapts; = (V;, E}) andG, = (V,,

E,) obtained by transforming,; and G,, this complexity is
of orderO(d0s| Ex||E| ¥ N5 'min((chdb)’,(IVal + |Eal)(IVal +
E2l))).
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6. EXPERIMENTS

In our experiments, we adopted the parametrization
proposed in ref 2. A single parameteyis used to define
the first-order random walk model as follows, for amyv
eV:

po(v) = 1/V|
Py(v) =Py <1

[ 1/d(u) if (u, v) € E
Pa(vIt) = {0 otherwise

This way, the emission probability distribution is chosen
to be uniform over the set of edges, a constant ending
probability is introduced for every node of the graph, and
transition probabilities are made uniform over the set of
neighbors of the nodes. When we do not have prior
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results of mutagenicity assays, and while the first'éisea
standard benchmark for evaluating chemical compounds
classification, the second oneas introduced more recently.
Generally speaking, focusing only on the global accuracy
is hazardous to analyze classification results and may lead
to wrong conclusions. This is particularly true when the data
set isunbalanced which means that one of the classes is
overrepresented compared to the other. A safer approach is
to describe the classifier usifROCanalysi$® and consider
the sensitvity/specificityrates. Sensitivity is defined as the
ratio between the correctly classified positive data {the
positiveg and the total number of positive data (the sum of
true positve andfalse negatie data). It therefore accounts
for the proportion of positive data that will be retrieved by
the algorithm. Similarly, specificity accounts for the propor-
tion of negative data that the algorithm will correctly find
(the ratio betweetrue negatie data and the whole negative
data, i.e., therue negatie plus thefalse positie). Clearly,

knowledge about the data, this seems to be a natural way tc® good classifier will show a high sensitivity together with

parametrize the model.

To filter tottering paths, we adapt this model to define in
a similar way the second-order random walk model (7)
introduced in section 5.1. The main differences between the
two models concern the functionay(v), p’(v), andpa(ulw,
v). Indeed, in the first step of the random walk process, the
walk is not subject to tottering, and we can consider the same
first-order transition functionap,(ujz) and ending prob-
abilities pff)(u). In the following steps however, we may
have to set the ending probabilipy(2) to one, to explicitly
kill random walks when reaching a node with only one
neighbor, because in this case, the only possibility to continue
the walk is to “totter” to the previous node. The definition
of pa(ulw, v) also reflects the modification required to prevent
totters: the number of possible edges to follow from a node
vis onlyd(v) — 1, because one edge has already been use
to reachw.

This leads to the following second-order Markov model,
for anyu, v, w € V:

Po(v) = 11|V
1/d(v) if (v, u) € E
0 otherwise

1/(d(u) — 1) if (v, u) € Eandu = w
0 otherwise

pa(ulv) = {
Pa(Ul W, v) = {

P() = pq

_J1ifd(v) =1

Po(v) = {pq otherwise
The classification experiments described below were
carried out with a support vector machine based on the
different kernel tested. Each kernel was implemented in
C++, and we used the free and publicly available GIST

a good specificity.

Moreover, the SVM algorithm actually computes a score
to make the predictions. If this score is positive, the
prediction is+1, otherwise it is—1. This fact makes it
possible to draw the evolution of the true positive rate versus
the false positive rate in a curve denoted asRI@C cuve.

A good indicator can be derived from this curve: #eC,
Area Under the (ROC) Curve. The AUC of an ideal classifier
would be 1 (the positive data would be the first to be
recognized as positive according to their scores), while for
a random classifier it would be 0.5.

6.1. First Data Set.This data set contains 230 chemical
compounds (aromatic and hetero-aromatic nitro compounds)
tested for mutagenicity o8almonella typhimuriumA SAR
analysis on this data set was first conducted by ref 17, which

d’dentified two subsets of the data: 188 compounds consid-

ered to be amenable to regression and 42 compounds that
could not easily be fitted by regression. In this study we
mainly focus on the first set of 188 compounds. These
compounds can be split into two classes: 125 positive
examples with high mutagenic activity (positive levels of
log mutagenicity) and 63 negative examples with no or low
mutagenic activity. Each chemical compound is represented
as a graph with atoms as vertices and covalent bonds as
edges. This subset of 188 compounds was already used in
the original paper ref 2, and in a similar way, kernels are
evaluated here by their leave-one-out error. AUC will be
our quality criterion.

Table 1 shows the results we can get with the kernel as it
is formulated in ref 2. They will be our reference results to
evaluate the impact of the proposed extensions. This table
shows a consistent increase in the AUC when the parameter
py decreases, that is to say when the kernel favors long paths.

Figure 8 shows the effect of removing the tottering paths
with the original kernel formulation for distinct values of
pg. The curve reveals that the relationship between spall
and high AUC observed with the original formulation of the

(http://microarray.cpmc.columbia.edu/gist) software to per- kernel does not rigorously hold any longer when tottering
form SVM classification. No optimization of the parameters paths are filtered. Indeed, we can find in this case an optimum
required by GIST was carried out. The only option specified value ofp, around 0.1. Above this value, we can notice on
was the-radial option, which converts the kernel into aradial one hand a small but consistent increase on classification
basis function, a standard way to normalize the data. Two when tottering paths are removed, and on the other hand
data sets of chemical compounds were used. Both gathetthat the effect of this extension becomes smaller wpen
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Table 1. Classification of the First Data Set, with the Original
Formulation of the Kernel Function for Different Values of the

J. Chem. Inf. Model. |

Table 3. AUC for the 10 First Morgan Indices and Different
Ending Probabilities, When Tottering Paths Have Been Filtered,

Parametep, First Data Set
Pq accuracy sensitivity specificity AUC Pq 0.01 0.05 0.1 0.3 0.5 0.7 0.9
0.01 89.4 88.8 90.4 94.4 Ml = 943 943 946 940 931 924 89.3
0.05 89.4 88.8 90.4 94.2 Ml =1 940 951 942 940 932 923 920
0.1 89.9 89.6 90.4 94.0 Ml =2 949 949 952 954 945 936 931
0.2 90.4 90.4 90.4 93.8 Ml =3 93.3 934 936 947 948 948 94.6
0.3 90.4 90.4 90.4 93.6 Ml =4 925 924 927 933 932 929 926
0.4 88.8 88.0 90.4 93.4 Ml =5 90.5 907 910 926 931 934 934
0.5 88.8 88.0 90.4 93.0 MI =6 88.2 885 899 921 928 929 928
0.6 88.3 87.2 90.4 92.7 Ml =7 847 864 885 902 90.1 90.2 90.2
0.7 87.2 85.6 90.4 92.2 MI =8 69.2 739 814 874 88.0 882 883
0.8 86.7 84.8 90.4 91.2 Ml =9 571 606 707 813 818 817 817
0.9 83.5 82.4 85.7 89.2 MI =10 49.2 48.8 52.7 73.8 76.8 78.2 78.3
o5 With VS Without tottering paths 1o time(MI)
s TN : i [=_= — without totters
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Figure 8. AUC for distinct values ofy, with and without filtering
the tottering paths, first data set.

Table 2. AUC for the 10 First Morgan Indices and Different

log(time(Morgan Index)/time(0))

4 5 6
Morgan Index

Ending Probabilities, First Data Set §
Pq 001 005 01 03 05 07 09 £
MI=0 944 942 940 936 930 922 89.2 £ ; ;
Ml =1 944 942 938 932 927 922 920 :§— : :
Ml =2 96.1 96.0 959 952 943 936 931 £ : ‘
Ml =3 946 947 947 949 948 948 946
Ml =4 93.3 933 932 933 931 93.0 926 ; ;
Ml =5 923 924 925 928 932 934 935 : j -
Mi=6 916 918 920 926 928 929 928 e
Ml =7 90.2 90.1 90.1 90.1 901 901 90.2 Morgan Index
MI=8 869 871 873 877 881 883 884 Fjgure9. Top: Time needed to compute the kernel for the 10 first
MI=9 805 808 815 816 8l7 819 8l7 ijterations of the Morgan process. Bottom: Ratio between computa-
MI=10 728 728 737 762 771 776 779

increases. This is probably due to the fact that wipgn
increases, the paths taken into account by the kernel tend tahat filtering the tottering paths provides little additional
become shorter and are therefore less likely to totter. Wheninformation. We can however notice that performances are
Pq = 0.1, the AUC decreases and becomes smaller than theglobally reduced whem, becomes smaller. Tottering be-
one obtained with the original formulation fpg = 0.001.
Table 2 shows the AUC results for distinct valuespgf

combined with the introduction of Morgan indices. It reveals

tion times with or without filtering the totters for the 10 first
iterations of the Morgan Process, first data set.

values obtained are actually sensibly equal, which suggests

tween atoms made specific to the molecule therefore accounts
for graphs similarity when long paths are taken into account.
Finally, results about computation times are presented in

that the introduction of Morgan indices can always increase Figure 9. The top curve plots the evolution of the time needed
the classification results, and interestingly, the optimal index to compute the kernels when different Morgan indices were
to be used depends on the valuggfit is generally smaller

for little values ofp,. This reflects the fact that we have to

add more specificity in the atoms labels for lafgge since
only paths involving a few atoms will be taken into account. so that we can notice a drastic decrease in the computational
However, no prior rule can define a precise relation betweencost. For example, at the third iteration of the process,
the Morgan index and the paramefgr
Table 3 shows the AUC results when tottering paths have tottering paths have not been filtered. Remember that when
been filtered. The classification results show the same Morgan indices are introduced, atoms are made more specific
behavior of the kernel with respect fiy and the Morgan
indices when the tottering paths have been filtered. The atoms are apariated in the product graph, which makes the

introduced. More precisely it plots the ratio between the time
needed for a given iteration of the Morgan process and the
time initially required. Note that thg-axis is in log-scale,

computation time is reduced by a factor around 40 when

to the molecule they belong, and as a consequence fewer



J J. Chem. Inf. Model. MAHE ET AL.

Table 4: Accuracy Results Obtained for the 10-Fold structure of the compounds (with tReogoll method). Using

Cross-Validation of the Mutag Data 3et our graph kernels, we can reach 88.1% of the correct clas-
graph sification using a similar leave-one-out procedure. Outperform-

LinReg DT NN Progoll Progol2 Sebag Kramdernels ing all the results from Table 5, this result shows that the

89.3% 88.3% 89.4% 81.4% 87.8% 93.3% 957% 91.2% graph kernel approach is indeed efficient when the relevant
information is to be sought in the structure of the molecules.
2Lin.Reg(linear regressionPT (decision tree)NN (neural network), Independently of our work, related graph kernels for
and Progol1/2 (inductive logic programming): ref 1%ebagref 21; chemoinformatics applications were recently introdued.
Kramer. ref 20. Their formulation is driven by the usual molecular finger-
printing process, and several kernel functions are proposed

Table 5: Accuracy Results Obtained for the Leave-One-Out based on variations of the Tanimoto coefficient. Different
Classification of the “Unfriendly Part” of the Mutag Data Set - . . .
ways of fingerprinting the molecules are considered, and, in
graph particular, some experiments compare standard hashed

Lin.Reg Lin.Regw DT NN  Progoll Progol2 kernels

fingerprints (such a®aylight fingerprints) with exhaustive
66.7%  71.8% 83.3% 69.0% 857% 83.3% 88.1% fingerprints, for paths up to a given length (which was set
to 10). In exhaustive fingerprints, a dimension is introduced
2Lin.Reg (Linear Regression)DT (Decision Tree),NN (Neural for every possible path, which is closely linked to the
Network), andProgol1/2 (Inductive Logic Programming): ref 19. description of molecules related to the graph kernels
introduced here. Although the performances of these different
matrix inversion cheaper. This effect is even stronger when configurations are similar, this study tends to reveal that the
filtering the totters. The bottom curve presents the impact hashing process leads to a decrease in the classification
of totter removal on the computation times. The curve shows accuracy. More precisely, the best result for exhaustive
the ratio between the computation times of the original fingerprints reaches 87.8% of correct leave-one-out clas-
formulation and the totters filtering. This ratio becomes sification, while it is 87.2% when the fingerprints are hashed.
smaller with the Morgan process, but while the computation Using our graph kernels, we can reach a leave-one-out
without totters was initially more than a hundred time longer accuracy of 91%, which indicates that the marginalized graph
than with totters, it remains at least 10 times longer with kernels approach may compare favorably to classical hashed-
high Morgan indices. fingerprints. Note however that results in ref 22 were not
As a comparison, Table 4 gathers 10-fold cross-validated obtained using SVM but using the Voted Perceptron
accuracy results already obtained for the classification of this algorithm, an algorithm known to provide comparable results,
set of 188 compounds. These methods can be split in threeand that further refinements of their kernels lead to an optimal
categories: those relying on global molecular properties accuracy of 91.5%.
(Lin.Reg, NN, DY [For instance, the molecular hydrophobic- 6.2. Second Data SetThe second database considered
ity (logP), the energy of the lowest unoccupied molecular was recently introduced in ref 1. It consists of 684 com-
orbital (LUMO), and two additional binary descriptors coding pounds classified as mutagens or nonmutagens according to
for the presence of particular features in the molecule.], thosea test known as thBalmonelléamicrosome assay. The classes
considering the structure of the molecules as a set of atomsare well balanced with 341 mutagens compounds for 343
and connecting bond®(ogoll), and those involving the two  nonmutagens ones.
representationdfogol2, Sebag, KramgrThe best 10-fold Although the biological property to be predicted is the
cross-validated accuracy corresponding to our previoussame as the one of the previous section, the two data sets
experiments is 91.2%. As we can notice from Table 4, this are fundamentally different. While ref 17 focused on a
result is better than those based on one of the two molecularparticular family of molecules (aromatic and heteroaromatic
representations, but it is below those obtained by methodsnitro compounds), this data set involves a set of very diverse
that combine both representations. This table reveals thatchemical compounds, qualified asncongenericin the
there is a significant gap between tReogoll andProgol2 original paper. To predict mutagenicity, the model therefore
results, which are obtained using the same algorithm whenneeds to solve different tasks: in the first case it has to detect
the global descriptors are considered or not as an additionalsubtle differences between homogeneous structures, while
source of information. This suggests that the information in the second case it must seek for regular patterns within a
contained in the two descriptions may be complementary. set of structurally different molecules. As stated in ref 1,
Moreover, the best result reported (ref 20) deals with the toxicity is a very complex and multifactor mechanism, so
structure of the molecule via a fragment-based characteriza-that diverse data sets need to be considered in order to be
tion, which, as we already mentioned, shows some similari- able to predict mutagenicity in real-world applications.
ties with the graph kernel approach. It seems therefore Finally, note that this data set is public, and a further
reasonable to draw the hypothesis that the results of the graphdescription can be found in ref 1.
kernel approach may be improved if such a combination of ~We applied different graph kernels to this data set in order
information about the molecules is used. to compare our approach to the results presented in ref 1.
Little work has been carried out on the 42 compounds Several machine learning algorithms have been used in that
that constitute the “nonregression friendly part” of the data paper (namely SVM, decision trees, and rule learning), based
set. To our knowledge, the only results were published in on a molecular-fragment characterization of molecules. In
ref 19 and are summarized in Table 5. The fundamental their method, a set of substructures occurring frequently in
difference with the “friendly part” of the data set lies in the mutagenic compounds but seldomly in honmutagens ones
fact that here the best result was obtained using only the 2Dis defined, and molecules are represented by bit-strings
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Table 6. Classification Results for the Second Mutagenicity Data Table 8. Diversity Values for Different Subsets of the Data,
Set, with the Tottering Paths Computed from the Kernels Obtained Using the Tottering Paths, the
First Iteration of the Morgan Process, and Two Different Values of

training test test test

Mi Pq accuracy accuracy sensitivity  specificity Pd’
Correct Correct
0 8% gggg ;ggi ;ggg ;g?; All Pos. Neg. Correct &Pos. & Neg.
0.3 92.65 74.20 71.14 77.26 p=0.1 0.862 0.849 0.864 0.854 0.826 0.860
0.4 92.06 73.36 70.76 75.90 p=0.2 0.868 0.856 0.870 0.860 0.834 0.864
0.5 92.77 73.32 71.61 75.03
! 8% 8288 ;gg% ;;gg 3(1)887 aAll: whole data setfos: posit'i\_/e compoundsNeg: negative
03 96.08 78.70 77.65 79.73 compounds(Correct correctly classified compound€orrect & Pos:
04 96.11 78.40 76.45 80.30 correctly classifed positive compoundS8prrect & Neg: correctly
0.5 96.01 77.17 76.00 78.20 classified negative compounds.
2 0.1 97.20 78.09 76.95 79.25
8:2 3?;33 Z;;?g 3;;23 32;3; different models obtained can be used to predict either
0.4 96.91 78.34 78.11 78.56 mutagenicity or nonmutagenicity, with a similar degree of
0.5 96.82 78.20 77.71 78.70 confidence. From this consideration, we base our analysis
3 8% g; ﬁ ;g’gg ;g gf ;g 2573 of the results on the global test accuracy of the models.
03 96.92 75.88 7455 77.21 Several conclusions can be drawn from these tables. First,
0.4 96.71 75.00 74.04 76.12 when no Morgan indices are introduced (Ml = 0), we
05 9657 75.27 73.81 76.69 can note from both tables that test accuracy systematically
4 8; g?gg ;i:gg gg_i? ;i;% increases when the paramepgecreases. This is consistent
03 97.29 72.10 69.77 74.50 with the experiments carried out with the previous data set
0.4 97.10 71.52 69.79 73.21 and suggests that it is worth considering long paths.
0.5 96.87 72.18 69.86 74.53 Moreover, when we compare the two tables, we note that
5 8; g;.g’i g?';g gggg gggg filtering the totters systematically enhances the classification,
03 96.94 66.99 64.65 69.27 which comforts the intuition that this kind of paths adds noise
0.4 96.58 66.85 65.11 68.72 to the description of the molecules.
0.5 96.38 66.73 64.62 68.86

Concerning the introduction of the Morgan indices, we
o . can note from the two tables that, for any value mgf
Table 7. Classification Results for the Second Mutagenicity Data  considered, classification is improved for the first iteration
Set, When Tottering Paths Were Removed of the process, after what it systematically decreases. This

training test test te_?_t_ means that although the first step of the Morgan process
MI_ pq accuracy accuracy sensitivity specificity could improve the expressive power of the kernel, the
0 8-% gg-fg ;gjg ;g-gg ;g-ég information introduced into the description of the molecule
' ' ' ‘ ' becomes too specific from the second iteration. Interestingly,
0.3 94.48 74.93 71.95 77.82 : ) ;
0.4 93.65 75.13 71.81 78.44 we can also notice that for a given index of the Morgan
0.5 93.22 74.18 71.58 76.77 process, the optimal value pf is not the smallest one any
1 01 97.22 77.87 74.90 80.90 longer.
2 4 78. 76. 1.1 S . .
8.3 gg.zi 78.32 7?_2‘2 21.08 . F_|Iter|ng the totters after th(_a introduction of the Morgan
0.4 96.20 78.54 77.25 79.84 indices have a somehow ambiguous effect. It does not show
0.5 96.22 78.47 76.65 80.03 a consistent trend with respect to the paramggedowever,
2 01 9772 76.59 72.03 81.21 the two optimal results show a 79.32% and 79.06% test
0.2 97.52 77.95 75.35 80.47 that It loballv simil
03 97.20 78.04 7701 79.08 accuracy, so that results are globally similar.
0.4 97.04 78.28 77.77 78.80 Finally, note that the computation times needed to compute
2 8-? g‘;-gg ;g-(l)g ég-g‘; gg-gi the different kernels follow the same behavior as the results
02 9779 7587 7299 78.69 presented in the prewous subsection. .
0.3 97.53 75.48 74.36 76.63 Reference 1 pointed out the need to consider structurally
0.4 97.06 75.54 73.98 77.10 diverse data sets such as this one in order to be able to model
05 9678 75.62 75.22 76.00 multifactor mechanisms such as toxicity. Although the

classification accuracy provides a general measure of the
indicating the presence or absence of these substructureseffectiveness of the algorithm, it is of limited help to quantify
Tables 6 and 7 gather results on this data set using theits ability to handle the diversity of the data set. For instance,
original and totters-filtering versions of the kernel, for several a situation where the subset of correctly classified data shows
values ofpy and different iterations of the Morgan process. a smaller diversity compared to the global data set actually
Following ref 1, we performed classifications by a 10-fold makes sense. This situation means that the algorithm is only
cross-validation procedure, and performances are evaluatecfficient in a particular subspace of the chemical space
according to theccuracy sensitvity, andspecificityvalues defined by the whole data set, which is actually likely to
of the models. occur, and reveals that the method fails to handle the diversity
A quick inspection of these two tables reveals that, of the data set. Analyzing the diversity of the classification
similarly to the original paper, the test sensitivity and results is therefore useful to give fair conclusions about the
specificity rates are always similar. This means that the method. Table 8 shows the values of a diversity criterion
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measured on the whole data set and on several subsets: theptimal results are obtained when long paths are considered,
subsets of positive compounds, negative compounds, cor-and this insight is worth solving the problem of model
rectly classified compounds, positive compounds that were parametrization.

correctly classified, and negative compounds that were e introduced two extensions to the general formulation
correctly classified. These values were computed for two and showed they can actually improve the SAR models in
kernels that correspond to optimal results in the previous terms of accuracy of the predictions and/or computation
tables: those obtained using the tottering paths, the firsttimes. These two extensions are formulated as preprocessing
iteration of the Morgan process, and valueppbf 0.1 and  steps of the algorithm and are therefore completely modular.
0.2. [The kernels used actually correspond to the kernels usedvioreover, they are based on general graph considerations,
for the classification, i.e., the kernels obtained after applying and we believe they can be useful in other problems.

the -radial option of the GIST software to the original The fundamental difference between this approach and

kernels ] o other SAR algorithms lies in the fact that the step of feature
_To evaluate the diversity of a subset, we use the averagegglection inherent to all other methods is avoided here. In
distance of the points of this subset to their center of mass, ihis sense, these kernels provide a kind of universal way to
in the feature-space associated with the kernel. Recall fromcompare molecules. Together with the panel of kernel
section 2 that a kernel function corresponds to a dot-product jethods algorithms, this family of graph kernels could be
between the data mapped to a vector spagehe so-called ;5 straightaway to solve different SAR problems, such as
feature-space k(xi, %) = [p(x).¢(x)l] A distance in the ¢, stering or regression tasks for instance, which otherwise
featu_re-space is therefore implicitly 2deﬁned by the kernel typically involve multiple feature selection tasks.
function: d-(xa, xo) = [1¢(x1) = 0Q)II* = k(xw, x1) + K(xz, On top of that, since it deals with every molecular fragment
X) ; 2k|(x1, Xa). (H)ur ?Nersny cnteg)on, fgr;?e subseof of the molecules, this model can benefit from structural
(Ii/lar 'nﬁ Ity nl%l' t erﬁ ore writes ? O = ns.zieﬁ('/l (Xj patterns responsible for activity that have not been discovered
1/1)1’ zw S;(r)((ai) ers];ica ?e acggtctagD(()s) rr;asls}n OZS Sl'('&' x) —  yetand are therefore not included in the set of traditional
1/n82 < sk(x-’ ) S£I1eSTA descriptors. This property however comes at the expense of
S 21X, X)). the interpretability of the model, which has a great interest

Table 8 reveals that the diversities of these different subsetsin medicinal chemistry. Indeed, an interpretable model can

are very similar. Two main conclusions can be drawn from give clues to explain the causes of activity or nonactivity

;h;faongrzaﬂgrl]s' 'ig;: g;et;‘]aect tg;ttit:: ga’srf"éy g{i;[/hee ;’moslgtsand therefore provide chemists with worthy feedback to carry
9 P 9 ut molecular optimization in a rational way. The next

_revgals that the supports of_these subse_ts Iarggly overlap an‘ghallenge to these graph kernels for chemoinformatics is to
indicates that the classification problem is not trivial. Indeed, be able to extract information from the infinite dimensional

mogit?vaert:nuéar:g Z',{T/glzucbosrg,:gl\],\r,gﬂ? dnbtgesidlr:/iﬁz:sz;ﬂis grfng]lleer feature-space associated with the kernels and to formalize it
P 9 9 y in terms of chemical knowledge.

than that of the data set as a whole: the two classes of
compounds would be clearly separated in the chemical space. ACKNOWLEDGMENT
Second, the fact that all these values are similar shows that
this algorithm is able to correctly classify data regardless of ~ This work was supported by a French-Japar@SKURA
the class they belong to nor their location in the chemical grant. Jean-Luc Perret is partly supported by a grant from
space. This accounts for the fact that the method is indeedthe Swiss National Science Foundation
able to handle noncongeneric data sets.

Finally, we can note that Tables 6 and 7 compare quite 8. APPENDIX
favorably to the results presented in ref 1. Many configura- 1. Proof of Proposition 1.For any patth = vy ... v, €
tions have been tested in ref 1, and the best model reportedHy(G), letf (h) = v ... v/, defined by (11). By definition (9),
has an accuracy of 78.5%. With an optimal accuracy of 76%, (v}, v,) = (v1,(v1, v2)) € E, and ¢}, v.,) = ((vi-1, v1),(vi,
the original graph kernel with SVM shows a slightly smaller ,.,)) € E' becausey+1 # vi—1 for i > 1. Hencef (h) is a
performance, but the extensions introduced here could raisepath inG'. Moreovery; € V andv| € E by (11), hencei(h)
this figure up to more than 79%. Based on our pair of e Hy(G') by (10).
extensions, we have therefore been able to propose models conversely, for any = vy ... v, € Hy(G'), we havev, =
with state-of-the-art performance and even models perform-,,, < v/ and by easy induction using the definition of edges
ing slightly better. We can however note a slight difference (g), V) = (vi-1, v) € E with -3 # vi+1. Henceh' = f (h)
between the two family of models: models from ref 1 tend with h = 4, ... 0, € Ho(G), thereforef is surjective. By
to have a higher sensitivity, while ours show a better gefinition of f (11), it is also clear that(h) = f (W) = h =
specificity. This means that the models from ref 1 will ' fis therefore a bijection fronto(G) onto Hy(G)).

cqrrectly classify a larger fraction of the positive Qgta, but Moreover, by definition of the labeling on G', we obtain
this comes at the expense of a larger false positive rate, ¢ anyh = vn € Ho(G):
— y weny Un .

whereas our models may miss sensibly more true positive
data, but the confidence in positive predictions is higher. I'(F (h) = 1'(00, (01, 05) )
- v\ U2)y -+ sUn—15 U

7. CONCLUSION

Based on a recently introduced family of graph kernels, = 1()l(vy) .- 1(v)
we validated in this paper the graph kernel approach for SAR
analysis. Experiments revealed in a consistent way that =1(h)
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2. Proof of Theorem 1.From the definition of’, for any
h = v, ..., vn € Ho(G), we obtain:

p'(f(h) = p'(vn, (v, v2)s s On-1s 20))
= psv)pt (21, v)v1)
P; (-1, v)I(¥i—2) 1-1))

n

= pov1)P; (v2l29) B P (vilvi—p, viy)

= p(h)

Note Added after ASAP Publication. This paper was
released ASAP on May 27, 2005; € E should bey; € E
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