
Graph Labelings and
Continuous Factors of Dynamical Systems

Stephen M. Shea
Department of Mathematics

St. Anselm College
Manchester, NH 03102

sshea@anselm.edu

Submitted: Apr 5, 2012; Accepted: Mar 22, 2013; Published: Mar 31, 2013

Mathematics Subject Classifications: 05C78, 37A35, 37B40

Abstract

A labeling of a graph is a function from the vertex set of the graph to some finite
set. Certain dynamical systems (such as topological Markov shifts) can be defined
by directed graphs. In these instances, a labeling of the graph defines a continuous,
shift-commuting factor of the dynamical system. We find sufficient conditions on
the labeling to imply classification results for the factor dynamical system. We
define the topological entropy of a (directed or undirected) graph and its labelings
in a way that is analogous to the definition of topological entropy for a shift space
in symbolic dynamics. We show, for example, if G is a perfect graph, all proper
χ(G)-colorings of G have the same entropy, where χ(G) is the chromatic number
of G.

Keywords: distinguishing labeling; entropy; finitary isomorphism; graph coloring;
graph entropy; topological entropy

1 Introduction

Let G be an aperiodic irreducible directed graph on a finite set of vertices. Then G
(along with the shift map) defines a topological Markov chain X where the symbols of
X are the vertices of G. Since the vertex set of G is finite, X has a finite alphabet.
A labeling f of G is a function from the vertices of G to some finite set. Examples of
labelings include proper k-colorings and distinguishing labelings. A labeling of G defines
a continuous, shift-commuting factor map on X. The same holds when X is given a shift
invariant Markov measure. Call the image Y . Here, we ask what can we learn about the
factor Y from the labeling f . We define demarcating labelings of graphs and provide a
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class of factors of Markov processes defined by demarcating labelings that are finitarily
isomorphic to Bernoulli schemes.

We view graphs and their labelings as dynamical systems. We define the topological
entropy of a (directed or undirected) graph and its labelings in a way that is analogous
to the definition of topological entropy for a shift space in symbolic dynamics. We then
bound and compute this entropy for certain classes of graphs. We show, for example, if
G is a perfect graph, all proper χ(G)-colorings of G have the same entropy, where χ(G)
is the chromatic number of G. This does not hold for odd cycles of order greater than
five. We define the entropy maximizing number of a graph to be the minimum number
of labels necessary to label the graph so that the labeling has the same entropy as the
graph. We show that for cycles, this number is no greater than three.

2 Entropy

2.1 Kolmogorov-Sinai Entropy

We are primarily interested in the measurable dynamical systems we call processes. A
process is a quadruple (X,U , µ, T ) where X is the set of doubly infinite sequences on
some alphabet A, U is the σ-algebra generated by the coordinates, µ is a shift invariant
probability measure on (X,U), and T is the left shift by one. When we refer to a process
X, we are referring to this quadruple. A process is a Bernoulli scheme if µ = pZ for some
probability vector p. Building on the work of Shannon in [29], Kolmogorov introduced
entropy into measurable dynamical systems [17]. See [33] for a thorough introduction to
entropy.

Let (X,U , µ, T ) and (Y,V , ν, S) be two processes. An isomorphism φ from X to Y is
a bimeasurable equivariant map from a subset of X of measure one to a subset of Y of
measure one which takes µ to ν. If the map is not invertible, we say φ is a factor map
(or that Y is a factor of X). Ornstein proved that entropy is a complete isomorphism
invariant for Bernoulli schemes [23]. Ornstein then showed that entropy is a complete
isomorphism invariant for factors of Bernoulli schemes [24].

In 1979, Keane and Smorodinsky proved that entropy is a complete finitary isomor-
phism invariant for Bernoulli schemes [15]. An isomorphism φ is finitary if for almost
every x ∈ X there exist integers m 6 n such that the zero coordinates of φ(x) and φ(x′)
agree for almost all x′ ∈ X with x[m,n] = x′[m,n], and similarly for φ−1. They then
showed that two finite state Markov processes are isomorphic if and only if they have the
same entropy and period [16]. Rudolph was able to show that a countable state mixing
Markov process is finitarily isomorphic to a Bernoulli scheme if and only if it has expo-
nentially decaying return times [27]. In unpublished work, Smorodinsky had previously
shown that to be finitarily isomorphic to a Bernoulli scheme, a process must have expo-
nentially decaying return times. See [28] for more details on this result and finitary codes
in general.
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2.2 Topological Entropy

Motivated by the early success of Kolmogorov’s entropy for measurable dynamical sys-
tems, Adler, Konheim and McAndrew developed a topological counterpart [1]. Bowen [3]
and independently Dinaburg [7] formulated a definition that is equivalent to that in [1]
on compact metric spaces. We will focus on the topological entropy of what is called a
shift dynamical system.

For a thorough introduction to symbolic dynamics, see [20]. Let A be a finite set of
states. The full shift (AZ, σ) is the set of all bi-infinite sequences of symbols in A together
with the shift map σ, where if x ∈ AZ, (σ(x))n = xn+1. A subshift (or shift space) (X, σ) is
a closed shift invariant subset of the full shift. Two-sided shift spaces are compact metric
spaces. We say two shift spaces (X, σ1) and (Y, σ2) are topologically conjugate if there
exists a homeomorphism φ : X → Y such that φσ1 = σ2φ. If we drop the condition that
φ is invertible, we say φ is a factor map. Shifts of finite type (SFT) are shift spaces that
can be described by some finite set of forbidden blocks. A shift space that is topologically
conjugate to a SFT is itself a SFT. If a block is not forbidden, it is said to be allowable.
A shift space is sofic if and only if it is a factor of a shift of finite type.

Let X be a subshift. Let Wn be the set of allowable words in X of length n. Let |Wn|
be the cardinality of Wn. Then the topological entropy of X is

htop(X) = lim
n→∞

log |Wn|
n

. (1)

where we take log = log2 (although one may choose any base). This definition is essentially
equivalent to Shannon’s notion of channel capacity for a discrete noiseless channel [30].

Many shift spaces can be described as walks on directed graphs. For a detailed intro-
duction to graph theory, see [5]. A walk on a directed graph (or undirected graph) G is a
finite string of vertices in V (G) v1, v2, v3 . . . , vk where (vi, vi+1) ∈ E(G) for 1 6 i 6 k− 1.
The length of a walk w = v1, v2, v3 . . . , vk, denoted |w|, is k− 1. We say G is irreducible if
for any two vertices u, v ∈ V (G), there exists a walk on G beginning at u and ending at
v. Let our G be an irreducible directed graph. The vertex shift XG is a shift space with
states V (G), and where the allowable blocks are the walks on G. Every SFT is topologi-
cally conjugate to a vertex shift [20]. The vertex shifts are sometimes called topological
Markov shifts.

We can relate the Kolmogorov-Sinai entropy of a process to the topological entropy
of shift spaces as follows. Let (X, σ) be a topological Markov chain. Let M(X, σ) be the
set of all σ-invariant probability measures on X. Let h(X) be the topological entropy of
X, and let hµ(X) be the measure-theoretic entropy of (X,µ). Then,

h(X) = sup{hµ(T )|µ ∈M(X, σ)}. (2)

Equation 2 is the variational principle. In [7], Dinaburg showed that for any metric space
X and continuous σ : X → X, Equation 2 holds. If X is a topological Markov chain, then
X has a unique measure of maximal entropy. That is, there exists a unique µ ∈M(X, σ)
such that hµ(T ) > hµ′(T ) for any other µ′ ∈ M(X, σ). Parry gave a formula for this
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measure (and proved his formula yielded the maximal entropy over all measures) [25].
For this reason, the unique measure of maximal entropy for a topological Markov chain
is sometimes called the Parry measure. While it was unknown to Parry at the time, and
perhaps the dynamics community in general (as claimed in [14]), Shannon had already
found the formula for the measure of maximal entropy and showed it was maximal over
all Markov measures. For more details on the variational principle and Parry measure,
see Chapter 8 of [33].

2.3 Topological Graph Entropy

Let G be a graph (or directed graph) with at most one edge between any two vertices.
Let Wk be the set of walks on G of length k − 1. We will only consider graphs where Wk

is nonempty for every positive integer k. Let |Wk(G)| be the cardinality of Wk.

Definition 1. The topological graph entropy of G is

htop(G) = lim
n→∞

log2(|Wn(G)|)
n

.

Let f be a labeling of the vertices of G. A walk of length k − 1 on the f labeling of
G is a finite string f(v1), f(v2), . . . , f(vk), where (vi, vi+1) ∈ E(G) for 1 6 i 6 k − 1. Let
f(Wk(G)) be the set of walks of length k − 1 on the f labeling of G. Let |f(Wk(G))| be
the cardinality of f(Wk(G)).

Definition 2. The topological graph entropy of the f labeling of G is

htop(f,G) = lim
n→∞

log2(|f(Wn(G))|)
n

.

Note that Definitions 1 and 2 are analogous to the definitions of topological entropy
of a topological Markov chain and the continuous image of a topological Markov chain,
respectively. Since every SFT is topologically conjugate to a topological Markov chain
and sofic shifts are continuous factors of SFTs, Definitions 1 and 2 are analogous to the
topological entropy of a SFT and sofic shift, respectively.

3 A Labeling Defines a Factor

We have and will continue to assume our graphs have finite vertex sets and that our
dynamical systems have finite alphabets. In this section, we describe how a labeling of
a directed graph can correspond to a continuous factor of a measurable or topological
dynamical system. We then provide the details of our conjecture from [19] that relates
distinguishing labelings to continuous factors of Bernoulli schemes.

Let X be a process (resp. subshift). Let k be a positive integer. The process (resp.
subshift) X(k) called the k-stringing (as in [32]) or k-block presentation (as in [20]) of X
is defined as follows. The state space of X(k) is all allowable sequences of length k in X,
and X

(k)
n = (Xn, Xn+1, . . . , Xn+k−1).
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A 1-block factor of a process or subshift X is a function on the alphabet of X. The
Curtis-Hedlund-Lyndon Theorem tells us that any continuous, shift-commuting factor
map f on X is a finite map on X [11]. A map f is finite if there exist nonnegative
integers m and n such that for any x ∈ X, f(x)0 = f(x−mx−m+1 . . . xn−1xn)0. That is to
say, (up to a possible shift left by some finite number of coordinates), f(X) is a 1-block
factor of X(k) for some positive integer k.

Let X have alphabet A. Let a ∈ A where P (Xn = a) > 0. We say a is a renewal state
of X if the σ-algebras U(Xn+1, Xn+2, . . . ) and U(. . . , Xn−2, Xn−1) are independent given
the event [Xn = a]. If there exists such an a, we say X is a renewal process. A process
X is Markov if for all a ∈ A where P (Xn = a) > 0, a is a renewal state in X. A process
Y is k-step Markov if Y (k) is Markov. A process Z is variable length Markov if for some
positive integer k, Z(k) is a renewal process. In 1983, Rissanen [26] introduced the class
of models we are calling variable length Markov processes. These processes have gone by
several names including finitarily Markovian processes ([21]).

Let XG be a topological Markov chain (vertex shift) associated with an irreducible
directed graph G. Assign probabilities to the edges of G so that for any vertex v ∈ V (G),
the sum of the probabilities of the outgoing edges of v is one. Then there is a finite state
Markov process X defined by the directed graph G where P [Xn+1 = v|Xn = u] = 0 if
(u, v) 6∈ E(G) and otherwise, P [Xn+1 = v|Xn = u] = p where p is the probability assigned
to edge (u, v).

Suppose X is a finite state Markov process defined by an irreducible directed graph
G. For each k ∈ Z+, let Gk be the directed graph where V (Gk) is the state space of

X(k), and (u, v) ∈ E(Gk) if and only if p[X
(k)
1 = v|X(k)

0 = u] > 0. Then any continuous,
shift-commuting factor of X is a labeling of the vertices of Gk for some positive integer k.

For example, let X be a Bernoulli scheme (or the full shift) on two symbols 0 and 1.
Then for k = 1, we have the graph in Figure 3.1. G2 is the graph in Figure 3.2. If X is
an m-state Bernoulli scheme, then the Gk are the De Bruijn graphs [4].
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Figure 3.2

Similarly, we can let X be a SFT. Then X can be described by a finite directed
graph. For each k ∈ Z+, let Gk be the directed graph where V (Gk) is the state space of
X(k), and (u, v) ∈ E(Gk) if and only if uv is not a forbidden word in X(k). Note that
k-block presentation is a topological conjugacy and that any process that is topologically
conjugate to a SFT is a SFT. Thus, X(k) is a SFT and Gk is well-defined. Then any
continuous factor of X is a labeling of the vertices of Gk for some positive integer k.

For any (undirected or directed) graph G that contains arbitrarily long walks, we can
define Gk (for k > 2) without going through a process or shift space. We define V (Gk)
to be the set of all walks in k of length k − 1, and we let (u, v) ∈ E(Gk) if and only if
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when u = v1v2 · · · vk then v = v2v3 · · · vk−1v
′ for some v′ ∈ V (G) (where v is again a walk

of length k − 1 in G). Call Gk the k-block presentation of G.
The line graph of a graph G, denoted L(G) has vertex set V (L(G)) = E(G), and for

(u1, v1) and (u2, v2) in V (L(G)), ((u1, v1), (u2, v2)) ∈ E(L(G)) if and only if v1 = u2. We
remark that if G is undirected, G2 is not necessarily isomorphic to L(G). Consider the
path P3 in Figure 3.3. The line graph of P3 is just P2, the graph shown in Figure 3.4.
However, G2 is the graph in Figure 3.5. In this example, we see how taking the k-block
presentation of an undirected graph can be a directed graph.

a b c
Figure 3.3: P3

ab bc
Figure 3.4: L(P3)
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��
//

oo

Figure 3.5: (P3)2

It is a simple exercise to show that for a directed graph G, Gk+1 is isomorphic to
the kth iterate of the line graph on G. If we interpret P3 as a directed graph G with
(u, v) ∈ E(P3) whenever (v, u) ∈ E(P3). Then L(G) ∼= (P3)2 = G2.

Let f be a labeling on some Gk. We will refer to the finite factor map defined by
f with f as well, writing f : X → Y . If X is a Markov process with measure µ, then
Y has measure f(µ). In 1996, Albertson and Collins defined distinguishing labelings of
undirected graphs. An automorphism A of a graph G is a permutation p of V (G) that
preserves edge connectivity (i.e. (p(u), p(v)) ∈ E(A(G)) whenever (u, v) ∈ E(G)). A
labeling of the vertices of a graph G, f : V (G) → {1, 2, . . . , r}, is r-distinguishing if the
only automorphism of the graph that preserves all of the vertex labels is the identity. The
distinguishing number of a graph G, denoted by D(G), is the minimum r such that G has
an r-distinguishing labeling [2]. In [19], we conjecture the following.

Conjecture 3. Let X = {0, 1}Z with measure µ = (p0, p1)Z where p0 6= p1. Let G be the
graph in Figure 3.1. Let k > 1, and let f be a labeling of Gk. Let f : X → Y denote
the finite factor map defined by f . Then Y is variable length Markov if and only if f is
r-distinguishing.

4 Distinguishing Labelings of Block Presentations of

Full Shifts

We determine the automorphism group and distinguishing labelings of the graphs corre-
sponding to k-block presentations of a full shift on m-symbols. When m = 2, we get the
automorphism group and distinguishing labelings for the Gk in Conjecture 3. Our work
in this section generalizes some of the results in [19].

Let m and k be positive integers. Let

W (m, k) = {x1x2 · · ·xk|xi ∈ {1, 2, 3, . . . ,m} for 1 6 i 6 k}.
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In other words, W (m, k) is the set of all m-ary blocks of length k. Let Gm,k be a digraph
where V (Gm,k) = W (m, k) and for x = x1x2 · · ·xk and y = y1y2 · · · yk in V (Gm,k), (x, y) ∈
E(Gm,k) if and only if yi = xi+1 for all i where 1 6 i 6 k − 1.

We will need the following lemmas.

Lemma 4. Let G be a directed graph. Let p be an automorphism of G. Define a function
A on V (Gk) where for v = v1v2 · · · vk ∈ V (Gk), A(v) = p(v1)p(v2) · · · p(vk). Then A is an
automorphism of Gk.

Proof. Since p is an automorphism of G, (p(u), p(v)) ∈ E(G) whenever (u, v) ∈ E(G).
Then p(v1)p(v2) · · · p(vk) is a walk in Gk whenever v1v2 · · · vk is a walk in Gk. Thus, A is
a permutation of V (Gk).

Let (u, v) ∈ E(Gk). If u = u1u2 · · ·uk, v = u2u3 · · ·ukv′ for some vertex v′ ∈ V (G)
where (uk, v

′) ∈ E(G). Then A(u) = p(u1)p(u2) · · · p(uk) and A(v) = p(u2)p(u2) · · ·
p(uk)p(v

′). Therefore, (A(u), A(v)) ∈ E(Gk).

A walk w on a graph G from vertex u to vertex v is minimal if there does not exist a
walk w′ on G from u to v where |w′| < |w|. The proof of the following follows the proof
of Lemma 3.7 in [19] with minor modifications.

Lemma 5. Let u and v be distinct vertices in Gm,k. There exists a unique minimal walk
in Gm,k from u to v.

Lemma 6. Let A be an automorphism of Gm,k. Let u = u1u2 · · ·uk and v = v1v2 · · · vk be
distinct vertices in Gm.k. Suppose there exists a permutation p of {1, 2, . . . ,m} such that
A(u) = p(u1)p(u2) · · · p(uk) and A(v) = p(v1)p(v2) · · · p(vk). Let w = u, a1, a2, . . . , an, v be
the unique minimal walk from u to v in Gm,k. Then for any vertex ai = ai1ai2 · · · aik on
the minimal walk from u to v, A(ai) = p(ai1)p(ai2) · · · p(aik).

Proof. By Lemma 5, there exists a minimal walk from u to v and from A(u) to A(v).
Let w = u, a1, a2, . . . , an, v be the unique minimal walk from u to v in Gm,k. Then
for any ai = ai1ai2 · · · aik where 1 6 i 6 n, let A′(ai) = p(ai1)p(ai2) · · · p(aik). Then
ŵ = A(u), A′(a1), A′(a2), . . . , A′(an), A(v) is a walk from A(u) to A(v). Suppose there
exists a shorter walk from A(u) to A(v). Then for some n′ < n, there exists a walk
A(u), b1, b2, . . . , bn′ , A(v). Then u, p−1(b1), p−1(b2), . . . , p−1(bn′), v is a walk from u to v on
n′ + 1 edges. This contradicts the minimality of w. Therefore, ŵ is the unique minimal
walk from A(u) to A(v). Since A is an automorphism of Gm,k, A must preserve walks
in Gm,k. Therefore, A must map w to a walk on n + 1 edges from A(u) to A(v). Since
ŵ is the unique walk on n + 1 edges between A(u) and A(v), A(w) = ŵ. Then for any
ai = ai1ai2 · · · aik where 1 6 i 6 n, A(ai) = p(ai1)p(ai2) · · · p(aik).

Lemma 7. Let p be a permutation of {1, 2, . . . ,m}. Let A be an automorphism of V (Gm,k)
such that for all i where 1 6 i 6 m, A(ik) = (p(i))k. Then for any x = x1x2 · · ·xk ∈
V (Gm,k), A(x) = p(x1)p(x2) · · · p(xk).
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Proof. For any i and j in {1, 2, . . . ,m}, Lemma 5 implies that there is a unique minimal
walk w from ik to jk in Gm,k. By Lemma 6, for all vertices a = a1a2 · · · ak on w, A(a) =
p(a1)p(a2) · · · p(ak).

Let W1 = {v = v1v2 · · · vk ∈ V (Gm,k)|v1 = 1}. For each v ∈ V (Gk), let t(v) =
card{i, i+ 1|1 6 i 6 k − 1 and vi 6= vi+1}. Here “card” means cardinality. We will prove
by induction on t, that A(v) = p(v1)p(v2) · · · p(vk) for all vertices v ∈ W1.

Let v = v1v2 · · · vk ∈ W1 such that t(v) = 1. Then v = 1m0jm1 where 1 6 j 6 m,
m0 > 1, m1 > 1, and m0 +m1 = k. Then v is on the unique minimal walk from 1k to jk.
By Lemma 6, A(v) = p(v1)p(v2) · · · p(vk).

Now let n be an integer such that 1 6 n < k− 1. Suppose for all v = v1v2 · · · vk ∈ W1

where t(v) = n, A(v) = p(v1)p(v2) · · · p(vk). Now let v ∈ W1 where t(v) = n + 1.
Then v = 1m0jm1

1 jm2
2 · · · jmn

n j
mn+1

n+1 where
∑n+1

i=0 mi = k and for each l in {1, 2, . . . , n+ 1},
1 6 jl 6 m. Let v′ = v′1v

′
2 · · · v′k = 1mn+11m0jm1

1 jm2
2 · · · jmn

n . Then t(v′) = n. By the
induction hypothesis, A(v′) = p(v′1)p(v′2) · · · p(v′k). We know that A(jkn+1) = (p(jn+1))k.
By Lemma 5, there exists a unique minimal walk in Gk from v′ to jkn+1. By Lemma 6,
A(a) = p(a1)p(a2) · · · p(ak) for all vertices a = a1a2 · · · ak on this walk. Since v is on this
walk, A(v) = p(v1)p(v2) · · · p(vk). By induction, A(v) = p(v1)p(v2) · · · p(vk) for all vertices
v ∈ W1.

For each j ∈ {1, 2, . . . ,m}, let Wj = {v = v1v2 · · · vk ∈ V (Gm,k)|v1 = j}. Analogous
arguments show that for each j, A(v) = p(v1)p(v2) · · · p(vk) for all v ∈ Wj.

We are now ready to state and prove the main results of this section.

Theorem 8. A is an automorphism of Gm,k if and only if there exists a permutation p
of {1, 2, . . . ,m} such that for all x = x1x2 · · · xk ∈ V (Gm,k), A(x) = p(x1)p(x2) · · · p(xk).

Proof. Let A be a permutation of V (Gm,k). By Lemma 4, if there exists a permutation p
of {1, 2, . . . ,m} such that for all x = x1x2 · · ·xk ∈ V (Gm,k), A(x) = p(x1)p(x2) · · · p(xk),
then A is an automorphism of Gm,k.

We now prove the converse. Suppose A is an automorphism of Gm,k. For v ∈ V (Gm,k),
(v, v) ∈ E(G) if and only if v = ik where 1 6 i 6 m. Since A is an automorphism of Gm,k,
A must preserve edges in Gm,k. Then there exists a permutation p of {1, 2, . . . ,m} such
that for all i, where 1 6 i 6 m, A(ik) = (p(i))k. By Lemma 7, for any x = x1x2 · · · xk ∈
V (Gm,k), A(x) = p(x1)p(x2) · · · p(xk).

Corollary 9. A labeling f : V (Gm,k) → {1, 2, . . . , r} is distinguishing if and only if for
any permutation p of {1, 2, . . . ,m} where p is not the identity, there exists v = v1v2 · · · vk ∈
V (Gm,k) such that f(v) 6= f(p(v1)p(v2) · · · p(vk)).

Proof. A labeling f of V (Gm,k) is distinguishing if the only automorphism of Gm,k that
preserves all of the vertex labels is the identity. By Theorem 8, A is an automorphism
of Gm,k if and only if there exists a permutation p of {1, 2, . . . ,m} such that for all
x = x1x2 · · ·xk ∈ V (Gm,k), A(x) = p(x1)p(x2) · · · p(xk). Therefore, f is distinguishing if
and only if for any permutation p of {1, 2, . . . ,m} where p is not the identity, there exists
v = v1v2 · · · vk in V (Gm,k) such that f(v) 6= f(p(v1)p(v2) · · · p(vk)).
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5 A Non-distinguishing Labeling that Motivates our

Conjecture

Conjecture 3 is a big component of our motivation for our work in this article. Let us take
a moment to motivate our conjecture. We look at a factor of a Bernoulli scheme that is
defined by a non-distinguishing labeling. We show that this process is not variable length
Markov and exhibit an interesting property of the factor along the way.

Let Y = {0, 1}Z be a Bernoulli scheme with measure ν = (1
3
, 2

3
)Z. Let φ : Y → X

where (φ(y))i = (yi+yi+1) mod 2. Then X is defined by a labeling of the graph in Figure
3.2 where we label vertices 00 and 11 with 0 and vertices 01 and 10 with 1. There exists
an automorphism of the graph in Figure 3.2 that sends 00 to 11 and 01 to 10. So, this
labeling is preserved by a non-trivial automorphism. This labeling is not r-distinguishing.

For any process X, x ∈ X and n ∈ N, we will use the shorthand x[−n, n] to refer to
the block x−nx−n+1 · · ·xn−1xn. For x, x′ ∈ X, let

Hn(x, x′) = card{i| − n 6 i 6 n and xi 6= x′i}

(the so-called Hamming distance [10]). Let X have measure µ. Let

Mn(x, x′) =
|µ(x[−n, n])− µ(x′[−n, n])|
µ(x[−n, n]) + µ(x′[−n, n])

. (3)

We will always assume x 6= x′. Then there always exists N ∈ N such that Hn(x, x′) > 0
for all n > N . We are interested in

L(x, x′) = lim
n→∞

Mn(x, x′)

Hn(x, x′)
. (4)

For any process X, any x, x′ ∈ X, and any n ∈ N, Mn(x, x′) 6 1. If x and x′ differ on
infinitely many coordinates, L(x, x′) = 0.

Theorem 10. Let Y = {0, 1}Z be a Bernoulli scheme with measure ν = (1
3
, 2

3
)Z. Let

φ : Y → X where (φ(y))i = (yi + yi+1) mod 2. For almost all x ∈ X, there exists x′ ∈ X
such that µ(x′[−n, n]) > 0 for all n ∈ N and L(x, x′) = 1.

Proof. Let x ∈ X. There are two words of length n + 1 in Y that map to x[−n,−1]
under φ. Let An and Bn be these two words. So, if φ(y)[−n,−1] = x[−n,−1], then
0 < ν(y[−n, 0] = An) < 1 and 0 < ν(y[−n, 0] = Bn) < 1. We will refer to An and Bn as
the possible pre-images of x[−n,−1]. Notice that An and Bn are duals of each other. That
is, An is obtained from Bn by replacing every 0 with a 1 and every 1 with a 0. Let An(0) =
card{yi|−n 6 i 6 0, yi = 0 and y[−n, 0] = An}. Let Bn(0) = card{yi|−n 6 i 6 0, yi = 0
and y[−n, 0] = Bn}. Then Bn(0) = n + 1 − An(0). For almost all x ∈ X, as n → ∞,
either

(i)
An(0)

n+ 1
→ 1

3
and

Bn(0)

n+ 1
→ 2

3
or (5)
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(ii)
Bn(0)

n+ 1
→ 1

3
and

An(0)

n+ 1
→ 2

3
. (6)

In case (i), we obtain that An is the true pre-image of x[−n,−1] and in case (ii), Bn is
the true pre-image of x[−n,−1].

Let Cn and Dn be the two possible pre-images of x[1, n]. Let Cn(0) = card{yi|1 6
i 6 n + 1, yi = 0 and y[1, n + 1] = Cn}. Let Dn(0) = card{yi|1 6 i 6 n + 1, yi = 0
and y[1, n + 1] = Dn}. Then Dn(0) = n + 1 − Cn(0). For almost all x ∈ X, as n → ∞,
(analogous to equations 5 and 6) either

(i)
Cn(0)

n+ 1
→ 1

3
and

Dn(0)

n+ 1
→ 2

3
or (7)

(ii)
Dn(0)

n+ 1
→ 1

3
and

Cn(0)

n+ 1
→ 2

3
. (8)

In case (i), we obtain that Cn is the true pre-image of x[1, n] and in case (ii), Dn is the
true pre-image of x[1, n].

Now let x be such that either equation 5 or 6 is satisfied and either equation 7 or 8 is
satisfied. If for x′ ∈ X, L(x, x′) = 1, then x and x′ differ at only one coordinate. Without
loss of generality suppose x and x′ differ on the zeroth coordinate.

The block x[−n, n] has two possible pre-images. They are either AnCn and BnDn or
AnDn and BnCn. Without loss of generality, suppose the possible pre-images are AnCn
and BnDn. Then, since x′ differs from x at only the zeroth coordinate, the possible
pre-images of x′[−n, n] are AnDn and BnCn.

Y has measure ν. Then µ(x′[−n, n]) = ν(AnDn) + ν(BnCN), and µ(x[−n, n]) =
ν(AnCn) + ν(BnDN). Since Y is a Bernoulli scheme, ν(AnDn) > 0 and ν(BnCn) > 0.
Therefore, µ(x′[−n, n]) > 0.

We have that

Mn(x, x′) =
|(ν(AnCn) + ν(BnDN))− (ν(AnDn) + ν(BnCN))|
(ν(AnCn) + ν(BnDN)) + (ν(AnDn) + ν(BnCN))

. (9)

By equations 5 through 8, for large n, Mn(x, x′)

≈ [(1/3)
2n+1

3 (2/3)
4n+2

3 + (2/3)
2n+1

3 (1/3)
4n+2

3 ]− [(1/3)n+ 1
2 (2/3)n+ 1

2 + (2/3)n+ 1
2 (1/3)n+ 1

2 ]

[(1/3)
2n+1

3 (2/3)
4n+2

3 + (2/3)
2n+1

3 (1/3)
4n+2

3 ] + [(1/3)n+ 1
2 (2/3)n+ 1

2 + (2/3)n+ 1
2 (1/3)n+ 1

2 ]
(10)

This simplifies to

Mn(x, x′) ≈ (2
2n+1

3 + 1)− (2(2)
2n+1

6 )

(2
2n+1

3 + 1) + (2(2)
2n+1

6 )
. (11)

Then,

lim
n→∞

Mn(x, x′) = lim
n→∞

(2
2n+1

6 )− 2

(2
2n+1

6 ) + 2
= 1. (12)

Since Hn(x, x′) = 1 for all n, we find that L(x, x′) = 1.

the electronic journal of combinatorics 20(1) (2013), #P70 10



The property of Theorem 10 is an unusual property. It cannot exist in a process that
is variable length Markov.

Theorem 11. Let X be a variable length Markov process. For almost all x ∈ X, there
does not exist x′ ∈ X such that µ(x′[−n, n]) > 0 for all n ∈ N and L(x, x′) = 1.

Proof. Since X is variable length Markov, there exists a word R with length |R| in X
such that the σ-algebras U(X|R|+1, X|R|+2, . . . ) and U(. . . , X−1, X0) are independent given
the event X[1, |R|] = R. For almost all x ∈ X, for all n ∈ N, there exists an integer
n1 < −n such that x[n1 + 1, n1 + |R|] = R and a positive integer n2 > n such that
x[n2 + 1, n2 + |R|] = R. Let x be one of these points.

Suppose x′ ∈ X such that L(x, x′) = 1. Then x and x′ differ on only 1 coordinate.
Suppose that coordinate is j. Let n1, n2 ∈ Z be such that x[n1 + 1, n1 + |R|] = x′[n1 +
1, n1 + |R|] = R, x[n2 + 1, n2 + |R|] = x′[n2 + 1, n2 + |R|] = R and n1 + |R| < j < n2 + 1.

Let N > max{|n1 + 1|, |n2 + |R||}. For n > N , let

α =
µ(x[−n, n1] ∩ x[n1 + 1, n1 + |R|])

µ(x[n1 + 1, n1 + |R|])
, (13)

and

β =
µ(x[n2 + 1, n2 + |R|] ∩ x[n2 + |R|+ 1, n])

µ(x[n2 + 1, n2 + |R|])
. (14)

Since n1 + |R| < j < n2 + 1,

α =
µ(x′[−n, n1] ∩ x′[n1 + 1, n1 + |R|])

µ(x′[n1 + 1, n1 + |R|])
, (15)

and

β =
µ(x′[n2 + 1, n2 + |R|] ∩ x′[n2 + |R|+ 1, n])

µ(x′[n2 + 1, n2 + |R|])
. (16)

Since R is a renewal state in X(|R|), for all n > N ,

µ(x[−n, n]) = (α)µ(x[n1 + 1, n2 + |R|])(β), (17)

and
µ(x′[−n, n]) = (α)µ(x′[n1 + 1, n2 + |R|])(β). (18)

Then, for all n > N ,

Mn(x, x′) =
|(α)µ(x[n1 + 1, n2 + |R|])(β)− (α)µ(x′[n1 + 1, n2 + |R|])(β)|
(α)µ(x[n1 + 1, n2 + |R|])(β) + (α)µ(x′[n1 + 1, n2 + |R|])(β)

(19)

=
|µ(x[n1 + 1, n2 + |R|])− µ(x′[n1 + 1, n2 + |R|])|
µ(x[n1 + 1, n2 + |R|]) + µ(x′[n1 + 1, n2 + |R|])

. (20)

By equations 19 and 20, for all n > N , Mn(x, x′) = MN(x, x′). Therefore, L(x, x′) =
MN(x, x′). If MN(x, x′) = 1, then µ(x′[−N,N ]) = 0. This contradicts that µ(x′[−n, n]) >
0 for all n ∈ N. Therefore, for almost all x ∈ X, there does not exist x′ ∈ X such that
µ(x′[−n, n]) > 0 for all n ∈ N and L(x, x′) = 1.
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Theorems 10 and 11 imply the following corollary.

Corollary 12. Let Y = {0, 1}Z be a Bernoulli scheme with measure ν = (1
3
, 2

3
)Z. Let

φ : Y → X where (φ(y))i = (yi + yi+1) mod 2. Then X is not variable length Markov.

There are more direct proofs that our example process X in Corollary 12 is not variable
length Markov. We believe the specific property of the conclusion of Theorem 10 is
interesting in its own right. For simplicity, we chose a probability vector of (1/3, 2/3) for
the Bernoulli scheme Y in Theorem 10, but any measure (p, 1 − p)Z where p 6= 1/2 will
yield the same result.

6 Entropy of Chromatic Labelings

For the rest of the article, entropy of a graph G means topological graph entropy, and we
will drop the subscript top in htop(G).

The degree of a vertex v, denoted deg(v), is the number of vertices in G that are
adjacent to v. We let ∆(G) = maxv∈V (G){deg(v)} and δ(G) = minv∈V (G){deg(v)}. If all
vertices v ∈ V (G) have degree m, we say G is m-regular. Let G be a directed graph. The
outgoing degree of v ∈ V (G), denoted od(v), is the number of vertices u ∈ V (G) such
that (v, u) ∈ E(G). We will say G is m-regular if od(v) = m for all v ∈ V (G). We denote
the clique number of G by ω(G).

Perron-Frobenius theory can often be used to compute the topological entropy of a
graph and its labelings. We refer the reader to [20] for a more detailed description of
the applications of Perron-Frobenius theory in entropy calculations. The following results
follow directly from this theory.

Lemma 13. Let G be an m-regular graph (directed or undirected). Then h(G) = logm.

Lemma 14. Let G be an undirected graph. Then, log(δ(G)) 6 h(G) 6 log(∆(G)). In
particular, log((ω(G))− 1) 6 h(G).

We will say a coloring of G is a chromatic labeling if it is a proper χ(G)-coloring of
G, where χ(G) is the chromatic number of G. For the rest of this section, we will assume
our graphs do not have self loops (edges (u, u)).

Lemma 15. Let G be an undirected graph. Let f be a proper r-coloring of G. Then

log(ω(G)− 1) 6 h(f,G) 6 log(r − 1).

Proof. Let {v1, v2, . . . , vm} be a clique in G. Since f is proper, f(vi) 6= f(vj) when
i 6= j. Then the number of distinct walks of length k − 1 on {f(v1), f(v2), . . . , f(vm)}
is m(m − 1)k−1. Any walk on the labeling of this clique is a walk on the labeling of G.
Therefore, |f(Wk(G))| > m(m− 1)k. It follows that log(m− 1) 6 h(f,G). Since ω(G) is
the order of the largest clique in G, log(ω(G)− 1) 6 h(f,G).
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Let C = {c1, c2, . . . , cr} be the colors used in the proper coloring of G. We have
|f(Wk(G))| 6 r(r − 1)k−1. Therefore,

h(f,G) 6 lim
k→∞

k log(r − 1)

k
= log(r − 1).

In particular, if f is a chromatic labeling of G, Lemma 15 implies

log(ω(G)− 1) 6 h(f,G) 6 log(χ(G)− 1). (21)

Note that there are graphs with small clique number and large chromatic number.
Mycielski’s Theorem states that for all integers k > 2, there exists a graph G with clique
number 2 and chromatic number k [22]. So, for certain classes of graphs, these bounds
may not yield a lot of information. For other classes of graphs, such as perfect graphs,
the bounds yield more information.

A graph is perfect if each of its vertex induced subgraphs H is such that the chromatic
number of H is equal to the clique number of H. Lemma 15 implies the following.

Theorem 16. Let G be an undirected perfect graph with χ(G) > 1. Then for any chro-
matic labeling f of G,

h(f,G) = log(ω(G)− 1) = log(χ(G)− 1).

We can extend Theorem 16 to certain graphs that are not perfect.

Theorem 17. Let G be an undirected graph with χ(G) > 1. If G has a clique of size
χ(G), then for any chromatic labeling f of G,

h(f,G) = log(ω(G)− 1) = log(χ(G)− 1).

Proof. G cannot have a clique of size greater than χ(G). So, if G has a clique of size
χ(G), then χ(G) = ω(G). We apply Lemma 15 to see that h(f,G) = log(ω(G) − 1) =
log(χ(G)− 1).

We now present an example of an undirected graph that has chromatic labelings with
different entropies. By Theorem 17, such an example cannot have a clique as large as the
chromatic number of the graph.

Example 18. Consider the undirected odd cycle C9. Let f (resp. g) be the labeling of
C9 in Figure 6.1 (resp. Figure 6.2). For every vertex v ∈ C9, v is adjacent to two vertices,
say u and u′. The coloring g is such that g(u′) 6= g(u). Therefore, h(g, C9) = log 2. The
labeling f assigns one vertex the color r, and alternates b and w otherwise. We thank [12]
for the following calculation. We will find a generating function G(x) where the coefficient
of xk is (neglecting finite-size effects) |f(Wk(C9))|. Counting the walks from r, we have
the choice to go to either side of r. Once we have decided which way to move, we can
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either traverse at least 8 vertices and then return to r from the the other side of r, or
we can return to r from the same side that we left on. This yields a generating function

G(x) =
∑∞

i=0 u
i where u = 2x[x(1+x2 +x4 + · · · )][x8(1+x2 +x4 + · · · )] = 2x(x+x8)

1−x2 . Then,

G(x) =
1

1− u
=

1

1− 2x(x+x8)
1−x2

=
1− x2

1− 3x2 − 2x9
. (22)

The exponential growth formula of [8] implies that the growth rate of the coefficients of
G(x) (and thus, the set f(Wk(C9))) is the inverse of the absolute value of the singularity
of G(x) nearest the origin. Here we find that singularity to be approximately 0.5734.

This gives a growth rate of approximately 1.744. Thus, h(f, C9) ≈ limn→∞
log(1.744n)

n
=

log 1.744.

•r
•b •w •b •w

•b•w•b•w
Figure 6.1

•r
•b •w •r •b

•w•r•b•w
Figure 6.2

We now generalize Example 18.

Theorem 19. For any odd cycle Cn where n > 5, there exist proper 3-colorings of Cn, f
and g, such that h(f, Cn) 6= h(g, Cn).

Proof. Let n be an odd integer > 5. Let f be the proper 3-coloring of Cn where one
vertex is colored r and we alternate bw otherwise (bwbw · · · bwr coloring).

Let g be the proper 3-coloring of Cn defined as follows. For n = 3 mod 3, or n = 2
mod 3, g repeats the pattern rbw. For example, C9 can be colored rbwrbwrbw and C11

can be colored rbwrbwrbwrb. For n = 1 mod 3, g repeats the pattern rbw for n − 1
consecutive vertices, and then fills in appropriately (with a b) the last vertex so that the
coloring remains proper. For example, C7 can be colored rbwrbwb.

We begin by showing that if for some odd integer n, h(f, Cn) 6= h(g, Cn), then
h(f, Cn+6) 6= h(g, Cn+6). Since f and g are proper colorings, the words rr, ww and
bb are always forbidden. In addition, the set f(Wk(Cn)) forbids r(bg)mr and r(gb)mr
for all m in [1, n−3

2
] (when k > n). This completely characterizes f(Wk(Cn)). So, for

k > (n+ 2), |f(Wk(Cn))| > |f(Wk(Cn+2))|.
If n is a multiple of 3, then g(Wk(Cn)) only forbids rr, bb, and ww. We know that

h(g, Cn) = log 2 = h(Cn). So, if n is a multiple of 3 and h(f, Cn) 6= h(g, Cn), then
h(f, Cn+6) 6= h(g, Cn+6).

Now suppose n = 2 mod 3. The set g(Wk(Cn)) for k > n is characterized by the

forbidden words rr, bb, ww, (wrb)
n−2
3 w, and (wbr)

n−2
3 w. So, for k > (n+6), |g(Wk(Cn))| <

|g(Wk(Cn+6))|. Since, for k > (n + 2), |f(Wk(Cn))| > |f(Wk(Cn+2))|, if h(f, Cn) 6=
h(g, Cn), then h(f, Cn+6) 6= h(g, Cn+6).

Finally, suppose n = 1 mod 3. The set g(Wk(Cn)) for k > n is characterized by

the forbidden words rr, bb, ww, (wrb)
n−4
3 wr, and (rwb)

n−4
3 rw. So, for k > (n + 6),
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|g(Wk(Cn))| < |g(Wk(Cn+6))|. Since, for k > (n + 2), |f(Wk(Cn))| > |f(Wk(Cn+2))|, if
h(f, Cn) 6= h(g, Cn), then h(f, Cn+6) 6= h(g, Cn+6).

Finally, we must show that for n = 7, 9, or 11, h(f, Cn) 6= h(g, Cn). The case n = 9
was done in Example 18. Similar to the calculation for h(f, C9) in Example 18, we find
the generating function for the number of walks on the f -labeling of C7 to be

GC7(x) =
1− x2

1− 3x2 − 2x7
(23)

and the generating function for the number of walks on the f -labeling of C11 to be

GC11(x) =
1− x2

1− 3x2 − 2x11
. (24)

We find the growth rates of the coefficients of GC7 and GC11 are approximately 1.765 and
1.736, respectively. Thus, h(f, C7) ≈ log 1.765 and h(f, C11) ≈ log 1.736.

For both C7 and C11, we show that the entropy of the labeling g is greater than the
entropy of the labeling f . To accomplish this, we will find a lower bound for the entropy
of g that exceeds the entropy of the labeling f .

Both g(C7) and g(C11) contain the subgraph P6 labeled rbwrbw. Let Gk be the number
of walks on k labeled vertices beginning and ending at (and possibly visiting in between)
the first vertex r. Then Gk ⊂ g(Wk(C7)) and Gk ⊂ g(Wk(C11)).

A Dyck path is a lattice path in Z2 from the point (0, 0) to the point (2n, 0) consisting
of two types of steps: up-steps (1,1) and down-steps (1,-1). A Dyck path also has the
restriction that it never passes below the x-axis. All walks in Gk are Dyck paths with the
restriction that the path never go above the line y = 5 (and below y = 0). From [13] or
[9], the generating function for the number of restricted Dyck paths from (0, 0), to (2n, 0)
that do not touch the line y = m are given by

Rm(x) =
U∗m(x)

U∗m+1(x)
,

where U∗m(x) = xmUm( 1
2x

) and Um is the Chebyshev polynomial of the second kind. So,
the generating function for Gk is

R6(x) =
U∗6 (x)

U∗7 (x))
=

U6( 1
2x

)

xU7( 1
2x

)
.

The growth factor of Gk will be twice the largest root of U7. The roots of this Chebysev
polynomial are xj = cos( jπ

8
) for j ∈ [1, 7] [18]. Since 2 cos(π/8) ≈ 1.848, h(g, C7) >

h(f, C7) and h(g, C11) > h(f, C11).
We thank [12] for suggesting [13] and the use of Dyck paths to bound the growth rates

of the walks on g.

Interestingly, the condition that n > 5 in Theorem 19 is necessary.

Proposition 20. If f and g are chromatic labelings of C5, then h(f, C5) = h(g, C5).
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Proof. Let the vertices of C5 be 1, 2, 3, 4, and 5 where i is adjacent to (i + 1) mod 5 for
all i ∈ V (C5). For any chromatic labeling of C5, there must be three consecutive vertices
with three distinct colors. Without loss of generality, let f(1) = g(1) = r, f(2) = g(2) = b
and f(3) = g(3) = w. Now, there are only three possible ways to color 4 and 5. They
are bw, rb and rw. Suppose f(4) = b and f(5) = w. Suppose g(4) = r and g(5) = b.
Then, for any k ∈ N, there exists a bijection ψ : f(Wk(C5)) → g(Wk(C5)) that maps
every occurrence of w to r.

Now suppose f as before, and let g(4) = r and g(5) = w. Then for any k ∈ N, there
exists a bijection φ : f(Wk(C5))→ g(Wk(C5)) that maps every occurrence of b to r.

In either case, we get that for all k ∈ N, |f(Wk(C5))| = |g(Wk(C5))|. Therefore, for
any two chromatic labelings f and g of C5, we have h(f, C5) = h(g, C5).

We can then use the methods from Example 18 to find that the entropy of any chro-
matic labeling of C5 is approximately log 1.825.

7 Entropy of Distinguishing Labelings

If a graph has trivial automorphism group, then any labeling is distinguishing. In these
cases, putting the restriction on a labeling that it is distinguishing gives us no new in-
formation about the entropy of that labeling. So, suppose the automorphism group of
G, denoted Aut(G), is not trivial. The distinguishing number of a graph G, denoted by
D(G), is the minimum r such that G has an r-distinguishing labeling [2]. In [2], Albert-
son and Collins showed that if Aut(G) is abelian, D(G) 6 2 and if Aut(G) is dihedral,
D(G) 6 3. This leads to the following proposition.

Proposition 21. (i) Let G be an undirected graph where Aut(G) is abelian. Let f be a
distinguishing labeling of G with D(G) labels. Then h(f,G) 6 log 2. If f is also a proper
coloring of G, h(f,G) = 0.
(ii) Let H be an undirected graph where Aut(H) is dihedral. Let g be a distinguishing
labeling of H with D(H) labels. Then h(g,H) 6 log 3. If g is also a proper coloring of H,
h(g,H) 6 log 2.

Proof. If Aut(G) is abelian, D(G) 6 2 [2]. Then, f(Wk(G)) 6 2k. Therefore, h(f,G) 6
log 2. If f is also proper, by Lemma 15, h(f,G) = 0.

If Aut(H) is dihedral, D(H) 6 3 [2]. Then, g(Wk(H)) 6 3k. Therefore, h(g,H) 6
log 3. If g is also proper, by Lemma 15, h(g,H) 6 log 2.

Similar propositions can be deduced from other results in [2] and subsequent papers
on distinguishing labelings.

As we did in Section 6, we now look specifically at cycles. Let a D∗-labeling of G be a
distinguishing labeling of G with D(G) labels. Note that for any even cycle, the entropy
of a chromatic labeling is 0.
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Theorem 22. For any D∗-labeling f of C3, h(f, C3) = log 2. For any D∗-labeling f of
C4, h(f, C4) = log 2. For n > 5 (even or odd), there exists a D∗-labeling f of Cn such
that h(f, Cn) > log Φ (where Φ is the golden ratio).

Proof. From [2], D(C3) = 3, and D(C4) = 3. Therefore, h(f, C3) = h(C3). Let 1, 2, 3, 4 be
the vertices of C4 where i is adjacent to (i+1) mod 4 for i ∈ [1, 4]. AnyD∗-labeling f of C4

is of the form rrbw on 1234. In other words, there must exist two adjacent vertices labeled
same color. All walks in f(Wk(C4)) that hit b or w have one representation. For each k ∈ N
there is only one walk, rk, that does not hit b or w. This walk has two representations
(one starting at each r). So, |f(Wk(C4))| = |Wk(C4)| − 1. Therefore, h(f, C4) = h(C4).
The graphs C3 and C4 are 2-regular. By Lemma 13, h(C3) = h(C4) = log 2.

From [2], D(C5) = 3. The chromatic labeling rbwbw of C5 is also distinguishing. We
saw in Section 6, that the entropy of this labeling is approximately log 1.825 and certainly
larger than log Φ.

Let Cn be a cycle of order n > 6. Let 1, 2, . . . , n be the vertices of Cn where i is
adjacent to (i+ 1) mod n. From [2], D(Cn) = 2 and the labeling that assigns 1, 2 and 4
the color r and all other vertices the color b is distinguishing. Now consider the subgraph
and path, H, with labels f(n− 1)f(n)f(1)f(2) = bbrr. Any walk that is a concatenation
of odd strings of b’s and odd strings of r’s can be realized on H. Any walk on the labeling
of H that contains both an r and a b has a unique presentation. The string of all r’s and
the string of all b′ each have 2 representations. Therefore, the entropy of H is equal to
the entropy of the the path P4 on four vertices. Using Perron-Frobenius theory, one can
calculate h(P4) = log(1+

√
5

2
). Therefore, h(f, Cn) > log(1+

√
5

2
).

8 Entropy of Distinguishing Chromatic Labelings

In [6], Collins and Trenk defined a distinguishing chromatic labeling to be a labeling that
is both distinguishing and a proper coloring. The distinguishing chromatic number of a
graph G, χD(G), is the minimum number of labels needed for a distinguishing chromatic
labeling of G. Since we are working with proper colorings, we will assume our graphs
have no self-loops. Also, we will take all graphs in this section to be undirected.

Lemma 15 implies following result, which is analogous to Theorem 16.

Theorem 23. Let G be a graph where χD(G) = ω(G). Then for any distinguishing
chromatic labeling f of G with χD(G) colors, h(f,G) = log(ω(G)− 1) = log(χD(G)− 1).

If a graph G has no nontrivial automorphisms, then χD(G) = χ(G). For any perfect
graph G, χ(G) = ω(G). So, a perfect graph G that has no nontrivial automorphisms
would meet the conditions of Theorem 23. To our knowledge, the class of graphs G where
ω(G) = χD(G) has not been completely classified.

With Theorem 4.5 in [6], the authors prove that for all connected graphs G, χD(G) 6
2∆(G). Furthermore, we have equality if and only if G = K∆,∆ or C6. This result and
Lemma 15 yield the following proposition.

the electronic journal of combinatorics 20(1) (2013), #P70 17



Proposition 24. Let G be a connected graph. Let f be a distinguishing chromatic labeling
of G with χD(G) colors. Then log(ω(G) − 1) 6 h(f,G) 6 log(2∆(G) − 1). Futhermore,
if G 6= K∆,∆ or C6, log(ω(G)− 1) 6 h(f,G) < log(2∆(G)− 2).

9 Demarcating Labelings

Let f be a labeling of a graph G. If there exists v ∈ V (G) and w1w2 · · ·wk ∈ f(Wk(G))
where we can (from the walk w1w2 . . . wk) determine an i ∈ [1, k] such that f−1(wi) = v,
then we say f is demarcating. The following lemma appeared in [19].

Lemma 25. Let G be an irreducible aperiodic directed graph. Let µ be a shift invariant
Markov measure on G and denote with X the Markov process defined by G and µ. Let f
be a labeling of G. Let Y be the factor of X defined by f . If f is demarcating, then Y is
variable length Markov.

Recall that it is still an open question whether (Kolmogorov-Sinai) entropy is a com-
plete finitary isomorphism invariant for continuous factors of Markov processes. By the
work of Keane and Smorodinsky in [15], it would suffice to show that every continuous
factor of a Markov process is finitarily isomorphic to a Bernoulli scheme. The following
theorem is progress in this direction.

Theorem 26. Let G be an irreducible aperiodic directed graph. Let µ be a shift invariant
Markov measure on G and denote with Z the Markov process defined by G and µ. Let
f be a demarcating labeling of G. Let Z ′ be the factor of Z defined by f . Then Z ′ is
finitarily isomorphic to a Bernoulli scheme.

Proof. Rudolph showed that every countable state Markov process with exponentially
decaying return times is finitarily isomorphic to a Bernoulli scheme [27]. So, it suffices to
show that Z ′ is finitarily isomorphic to a countable state Markov process with exponen-
tially decaying return times.

By Lemma 25, Z ′ is variable length Markov. Then there exists a positive integer
k such that Z ′(k) is a renewal process. To simplify notation, let us denote Z ′(k) by X.
Let a be a renewal state in X. Next, we will construct a finitary isomorphism from
X = (X,U , µ, T ) to a countable state Markov process Y = (Y,V , ν, S). This portion of
our proof is essentially the same as the proof of Theorem 3.2 in [31].

Let φ : X → Y so that for x ∈ X, (φ(x))i = a if xi = a. If xi 6= a, define
(φ(x))i = (a, α1, α2, . . . αj) where for 1 6 l 6 j, xi−j+l = αl, αl 6= a and xi−j = a.
With full probability, xi−j = a for some positive integer j. Therefore, φ is well defined on
a subset of X that has measure one. For some positive integer n, (φ(x))0 is a record of
x[n − 1, 0] when xn−1 is the last occurrence of the state a in x. Since X is a finite state
process, Y is a countable state process.

Let b be a state in the alphabet of Y . To show that Y is Markov, we need to show
that the σ-algebras V(Yn+1, Yn+2, . . . ) and V(. . . , Yn−2, Yn−1) are independent given the
event [Yn = b]. Recall that if φ(x) = y, yn is simply the history of the chain x be-
fore time n back to the last occurrence of the renewal state a. By how φ is defined,
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φ−1V(. . . , Yn−2, Yn−1) is a sub-algebra of U(. . . , Xn−2, Xn−1). Since a is a renewal state
in X, when Xn+1−j = a and Xn+1−i 6= a for 0 6 i < j, φ−1V(Yn+1, Yn+2, . . . ) is a
sub-algebra of U(Xn+1−j, Xn+2−j, . . . ). If xn+1−j = a and xn+1−i 6= a for 0 6 i < j,
then b = yn = (φ(x))n = (xn+1−j, xn+2−j, . . . , xn). Given Yn = b, φ−1V(Yn+1, Yn+2, . . . )
is a sub-algebra of U(Xn+1, Xn+2, . . . ). Given Yn = b, φ−1V(. . . , Yn−2, Yn−1) is a sub-
algebra of U(. . . , Xn−j−1, Xn−j). Since a is a renewal state in X, given the event [Yn = b],
U(. . . , Xn−j−1, Xn−j) and U(Xn+1, Xn+2, . . . ) are independent. Therefore, the σ-algebras
V(Yn+1, Yn+2, . . . ) and V(. . . , Yn−2, Yn−1) are independent given the event [Yn = b], and Y
is Markov.

Now we need to show that φ is invertible. Suppose b = (a1, a2, . . . , am), a1 = a, and
ai ∈ A for 1 6 i 6 m. If yn = b, then (φ−1(y))n = am. The inverse is a 1-block code.

Since (φ(x))n is simply the history of the chain x before time n back to the last
occurrence of the renewal state a, and φ−1 is a 1-block code, φ is a finitary isomorphism.

We now show that Y has exponentially decaying return times. Z is a finite-state
aperiodic Markov process. By the work of Keane and Smorodinsky in [16], Z is finitarily
isomorphic to a Bernoulli scheme. To be finitarily isomorphic to a Bernoulli scheme, a
Markov process must have exponentially decaying return times (see [28], for example).
Therefore, Z has exponentially decaying return times. Since Z ′ is a continuous factor of
Z, Z ′ has exponentially decaying return times. Since a is a state in Z ′(k), a is a word of
length k in Z ′. Since Z ′ has exponentially decaying return times, the probability of first
return to a in Z ′ must decay exponentially. Therefore, the probability of first return to
a in Z ′(k) must decay exponentially. Since a has the same distribution in Y as a has in
Z ′(k), the probability of first return to a in Y must decay exponentially. Therefore, Y has
exponentially decaying return times.

Since k-stringing is a finitary isomorphism (even a continuous isomorphism) and fini-
tary isomorphism is transitive, Z ′ is finitarily isomorphic to Y , a countable state Markov
chain with exponentially decaying return times. Rudolph’s result [27] implies Y is fini-
tarily isomorphic to a Bernoulli scheme. Again, since finitary isomorphism is transitive,
Z ′ is finitarily isomorphic to a Bernoulli scheme.

This leads immediately to the following corollary that Kolmogorov-Sinai entropy is a
complete finitary isomorphism invariant for continuous factors of Markov processes defined
by demarcating labelings.

Corollary 27. Let G and H be irreducible aperiodic directed graphs. Let µ and ν be
shift invariant Markov measures on G and H, respectively. Denote with X (resp. Y ) the
Markov process defined by G and µ (resp. H and ν). Let f and g be demarcating labelings
of G and H, respectively. Let X ′ (resp. Y ′) be the factor of X defined by f (resp. Y
defined by g). Then X ′ and Y ′ are finitarily isomorphic if and only if h(X ′) = h(Y ′).

Proof. Entropy is a finitary isomorphism invariant. Therefore, ifX ′ is finitarily isomorphic
to Y ′, then h(X ′) = h(Y ′). Now suppose h(X ′) = h(Y ′). By Theorem 26, X ′ and Y ′

are finitarily isomorphic to Bernoulli schemes B1 and B2, respectively. Since entropy is
a finitary isomorphism invariant, h(X) = h(B1) = h(B2) = h(Y ). By [15], B1 and B2
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are finitarily isomorphic. Since finitary isomorphism is transitive, X and Y are finitarily
isomorphic.

The previous results demonstrates a relationship between a graph theoretic notion of
a labeling and a classification result in ergodic theory. We know that topological entropy
is related to measure-theoretic entropy through the variational principle (see [7]). One of
the advantages of our definition for topological graph entropy is that in special situations,
all entropies align.

Corollary 28. Let G be an irreducible aperiodic directed graph. Let µ be the unique
maximal shift invariant Markov measure on G (the so-called Parry measure) and denote
with X the Markov process defined by G and µ. Let f be a demarcating labeling of G. Let
Y be the process defined by the continuous factor map f : X → Y . If h(X) = h(Y ), then
htop(G) = htop(f,G) = h(X) = h(Y ), and Y is finitarily isomorphic to X.

Proof. By Theorem 26, Y is finitarily isomorphic to a Bernoulli scheme B1. Finite state
irreducible aperiodic Markov processes are finitarily isomorphic to Bernoulli schemes [16].
So, X is finitarily isomorphic to a Bernoulli scheme B2. Since entropy is a finitary iso-
morphism invariant, h(X) = h(B2) = h(B1) = h(Y ). By [15], B1 is finitarily isomorphic
to B2. Since finitary isomorphism is transitive, X is finitarily isomorphic to Y .

Let Z be the topological Markov shift defined by G. If G is assigned the unique Markov
measure of maximal entropy, then by the variational principle, the topological entropy
of Z equals the Kolmogorov-Sinai entropy of X (h(Z) = h(X)). Since htop(G) = h(Z),
htop(G) = h(X). Let Z ′ = f(Z). The topological entropy of the labeling f , htop(f,G),
equals the topological entropy of the shift space Z ′ (htop(f,G) = h(Z ′)). A factor map
cannot increase topological entropy. Since µ is a measure of maximal entropy on G and
h(X) = h(Y ), f(µ) is a measure of maximal entropy on Z ′. By the variational principle,
h(Z ′) = h(Y ). Therefore, htop(G) = htop(f,G) = h(X) = h(Y ).

For a label a in a labeling f of G, let f−1(a) = {v ∈ V (G)|f(v) = a} and let |f−1(a)|
be the cardinality of f−1(a). We have the following simple lemma.

Lemma 29. Let G be a directed or undirected graph. Let f be a labeling of G. If for
some label a, |f−1(a)| = 1, then f is demarcating.

Lemma 29 shows that finding a minimum r for a graph G such that G has a demarcat-
ing labeling with r labels is trivial. If the graph has greater than 2 vertices, the minimum
r is always 2 since we can assign one vertex one label and every other vertex the other
label.

Lemma 29 gives a way to compute a lower bound when counting the number of de-
marcating labelings of a given graph. Using Lemma 29, we can find a lower bound by
counting the number of labelings where one label has a unique pre-image. If our graph
represents a process (such as a k-stringing of a Bernoulli scheme), the labelings define
continuous factors. Since demarcating labelings define variable length Markov factors (by
Lemma 25), Lemma 29 gives a way to find a lower bound on the number of variable length
Markov continuous factors of a given Bernoulli scheme or Markov process.
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Lemma 29 also tells us that if G has a nontrivial automorphism that fixes a vertex,
there exists a demarcating labeling of G that is not distinguishing. Suppose u is the fixed
vertex. Let f be a 2-labeling of G such that f(u) = a and f(v) = b for all other v ∈ V (G).

We use cyclic notation to denote a permutation of the vertices. For k > 2, v1, v2, . . . , vk
some set of vertices in V (G), (v1v2 · · · vk) denotes the cycle that maps v1 → v2, v2 →
v3,. . . ,vk−1 → vk, and vk → v1. We denote the identity on a vertex by (v1). Any
permutation can be written as a product of disjoint cycles p = (c1)(c2) . . . (cn) where for
i ∈ [1, n], (ci) denotes a cycle.

Lemma 30. Let G be a graph. Let p = (c1)(c2) . . . (cn) be an automorphism of G such
that for all v ∈ V (G), p(v) 6= v. Let f be a labeling of G where for any j ∈ [1, n], if
u, v ∈ cj, f(u) = f(v). Then f is not distinguishing and f is not demarcating.

Proof. Since f is a labeling of G where for any j ∈ [1, n], if u, v ∈ cj, f(u) = f(v), f
preserves the automorphism p. Therefore, f is not distinguishing.

An automorphism of G preserves edge-connectivity. So, if (u, v) ∈ E(G), (p(u), p(v)) is
an element of E(G). Let w = w1w2 · · ·wk be a walk onG. Let f(w)=f(w1)f(w2) · · · f(wk)
be a walk on the labeling of G. Since p preserves edge-connectivity, the image p(w) =
p(w1)p(w2) · · · p(wk) is a walk on G. Since f is a labeling of G where for any j ∈ [1, n],
if u, v ∈ cj, f(u) = f(v), f(p(w)) = f(w). For all v ∈ V (G), we supposed p(v) 6= v.
Then, for any walk ω = ω1ω2 . . . ωk on the labeling f of G, there are two walks w and
p(w) on G such that f(w) = f(p(w)), and wi 6= p(w)i for any i ∈ [1, k]. Therefore, f is
not demarcating.

Theorem 31. Let G be a graph. Suppose |Aut(G)| > 1, and if p is a non-trivial automor-
phism of G, then p(v) 6= v for all v ∈ V (G). A labeling f of G is not distinguishing if and
only if there exists an automorphism q = (c1)(c2) . . . (cn) of G where for any j ∈ [1, n], if
u, v ∈ cj, f(u) = f(v). Furthermore, if f is demarcating, then f is distinguishing.

Proof. By Lemma 30, it suffices to show that if f is not distinguishing then there exists an
automorphism q = (c1)(c2) . . . (cn) of G where for any j ∈ [1, n], if u, v ∈ cj, f(u) = f(v).
If f is not distinguishing, then there exists a non-trivial automorphism q of G that f
preserves. Then for a cycle cj ∈ q where (cj) = (v1v2..vk), we have f(v1) = f(v2),
f(v2) = f(v3), . . . , f(vk−1) = f(vk), and f(vk) = f(v1). Therefore, for all u, v ∈ cj,
f(u) = f(v).

Let G be a k-block presentation of the full shift on two symbols. By Theorem 8 there
is one non-trivial automorphism p of G, and p(v) 6= v for all v ∈ V (G). So, G meets the
conditions of Theorem 31. Therefore, any demarcating labeling of G is a distinguishing
labeling of G. We now present an example that shows a distinguishing labeling is not
always demarcating.

Example 32. We thank Mahsa Allahbakhshi and Anthony Quas for the following exam-
ple. Let X be the full shift on two symbols 0 and 1. Let G be the associated directed
graph (see Figure 3.1). Let G5 be the 5-block presentation of G. Then the vertices of G5

are blocks of 0’s and 1’s of length 5 (e.g. 11010). Consider the labeling f of G5 where
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f(v) = r if v = 00111 or v = 01011, and f(v) = b otherwise. By Corollary 9, f is
distinguishing. (A non-distinguishing labeling would have to map 00111 and 11000 to the
same label, for example).

We now show that the labeling f is not demarcating. In every walk on the f -labeling
of G5, rr, rbr, rbbr, and rbbbr are forbidden. So any walk on the labeling of G5 looks like
w = bm1rbm2rbm3 · · · rbmn where each mi > 4. Let’s consider the pre-image set of w with
respect to f . The vertices in G5 are blocks of length 5 where for u = (u1u2u3u4u5) and
v = (v1v2v3v4v5) in V (G5), (u, v) ∈ E(G5) if vj = uj+1 for 1 6 j 6 4. We will drop the
redundancy and write uv as u1u2u3u4u5v5. We have

1m1+4(00111)1m2−4(00111)1m3−4 . . . (00111)1mn−4

and

0m1+4(01011)0m2−4(01011)0m3−4 . . . (01011)0mn−4

in f−1(w). Therefore, f is not demarcating.
Note that one can show that this Y is variable length Markov, and thus, not a coun-

terexample to Conjecture 3.

10 Labelings that Maximize Topological Graph

Entropy

Corollary 28 presents a situation where the entropy of G does not decrease under the
labeling f of G. In other words, this is a situation where for the labeling f of G,
htop(f,G) = htop(G). Here, we focus specifically on the labelings that maximize entropy.

Definition 33. Let G be a graph (directed or undirected). Let f be a labeling of G.
We say that f is an entropy maximizing labeling if htop(f,G) = htop(G). The entropy
maximizing number of G, denoted M(G), is the minimum number of labels needed for an
entropy maximizing labeling of G.

If f is injective, h(G) = h(f,G). So, M(G) 6 |V (G)| for all graphs G. We have the
following simple result.

Proposition 34. Let G be an undirected graph (with no self-loops). If h(G) = log(ω(G)−
1), then M(G) 6 ω(G). Let H be a directed graph (allowing self-loops). Suppose for
some U ⊂ V (H), if u, v ∈ U , (u, v) and (v, u) are in E(H). If h(H) = log |U |, then
M(H) 6 |U |.

Proof. Let f be a labeling of G that labels each vertex in some clique of size ω(G) in G
uniquely. Let Fk be the walks on the labelings of this clique in G. Then Fk ⊂ f(Wk(G)).
We have |Fk| = ω(G)(ω(G) − 1)k−1. Therefore, |f(Wk(G))| > ω(G)(ω(G) − 1)k−1. So,
h(f,G) > log(ω(G)−1). Since h(f,G) 6 h(G) for any labeling f , h(f,G) = log(ω(G)−1).

Let g be a labeling of H so that each vertex in U is labeled uniquely. Let Gk be
the walks on the labelings of U in H. Then, Gk ⊂ g(Wk(H)). We have |Gk| = |U |k.
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Therefore, |g(Wk(H))| > |U |k. So, h(g,H) > log |U |. Since h(g,H) 6 h(H) for any
labeling g, h(g,H) = log |U |.

Proposition 35. For any undirected cycle Cn, M(Cn) 6 3.

Proof. By Lemma 13, h(Cn) = log 2. We consider three cases.
Case 1: Suppose n = 3 mod 3. Let f be the rbwrbw · · · rbw labeling of the vertices of
Cn. Then every vertex is adjacent to two vertices with distinct colors. For each k ∈ N,
f(Wk(Cn)) = Wk(C3). Then h(f, Cn) = h(H). By Lemma 13, h(C3) = log 2.

Case 2: Suppose n = 1 mod 3. Let f be the rbwrbw · · · rbwr = (rbw)
n−1
3 r labeling of the

vertices of Cn. Then every vertex is adjacent to two distinctly labeled vertices. Therefore,
h(f, Cn) = log 2.
Case 3: Suppose n = 2 mod 3. Let rwwbr be the labeling of C5. Let rwwbrwwb be the
labeling of C8. Let rwwbrwwb(rwb)m be the labeling of C8+3m. In all cases, every vertex
is next to two distinctly labeled vertices. Therefore, h(f, Cn) = log 2.

The upper bound is sharp. Since there does not exist a 2-coloring of C3 with entropy
log 2, M(C3) = 3. It is not the case that M(Cn) = 3 for all cycles Cn. The rrbb labeling
of C4 has entropy log 2.
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