
Graph Layout problems Parameterized by Vertex Cover

Michael R. Fellows1 Daniel Lokshtanov2 Neeldhara Misra3

Frances A. Rosamond1 Saket Saurabh2

1 University of Newcastle,
Newcastle, Australia.

{michael.fellows|frances.rosamond}@newcastle.edu.au
2 Department of Informatics, University of Bergen,

N-5020 Bergen, Norway.
{daniello|saket.saurabh}@ii.uib.no

3 The Institute of Mathematical Sciences,
Chennai, 600 017, India.
neeldhara@imsc.res.in

Abstract. In the framework of parameterized complexity, one of the most commonly used
structural parameters is the treewidth of the input graph. The reason for this is that most
natural graph problems turn out to be fixed parameter tractable when parameterized by
treewidth. However, Graph Layout problems are a notable exception. In particular, no fixed
parameter tractable algorithms are known for the Cutwidth, Bandwidth, Imbalance
and Distortion problems parameterized by treewidth. In fact, Bandwidth remains NP-
complete even restricted to trees. A possible way to attack graph layout problems is to
consider structural parameterizations that are stronger than treewidth. In this paper we
study graph layout problems parameterized by the size of the minimum vertex cover of the
input graph. We show that all the mentioned problems are fixed parameter tractable. Our
basic ingredient is a classical algorithm for Integer Linear Programming when parame-
terized by dimension, designed by Lenstra and later improved by Kannan. We hope that our
results will serve to re-emphasize the importance and utility of this algorithm.

1 Introduction

Parameterized complexity can be thought of as a “multivariate” approach to complexity
analysis and algorithm design. In addition to the overall input size n, a secondary mea-
surement k, the parameter, is also considered. In the parameterized complexity framework
the central notion is is fixed parameter tractability (FPT), defined to be solvability in time
f(k)nc, where f is some arbitrary function and c is a constant. For further details and an
introduction to parameterized complexity we refer to [10–12].

In the framework of parameterized complexity, an important aspect is the choice of
parameter for a problem. Exploring how one parameter affects the complexity of differ-
ent parameterized or unparameterized versions of the problem, often leads to non trivial
combinatorics and better understanding of the problem. In general there are two kinds
of parameterizations. In the first kind the parameter reflects the value of the objective
function in question. The second kind, structural parameterizations, measure the struc-
tural properties of the input. A well developed structural parameter is the treewidth of
the input graph. A celebrated result in this direction is that every problem expressible in
monadic second order logic can be solved in time O(f(t) · n) for graphs of treewidth at
most t [3]. Even though many problems become tractable when the treewidth of the input
graph is bounded, there are quite a few that do not. For an example Bandwidth remains
NP-complete even for trees. In these cases it is interesting to consider parameterizations
which enforce more structure on the input than the treewidth. In this direction Fellows

2 Fellows, Lokshtanov, Misra, Rosamond, and Saurabh

Problem Name Objective Function Problem Definition

Bandwidth fbw(π) = max
uv∈E

|π(u)− π(v)| bw(G)= min
π
fbw(π)

Cutwidth fcw(π) = max
1≤i≤n

|∂(Vi)| cw(G)= min
π
fcw(π)

Imbalance fim(π) =
nP
i=1

|Lπ(vi)−Rπ(vi)| im(G)= min
π
fim(π)

Distortion 1 fdi(π) = max
uv∈E

π(v)−1P
i=π(u)

D(vi, vi+1) di(G)= min
π
fdi(π)

Table 1. Problem Definitions

and Rosamond investigated how different problems behave when parameterized by the
max leaf number of the input graph [17].

In this paper we consider parameterizing by the vertex cover number (vc(G)) of the
graph. The vertex cover number of a graph G is the size of smallest set of vertices such
that every edge has at least one end-point in this set. We study the graph layout problems
Cutwidth, Bandwidth, Imbalance and Distortion parameterized by vc(G). In a
graph layout problem, we are given a graph G = (V,E) as input and asked to find a
permutation π : V → {1, 2, . . . , n} that minimizes a certain problem specific objective
function of π. In order to define the problems considered we need to introduce some
notation. A permutation π : V → {1, 2, . . . , n} orders the vertex set into v1 <π v2 <π
. . . <π vn. For every i, the set Vi is {v1, . . . , vi} and ∂(Vi) = {uv | uv ∈ E, u ∈ Vi, v ∈ V \Vi}.
We define Lπ(v) to be {u | u ∈ N(v), u <π v} and Rπ(v) is {u | u ∈ N(v), v <π u}
where N(v) = {u : uv ∈ E} is the neighborhood of v. For a pair of vertices u and v, the
shortest path distance between u and v is denoted by D(u, v). The precise definitions of
the problems studied in the paper are given in Table 1.

Many problems in different domains can be formulated as graph layout problems.
These include optimization of networks for parallel computer architectures, VLSI design,
numerical analysis, computational biology, graph theory, scheduling and archaeology. In
particular an algorithm for Imbalance is used as a starting point for many algorithms
in graph drawing [21, 22, 28, 30, 31]. On the other hand Bandwidth is equivalent to the
problem of minimizing bandwidth of a sparse symmetric square matrix which is useful for
the storage and manipulations of these matrices, including Gaussian elimination [16, 27].
Cutwidth was proposed as a model to minimize the number of channels in a circuit [2,
13], and recently it has found applications in protein engineering [14], network reliabil-
ity [26], automatic graph drawing [24], information retrieval [15], and as a subroutine in
the cutting plane algorithm for TSP [23]. The problem of Distortion, or rather low dis-
tortion embeddings of a graph metric into simple metric spaces has proved to be a useful
tool in designing algorithms in various fields. A long list of applications given in [20] in-
cludes approximation algorithms for graph and network problems, such as sparsest cut,
minimum bandwidth, low-diameter decomposition and optimal group steiner trees, and
online algorithms for metrical task systems and file migration problems.

Our Contributions:

– We show that Cutwidth, Bandwidth, Imbalance and Distortion parameterized
by the vertex cover number of the input graph are FPT. Notice that even though a

1 The presented definition is equivalent to the original definition of distortion for embedding into line.
Details are given in the section about Distortion.

Graph Layout problems Parameterized by Vertex Cover 3

graph G with vc(G) ≤ k has treewidth at most k, this can not be directly applied to
obtain our results. The reason for this is that graph layout problems parameterized by
treewidth have proven hard to cope with. In particular, the parameterized complexity
of Cutwidth parameterized by treewidth is a non trivial problem left open in [29].
Bandwidth is NP-complete for trees and the parameterized complexity of Imbalance
and Distortion with treewidth as parameter is unknown.

– A classical result in parameterized algorithms is that p-Variable Integer Linear
Programming Feasiblity (p-ILP) is FPT. This powerful result, first proved by
Lenstra in [5] 2 and later improved by Kannan [4], is very rarely used in parame-
terized complexity. The only previously known examples of applications of this result
in parameterized algorithms is in an FPT algorithm for the Closest String prob-
lem [19] and in an EPTAS for Min-Makespan-Scheduling problem [1]. In fact,
Niedermeier has explicitly asked for more applications of the result that p-ILP is FPT.
In this context we quote Niedermeier [[12], Page Number:184]

“. . . it remains to investigate further examples besides Closest String where
the described ILP approach turns out to be applicable. More generally, it would
be interesting to discover more connections between fixed-parameter algorithms
and (integer) linear programming. . . . ”

We extensively use this result in all our algorithms, thus giving more examples of its
applicability.

We would like to point out that an improved version of the Lenstra/Kannan algorithm
for p-ILP designed by Frank and Tardos [8] uses space polynomial in p and input size.
We apply this to give a polynomial space FPT algorithm for Bandwidth parameterized
by vc(G). This gives an interesting distinction between vc(G) and treewidth parameter-
izations, because almost all algorithms for graphs of bounded treewidth apply dynamic
programming and thus need exponential space.

In Section 2, we give a brief introduction to integer linear programming parameterized
by the number of variables. Sections 3, 4, 5 and 6 contain FPT algorithms for Imbalance,
Cutwidth, Bandwidth and Distortion respectively. The reader is encouraged to read
the section on Imbalance before proceeding to the later sections because this section
contains a description of general scheme used in all our algorithms. Finally we conclude
with some remarks and open problems in Section 7.

2 Integer Linear Programming with Few Variables

Integer linear programming (ILP) is the framework in which we will eventually formulate
all the problems studied. In this section we describe the required results in this direction.

p-Variable Integer Linear Programming Feasiblity (p-ILP): Given matri-
ces A ∈ Zm×p and b ∈ Zm×1, the question is whether there exists a vector x̄ ∈ Zp×1

satisfying the m inequalities, that is, A · x̄ ≤ b. The number of variables p is the
parameter.

Lenstra [5] showed that p-ILP is FPT with running time doubly exponential in p.
Later, Kannan [4] provided an algorithm for p-ILP running in time pO(p). The algorithm

2 This paper received Fulkerson Prize in 1985 for an outstanding contribution in the area of discrete
mathematics.

4 Fellows, Lokshtanov, Misra, Rosamond, and Saurabh

uses Minkowski’s Convex Body theorem and other results from Geometry of Numbers. A
bottleneck in this algorithm was that it required space exponential in p. Using the method
of simultaneous Diophantine approximation, Frank and Tardos [8] describe preprocessing
techniques, using which it is shown that Lenstra’s and Kannan’s algorithms can be made
to run in polynomial space. They also slightly improve the running time of the algorithm.
For our purposes, we use this algorithm.

Theorem 1 ([4],[5],[8]). p-Variable Integer Linear Programming Feasiblity
can be solved using O(p2.5p+o(p) ·L) arithmetic operations and space polynomial in L. Here
L is the number of bits in the input.

Later, a randomized algorithm for p-ILP was provided by Clarkson, we refer to [9]
for further details. The result of Lenstra was extended by Khachiyan and Porkolab [6]
to semidefinite integer programming. In their work, they show that if Y is a convex set
in Rk defined by polynomial inequalities and equations of degree at most d ≥ 2, with
integer coefficients of binary length at most l, then for fixed k, the problem of computing
an optimal integral solution y∗ to the problem min {yk | y(y1, . . . , yl) ∈ Y ∪Zk} admits an
FPT algorithm. Their algorithm was further improved by Heinz [7] in the specific case of
minimizing a polynomial F̂ on the set of integer points described by an inequality system
Fi ≤ 0, 1 ≤ i ≤ s where the Fi’s are quasiconvex polynomials in p variables with integer
coefficients. This algorithm generalizes Lenstra’s algorithm. In our algorithms we need the
optimization version of p-ILP rather than the feasibility version. We proceed to define the
minimization version of p-ILP.

p-Variable Integer Linear Programming Optimization (p-Opt-ILP): Let
matrices A ∈ Zm×p, b ∈ Zm×1 and c ∈ Z1×p be given. We want to find a vector
x̄ ∈ Zp×1 that minimizes the objective function c·x̄ and satisfies the m inequalities,
that is, A · x̄ ≥ b. The number of variables p is the parameter.

Now we are ready to state the theorem we will use in the later sections.

Theorem 2. p-Opt-ILP can be solved using O(p2.5p+o(p) · L · log (MN)) arithmetic op-
erations and space polynomial in L. Here, L is the number of bits in the input, N is the
maximum of the absolute values any variable can take, and M is an upper bound on the
absolute value of the minimum taken by the objective function.

Proof. We can first do a binary search to find the minimum value of the objective function.
For an example suppose we guess that c·x̄ ≤ M

2 . Now we make a new matrixA′ of dimension
(m + 1) × p whose first row consists of c and rest of the rows is −A (by taking negative
of every entry of A). We will denote the matrix A′ as [c

−A]. Similarly we make b′ = [M/2
−b].

Now we apply Theorem 1 to check whether there exists a vector x′ ∈ Zp×1 such that
A′ · x′ ≤ b′. Having found the minimum value of the objective function in this way, we
find the lexicographically smallest solution satisfying these inequalities. We determine the
value of one variable at a time by doing a binary search similar to the one we used to find
the minimum of the objective function. For all this we need to run the algorithm for ILP
feasibility at most O(p · logN + logM) times. ut

3 Imbalance: The Inner Order is Irrelevant

The solutions to all the problems considered in this paper follow the same basic scheme.
The case of Imbalance is the simplest exhibition of this theme, and our algorithm for

Graph Layout problems Parameterized by Vertex Cover 5

Imbalance will act as a template for the other algorithms to follow. We now proceed
to give an FPT algorithm for the Imbalance problem parameterized by the size of the
minimum vertex cover of the input graph. Our input consists of a graph G = (V,E), and
a vertex cover C = {c1, . . . , ck} of size k.

Fixing the order of appearce of vertices in C: We are looking for a permutation
π : V → {1, 2, . . . , n} for which fim(π) is minimized. In order to do this, we loop over all
possible permutations of the vertex cover C and for each such permutation πc, find the best
permutation π of V that agrees with πc. We say that π and πc agree if for all ci, cj ∈ C we
have that ci <π cj if and only of ci <πc cj . In other words, the relative ordering π imposes
on C is precisely πc. Thus, at a cost of a factor of k! in the running time we can assume
that there exists an optimal permutation π such that c1 <π c2 <π . . . <π ck.

Definition 1 Let πc be an ordering of C such that c1 <πc c2 <πc . . . <πc ck. We define
Ci to be {c1, c2, . . . , ci} for every i such that 1 ≤ i ≤ k.

Types of Vertices: Let I be the independent set V \ C. We associate a type with each
vertex in I. A “type” is simply a subset of C.

Definition 2 Let I be the independent set V \C. The type of a vertex v in I is N(v). For
a type S ⊆ C the set I(S) is the set of all vertices in I of type S.

Notice that two vertices of the same type are indistinguishable up to automorphisms of
G, and that there are 2k different types.

Inner Order: Observe that every vertex of I is either mapped between two vertices of C,
to the left of c1 or to the right of ck by a permutation π. For a permutation π we say that
a vertex v is at location 0 if v <π c1 and at location i if i is the largest integer such that
ci <π v. The set of vertices that are at location i is denoted by Li. We define the inner
order of π at location i to be the permutation defined by π restricted to Li.

The task of finding an optimal permutation can be divided into two parts. The first
part is to partition the set I into L0, . . . , Lk, while the second part consists of finding an
optimal inner order at all locations. One should notice that partitioning I into L0, . . . , Lk
amounts to deciding how many vertices of each type are at location i for each i. For most
layout problems, figuring out the right partitioning turns out to be more difficult than
determining the inner orders once the partitioning is known. For Imbalance, this turns
out to be particularly true as the inner orders in fact are irrelevant. The reason for this
is that permuting the inner order of π at location i does not change the imbalance of any
single vertex where the imbalance of a vertex v is |Lπ(v) − Rπ(v)|. Finding the optimal
ordering of the vertices thus reduces to finding the right partition of I into L0, . . . , Lk. We
formalize this as an instance of p-Opt-ILP.

ILP Formulation: For a type S and location i we let xiS be a variable that encodes
the number of vertices of type S that are at location i. Also, for every vertex ci in C
we have a variable yi that represents the imbalance of ci. In order to represent a feasible
permutation, all the variables must be non-negative. Also the variables xiS must satisfy
that for every type S,

∑k
i=0 x

i
S = |I(S)|. For every vertex ci of the vertex cover let ei =∣∣|N(ci) ∩ Ci−1| − |N(ci) ∩ (C \ Ci)| be a constant. Finally for every ci ∈ C we add the

constarint yi = ei +
∣∣∑

{S⊆C|ci∈S}
(∑i−1

j=0 x
j
S −

∑k
j=i x

j
S

)∣∣.
One should notice that the last set of constraints is not a set of linear constraints.

However, we can guess the sign of y′i = ei +
∑
{S⊆C|ci∈S}

(∑i−1
j=0 x

j
S −

∑k
j=i x

j
S

)
for every

6 Fellows, Lokshtanov, Misra, Rosamond, and Saurabh

i in an optimal solution. This increases the running time by a factor of 2k. For every i
we let ti take the value 1 if we have guessed that y′i ≥ 0 and we let ti take the value −1
if we have guessed that y′i < 0. We can now replace the non-linear constraints with the
linear constraints yi = tiy

′
i for every i. Finally, for every type S and location i, let ziS be

the constant
∣∣|S ∩ Ci| − |S ∩ (C \ Ci)|

∣∣. We are now ready to formulate the integer linear
program.

min
k∑
i=1

ti · yi +
∑
S⊆C

ziS · xiS

such that
∑
i

xiS = |I(S)| for all i ∈ {0, . . . , k}, S ⊆ C

yi = tiei +
∑

{S⊆C|ci∈S}

(∑i−1
j=0 tix

j
S −

∑k
j=i tix

j
S

)
for all i ∈ {1, . . . , k}

xiS , yi ≥ 0 for all i ∈ {0, . . . , k}, S ⊆ C

Since the value of fim(π) is bounded by n2 and the value of any variable in the integer
linear program is bounded by n, Theorem 2 implies that this integer linear program can
be solved in FPT time, thus implying the following theorem.

Theorem 3. The Imbalance problem parameterized by the vertex cover number of the
input graph is fixed parameter tractable.

4 Cutwidth: The Inner Order is Known

In the Cutwidth problem, we are to find the permutation of the vertices of the input
graph that minimizes fcw(π), the maximum cut in the permutation. We proceed to give
an FPT algorithm for minimizing fcw(π) in graphs with small vertex covers. The input
is a graph G = (C ∪ I, E) with C being a vertex cover of size k. We define the rank of a
vertex v with respect to a vertex set S to be rank(S, v) = |N(v) \ S| − |N(v) ∩ S|. Notice
that |∂(S ∪ v)| = |∂(S)|+ rank(S, v).

Just as for the Imbalance problem, we guess the order c1 <πc . . . <πc ck of the
vertices in C in an optimal permutation π. We consider the inner order of Li for some i
between 0 and k. Suppose π(ci) = s, then, for any t with s < t ≤ s + |Li| we have that
|∂(Vt)| = |∂(Vs)| +

∑t
j=s+1 rank(Vj−1, vj). Since the set of vertices in the locations form

an independent set, rank(Vj−1, vj) = rank(Ci, vj) for every j between s + 1 and t. This
gives the equation |∂(Vt)| = |∂(Vs)|+

∑t
j=s+1 rank(Ci, vj).

Hence if we start with an optimal permutation π and reorganize the inner order at each
location i to sort the vertices by rank with respect to Ci in non-decreasing order, we get
another optimal ordering with a fixed inner order for each location. In such orderings the
largest values of |∂(Vi)| occur either at i = π(cj)− 1 or at i = π(cj) for some j between 1
and k. Since the rank of a vertex v ∈ I with respect to Ci only depends on i and the type
of v, we can use this together with the fact that |∂(Vt)| = |∂(Vs)| +

∑t
j=s+1 rank(Ci, vj)

in order to give an integer linear programming formulation for the Cutwidth problem.
For every type S and location i we introduce a variable xiS that tells us the number of

vertices of type S that are at location i. For every i between 1 and k we add a variable yi
which encodes rank(Vπ(ci)−1, ci) and the constant ei = |N(ci)∩ (C \Ci)| − |N(ci)∩Ci−1|.

Graph Layout problems Parameterized by Vertex Cover 7

For every type S and location i we also compute the constant eiS that indicates the rank
of a vertex of type S with respect to Ci. Finally we need a variable c that represents
the cutwidth of G. For the constraints, as for the Imbalance problem, we need to make
sure the variables xiS represent a valid partitioning of I into L0, . . . , Lk. Finally we need
constraints to encode the rank of the vertex cover vertices and the connection between the
partitioning of I and the cutwidth c. This yields the following integer linear program:

min c

such that
∑
i

xiS = |I(S)| for all S ⊆ C

yi = ei +
∑

{S⊆C|ci∈S}

(k∑
j=i

xjS −
i−1∑
j=0

xjS
)

for all i ∈ {0, . . . , k}

c ≥
i∑

j=0

yj +
i−1∑
j=0

∑
S⊆C

ejS · x
j
S for all i ∈ {1, . . . , k}

c ≥
i−1∑
j=0

yj +
i−1∑
j=0

∑
S⊆C

ejS · x
j
S for all i ∈ {1, . . . , k}

xiS ≥ 0 for all i ∈ {0, . . . , k}, S ⊆ C

Since the value of fcw(π) is bounded by n2 and the value of any variable in the integer
linear program is bounded by n2, Theorem 2 implies that this integer linear program can
be solved in FPT time, yielding the following theorem.

Theorem 4. The Cutwidth problem parameterized by the minimum vertex cover of the
input graph is fixed parameter tractable.

5 Bandwidth: The Inner Order is Structured I

In the Bandwidth problem the aim is to minimize the function fbw(π) = maxuv∈E |π(u)−
π(v)|. As for the previous cases we guess the ordering c1 <πc . . . <πc ck of the vertices
in C in an optimal permutation π. Since we now are looking for the optimal permutation
π that agrees with this ordering of the vertices in C, we observe that for a vertex v ∈ I
the only relevant neighbours in C are the leftmost and rightmost neighbour. We can thus
delete the edges from v to all other neighbours of v. After this reduction every vertex in
I has degree at most 2, and thus the number of different types is bounded by k2 rather
than 2k.

For Bandwidth, we are not able to determine the inner orders a priori, contrary
to the situation we had for Cutwidth. Instead we will show that there is an optimal
permutation where the inner orderings have a specific structure. We say that an interval
[a, b] on the integer line is uniform if all vertices π maps to [a, b] have the same type. A zone
is an inclusion maximal uniform interval, and for a layout π of the vertices of G, the zonal
dimension of π at location i, ζi(π), is the number of zones inside [π(ci)+1, π(ci+1)−1]. The
zonal dimension of π is ζ(π) = maxki=0 ζi(π). Our approach consists of two parts. First we
show that there is an ordering π minimizing bandwidth such that ζ(π) ≤ k2(2k+ 1) + 2k.
We then use this to show that Bandwidth parameterized by the size of the minimum
vertex cover of the input graph is fixed parameter tractable.

8 Fellows, Lokshtanov, Misra, Rosamond, and Saurabh

Lemma 1. For a graph G = (C ∪ I, E), there is an optimal bandwidth ordering π with
ζ(π) ≤ k2(2k + 1) + 2k.

Proof. We start with an optimal bandwidth ordering π′ and construct the desired optimal
ordering π by rearranging the vertices of Li for each i. The bandwidth of G is b = fbw(π′).
Assume without loss of generality that c1 <π′ c2 <π′ · · · <π′ ck. Notice that since I is
an independent set, we can rearrange the vertices of Li independently for each i. Thus it
is sufficient to show that for a given i we can rearrange the vertices in Li such that the
resulting ordering π has bandwidth at most b and with ζi(π) ≤ k2(2k + 1) + 2k ≤ 3k3.

The permutation π′ lays out Li on the interval X = [π(ci) + 1, π(ci+1) − 1]. We say
that a position x ∈ X is crucial if there is a j such that |π′(cj) − x| = b. There are
s ≤ 2k crucial points in X, call them x1, . . . , xs. Now, notice that since all edges incident
to vertices in Li have their other endpoint in C, we can freely rearrange the vertices on an
interval [xj + 1, xj+1 − 1] without increasing the bandwidth. Thus, on each such interval
we sort the vertices on that interval according to their type. As there are at most k2 types,
at most 2k+ 1 such intervals and at most 2k vertices at crucial positions this implies that
after the rearrangement ζi(π) ≤ k2(2k + 1) + 2k, concluding the proof. ut

So, how can one use Lemma 1 to give an integer linear program for the Bandwidth
problem? The trick is to guess the correct values of ζi(π) for every i and guess which type of
vertices appears in each zone. We can do this at a cost of a factor (3k3)k+1(k2)3k

3
= kO(k3)

in the running time. Note that the zones are ordered from left to right. We can now set up
an integer linear program where the variables encode how many vertices there are in each
zone. Let xi be a variable that encodes the number of vertices in zone number i from the
left. For each type S ⊆ C such that I(S) is nonempty, we let Z(S) be the set of integers
such that for each i ∈ Z(S) we have guessed that the vertices in the zone i have type
S. Let lS and rS be the smallest and largest numbers in Z(S) respectively. Now, for an
integer 1 ≤ i ≤ k we let ei be the number of zones guessed to be to the left of ci. Finally,
for an integer i between 1 and k and a type S we define the constant t1(i, S) to be the
number of vertices from C to the right of zone number lS and to the left of ci. Similarly,
let t2(i, S) be the number of vertices from C to the left of zone number rS and to the right
of ci. Having made the discussed guesses, we can formulate the Bandwidth problem as
an integer linear program as follows:

min b

such that
∑

i∈Z(S)

xi = |I(S)| for all S ⊆ C : I(S) 6= ∅

b ≥ j − i− 1 +
ej∑

q=ei+1

xq for all cicj ∈ E

b ≥ t1(i, S) +
ei∑

j=lS

xj for all i ∈ {1, . . . , k}, S ⊆ C : I(S) 6= ∅, ci ∈ S

b ≥ t2(i, S) +
rS∑

j=ei+1

xj for all i ∈ {1, . . . , k}, S ⊆ C : I(S) 6= ∅, ci ∈ S

xi ≥ 0 for all i ∈ {0, . . . , k}

(1)

Graph Layout problems Parameterized by Vertex Cover 9

Because the value of fbw(π) is bounded from above by n and the value of any variable
in the integer linear program is bounded by n, Theorem 2 implies that this integer linear
program can be solved in FPT time, yielding the following theorem.

Theorem 5. The Bandwidth problem parameterized by the size k of the minimum vertex
cover of the input graph can be solved in time kO(k3)n and polynomial space.

Proof. The algorithm loops over all possible permutations of C, all possible values of ζi
for all i and all possible assignments of types to zones. The total number of zones is at
most the number of crucial positions plus k2 multiplied by the total number of vertices in
C plus the number of crucial positions. As the total number of crucial vertices is bounded
by 2k the total number of zones is at most 2k + (k2)3k = O(k3). Thus, the number
of iterations of the loop over all possible guesses is bounded by k!(k2)O(k3) = kO(k3).
For each iteration of the outer loop we need to set up the integer linear program (1).
This can be done in time linear in n and polynomial in k, since the number of types
is bounded by k2. The total number of variables in ILP (1) is at most the number of
zones plus 1, that is at most O(k3). Again, since the number of types is bounded, the
number of constraints is a polynomial in k. Therefore the total number L of bits needed
to encode ILP (1) is bounded by kc log n. Hence, by Theorem 2, ILP (1) can be solved in
time O((k3)O(k3) · log2 n) = kO(k3) log2 n. Thus, the total running time of the algorithm
is bounded by kO(k3)(nkc + kO(k3) log2 n) = kO(k3)n. Since the number of constraints is
polynomial in k and the algorithm to solve integer linear programming is a polynomial
space algorithm, so is the described algorithm for the Bandwidth problem. ut

6 Distortion: The Inner Order is Structured II

In this section we consider the parametrized complexity of embedding graph metrics into
the real line, parameterized by the size of the minimum vertex cover of the input graph.
Given an undirected graph G = (V,E), a natural metric associated with G is M(G) =
(V,D) where the distance function D is the shortest path distance between u and v for
each pair of vertices u, v ∈ V . Given a graph metric M and another metric space M ′ (like
real line) with distance functions D and D′, a mapping f : M →M ′ is called an embedding
of M into M ′. The mapping f has contraction cf and expansion ef if for every pair of
points p, q in M , D(p, q) ≤ D′(f(p), f(q)) ·cf and D(p, q) ·ef ≥ D′(f(p), f(q)) respectively.
A mapping f has distortion d if (ef · cf) is at most d. We say that f is non-contracting
if cf is at most 1. A non-contracting mapping f has distortion d if ef is at most d. As
observed by several authors before [18, 25], the problem of finding a minimum distortion
embedding of a graph metric into the line can be expressed as a problem of finding the
permutation π : V → {1, 2, . . . , n} that minimizes fdi(π) = maxuv∈E

∑π(v)−1
i=π(u) D(vi, vi+1).

Lemma 2 ([18]). A graph G = (V,E) has a distortion d embedding f into the real line
if and only if there is a permutaion π : V → {1, 2, . . . , n} such that fdi(π) ≤ d.

For a permutation π and two vertices u and v such that u <π v we define Dπ(u, v) =∑π(v)−1
i=π(u) D(vi, vi+1). If v <π u then Dπ(u, v) is defined to be Dπ(v, u). We give a fixed

parameter tractable algorithm for the Distortion problem parameterized by the size of
the minimum vertex cover of the input graph. Our approach is similar to, albeit more
involved than, the algorithm presented for the Bandwidth problem. As for the previous

10 Fellows, Lokshtanov, Misra, Rosamond, and Saurabh

problems, we iterate over all k! ways to order the vertices of C into c1 <πc . . . <πc ck. We
proceed to show that there is an optimal permutation π such that ζ(π) ≤ (4k + 1)22k .

Lemma 3. For a graph G = (C ∪ I, E), there is an optimal distortion ordering π with
ζ(π) ≤ (4k + 1)22k .

Proof. We start with an optimal distortion ordering π with smallest value of
∑k

i=0 ζi(π)
and show that if it has zonal dimension more than (4k + 1)22k then we can rearrange
some of the vertices giving another optimal ordering with smaller value of

∑k
i=0 ζi(π) and

thus obtaining a contradiction. The distortion of G is d = fDi(π). Assume without loss
of generality that c1 <π c2 <π · · · <π ck. Notice that since I is an independent set, we
can rearrange the vertices of Li independently for each i, provided that the rearrangement
does not increase Dπ(vi, vi+1). Thus it is sufficient to show that for a given i we can
rearrange the vertices in Li such that the resulting ordering π has distortion at most d,
without increasing Dπ(vi, vi+1) and with ζi(π) ≤ (4k+ 1)22k . π lays out Li on the interval
X = [π(ci) + 1, π(ci+1)− 1]. We give a recursive definition of crucial zones.

A zone [a, b] ⊆ X is crucial if there is a j with D(cj , vb) ≤ d and D(cj , vb+1) > d or if
there is a j with D(cj , va) ≤ d and D(cj , va−1) > d. Second, let Y be a maximal subinterval
of X not intersecting with any crucial zones. If a zone [a, b] ⊆ Y is the only zone in Y that
contains vertices of a type S, then the zone [a, b] is also said to be crucial. We repeat the
second step until no more crucial zones are found. Now we proceed to show that there can
be at most (4k + 1)22k crucial zones.

Let X1 . . . Xp be the crucial zones found in the first step, sorted from left to right.
Notice that p ≤ 4k. Let Y1 . . . Yp′ be the maximal subintervals of X not intersecting with
any intervals out of X1 . . . Xp. It follows that p′ ≤ p + 1 ≤ 4k + 1. We build p′ rooted
trees, with each vertex of the tree number j representing a subinterval of Yj . Tree j has
a vertex labelled Yj as the root. Now, if we find a zone Z inside Yj such that Z is the
only zone inside Yj containing vertices of a type S, the zone Z becomes a crucial zone by
the second step of the recursive definition of crucial zones. In this case Yj is no longer a
maximal subinterval of X containing no crucial zones. However, Z splits Yj into at most
2 subintervals Y ′a and Y ′b that are. We add two children labelled Y ′a and Y ′b to tree Yj . If
at a later stage a crucial zone is found inside Y ′a we add children to the node labelled Y ′a.
We continue this process until no more crucial zones are found. The key observations are
that each node of each tree has at most 2 children, and that if a vertex labelled Y ′r has a
child labelled Y ′s , then the number of different types of vertices π′ maps to Y ′r is strictly
greater than the number of different types of vertices π′ maps to Y ′s . Thus each tree we
build is a binary tree of height at most 2k. As each crucial zone corresponds to an inner
node of one of these trees, there can be at most (4k + 1)22k crucial zones.

We now prove that every zone of X is crucial. Suppose for contradiction that it is not.
Then, let Y = [a, b] be a maximal subinterval of X not intersecting any crucial zones.
Notice that if we rearrange the vertices mapped to Y in a way that does not increase
Dπ(va−1, vb+1) then the obtained permutation is an optimal ordering. Thus we need to
show that the vertices mapped to Y can be rearranged without increasing Dπ(va−1, vb+1)
and such that the number of zones in Y goes down, thereby contradicting that π is the
optimal distortion ordering that minimizes

∑k
i=0 ζi(π). Y does not contain a zone Z such

that Z is the only zone in Y that contains vertices of a type S. Thus for every type S
such that there is a vertex of type S in Y there are at least two zones that contain vertices
of type S. Now, pick an inclusion minimal subinterval Y ′ of Y such that Y ′ contains two

Graph Layout problems Parameterized by Vertex Cover 11

zones with vertices of the same type. There must be some other types S1 . . . St that are
represented on the interval Y ′. For each type Sj with 1 ≤ j ≤ t there is a zone in Y outside
of Y ′ that also contains vertices of type Sj . Now, for every j such that 1 ≤ j ≤ t we move
the vertices in Y ′ of type Sj to another zone of vertices of type Sj in Y outside of Y ′. This
rearrangement reduces the number of zones by t > 0 and does not increase Dπ(va−1, vb+1)
because distance between two vertices of the same type is 2 while the distance between
any pair of vertices in I is at least 2. Since we assumed that π is the optimal ordering with
the smallest value of

∑k
i=0 ζi(π), this is a contradiction. ut

Using Lemma 3 we can give an algorithm for the Distortion problem similar to
the algorithm for Bandwidth. The algorithm proceeds excactly as for Bandwidth with
the only differences being that the zonal dimension is much larger, and that one has to be
careful to introduce constants that encode the distance between two consecutive vertices in
the ILP. Notice that since the zonal dimension is not polynomial in k for the Distortion
problem, we do not obtain a polynomial space algorithm.

Theorem 6. The Distortion problem parameterized by the minimum vertex cover of
the input graph is fixed parameter tractable.

7 Conclusion and Discussions

In this paper we considered parameterization by vertex cover number of the graph, a struc-
tural parameter stronger than the treewidth. This enabled us to show that graph layout
problems Cutwidth, Bandwidth, Imbalance and Distortion are FPT parameter-
ized by vertex cover number of the graph. This is in contrast to the parameterization by
treewidth for which the paramterized complexity of these problems is open. The structural
parameterization of vertex cover number also brought forward the technique of bounded
variable integer linear programming to importance. We believe that this (underused) pow-
erful result will become one of the basic tools in classifying whether a problem is FPT, as
well as in designing practical algorithms, because p-ILP is well solved for p up to 1000.

One may wonder whether there exists a problem which is not FPT for graphs of
bounded vertex cover number. This in indeed the case, as List Coloring remains W [1]-
hard even for graphs of bounded vertex cover number. An important graph layout problem
is Optimal Linear Arrangement where the objective is to minimize the sum of |∂Vi|.
We can show that this problem is in XP by giving an algorithm of time complexity nf(k)

when parameterized by the vertex cover number of the input graph. The main difficulty
we face in encoding this problem as ILP is that the objective function is not linear, but
quadratic. Hence in this direction the following questions still remain unanswered.

– Is Optimal Linear Arrangement FPT parameterized by the vertex cover number
of the input graph?

– Is Cutwidth FPT parameterized by the treewidth of the input graph?

References

1. N. Alon, Y. Azar, G. J. Woeginger and T. Yadid. Approximation schemes for scheduling on parallel
machines. J. of Scheduling 1, 55–66 (1998).

2. D. Adolphson and T. C. Hu. Optimal linear ordering. SIAM J. Appl. Math. 25: 403-423, (1973).
3. Bruno Courcelle: The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs

Inf. Comput. 85(1): 12-75 (1990).

12 Fellows, Lokshtanov, Misra, Rosamond, and Saurabh

4. Ravi Kannan. Minkowski’s Convex Body Theorem and Integer Programming. Mathematics of Opera-
tions Research 12, 415-440 (1987).

5. HW Lenstra. Integer Programming with a Fixed Number of Variables. Mathematics of Operations
Research 8, 538-548, (1983).

6. L. Khachiyan and L. Porkolab. Integer Optimization on Convex Semialgebraic Sets. Discrte Compu-
tational Geometry, 23, 207-224 (2000).

7. Sebastian Heinz. Complexity of integer quasiconvex polynomial optimization. Journal of Complexity
21, 543–556 (2005).

8. András Frank and Éva Tardos. An Application of Simultaneous Diophantine Approximation in Com-
binatorial Optimization. Combinatorica 7, 49-65 (1987).

9. Kenneth L. Clarkson. Las Vegas Algorithms for Linear and Integer Programming When the Dimension
is Small. Journal of the Association for Computing Machinery, Vol 42, No. 2 , 488-499 (1995).

10. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag, New York, (1999).
11. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag, Berlin, (2006).
12. R. Niedermeier. Invitation to fixed-parameter algorithms, vol. 31 of Oxford Lecture Series in Mathe-

matics and its Applications. Oxford University Press, Oxford, (2006).
13. F. Makedon and I. H. Sudborough. Minimizing width in linear layouts. In Proceedings of ICALP 1983,

LNCS 154, pp. 478–490 (1983).
14. G. Blin, G. Fertin, D. Hermelin, and S. Vialette. Fixed-parameter algorithms for protein similarity

search under RNA structure constraints. In the Proceedings of WG, LNCS 3787, pages 271–282 (2005).
15. R. A. Botafogo. Cluster analysis for hypertext systems. In Proceedings of SIGIR 1993, pp. 116–125,

ACM, (1993).
16. P. Chinn, J. Chvatalova, A. Dewdney and N. Gibbs, The bandwidth problem for graphs and matrices

– a survey. Journal of Graph Theory, 6, 223-254 (1982).
17. Michael R. Fellows, Frances A. Rosamond. The Complexity Ecology of Parameters: An Illustration

Using Bounded Max Leaf Number. In the Proceedings of CiE, LNCS 4497, 268-277 (2007).
18. Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Elena Losievskaja, Frances A. Rosamond,

Saket Saurabh. Parameterized Low-distortion Embeddings - Graph metrics into lines and trees, CoRR
abs/0804.3028: (2008)

19. Jens Gramm, Rolf Niedermeier, Peter Rossmanith. Fixed-Parameter Algorithms for CLOSEST
STRING and Related Problems. Algorithmica 37(1): 25-42 (2003).

20. A. Gupta, I. Newman, Y. Rabinovich, and A. Sinclair. Cuts, trees and l1-embeddings of graphs.
Combinatorica 24 (2) , 233–269, (2004).

21. G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica 16 (1), pp. 4–32 (1996).
22. G. Kant and X. He. Regular edge labeling of 4-connected plane graphs and its applications in graph

drawing problems. Theoret. Comput. Sci. 172 (1-2), 175–193 (1997).
23. M. Junguer, G. Reinelt, and G. Rinaldi. The traveling salesman problem. In Handbook on Operations

Research and Management Sciences, vol. 7, 225-330, North-Holland, (1995).
24. P. Mutzel. A polyhedral approach to planar augmentation and related problems. In Proceedings of

ESA 1995, LNCS 979, 497–507 (1995).
25. Pinar Heggernes, Daniel Meister, and Andrzej Proskurowski. Minimum distortion embeddings into a

path of bipartite permutation and threshold graphs. LNCS 5124, 331-342 (2008).
26. D. R. Karger. A randomized fully polynomial approximation scheme for all terminal network reliability

problem. In Proceedings of STOC, 11–17, ACM, (1996).
27. Nathan Linial, Eran London, Yuri Rabinovich. The Geometry of Graphs and Some of its Algorithmic

Applications. Combinatorica 15(2): 215-245 (1995).
28. A. Papakostas and I.G. Tollis. Algorithms for area-efficient orthogonal drawings. Computational Ge-

ometry 9, 83–110 (1998).
29. Dimitrios M. Thilikos, Maria J. Serna, Hans L. Bodlaender. Cutwidth II: Algorithms for partial w-trees

of bounded degree. J. Algorithms 56(1): 25-49 (2005).
30. D.R. Wood. Optimal three-dimensional orthogonal graph drawing in the general position model. The-

oret. Comput. Sci. 299 (1-3), 151–178 (2003).
31. D.R. Wood. Minimising the number of bends and volume in three-dimensional orthogonal graph draw-

ings with a diagonal vertex layout. Algorithmica 39 (3), 235–253, (2004).

