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Abstract—Graphs are widely used as a popular representation
of the network structure of connected data. Graph data can
be found in a broad spectrum of application domains such
as social systems, ecosystems, biological networks, knowledge
graphs, and information systems. With the continuous penetra-
tion of artificial intelligence technologies, graph learning (i.e.,
machine learning on graphs) is gaining attention from both
researchers and practitioners. Graph learning proves effective for
many tasks, such as classification, link prediction, and matching.
Generally, graph learning methods extract relevant features of
graphs by taking advantage of machine learning algorithms.
In this survey, we present a comprehensive overview on the
state-of-the-art of graph learning. Special attention is paid to
four categories of existing graph learning methods, including
graph signal processing, matrix factorization, random walk,
and deep learning. Major models and algorithms under these
categories are reviewed respectively. We examine graph learning
applications in areas such as text, images, science, knowledge
graphs, and combinatorial optimization. In addition, we discuss
several promising research directions in this field.

Index Terms—Graph learning, graph data, machine learning,
deep learning, graph neural networks, network representation
learning, network embedding.

IMPACT STATEMENT

Real-world intelligent systems generally rely on machine

learning algorithms handling data of various types. Despite

their ubiquity, graph data have imposed unprecedented chal-

lenges to machine learning due to their inherent complexity.

Unlike text, audio and images, graph data are embedded

in an irregular domain, making some essential operations

of existing machine learning algorithms inapplicable. Many

graph learning models and algorithms have been developed

to tackle these challenges. This paper presents a systematic

review of the state-of-the-art graph learning approaches as

well as their potential applications. The paper serves mul-

tiple purposes. First, it acts as a quick reference to graph

learning for researchers and practitioners in different areas

such as social computing, information retrieval, computer

vision, bioinformatics, economics, and e-commence. Second,

it presents insights into open areas of research in the field.

Third, it aims to stimulate new research ideas and more

interests in graph learning.
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G
RAPHS, also referred to as networks, can be extracted

from various real-world relations among abundant enti-

ties. Some common graphs have been widely used to formulate

different relationships, such as social networks, biological

networks, patent networks, traffic networks, citation networks,

and communication networks [1]–[3]. A graph is often defined

by two sets, i.e., vertex set and edge set. Vertices represent en-

tities in graph, whereas edges represent relationships between

those entities. Graph learning has attracted considerable atten-

tion because of its wide applications in the real world, such as

data mining and knowledge discovery. Graph learning meth-

ods have gained increasing popularity for capturing complex

relationships, as graphs exploit essential and relevant relations

among vertices [4], [5]. For example, in microblog networks,

the spread trajectory of rumors can be tracked by detecting

information cascades. In biological networks, new treatments

for difficult diseases can be discovered by inferring protein

interactions. In traffic networks, human mobility patterns can

be predicted by analyzing the co-occurrence phenomenon with

different timestamps [6]. Efficient analysis of these networks

massively depends on the way how networks are represented.

A. What is Graph Learning?

Generally speaking, graph learning refers to machine learn-

ing on graphs. Graph learning methods map the features

of a graph to feature vectors with the same dimensions in

the embedding space. A graph learning model or algorithm

directly converts the graph data into the output of the graph

learning architecture without projecting the graph into a low

dimensional space. Most graph learning methods are based

on or generalized from deep learning techniques, because

deep learning techniques can encode and represent graph data

into vectors. The output vectors of graph learning are in

continuous space. The target of graph learning is to extract

the desired features of a graph. Thus the representation of

a graph can be easily used by downstream tasks such as

node classification and link prediction without an explicit

embedding process. Consequently, graph learning is a more

powerful and meaningful technique for graph analysis.

In this survey paper, we try to examine machine learning

methods on graphs in a comprehensive manner. As shown

in Fig. 1, we focus on existing methods that fall into the

following four categories: graph signal processing (GSP) based

methods, matrix factorization based methods, random walk

based methods, and deep learning based methods. Roughly

speaking, GSP deals with sampling and recovery of graph, and

learning topology structure from data. Matrix factorization can

be divided into graph Laplacian matrix factorization and vertex

proximity matrix factorization. Random walk based methods
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include structure-based random walk, structure and node in-

formation based random walk, random walk in heterogeneous

networks, and random walk in time-varying networks. Deep

learning based methods include graph convolutional networks,

graph attention networks, graph auto-encoder, graph generative

networks, and graph spatial-temporal networks. Basically, the

model architectures of these methods/techniques differ from

each other. This paper presents an extensive review of the

state-of-the-art graph learning techniques.

Traditionally, researchers adopt an adjacency matrix to

represent a graph, which can only capture the relationship

between two adjacent vertices. However, many complex and

irregular structures cannot be captured by this simple repre-

sentation. When we analyze large-scale networks, tradition-

al methods are computationally expensive and hard to be

implemented in real-world applications. Therefore, effective

representation of these networks is a paramount problem to

solve [4]. Network Representation Learning (NRL) proposed

in recent years can learn latent features of network vertices

with low dimensional representation [7]–[9]. When the new

representation has been learned, previous machine learning

methods can be employed for analyzing the graph data as well

as discovering relationships hidden in the data.

When complex networks are embedded into a latent, low

dimensional space, the structural information and vertex at-

tributes can be preserved [4]. Thus the vertices of networks can

be represented by low dimensional vectors. These vectors can

be regarded as the features of input in previous machine learn-

ing methods. Graph learning methods pave the way for graph

analysis in the new representation space, and many graph

analytical tasks, such as link prediction, recommendation and

classification, can be solved efficiently [10], [11]. Graphical

network representation sheds light on various aspects of social

life, such as communication patterns, community structure,

and information diffusion [12], [13]. According to the at-

tributes of vertices, edges and subgraph, graph learning tasks

can be divided into three categories, which are vertices based,

edges based, and subgraph based, respectively. The relation-

ships among vertices in a graph can be exploited for, e.g.,

classification, risk identification, clustering, and community

detection [14]. By judging the presence of edges between

two vertices in graphs, we can perform recommendation and

knowledge reasoning, for instance. Based on the classification

of subgraphs [15], the graph can be used for, e.g., polymer

classification, 3D visual classification, etc. For GSP, it is sig-

nificant to design suitable graph sampling methods to preserve

the features of the original graph, which aims at recovering the

original graph efficiently [16]. Graph recovery methods can

be used for constructing the original graph in the presence

of incomplete data [17]. Afterwards, graph learning can be

exploited to learn the topology structure from graph data. In

summary, graph learning can be used to tackle the following

challenges, which are difficult to solve by using traditional

graph analysis methods [18].

1) Irregular domains: Data collected by traditional sen-

sors have a clear grid structure. However, graphs lie in an

irregular domain (i.e., non-Euclidean space). In contrast

to regular domain (i.e., Euclidean space), data in non-

Euclidean space are not ordered regularly. Distance is

hence difficult to be defined. As a result, basic methods

based on traditional machine learning and signal pro-

cessing cannot be directly generalized to graphs.

2) Heterogeneous networks: In many cases, networks

involved in the traditional graph analysis algorithms

are homogeneous. The appropriate modeling methods

only consider the direct connection of the network and

strip other irrelevant information, which significantly

simplifies the processing. However, it is prone to cause

information loss. In the real world, the edges among

vertices and the types of vertices are usually diverse,

such as in the academic network shown in Fig. 2. Thus it

isn’t easy to discover potential value from heterogeneous

information networks with abundant vertices and edges.

3) Distributed algorithms: In big social networks, there

are often millions of vertices and edges [19]. Centralized

algorithms cannot handle this since the computational

complexity of these algorithms would significantly in-

crease with the growth of vertex number. The design of

distributed algorithms for dealing with big networks is a

critical problem yet to be solved [20]. One major benefit

of distributed algorithms is that the algorithms can be

executed in multiple CPUs or GPUs simultaneously, and

hence the running time can be reduced significantly.

B. Related Surveys

There are several surveys that are partially related to the

scope of this paper. Unlike these surveys, we aim to provide

a comprehensive overview of graph learning methods, with a

focus on four specific categories. In particular, graph signal

processing is introduced as one approach for graph learning,

which is not covered by other surveys.

Goyal and Ferrara [21] summarized graph embedding meth-

ods, such as matrix factorization, random walk and their

applications in graph analysis. Cai et al. [22] reviewed graph

embedding methods based on problem settings and embedding

techniques. Zhang et al. [4] summarized NRL methods based

on two categories, i.e., unsupervised NRL and semi-supervised

NRL, and discussed their applications. Nickel et al. [23]

introduced knowledge extraction methods from two aspects:

latent feature models and graph based models. Akoglu et

al. [24] reviewed state-of-the-art techniques for event detec-

tion in data represented as graphs, and their applications in

the real world. Zhang et al. [18] summarized deep learning

based methods for graphs, such as graph neural networks

(GNNs), graph convolutional networks (GCNs) and graph

auto-encoders (GAEs). Wu et al. [25] reviewed state-of-the-

art GNN methods and discussed their applications in dif-

ferent fields. Ortega et al. [26] introduced GSP techniques

for representation, sampling and learning, and discussed their

applications. Huang et al. [27] examined the applications of

GSP in functional brain imaging and addressed the problem of

how to perform brain network analysis from signal processing

perspective.

In summary, none of the existing surveys provides a com-

prehensive overview of graph learning. They only cover some
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Fig. 1: The categorization of graph learning.

parts of graph learning, such as network embedding and deep

learning based network representation. The NRL and/or GNN

based surveys do not cover the GSP techniques. In contrast, we

review GSP techniques in the context of graph learning, as it

is an important approach for GNNs. Specifically, this survey

paper integrates state-of-the-art machine learning techniques

for graph data, gives a general description of graph learning,

and discusses its applications in various domains.

C. Contributions and Organization

The contributions of this paper can be summarized as

follows.

• A comprehensive overview of state-of-the-art graph

learning methods: we present an integral introduction

to graph learning methods, including, e.g., technical

sketches, application scenarios, and potential research

directions.

• Taxonomy of graph learning: we give a technical clas-

sification of mainstream graph learning methods from the

perspective of theoretical models. Technical descriptions

are provided wherever appropriate to improve understand-

ing of the taxonomy.

• Insights into future directions in graph learning:

Besides qualitative analysis of existing methods, we shed

light on potential research directions in the field of graph

learning through summarizing several open issues and

relevant challenges.

The rest of this paper is organized as follows. An overview

of graph learning approaches containing graph signal pro-

cessing based methods, matrix factorization based methods,

random walk based methods, and deep learning based methods

is provided in Section II. The applications of graph learning

are examined in Section III. Some future directions as well

as challenges are discussed in Section IV. We conclude the

survey in Section V.

II. GRAPH LEARNING MODELS AND ALGORITHMS

The feature vectors that represent various categorical at-

tributes are viewed as the input in previous machine learning

Fig. 2: Heterogeneous academic network [28].

methods. However, the mapping from the input feature vectors

to the output prediction results need to be handled by graph

learning [21]. Deep learning has been regarded as one of the

most successful techniques in artificial intelligence [29], [30].

Extracting complex patterns by exploiting deep learning from

a massive amount of irregular data has been found very useful

in various fields, such as pattern recognition and image pro-

cessing. Consequently, how to utilize deep learning techniques

to extract patterns from complex graphs has attracted lots of

attention. Deep learning on graphs, such as GNNs, GCNs,

and GAEs, has been recognized as a powerful technique for

graph analysis [18]. Besides, GSP has also been proposed

to deal with graph analysis [26]. One of the most typical

scenarios is that a set of values reside on a set of vertices,

and these vertices are connected by edges [31]. Graph signals

can be adopted to model various phenomena in real world. For

example, in social networks, users in Facebook can be viewed

as vertices, and their friendships can be modeled as edges. The

number of followers of each vertex is marked in this social

network. Based on this assumption, many techniques (e.g.,

convolution, filter, wavelet, etc.) in classical signal processing

can be employed for GSP with suitable modifications [26].

In this section, we review graph learning models and algo-

rithms under four categories as mentioned before, namely GSP
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based methods, matrix factorization based methods, random

walk based methods, and deep learning based methods. In

Table I, we list the abbreviations used in this paper.

TABLE I: Definitions of abbreviations

Abbreviation Definition

PCA Principal component analysis
NRL Network representation learning

LSTM Long short-term memory (networks)
GSP Graph signal processing
GNN Graph neural network

GMRF Gauss markov random field
GCN Graph convolutional network
GAT Graph attention network
GAN Generative adversarial network
GAE Graph auto-encoder
ASP Algebraic signal processing
RNN Recurrent neural network
CNN Convolutional neural network

A. Graph Signal Processing

Signal processing is a traditional subject that processes

signals defined in regular data domain. In recent years, re-

searchers extend concepts of traditional signal processing into

graphs. Classical signal processing techniques and tools such

as Fourier transform and filtering can be used to analyze

graphs. In general, graphs are a kind of irregular data, which

are hard to handle directly. As a complement to learning

methods based on structures and models, GSP provides a new

perspective of spectral analysis of graphs. Derived from signal

processing, GSP can give an explanation of graph property

consisting of connectivity, similarity, etc. Fig. 3 gives a simple

example of graph signals at a certain time point, which is

defined as observed values. In a graph, the above mentioned

observed values can be regarded as graph signals. Each node is

then mapped to the real number field in GSP. The main task

of GSP is to expand signal processing approaches to mine

implicit information in graphs.

Fig. 3: The measurements of PM2.5 from different sensors on

July 5, 2014 (data source: https://www.epa.gov/).

1) Representation on Graphs: A meaningful representation

of graphs has contributed a lot to the rapid growth of graph

learning. There are two main models of GSP, i.e., adjacency

matrix based GSP [31] and Laplacian based GSP [32]. An

adjacency matrix based GSP comes from algebraic signal

processing (ASP) [33], which interprets linear signal process-

ing from algebraic theory. Linear signal processing contains

signals, filters, signal transformation, etc. It can be applied

in both continuous and discrete time domains. The basic

assumption of linear algebra is extended to the algebra space in

ASP. By selecting signal model appropriately, ASP can obtain

different instances in linear signal processing. In adjacency

matrix based GSP, the signal model is generated from a shift.

Similar to traditional signal processing, a shift in GSP is a filter

in graph domain [31], [34], [35]. GSP usually defines graph

signal models using adjacency matrices as shifts. Signals of a

graph are normally defined at vertices.

Laplacian based GSP originates from spectral graph theory.

High dimensional data are transferred into a low dimensional

space generated by a part of the Laplacian basis [36]. Some

researchers exploited sensor networks [37] to achieve dis-

tributed processing of graph signals. Other researchers solved

the problem globally under the assumption that the graph is

smooth. Unlike adjacency matrix based GSP, Laplacian matrix

is symmetric with real and non-negative edge weights, which

is used to index undirected graphs.

Although the models use different matrices as basic shifts,

most of the notions in GSP are derived from signal processing.

Notions with different definitions in these models may have

similar meanings. All of them correspond to concepts in signal

processing. Signals in GSP are values defined on graphs, and

they are usually written as a vector, s = [s0, s1, . . . , sN−1] ∈
C

N . N is the number of vertices, and each element in the

vector represents the value on a vertex. Some studies [26]

allow complex-value signals, even though most applications

are based on real-value signals.

In the context of adjacency matrix based GSP, a graph can

be represented as a triple G(V,E,W ), where V is the vertex

set, E is the edge set and W is the adjacency matrix. With

the definition of graphs, we can also define degree matrix

Dii = di, where D is a diagonal matrix, and di is the degree

of vertex i. Graph Laplacian is defined as L = D −W , and

normalized Laplacian is defined as Lnorm = D−1/2LD−1/2.

Filters in signal processing can be seen as a function that

amplifies or reduces relevant frequencies, eliminating irrele-

vant ones. Matrix multiplication in linear space equals to scale

changing, which is identical with filter operation in frequency

domain. It is obvious that we can use matrix multiplication as

a filter in GSP, which is written as sout = Hsin, where H

stands for a filter.

Shift is an important concept to describe variation in sig-

nal, and time-invariant signals are used frequently [31]. In

fact, there are different choices of shifts in GSP. Adjacency

matrix based GSP uses A as shift. Laplacian based GSP uses

L [32], and some researchers also use other matrices [38].

By following time invariance in traditional signal processing,

shift invariance is defined in GSP. If filters are commutative

with shift, they are shift-invariant, which can be written as
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AH = HA. It is proved that shift-invariant filter can be

represented by the shift. The properties of shift are vital, and

they determine the fashion of other definitions such as Fourier

transform and frequency.

In adjacency matrix based GSP, eigenvalue decomposition

of shift A is A = V ΛV −1. V is the matrix of eigenvectors

[v0,v1, . . . ,vN−1] and

Λ =







λ0

. . .

λN−1







is a diagonal matrix of eigenvalues. The Fourier transform

matrix is the inverse of V , i.e., F = V −1. Frequency of shift

is defined as total variation, which states the difference after

shift

TVG = ||vk −
1

λmax
Avk||1,

where 1

λmax

is a normalized factor of matrix. It means that the

frequencies of eigenvalue far away from the largest eigenval-

ues on complex plane are large. A large frequency means that

signals are changed with a large scale after shift filtering. The

differences between minimum and maximum λ can be seen in

Fig. 4. Generally, the total variation tends to be relatively low

with larger frequency, and vice versa. Eigenvectors of larger

eigenvalues can be used to construct low-frequency filters,

which capture fundamental characteristics, and smaller ones

can be employed to capture the variation among neighbor

nodes.

For topology learning problems, we can distinguish the

corresponding solutions depending on known information.

When topology information is partly known, we can use the

known information to infer the whole graph. In case the

topology information is unknown while we still can observe

the signals on the graph, the topology structure has to be

inferred from the signals. The former one is often solved as a

sampling and recovery problem, and blind topology inference

is also known as graph topology (or structure) learning.

2) Sampling and Recovery: Sampling is not a new concept

defined in GSP. In conventional signal processing, we normally

need to reconstruct original signals with the least samples

and retain all information of original signals for a sampling

problem. Few samples lead to the lack of information and more

samples need more space to store. The well-known Nyquist-

Shannon sampling theorem gives the sufficient condition of

perfect recovery of signals in time domain.

Researchers have migrated the sampling theories into GSP

to study the sampling problem on graphs. As the volume of

data is large in some real-world applications such as sensor

networks and social networks, sampling less and recover-

ing better are vital for GSP. In fact, most algorithms and

frameworks solving sampling problems require that the graph

models correlations within signals observed on it [39]. The

sampling problem can be defined as reconstructing signals

from samples on a subset of vertices, and signals in it are

usually band-limited. Nyquist-Shannon sampling theorem was

extended to graph signals in [40]. Based on the normalized

Laplacian matrix, sampling theorem and cut-off frequency are

(a) The maximum frequency

(b) The minimum frequency

Fig. 4: Illustration of difference between minimum and max-

imum frequencies.

defined for GSP. Moreover, the authors provided a method for

computing cut-off frequency from a given sampling set and a

method for choosing sampling set for a given bandwidth. It

should be noted that the sampling theorem proposed therein

is merely applied to undirected graph. As Laplacian matrix

represents undirected graphs only, sampling theory for directed

graph adopts adjacent matrix. An optimal operator with a

guarantee for perfect recovery was proposed in [35], and it

is robust to noise for general graphs.

One of the explicit distinctions between classical signal

processing and GSP is that signals of the former fall in regular

domain while the latter falls in irregular domain. For sampling

and recovery problems, classical signal processing samples

successive signals and can recover successive signals from

samplings. GSP samples a discrete sequence, and recovers the

original sequences from samplings. By following this order,

the solution is generally separated into two parts, i.e., finding

sampling vertex sets and reconstructing original signals based
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on various models.

When the size of the dataset is small, we can handle the

signal and shift directly. However, for a large-scale dataset,

some algorithms require matrix decomposition to obtain fre-

quencies and save eigenvalues in the procedure, which are

almost impossible to realize. As a simple technique applicable

to large-scale datasets, a random method can also be used in

sampling. Puy et al. [41] proposed two sample strategies: a

non-adaptive one depending on a parameter and an adaptive

random sampling strategy. By relaxing the optimized con-

straint, they extended random sampling to large scale graphs.

Another common strategy is greedy sampling. For example,

Shomorony and Avestimehr [42] proposed an efficient method

based on linear algebraic conditions that can exactly compute

cut-off frequency. Chamon and Ribeiro [43] provided near-

optimal guarantee for greedy sampling, which guarantees the

performance of greedy sampling in the worst cases.

All of the sampling strategies mentioned above can be

categorized as selecting sampling, where signals are observed

on a subset of vertices [43]. Besides selecting sampling, there

exists a type of sampling called aggregation sampling [44],

which uses observations taken at a single vertex as input,

containing a sequential applications of graph shift operator.

Similar to classical signal processing, the reconstruction

task on graphs can also be interpreted as data interpolation

problem [45]. By projecting the samples on a proper signal

space, researchers obtain interpolated signals. Least squares

reconstruction is an available method in practice. Gadde and

Ortega [46] defined a generative model for signal recovery

derived from a pairwise Gaussian random field (GRF) and

a covariance matrix on graphs. Under sampling theorem, the

reconstruction of graph signals can be viewed as the maximum

posterior inference of GRF with low-rank approximation.

Wang et al. [47] aimed at achieving the distributed reconstruc-

tion of time-varying band limited signal, where the distributed

least squares reconstruction (DLSR) was proposed to recover

the signals iteratively. DLSR can track time-varying signals

and achieve perfect reconstruction. Di Lorenzo et al. [48]

proposed a linear mean squares (LMS) strategy for adaptive

estimation. LMS enables online reconstruction and tracking

from the observation on a subset of vertices. It also allows the

subset to vary over time. Moreover, a sparse online estimation

was proposed to solve the problems with unknown bandwidth.

Another common technique for recovering original signals

is smoothness. Smoothness is used for inferring missing values

in graph signals with low frequencies. Wang et al. [17]

defined the concept of local set. Based on the definition

of graph signals, two iterative methods were proposed to

recover band limited signals on graphs. Besides, Romero

et al. [49] advocated kernel regression as a framework for

GSP modeling and reconstruction. For parameter selection

in estimators, two multi-kernel methods were proposed to

solve a single optimization problem as well. In addition,

some researchers investigated different recovery problems with

compressed sensing [50].

In addition, there exists some researches on sampling of

different kinds of signals such as smooth graph signals, piece-

wise constant signals and piece-wise smooth signals [51].

Chen et al. [51] gave a uniform framework to analyze graph

signals. The reconstruction of a known graph signal was stud-

ied in [52], where the signal is sparse, which means only a few

vertices are non-zeros. Three kinds of reconstruction schemes

corresponding to various seeding patterns were examined. By

analyzing single simultaneous injection, single successive val-

ue injection, and multiple successive simultaneous injections,

the conditions for perfect reconstruction on any vertices were

derived.

3) Learning Topology Structure from Data: In most appli-

cation scenes, graphs are constructed according to connections

of entity correlations. For example, in sensor networks, the

correlations between sensors are often consistent with ge-

ographic distance. Edges in social networks are defined as

relations such as friends or colleagues [53]. In biochemical

networks, edges are generated by interactions. Although GSP

is an efficient framework for solving problems on graphs

such as sampling, reconstruction, and detection, there lacks

a step to extract relations from datasets. Connections exist in

many datasets without explicit records. Fortunately, they can

be inferred in many ways.

As a result, researchers want to learn complete graphs from

datasets. The problem of learning graph from a dataset is

stated as estimating graph Laplacian, or graph topology [54].

Generally, they require the graph to satisfy some properties,

such as sparsity and smoothness. Smoothness is a widespread

assumption in networks generated from datasets. Therefore, it

is usually used to constrain observed signals and provide a

rational guarantee for graph signals. Researchers have applied

it to graph topology learning. The intuition behind smoothness

based algorithms is that most signals on graph are stationary,

and the result filtered by shift tends to be the lowest frequency.

Dong et al. [55] adopted a factor analysis model for graph

signals, and also imposed a Gaussian prior on latent variables

to obtain a Principal Component Analysis (PCA) like represen-

tation. Kalofolias [56] formulated the objective as a weighted

l1 problem and designed a general framework to solve it.

Gauss Markov Random Field (GMRF) is also a widely

used theory for graph topology learning in GSP [54], [57],

[58]. The models of GRMF based graph topology learning

select graphs that are more likely to generate signals which are

similar to the ones generated by GMRF. Egilmez et al. [54]

formulated the problem as a maximum posterior parameter

estimation of GMRF, and the graph Laplacian is a precision

matrix. Pavez and Ortega [57] also formulated the problem as

a precision matrix estimation, and the rows and columns are

updated iteratively by optimizing a quadratic problem. Both

of them restrict the result matrix, which should be Laplacian.

In [58], Pavez et al. chose a two steps framework to find

the structure of the underlying graph. First, a graph topology

inference step is employed to select a proper topology. Then,

a generalized graph Laplacian is estimated. An error bound of

Laplacian estimation is computed. In the next step, the error

bound can be utilized to obtain a matrix in a specific form as

the precision matrix estimation. It is one of the first work that

suggests adjusting the model to obtain a graph satisfying the

requirement of various problems.

Diffusion is also a relevant model that can be exploited
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to solve the topology interfering problem [39], [59]–[61].

Diffusion refers to that the node continuously influences its

neighborhoods. In graphs, nodes with larger values will have

higher influence on their neighborhood nodes. Using a few

components to represent signals will help to find the main

factors of signal formation. The models of diffusion are often

under the assumption of independent identically-distributed

signals. Pasdeloup et al. [59] gave the concept of valid graphs

to explain signals and assumed that the signals are observed

after diffusion. Segarra et al. [60] agreed that there exists a

diffusion process in the shift, and the signals can be observed.

The signals in [61] were explained as a linear combination of

a few components.

For time series recorded in data, researchers tried to

construct time-sequential networks. For instance, Mei and

Moura [62] proposed a methodology to estimate graphs, which

considers both time and space dependencies and models them

by auto-regressive process. Segarra et al. [63] proposed a

method that can be seen as an extension of graph learning.

The aim of the paper was to solve the problem of joint

identification of a graph filter and its input signal.

For recovery methods, a well-known partial inference prob-

lem is recommendation [45], [64], [65]. The typical algorithm

used in recommendation is collaborative filtering (CF) [66].

Given the observed ratings in a matrix, the objective of CF is to

estimate the full rating matrix. Huang et al. [65] demonstrated

that collaborative filtering could be viewed as a specific band-

stop graph filter on networks representing correlations between

users and items. Furthermore, linear latent factor methods can

also be modeled as band limited interpretation problem.

4) Discussion: GSP algorithms have strict limitations on

experimental data, thus leading to less real-world applications.

Moreover, GSP algorithms require the input data to be exactly

the whole graph, which means that part of graph data cannot

be the input. Therefore, the computational complexity of this

kind of methods could be significantly high. In comparison

with other kinds of graph learning methods, the scalability of

GSP algorithms is relatively poor.

B. Matrix Factorization Based Methods

Matrix factorization is a method of simplifying a matrix into

its components. These components have a lower dimension

and could be used to represent the original information of

a network, such as relationships among nodes. Matrix fac-

torization based graph learning methods adopt a matrix to

represent graph characteristics like vertex pairwise similarity,

and the vertex embedding can be achieved by factorizing this

matrix [67]. Early graph learning approaches usually utilized

matrix factorization based methods to solve the graph embed-

ding problem. The input of matrix factorization is the non-

relational high dimensional data feature represented as a graph.

The output of matrix factorization is a set of vertex embedding.

If the input data lies in a low dimensional manifold, the graph

learning for embedding can be treated as a dimension-reduced

problem that preserves the structure information. There are

mainly two types of matrix factorization based graph learning.

One is graph Laplacian matrix factorization, and the other is

vertex proximity matrix factorization.

1) Graph Laplacian Matrix Factorization: The preserved

graph characteristics can be expressed as pairwise vertex

similarities. Generally, there are two kinds of graph Laplacian

matrix factorization, i.e., transductive and inductive matrix

factorization. The former only embeds the vertices contained

in the training set, and the latter can embed the vertices that are

not contained in the training set. The general framework has

been designed in [68], and the graph Laplacian matrix factor-

ization based graph learning methods have been summarized

in [69]. The Euclidean distance between two feature vectors is

directly adopted in the initial Metric Multidimensional Scaling

(MDS) [70] to find the optimal embedding. The neighborhoods

of vertices are not considered in the MDS, i.e., any pair

of training instances are considered as connected. The data

feature is extracted by constructing a k nearest neighbor graph,

and the subsequent studies [67], [71]–[73] tackle this issue.

The top k similar neighbors of each vertex are connected with

itself. A similar matrix is calculated by exploiting different

methods, and thus the graph characteristics can be preserved

as much as possible.

Recently, researchers have designed more sophisticated

models. The performance of earlier matrix factorization model

Locality Preserving Projection (LPP) can be improved by

introducing an anchor taking advantage of Anchorgraph-based

Locality Preserving Projection (AgLPP) [74], [75]. The graph

structure can be captured by using a local regression model

and a global regression process based on Local and Global

Regressive Mapping (LGRM) [76]. The global geometry can

be preserved by using local spline regression [77].

More information can be preserved by exploiting the auxil-

iary information. An adjacency graph and a labelled graph

were constructed in [78]. The objective function of LPP

preserves the local geometric structure of the datasets [67].

An adjacency graph and a relational feedback graph were con-

structed in [79] as well. The graph Laplacian regularization,

k-means and PCA were considered in RF-Semi-NMF-PCA si-

multaneously [80]. Other works, e.g., [81], adopt semi-definite

programming to learn the adjacency graph that maximizes the

pairwise distances.

2) Vertex Proximity Matrix Factorization: Apart from solv-

ing the above generalized eigenvalue problem, another ap-

proach of matrix factorization is to factorize vertex proximity

matrix directly. In general, matrix factorization can be used

to learn the graph structure from non-relational data, and it is

applicable to learn homogeneous graphs.

Based on matrix factorization, vertex proximity can be

approximated in a low dimensional space. The objective of

preserving vertex proximity is to minimize the error. The

Singular Value Decomposition (SVD) of vertex proximity

matrix was adopted in [82]. There are some other approaches

such as regularized Gaussian matrix factorization [83], low-

rank matrix factorization [84], for solving SVD.

3) Discussion: Matrix factorization algorithms operate on

an interaction matrix to decompose several lower dimension

matrices. The process brings some drawbacks. For example,

the algorithms require a large memory when the decomposed

matrices become large. In addition, matrix factorization al-

gorithms are not applicable to supervised or semi-supervised
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tasks with the training process.

C. Random Walk Based Methods

Random walk is a convenient and effective way to sample

networks [85], [86]. This method can generate sequences

of nodes meanwhile preserving original relations between

nodes. Based on network structure, NRL can generate feature

vectors of vertices so that downstream tasks can mine network

information in a low dimensional space. An example of NRL

is shown in Fig. 5. The image in Euclidean space is shown

in Fig. 5(a), and the corresponding graph in non-Euclidean

space is shown in Fig. 5(b). As one of the most successful

NRL algorithms, random walks play an important role in

dimensionality reduction.

(a) Image in Euclidean space

(b) Graph in non-Euclidean space

Fig. 5: An example of NRL mapping an image from Euclidean

space into non-Euclidean space.

1) Structure Based Random Walks: Graph-structured data

have various data types and structures. The information encod-

ed in a graph is related to graph structure and vertex attributes,

which are the two key factors affecting the reasoning of

networks. In real-world applications, many networks only have

structural information, but lack vertex attribute information.

How to identify network structure information effectively, such

as important vertices and invisible links, attracts the interest

of network scientists [87]. Graph data have high dimensional

characteristics. Traditional network analysis methods cannot

be used for analyzing graph data in a continuous space.

In recent years, various NRL methods have been proposed,

which preserve rich structural information of networks. Deep-

Walk [88] and Node2vec [7] are two representative methods

for generating network representation of basic network topol-

ogy information. These methods use random walk models

to generate random sequences on networks. By treating the

vertices as words and the generated random sequences of

vertices as word sequences (sentences), the models can learn

the embedding representation of the vertices by inputting these

sequences into the Word2vec model [89]–[91]. The principle

of the learning model is to maximize the co-occurrence prob-

ability of vertices such as Word2vec. In addition, Node2vec

shows that network has complex structural characteristics,

and different network structure samplings can obtain different

results. The sampling mode of DeepWalk is not enough

to capture the diversity of connection patterns in networks.

Node2vec designs a random walk sampling strategy, which

can sample the networks with the preference of breadth-first

sampling and depth-first sampling by adjusting the parameters.

The NRL algorithms mentioned above focused on the first-

order proximity information of vertices. Tang et al. [92]

proposed a method called LINE for large-scale network

embedding. LINE can maintain the first and second order

approximations. The first-order neighbor refers to the one-

hop neighbor between two vertices, and the second-order

neighbor is the neighbor with two hops. LINE is not a deep

learning based model, but it is often compared with these edge

modeling based methods.

It has been proved that the network structure information

plays an important role in various network analysis tasks. In

addition to this structural information, network attributes in

the original network space are also critical in modeling the

formation and evolution of the network [93].

2) Structure and Vertex Information Based Random Walks:

In addition to network topology, many types of networks also

have rich vertex information, such as vertex content or label

in networks. Yang et al. [84] proposed an algorithm called

TADW. The model is based on DeepWalk and considers the

text information of vertices. The MMDW [94] is another

model based on DeepWalk, which is a kind of semi-supervised

network embedding algorithm, by leveraging labelling infor-

mation of vertices to enhance the performance. Focusing on

the structural identity of nodes, Ribeiro et al. [95] formulated a

framework named Struc2vec. The framework considers nodes

with similar local structure rather than neighborhood and

labels of nodes. With hierarchy to evaluate structural similarity,

the framework constrains structural similarity more stringent-

ly. The experiments indicate that DeepWalk and Node2vec

are worse than Struc2vec which considers structural identity.

There are some other NRL models, such as Planetoid [96],

which learn network representation using the feature of net-

work structure and vertex attribute information. It is well

known that vertex attributes provide effective information for

improving network representation and help to learn embedded

vector space. In the case of relatively sparse network topology,

vertex attribute information can be used as supplementary

information to improve the accuracy of representation. In

practice, how to use vertex information effectively and how
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to apply this information to network vertex embedding are the

main challenges in NRL.

Researchers not only investigate random walk based NRL

on vertices but also on graphs. Adhikari et al. [97] proposed an

unsupervised scalable algorithm, Sub2Vec, to learn arbitrary

subgraph. To be more specific, they proposed a method to

measure the similarities between subgraphs without disturbing

local proximity. Narayanan et al. [98] proposed graph2vec,

which is a neural embedding framework. Modeling on neural

document embedding models, graph2vec takes a graph as a

document and the subgraph around words as vertices. By

migrating the model to graphs, the performance of graph2vec

significantly exceeds other substructure representation learning

algorithms.

Generally, random walk can be regarded as a Markov

process. The next state of the process is only related to last

state, which is known as Markov chain. Inspired by vertex-

reinforced random walks, Benson et al. [99] presented spacey

random walk, a non-Markovian stochastic process. As a spe-

cific type of a more general class of vertex-reinforced random

walks, it takes the view that the probability of time remained

on each vertex relates to the long term behavior of dynamical

systems. They proved that dynamical systems can converge to

a stationary distribution under sufficient conditions.

Recently, with the development of Generative Adversarial

Network (GAN), researchers combined random walks with

the GAN method [100], [101]. Existing research on NRL can

be divided into generative models and discriminative models.

GraphGAN [100] integrated these two kinds of models and

played a game-theoretical minimax game. With the process

of the game, the performance of the two models can be

strengthened. Random walk is used as a generator in the

game. NetGAN [101] is a generative model that can model

network in real applications. The method takes the distribution

of biased random walk as input, and can produce graphs with

known patterns. It preserves important topology properties and

does not need to define them in model definition.

3) Random Walks in Heterogeneous Networks: In reality,

most networks contain more than one type of vertex, and hence

networks are heterogeneous. Different from homogeneous NR-

L, heterogenous NRL should well reserve various relationships

among different vertices [102]. Considering the ubiquitous

existence of heterogeneous networks, many efforts have been

made to learn network representations of heterogeneous net-

works. Compared to homogeneous NRL, the proximity among

entities in heterogeneous NRL is more than a simple measure

of distance or closeness. The semantics among vertices and

links should be considered. Some typical scenarios include

knowledge graphs and social networks.

Knowledge graph is a popular research domain in recent

years. A vital part in knowledge base population is relational

inference. The central problem of relational inference is infer-

ring unknown knowledge from the existing facts in knowledge

bases [103]. There are three types of common relational

inference method in general: statistical relational learning

(SRL), latent factor models (LFM) and random walk models

(RWM). Relational learning methods based on statistics lack

generality and scalability. As a result, latent factor model based

graph embedding and relational paths based random walk have

been adopted more widely.

In a knowledge graph, there exist various vertices and

various types of relationships among different vertices. For

example, in a scholar related knowledge graph [2], [28], the

types of vertices include scholar, paper, publication venue,

institution, etc. The types of relationships include coauthor,

citation, publication, etc. The key idea of knowledge graph

embedding is to embed vertices and their relationships into a

low dimensional vector space, while the inherent structure of

the knowledge graph can be reserved [104].

For relational paths based random walk, the path ranking

algorithm (PRA) is a path finding method using random walks

to generate relational features on graph data [105]. Random

walks in PRA are with restart, and combine features with a

logistic regression. However, PRA cannot predict connection

between two vertices if there does not exist a path between

them. Gardner et al. [106], [107] introduced two ways to

improve the performance of PRA. One method enables more

efficient processing to incorporate new corpus into knowledge

base, while the other method uses vector space to reduce

the sparsity of surface forms. To resolve cascade errors in

knowledge construction, Wang and Cohen [108] proposed a

joint information extraction and knowledge base based model

with a recursive random walk. Using latent context of the text,

the model obtains additional improvement. Liu et al. [109]

developed a new random walk based learning algorithm named

Hierarchical Random-walk inference (HiRi). It is a two-tier

scheme: the upper tier recognizes relational sequence pattern,

and the lower tier captures information from subgraphs of

knowledge bases.

Another widely-investigated type of heterogeneous net-

works is social networks, such as online social networks and

location based social networks. Social networks are heteroge-

neous in nature because of the different types of vertices and

relations. There are two main ways to embed heterogeneous

social networks, including meta path-based approaches and

random walk-based approaches.

A meta path in heterogeneous networks is defined as a

sequence of vertex types encoding significant composite re-

lations among various types of vertices. Aiming to employ

the rich information in social networks by exploiting various

types of relationships among vertices, Fu et al. [110] proposed

HIN2Vec, which is a representation learning framework based

on meta-paths. HIN2Vec is a neural network model and the

meta-paths are well embedded based on two independent phas-

es, i.e., training data preparation and representation learning.

Experimental results on various social network datasets show

that HIN2Vec model is able to automatically learn vertex

vector in heterogeneous networks to support a variety of

applications. Metapath2vec [111] was designed by formalizing

meta-path based random walks to construct the neighborhoods

of a vertex in heterogeneous networks. It takes the advantage

of a heterogeneous skip-gram model to perform vertex em-

bedding.

Meta path based methods require either prior knowledge for

optimal meta-path selection or extended computations for path

length selection. To overcome these challenges, random walk
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based approaches have been proposed. Hussein et al. [112]

proposed the JUST model, which is a heterogeneous graph

embedding approach using random walks with jump and stay

strategies so that the aforementioned bias can be overcomed ef-

fectively. Another method which does not require prior knowl-

edge for meta-path definition is MPDRL [113], meta-path

discovery with reinforcement earning. This method employs

the reinforcement learning algorithm to perform multi-hop rea-

soning to generate path instances and then further summarizes

the important meta-paths using the Lowest Common Ancestor

principle. Shi et al. [114] proposed the HERec model, which

utilizes the heterogeneous information network embedding

for providing accurate recommendations in social networks.

HERec is designed based on a random walk based approach

for generating meaningful vertex sequences for heterogeneous

network embedding. HERec can effectively adopt the auxiliary

information in heterogeneous information networks. Other

typical heterogeneous social network embedding approaches

include, e.g., PTE [115] and SHNE [116].

4) Random Walks in Time-varying Networks: Network is

evolving over time, which means that new vertices may emerge

and new relations may appear. Therefore, it is significant

to capture the temporal behaviour of networks in network

analysis. Many efforts have been made to learn time-varying

network embedding (e.g., dynamic networks or temporal net-

works) [117]. In contrast to static network embedding, time-

varying NRL should consider the network dynamics, which

means that old relationships may become invalid and new links

may appear.

The key of time-varying NRL is to find a suitable way to

incorporate the time characteristic into embedding via reason-

able updating approaches. Nguyen et al. [118] proposed the

CTDNE model for continuous dynamic network embedding

based on random walk with ”chronological” paths which can

only move forward as time goes on. Their model is more

suitable for time-dependent network representation that can

capture the important temporal characteristics of continuous-

time dynamic networks. Results on various datasets show

that CTDNE outperforms static NRL approaches. Zuo et

al. [119] proposed the HTNE model which is a temporal

NRL approach based on the Hawkes process. HTNE can well

integrate the Hawkes process into network embedding so that

the influence of historical neighbors on the current neighbors

can be accurately captured.

For unseen vertices in a dynamical network, Graph-

SAGE [120] was presented to efficiently generate embed-

dings for new vertices in network. In contrast to methods

that training embedding for every vertex in the network,

GraphSAGE designs a function to generate embedding for

a vertex with features of the neighborhoods locally. After

sampling neighbors of a vertex, GraphSAGE uses different

aggregators to update the embedding of the vertex. However,

current graph neural methods are proficient of only learning

local neighborhood information and cannot directly explore

the higher-order proximity and the community structure of

graphs.

5) Discussion: As mentioned before, random walk is a

fundamental way to sample networks. The sequences of nodes

could preserve the information of network structure. However,

there are some disadvantages of this method. For example,

random walk relies on random strategies, which creates some

uncertain relations of nodes. To reduce this uncertainty, it

needs to increase the number of samples, which will signifi-

cantly increase the complexity of algorithms. Some random

walk variants could preserve local and global information

of networks, but they might not be effective in adjusting

parameters to adapt to different types of networks.

D. Deep Learning on Graphs

Deep learning is one of the hottest areas over the past few

years. Nevertheless, it is an attractive and challenging task to

extend the existing neural network models, such as Recurrent

Neural Networks (RNNs) or Convolutional Neural Networks

(CNNs), to graph data. Gori et al. [121] proposed a GNN

model based on recursive neural network. In this model, a

transfer function is implemented, which maps the graph or its

vertices to an m-dimensional Euclidean space. In recent years,

lots of GNN models have been proposed.

1) Graph Convolutional Networks: GCN works on the ba-

sis of grid structure domain and graph structure domain [122].

Time Domain and Spectral Methods. Convolution is one

of a common operation in deep learning. However, since graph

lacks a grid structure, standard convolution over images or

text cannot be directly applied to graphs. Bruna et al. [122]

extended the CNN algorithm from image processing to the

graph using the graph Laplacian matrix, dubbed as spectral

graph CNN. The main idea is similar to Fourier basis for

signal processing. Based on [122], Henaff et al. [123] defined

kernels to reduced the learning parameters by analogizing

the local connection of CNNs on the image. Defferrard et

al. [124] provided two ways for generalizing CNNs to graph

structure data based on graph theory. One method is to

reduce the parameters by using polynomial kernel, and this

method can be accelerated by using Chebyshev polynomi-

al approximation. The other method is the special pooling

method, which is pooling on the binary tree constructed from

vertices. An improved version of [124] was introduced by

Kipf and Welling [125]. The proposed method is a semi-

supervised learning method for graphs. The algorithm employs

an excellent and straightforward neural network followed by

a layer-by-layer propagation rule, which is based on the first-

order approximation of spectral convolution on the graph and

can be directly acted on the graph.

There are some other time domain based methods. Based

on the mixture model of CNNs, for instance, Monti et

al. [126] generalized the CNN to non-Euclidean space. Zhou

and Li [127] proposed a new CNN graph modeling framework,

which designs two modules for graph structure data: K-

order convolution operator and adaptive filtering module. In

addition, the high-order adaptive graph convolution network

(HA-GCN) framework proposed in [127] is a general ar-

chitecture that is suitable for many applications of vertices

and graph centers. Manessi et al. [128] proposed a dynamic

graph convolution network algorithm for dynamic graphs.

The core idea of the algorithm is to combine the expansion
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of graph convolution with the improved Long Short Term-

Memory networks (LSTM) algorithm, and then train and learn

the downstream recursive unit by using graph structure data

and vertex features. The spectral based NRL methods have

many applications, such as vertex classification [125], traffic

forecasting [129], [130], and action recognition [131].

Space Domain and Spatial Methods. Spectral graph

theory provides a convolution method on graphs, but many

NRL methods directly use convolution operation on graphs

in space domain. Niepert et al. [132] applied graph labeling

procedures such as Weisfeiler-Lehman kernel on graphs to

generate unique order of vertices. The generated sub-graphs

can be fed to the traditional CNN operation in space domain.

Duvenaud et al. [133] designed Neural fingerprints (FP), which

is a spatial method using the first-order neighbors similar to the

GCN algorithm. Atwood and Towsley [134] proposed anoth-

er convolution method, called diffusion-convolutional neural

network, which incorporates transfer probability matrix and

replaces the characteristic basis of convolution with diffusion

basis. Gilmer et al. [135] reformulated existing models into

a single common framework, and exploited this framework to

discover new variations. Allamanis et al. [136] represented the

structure of code from syntactic and semantic, and utilized the

GNN method to recognize program structures.

Zhuang and Ma [137] designed dual graph convolution

networks (DGCN), which use diffusion basis and adjacency

basis. DGCN uses two convolutions: one is the characteristic

form of polynomial filter, and the other is to replace the

adjacency matrix with the PPMI (Positive Pointwise Mutual

Information) of the transition probability [89]. Dai et al. [138]

proposed the SSE algorithm, which uses asynchronous ran-

dom to learn vertex representation so as to improve learning

efficiency. In this model, a recursive method is adopted to

learn vertex latent representation and the sampled batch data

are utilized to update parameters. The recursive function of

SSE is calculated from the weighted average of historical state

and new state. Zhu et al. [139] proposed a graph smoothing

splines neural network which exploits non-smoothing node

features and global topological knowledge such as centrality

for graph classification. Gao et al. [140] proposed a large scale

graph convolution network (LGCN) based on vertex feature

information. In order to adapt to the scene of large scale

graphs, they proposed a sub-graph training strategy, which first

trained the sampled sub-graph in a small batch. Based on a

deep generative graph model, a novel method called DeepNC

for inferring the missing parts of a network was proposed

in [141].

A brief history of deep learning on graphs is shown in Fig. 6.

GNN has attracted lots of attention since 2015, and it is widely

studied and used in various fields.

2) Graph Attention Networks: In sequence-based tasks,

attention mechanism has been regarded as a standard [142].

GNNs achieve lots of benefits from the expanded model

capacity of attention mechanisms. GATs are a kind of spatial-

based GCNs [143]. It takes the attention mechanism into con-

sideration when determining the weights of vertex’s neighbors.

Likewise, Gated Attention Networks (GAANs) also introduced

the multi-head attention mechanism for updating the hidden

state of some vertices [144]. Unlike GATs, GAANs employ a

self-attention mechanism which can compute different weights

for different heads. Some other models such as graph attention

model (GAM) were proposed for solving different problem-

s [145]. Take GAM as an example, the purpose of GAM is to

handle graph classification. Therefore, GAM is set to process

informative parts by visiting a sequence of significant vertices

adaptively. The model of GAM contains LSTM network, and

some parameters contain historical information, policies, and

other information generated from exploration of the graph. At-

tention Walks (AWs) are another kind of learning model based

on GNN and random walks [146]. In contrast to DeepWalk,

AWs use differentiable attention weights when factorizing the

co-occurrence matrix [88].

3) Graph Auto-Encoders: GAE uses GNN structure to em-

bed network vertices into low dimensional vectors. One of the

most general solutions is to employ a multi-layer perception as

the encoder for inputs [147]. Therein the decoder reconstructs

neighborhood statistics of the vertex. PPMI or the first and

the second nearest neighborhood can be taken into statistic-

s [148], [149]. Deep neural networks for graph representations

(DNGR) employ PPMI. Structural deep network embedding

(SDNE) employs stacked auto-encoder to maintain both the

first-order and the second-order proximity. Auto-encoder [150]

is a traditional deep learning model, which can be classified

as a self-supervised model [151]. Deep recursive network

embedding (DRNE) reconstructs some vertices’ hidden state

rather than the entire graph [152]. It has been found that if

we regard GCN as an encoder, and combine GCN with GAN

or LSTM with GAN, then we can design the auto-encoder

for graphs. Generally speaking, DNGR and SDNE embed

vertices by the given structure features, while other methods

such as DRNE learn both topology structure and content

features [148], [149]. Variational graph auto-encoder [153] is

another successful approach that employs GCN as an encoder

and a link prediction layer as a decoder. Its successor, adver-

sarially regularized variational graph auto-encoder [154], adds

a regularization process with an adversarial training approach

to learn a more robust embedding.

4) Graph Generative Networks: The purpose of graph

generative networks is to generate graphs according to the

given observed set of graphs. Many previous methods of graph

generative networks have their own application domains. For

example, in natural language processing, the semantic graph

or the knowledge graph is generated based on the given

sentences. Some general methods have been proposed recently.

One kind of them considers the generation process as the for-

mation of vertices and edges. Another kind is to employ gener-

ative adversarial training. Some GCNs based graph generative

networks such as molecular generative adversarial networks

(MolGAN) integrate GNN with reinforcement learning [155].

Deep generative models of graphs (DGMG) achieves a hidden

representation of existing graphs by utilizing spatial-based

GCNs [156]. There are some knowledge graph embedding

algorithms based on GAN and Zero-Shot Learning [157]. Vyas

et al. [158] proposed a Generalized Zero-Shot learning model,

which can find unseen semantic in knowledge graphs.
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Fig. 6: A brief history of algorithms of deep learning on graphs.

5) Graph Spatial-Temporal Networks: Graph spatial-

temporal networks simultaneously capture the spatial and tem-

poral dependence of graphs. The global structure is included in

the spatial-temporal graphs, and the input of each vertex varies

with the change of time. For example, in traffic networks, each

sensor records the traffic speed of a road continuously as a

vertex, in which the edge of the traffic networks is determined

by the distance between the sensor pairs [129]. The goal of a

spatial-temporal network can be to predict future vertex values

or labels, or to predict spatial-temporal graph labels. Recent

studies in this direction have discussed the use of GCNs,

the combination of GCNs with RNN or CNN, and recursive

structures for graph structures [130], [131], [159].

6) Discussion: In this context, the task of graph learning

can be seen as optimizing the objective function by using

gradient descent algorithms. Therefore the performance of

deep learning based NRL models is influenced by gradient

descent algorithms. They may encounter challenges like local

optimal solutions and the vanishing gradient problem.

III. APPLICATIONS

Many problems can be solved by graph learning methods,

including supervised, semi-supervised, unsupervised, and re-

inforcement learning. Some researchers classify the applica-

tions of graph learning into three categories, i.e., structural

scenarios, non-structural scenarios, and other application sce-

narios [18]. Structural scenarios refer to the situation where

data are performed in explicit relational structures, such as

physical systems, molecular structures, and knowledge graphs.

Non-structural scenarios refer to the situation where data are

with unclear relational structures, such as images and texts.

Other application scenarios include, e.g., integrating models

and combinatorial optimization problems. Table II lists the

neural components and applications of various graph learning

methods.

A. Datasets and Open-source Libraries

There are several datasets and benchmarks used to evaluate

the performance of graph learning approaches for various tasks

such as link prediction, node classification, and graph visual-

ization. For instance, datasets like Cora1 (citation network),

Pubmed2 (citation network), BlogCatalog3 (social network),

1https://relational.fit.cvut.cz/dataset/CORA
2https://catalog.data.gov/dataset/pubmed
3http://networkrepository.com/soc-BlogCatalog.php

Wikipedia4 (language network) and PPI5 (biological network)

include nodes, edges, labels or attributes of nodes. Some

research institutions developed graph learning libraries, which

include common and classical graph learning algorithms. For

example, OpenKE6 is a Python library for knowledge graph

embedding based on PyTorch. The open-source framework has

the implementations of RESCAL, HolE, DistMult, ComplEx,

etc. CogDL7 is a graph representation learning framework,

which can be used for node classification, link prediction,

graph classification, etc.

B. Text

Many data are in textual form coming from various re-

sources like web pages, emails, documents (technical and

corporate), books, digital libraries and customer complains,

letters, patents, etc. Textual data are not well structured for

obtaining any meaningful information as text often contains

rich context information. There exist abundant applications

around text, including text classification, sequence labeling,

sentiment classification, etc. Text classification is one of

the most classical problems in natural language processing.

Popular algorithms proposed to handle this problem include

GCNs [120], [125], GATs [143], Text GCNs [160], and

Sentence LSTM [161]. Sentence LSTM has also been applied

to sequence labeling, text generation, multi-hop reading com-

prehension, etc [161]. Syntactic GCN was proposed to solve

semantic role labeling and neural machine translation [162].

Gated Graph Neural Networks (GGNNs) can also be used to

address neural machine translation and text generation [163].

For relational extraction, Tree LSTM, graph LSTM, and GCN

are better solutions [164].

C. Images

Graph learning applications pertaining to images include

social relationship understanding, image classification, visual

question answering, object detection, region classification, and

semantic segmentation, etc. For social relationship understand-

ing, for instance, graph reasoning model (GRM) is widely

used [165]. Since social relationships such as friendships

are the basis of social networks in real world, automatically

4https://en.wikipedia.org/wiki/Wikipedia:Database download
5https://openwetware.org/wiki/Protein-protein interaction databases
6https://github.com/thunlp/OpenKE
7https://github.com/THUDM/cogdl/
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TABLE II: Summary of graph learning methods and their applications

Categories Algorithms Neural Component Applications

Time Domain and Spectral Methods

SNLCN [122] Graph Neural Network Classification

DCN [123] Spectral Network Classification

ChebNet [124] Convolution Network Classification

GCN [125] Spectral Network Classification

HA-GCN [127] GCN Classification

Dynamic GCN [128] GCN, LSTM Classification

DCRNN [129] Diffusion Convolution Network Traffic Forecasting

ST-GCN [131] GCN Action Recognition

Space Domain and Spatial Methods

PATCHY-SAN [132] Convolutional Network Runtime Analysis,
Feature Visualization,
Graph Classification

Neural FP [133] Sub-graph Classification

DCNN [134] DCNN Classification

DGCN [137] Graph-Structure-Based
Convolution, PPMI-Based
Convolution.

Classification

SSE [138] Vertex Classification

LGCN [140] Convolutional Neural Network Vertex Classification

STGCN [130] Gated Sequential Convolution Traffic Forecasting

Deep Learning Model Based Methods

GATs [143]

Attention Neural Network

Classification

GAAN [144] Vertex Classification

GAM [145] Graph Classification

Aws [146]

Auto-encoder Neural Network

Link Prediction,
Sensitivity Analysis,
Vertex Classification

SDNE [149] Classification,
Link Prediction,
Visualization

DNGR [148] Clustering, Visualization

DRNE [152] Regular Equivalence Predic-
tion,
Structural Role Classifica-
tion,
Network Visualization

MolGAN [155]
Generative Neural Network

Generative Model

DGMG [156] Molecule Generation

DCRNN [129] Diffusion Convolution Network Traffic Forecasting

STGCN [130] Gated Sequential Convolution

ST-GCN [131] GCNs Action Recognition

interpreting these relationships is important for understanding

human behaviors. GRM introduces GGNNs to learn a propa-

gation mechanism. Image classification is a classical problem,

in which GNNs have demonstrated promising performance.

Visual question answering (VQA) is a learning task that in-

volves both computer vision and natural language processing.

A VQA system takes the form of a certain pictures and its

open natural language question as input, in order to generate

a natural language answer as output. Generally speaking, VQA

is question-and-answer for a given picture. GGNNs have been

exploited to help with VQA [166].

D. Science

Graph learning has been widely adopted in science. Model-

ing real-world physical systems is one of the most fundamental

perspectives in understanding human intelligence. Represent-

ing objects as vertices and relations as edges between them

is a simple but effective way to perform physics. Battaglia et

al. [167] proposed interaction networks (IN) to predict and

infer abundant physical systems, in which IN takes objects

and relationships as input. Based on IN, the interactions can

be reasoned and the effects can be applied. Therefore, physical

dynamics can be predicted. Visual interaction networks (VIN)

can make predictions from pixels by firstly learning a state
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code from two continuous input frames per object [168].

Other graph networks based models have been develope-

d to address chemistry and biology problems. Calculating

molecular fingerprints, i.e., using feature vectors to represent

molecular, is a central step. Researchers [169] proposed neural

graph fingerprints using GCNs to calculate substructure feature

vectors. Some studies focused on protein interface prediction.

This is a challenging issue with significant applications in

biology. Besides, GNNs can be used in biomedical engineering

as well. Based on protein-protein interaction networks, Rhee et

al. [170] used graph convolution and protein relation networks

to classify breast cancer subtypes.

E. Knowledge Graphs

Various heterogeneous objects and relationships are regard-

ed as the basis for a knowledge graph [171]. GNNs can

be applied in knowledge base completion (KBC) for solving

the out-of-knowledge-base (OOKB) entity problem [172]. The

OOKB entities are connected to existing entities. Therefore,

the embedding of OOKB entities can be aggregated from

existing entities. Such kind of algorithms achieve reasonable

performance in both settings of KBC and OOKB. Likewise,

GCNs can also be used to solve the problem of cross-lingual

knowledge graph alignment. The main idea of the model is to

embed entities from different languages into an integrated em-

bedding space. Then the model aligns these entities according

to their embedding similarities.

Generally speaking, knowledge graph embedding can be

categorized into two types: translational distance models and

semantic matching models. Translational distance models aim

to learn the low dimensional vector of entities in a knowledge

graph by employing distance-based scoring functions. These

methods calculate the plausibility as the distance between

two entities after a translation measured by the relationships

between them. Among current translational distance models,

TransE [173] is the most influential one. TransE can model the

relationship of entities by interpreting them as translations op-

erating on the low dimensional embedding. Inspired by TranE,

TranH [174] was proposed to overcome the disadvantages

of TransE in dealing with 1-to-N, N-to-1, and N-to-N rela-

tions by introducing relation-specific hyperplanes. Instead of

hyperplanes, TransR [175] introduces relation-specific spaces

to solve the flows in TransE. Meanwhile, various extensions

of TransE have been proposed to enhance knowledge graph

embeddings, such as TransD [176] and TransF [177]. On the

basis of TransE, DeepPath [178] incorporates reinforcement

learning methods for learning relational paths in knowledge

graphs. By designing a complex reward function involving

accuracy, efficiency and path diversity, the path finding process

is better controlled and more flexible.

Semantic matching models utilize the similarity-based scor-

ing functions. They measure the plausibility among entities

by matching latent semantics of entities and relations in low

dimensional vector space. Typical models of this type include

RESCAL [179], DistMult [180], ANALOGY [181], etc.

F. Combinatorial Optimization

Classical problems such as traveling salesman problem

(TSP) and minimum spanning tree (MST) have been solved

by using different heuristic solutions. Recently, deep neural

networks have been applied to these problems. Some solutions

make further use of GNNs thanks to their structures. Bello et

al. [182] first proposed such kind of methods to solve TSP.

Their method mainly contains two steps, i.e., a parameterized

reward pointer network and a strategy gradient module for

training. Khalil et al. [183] improved this work with GNN

and achieved better performance by two main procedures.

First, they used structure2vec to achieve vertex embedding and

then input them into Q-learning module for decision-making.

This work also proves the embedding ability of GNN. Nowak

et al. [184] focused on the secondary assignment problem,

i.e., measuring the similarity of two graphs. The GNN model

learns each graph’s vertex embedding and uses the attention

mechanism to match the two graphs. Other studies use GNNs

directly as the classifiers, which can perform the intensive

prediction on graphs with two sides. The rest of the model

facilitates diverse choices and effective training.

IV. OPEN ISSUES

In this section, we briefly summarize several future research

directions and open issues for graph learning.

Dynamic Graph Learning: For the purpose of graph learn-

ing, most existing algorithms are suitable for static networks

without specific constraints. However, dynamic networks such

as traffic networks vary over time. Therefore, they are hard to

deal with. Dynamic graph learning algorithms have rarely been

studied in the literature. It is of significant importance that

dynamic graph learning algorithms are designed to maintain

good performance, especially in the case of dynamic graphs.

Generative Graph Learning: Inspired by the generative

adversarial networks, generative graph learning algorithms can

unify the generative and discriminative models by playing a

game-theoretical min-max game. This generative graph learn-

ing method can be used for link prediction, network evolution,

and recommendation by boosting the performance of genera-

tive and discriminative models alternately and iteratively.

Fair Graph Learning: Most graph learning algorithms rely

on deep neural networks, and the resulting vectors may have

captured undesired sensitive information. The bias existing

in the network is reinforced, and hence it is of significant

importance to integrate the fair metrics into the graph learning

algorithms to address the inherent bias issue.

Interpretability of Graph Learning: The models of graph

learning are generally complex by incorporating both graph

structure and feature information. The interpretability of graph

learning (based) algorithms remains unsolved since the struc-

tures of graph learning algorithms are still a black box. For

example, drug discovery can be achieved by graph learning al-

gorithms. However, it is unknown how this drug is discovered

as well as the reason behind this discovery. The interpretability

behind graph learning needs to be further studied.
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V. CONCLUSION

This survey gives a general description of graph learning,

and provides a comprehensive review of the state-of-the-art

graph learning methods. We examined existing graph learning

methods under four categories: graph signal processing based

methods, matrix factorization based methods, random walk

based methods, and deep learning based methods. The ap-

plications of graph learning methods mainly under these four

categories in areas such as text, images, science, knowledge

graphs, and combinatorial optimization are outlined. We also

discuss some future research directions in the field of graph

learning. Graph learning is currently a hot area which is grow-

ing at an unprecedented speed. We do hope that this survey

will help researchers and practitioners with their research and

development in graph learning and related areas.
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