
Abstract

The betweenness and closeness metrics have always been intriguing and used in many analyses.
Yet, they are expensive to compute. For that reason, making the betweenness and closeness centrality
computations faster is an important and well-studied problem. In this work, we propose the framework,
BADIOS, which manipulates the graph by compressing it and splitting into pieces so that the centrality
computation can be handled independently for each piece. AlthoughBADIOS is designed and fine-tuned
for exact betweenness and closeness centrality, it can easily be adapted for approximate solutions as well.
Experimental results show that the proposed techniques can be a great arsenal to reduce the centrality
computation time for various types and sizes of networks. In particular, it reduces the betweenness
centrality computation time of a 4.6 million edges graph from more than 5 days to less than 16 hours.
For the same graph, we achieve to decrease the closeness computation time from more than 3 days to 6
hours (12.7x speedup).

1

Graph Manipulations for Fast Centrality Computation

AHMET ERDEM SARIYÜCE

The Ohio State University

KAMER KAYA

Sabancı University

ERIK SAULE

University of North Carolina at Charlotte

ÜMİT V. ÇATALYÜREK

The Ohio State University

November 21, 2014

1 Introduction

Centrality metrics are crucial for detecting the central and influential nodes in various types of networks such
as social networks [LdLCL10], biological networks [KS08], power networks [JHC+10], covert networks [Kre02]
and decision/action networks [cB08]. The betweenness and closeness are two intriguing metrics and have been
implemented in several tools which are widely used in practice for analyzing networks and graphs [LAB+12].
The betweenness centrality (BC) score of a node is the sum of the fractions of the shortest paths between
node pairs that pass through the node of interest [Fre77], whereas the closeness centrality (CC) score of a
node is the inverse of the sum of shortest distances from the node of interest to all other nodes. Hence,
contribution/load/influence/effectiveness of a node, while disseminating information through a network, is
determined with betweenness/closeness metrics. Although BC and CC have been proved to be successful
for network analysis, computing the centrality scores of all the nodes in a network is expensive. Brandes
proposed an algorithm for computing BC with O(nm) and O(nm + n2 log n) time and O(n + m) space
complexity for unweighted and weighted networks, respectively, where n is the number of nodes and m is the
number of node-node interactions in the network [Bra01]. Brandes’ algorithm is currently the best algorithm
for BC computations and it is unlikely that general algorithms with better asymptotic complexity can be
designed [Kin08]. However, it is not fast enough to handle Facebook’s billion or Twitter’s 200 million users.

We propose the BADIOS framework which uses a set of techniques (based on Bridges, Articulation,
Degree-1, and Identical vertices, Ordering, and Side vertices) for faster betweenness and closeness centrality
computation. The framework splits the network and reduces its size so that the BC and CC scores of the
nodes in two different pieces of network can be computed correctly and independently, and hence, in a more
efficient manner. It also preorders the graph to improve cache utilization.

For the sake of simplicity, we consider only standard, shortest-path vertex-betweenness and vertex-
closeness centrality on undirected unweighted graphs. However, our techniques can be used for other path-
based centrality metrics, or other BC variants, e.g., edge and group betweenness [Bra08]. BADIOS can
also be applied to weighted and/or directed networks. Furthermore, it is compatible with the existing
approximation and parallelization techniques of the BC and CC computation.

We apply BADIOS on a popular set of graphs with sizes ranging from 6K edges to 4.6M edges. For
BC, we show an average speedup 2.8 on small graphs and 3.8 on large ones. In particular, for the largest
graph we use, with 2.3M vertices and 4.6M edges, the computation time is reduced from more than 5 days
to less than 16 hours. For CC, the average speedup is 2.4 and 3.6 on small and large networks.

2

The rest of the paper is organized as follows: In Section 2, an algorithmic background for CC and BC
computation are given. The splitting and compression techniques for CC and BC are explained in Sections 4
and 5, respectively. Section 6 gives experimental results on various kinds of networks. We give the related
work in Section 7 and summarize the paper with Section 8.

2 Notation and Background

Let G = (V,E) be a network modeled as an undirected graph with n = |V | vertices and m = |E| edges
where each node is represented by a vertex in V , and a node-node interaction is represented by an edge in
E. Let Γ(v) be the set of vertices which are interacting with v. A graph G′ = (V ′, E′) is a subgraph of G if
V ′ ⊆ V and E′ ⊆ E.

A path is a sequence of vertices such that there exists an edge between consecutive vertices. A path
between two vertices s and t is denoted by s t. Two vertices u, v ∈ V are connected if there is a path
from u to v. If this is the case dstG(u, v) = dstG(v, u) shows the length of the shortest u v path in G.
Otherwise, dstG(u, v) = dstG(v, u) =∞. If all vertex pairs are connected we say that G is connected. If G is
not connected, then it is disconnected and each maximal connected subgraph of G is a connected component,
or a component, of G.

Given a graph G = (V,E), an edge e ∈ E is a bridge if G− e has more number of connected components
than G, where G − e is obtained by removing e from E. Similarly, a vertex v ∈ V is called an articulation
vertex if G − v has more connected components than G, where G − v is obtained by removing v and its
adjacent edges from V and E, respectively. The graph G is biconnected if it is connected and it does not
contain an articulation vertex. A maximal biconnected subgraph of G is a biconnected component: if G is
biconnected it has only one biconnected component, which is G itself.

G = (V,E) is a clique if and only if ∀u, v ∈ V , {u, v} ∈ E. The subgraph induced by a subset of vertices
V ′ ⊆ V is G′ = (V ′, E′ = {V ′×V ′}∩E). A vertex v ∈ V is a side vertex of G if and only if the subgraph of
G induced by Γ(v) is a clique. Two vertices u and v are identical if and only if either Γ(u) = Γ(v) (type-I)
or {u} ∪ Γ(u) = {v} ∪ Γ(v) (type-II). A vertex v is a degree-1 vertex if and only if |Γ(v)| = 1.

2.1 Closeness centrality

Given a graph G, the closeness centrality of u can be defined as

far[u] =
∑

v∈V

dstG(u,v) 6=∞

dstG(u, v),

cc[u] =
1

far[u]

If u cannot reach any vertex in the graph cc[u] = 0.
For a sparse unweighted graph G = (V,E) the complexity of CC computation is O(n(m + n)) [Bra01].

The pseudocode is given in Algorithm 1. For each vertex s ∈ V , the algorithm initiates a breadth-first
search (BFS) from s, computes the distances to the other vertices, and accumulates to cc[s]. Since a BFS
takes O(m+ n) time, and n BFSs are required in total, the complexity follows.

2.2 Betweenness centrality

Given a connected graph G, let σst be the number of shortest paths from a source s ∈ V to a target t ∈ V .
Let σst(v) be the number of such s t paths passing through a vertex v ∈ V , v 6= s, t. Let the pair

dependency of v to s, t pair be the fraction δst(v) =
σst(v)
σst

. The betweenness centrality of v is defined by

bc[v] =
∑

s 6=v 6=t∈V

δst(v). (1)

3

Algorithm 1: Cc-Org: Closeness centrality computation kernel

Data: G = (V,E)
Output: cc[.]

1 for each s ∈ V do

2 Q← empty queue
3 Q.push(s)
4 dst[s]← 0
5 far ← 0
6 cc[s]← 0
7 dst[v]←∞, ∀v ∈ V \ {s}
8 while Q is not empty do

9 v ← Q.pop()
10 for all w ∈ ΓG(v) do
11 if dst[w] =∞ then

12 Q.push(w)
13 dst[w]← dst[v] + 1
14 far ← far + dst[w]

15 cc[s]← 1
far

16 return cc[.]

Algorithm 2: Bc-Org: Betweenness centrality computation kernel

Data: G = (V,E)
1 bc[v]← 0, ∀v ∈ V
2 for each s ∈ V do
3 S ← empty stack, Q← empty queue
4 P[v]← empty list, σ[v]← 0
5 dst[v]←∞, ∀v ∈ V \ {s}
6 Q.push(s), σ[s]← 1, dst[s]← 0

⊲Phase 1: BFS from s
7 while Q is not empty do
8 v ← Q.pop(), S.push(v)
9 for all w ∈ Γ(v) do

10 if dst[w] =∞ then
11 Q.push(w)
12 dst[w]← dst[v] + 1

13 if dst[w] = dst[v] + 1 then
1515 σ[w]← σ[w] + σ[v]
16 P[w].push(v)

⊲Phase 2: Back propagation

17 δ[v]← 1
σ[v]

, ∀v ∈ V

18 while S is not empty do
19 w ← S.pop()
20 for v ∈ P [w] do
2222 δ[v]← δ[v] + δ[w]

23 if w 6= s then
2525 bc[w]← bc[w] + (δ[w]× σ[w]− 1)

26 return bc

4

Since there are O(n2) pairs in V , one needs O(n3) operations to compute bc[v] for all v ∈ V by using (1).
Brandes reduced this complexity and proposed an O(mn) algorithm for unweighted networks [Bra01]. The
algorithm is based on the accumulation of pair dependencies over target vertices. After accumulation, the
dependency of v to s ∈ V is

δs(v) =
∑

t∈V

δst(v). (2)

Let Ps(u) be the set of u’s predecessors on the shortest paths from s to all vertices in V . That is,

Ps(u) = {v ∈ V : {u, v} ∈ E, ds(u) = ds(v) + 1}

where ds(u) and ds(v) are the shortest distances from s to u and v, respectively. Ps defines the shortest paths
graph rooted in s. Brandes observed that the accumulated dependency values can be computed recursively:

δs(v) =
∑

u:v∈Ps(u)

σsv

σsu

× (1 + δs(u)) . (3)

To compute δs(v) for all v ∈ V \ {s}, Brandes’ algorithm uses a two-phase approach (Algorithm 2).
First, a breadth first search (BFS) is initiated from s to compute σsv and Ps(v) for each v. Then, in a
back propagation phase, δs(v) is computed for all v ∈ V in a bottom-up manner by using (3). Each phase
considers all the edges at most once, taking O(m) time. The phases are repeated for each source vertex.
The overall complexity is O(mn).

3 The BADIOS Framework

As mentioned in the introduction, closeness- and betweenness-based network and graph analysis can be an
expensive task. The size of the graph, in particular the size of the largest component in the graph, is the
main parameter that affects the practical computation time of many distance-related graph metrics. Hence,
compression techniques which can reduce the number of vertices/edges in a graph are promising to make
them faster. Furthermore, splitting graphs into multiple connected components, and hence reducing the
largest component size, can also help in practice.

BADIOS uses bridges and articulation vertices for splitting graphs. These structures are important
since for many vertex pairs s, t, all s t (shortest) paths are passing through them. It also uses three
compression techniques, based on removing degree-1, side, and identical vertices from the graph. These
vertices have special properties: No shortest path is passing through a side-vertex unless it is one of the
endpoints, all the shortest paths from/to a degree-1 vertex is passing through the same vertex, and for two
vertices u and v with identical neighborhoods, bc[u] and bc[v] (cc[u] and cc[v]) are equal. A toy graph and
a high-level description of the splitting/compression process via BADIOS is given in Figure 1.

As shown in Figure 1, BADIOS applies a series of operations as a preprocessing phase: Let G = G0 be
the initial graph, and Gℓ be the one after the ℓth splitting/compression operation. The ℓ + 1th operation
modifies a single connected component of Gℓ and generates Gℓ+1. The preprocessing continues if Gℓ+1 is
amenable to further modification. Otherwise, it terminates and the final CC (or BC) computation begins.

Exploiting the existence of above mentioned structures on CC and BC computations can be crucial. For
example, all non-leaf vertices in a binary tree T = (V,E) are articulation vertices. When Brandes’ algorithm
is used, the complexity of BC computation is O(n2). One can do much better: Since there is exactly one
path between each vertex pair in V , for v ∈ V , bc[v] is equal to the number of pairs communicating via v,
i.e., bc[v] = 2×((lvrv) + (n− lv − rv − 1)(lv + rv)) where lv and rv are the number of vertices in the left and
right subtrees of v, respectively. This approach takes only O(n) time. These equations can also be modified
for closeness-centrality computations and a linear-time CC algorithm can easily be obtained for trees.

A novel feature of BADIOS is fully exploiting the above mentioned structures by employing an iterative
preprocessing phase. Specifically, a degree-1 removal can create new degree-1, identical, and side vertices.
Or, a splitting can reveal new degree-1 and side vertices. Similarly, by removing an identical vertex, new

5

a

b b
b'

c

d

c{d}

e

c{d,e}
f

g

h

1 32 54

Figure 1: (1) a is a degree-1 vertex and b is an articulation vertex. The framework removes a and create a
clone b′ to represent b in the bottom component. (2) There is no degree-1, articulation, or identical vertex,
or a bridge. Vertices b and b′ are now side vertices and they are removed. (3) Vertex c and d are now type-II
identical vertices: d is removed, and c is kept. (4) Vertex c and e are now type-I identical vertices: e is
removed, and c is kept. (5) Vertices c and g are type-II identical vertices and f and h are now type-I. The
last reductions are not shown but the bottom component is compressed to a singleton vertex. The 5-cycle
above cannot be reduced.

identical, degree-1, articulation, and side vertices can appear. And lastly, new identical and degree-1 vertices
can be discovered when a side vertex is removed from the graph. To fully reduce the graph by using the
newly formed structures, the framework uses a loop where each iteration performs a set of manipulations on
the graph.

4 BADIOS for Closeness Centrality

Based on the combinatorial structures mentioned above, we describe a set of closeness-preserving graph ma-
nipulation techniques to make a graph smaller and disconnected while preserving the information required to
compute the distance-based metrics by using some auxiliary arrays. The proposed techniques will especially
be useful on expensive distance-based graph kernels such as closeness centrality which will be our main
application while describing the proposed approach.

For simplicity, we assume that graph is initially connected. In order to correctly compute the shortest-
path distances and closeness centrality values after reduction, we keep a representative vertex id for some of
the vertices removed from the graph during the process. We also assign two auxiliary attributes to all the
vertices: reach and ff (forwardable farness).

As explained above, BADIOS compresses the graph G, splits it into multiple disconnected components,
and obtains another graph G′ = (V ′, E′) with several graph manipulations. Let u be a vertex in V ′ and C ′

be the connected component of G′ containing u. Let Ru be the set of vertices v ∈ (V \ C ′) ∪ {u} such that
all the shortest v w paths in the original graph G are passing through u for all w ∈ C ′. In G′, all the
vertices Ru \ {u} are disconnected from the vertices in C ′. Hence, for each vertex v ∈ Ru, u will act as a
representative (or proxy) in C ′. During the CC computation, it will be responsible to propagate the impact
of v to the closeness centrality values of all the vertices in C ′. We use reach[u] = |Ru| to denote the number
of vertices represented by u.

In addition to reach, we assign another attribute ff to each vertex where at any time of the graph

6

manipulation process

ff[u] =
∑

v∈Ru

dstG(u, v).

The correctness of the proposed approach heavily depends on the correctness of the updates on these at-
tributes during the process. Before the manipulations, reach[u] is set to 1 for each u ∈ V since there is only
one vertex (itself) in Ru. Similarly, ff[u] is set to 0 since dstG(u, u) = 0.

4.1 Closeness-preserving graph splits

We used two approaches to split the graphs into multiple disconnected components; articulation vertex
cloning and bridge removal. Indeed, a bridge exists only between two articulation vertices but we still handle
it separately, since we observed that a bridge removal is cheaper and more effective than articulation vertex
cloning and the former does not increase the number of vertices but the latter does.

4.1.1 Articulation vertex cloning

Let u be an articulation vertex in a component C appeared in the preprocessing phase where we perform
graph manipulations. We split C into k components Ci for 1 ≤ i ≤ k by removing u from G and adding a
local clone u′

i of u to each new component Ci by connecting u′
i to the same vertices u was connected in Ci as

shown in Figure 2. For CC and BC computations, to keep the relation between the clones and the original
vertex, we use a mapping org from V ′ to V where org(u′

i) is original vertex u ∈ V for a clone u′
i ∈ V . At

any time of a (BC or CC) preprocessing phase, a vertex u ∈ V has exactly one representative u′ in each
component C such that reach[u′] is increased due to the existence of u. This vertex is denoted as rep(C, u).
Note that each local clone is a representative of its original.

u
C
1

C
2

C
3

C
1

C
2

C
3

u’
2

u’
3

u’
1

Figure 2: Articulation vertex cloning on a toy graph with three disconnected components after the graph
manipulation.

The cloning operation keeps the number of edges constant but increases the number of vertices in the
graph. The reach value for each clone u′

i is set to

reach[u′
i] = reach[u] +

∑

v∈C\Ci

reach[v] (4)

and its forwardable farness is set to

ff[u′
i] = ff[u] +

∑

1≤j≤k
j 6=i

∑

v∈Cj

dstCj
(u′

j , v) (5)

for 1 ≤ i ≤ k. Note that these updates are only local to clone vertices, i.e., only their reach and ff values
are affected. For example, a clone vertex u′

i sees the impact of the dstC(u, v) on ff[u′
i] even though v ∈ Cj ,

i 6= j, is in another component after the split. However, the same is not true for a non-clone vertex w /∈ Cj .
Hence, considering v and w are not connected anymore, the original CC kernel in Algorithm 1 will not

7

compute the correct closeness centrality values. To alleviate this, we will modify the original kernel later
to propagate the forwardable farness values of the clone vertices to their components. With the modified
kernel, we will have

cc[u] = cc′[u′
i] (6)

for 1 ≤ i ≤ k. That is, all the vertices cloned from the same articulation vertex will have the same CC
after the execution of the modified kernel. Furthermore, this value will be equal to actual centrality of the
articulation vertex used for splitting.

4.1.2 Bridge removals

As mentioned above, bridges can only exist between two articulation vertices. The graph can be split into
three disconnected components via articulation vertex cloning where one of the components will be a trivial
one having a single edge and two clone vertices. Here we show that removal of a bridge {u, v} can combine
these steps and does not form such unnecessary trivial components. Let Cu and Cv be the two components
after bridge removal which contain u and v, respectively. We update the reach values of u and v as follows:

reach[u] = reach[u] +
∑

w∈Cv

reach[w], (7)

reach[v] = reach[v] +
∑

w∈Cu

reach[w]. (8)

Consecutively, the ff values are updated as

ff[u] = ff[u] +

(

ff[v] +
∑

w∈Cv

dstCv
(v, w)

)

+ reach[v],

ff[v] = ff[v] +

(

ff[u] +
∑

w∈Cu

dstCu
(u,w)

)

+ reach[u],

where reach[v] and reach[v] are the recently updated values from (7) and (8). Note that the above equations
add the forwardable farness value to each other in addition to the total distance we lose by disconnecting a
connected component into two. The last reach term is required since reach[v] (reach[u]) vertices added to
Ru (Rv), and for all these vertices, v (u) is one edge closer than u (v). Again these values will be propagated
to the other vertices in Cu and Cv by the modified CC kernel that will be described later.

To update the reach and ff values, both the cloning and removal techniques described above require a
traversal within the component of the graph in which the articulation or bridge appears. Although it seems
costly, the benefit of such manipulations can be understood if the superlinear complexity of CC computation
is considered. Assume that a graph is split into k disconnected components each having equal number of
vertices and edges. Considering the O(n(m + n)) time complexity, the CC computation for each of these
components will take k2 times less time. Since there are k of them, the split will provide a k fold speedup in
total. Although such articulation vertices and bridges that evenly split the graph do not appear in real-world
graphs, even with imbalanced splits, one can obtain significant speedups since the cost of a split is just a
single BFS traversal.

4.2 Closeness-preserving graph compression

In this section, we present two closeness-preserving techniques which can be used to reduce the number of
vertices and edges in a graph: (1) degree-1 vertex removal and (2) side-vertex removal.

4.2.1 Compression with degree-1 vertices

A degree-1 vertex is a special instance of a bridge and can be handled as explained in the previous section.
However, the previous approach traverses the entire component once to update the reach and ff values.

8

Here we propose another approach with O(1) operations per vertex removal which requires a post-processing
after the CC scores of the remaining vertices are computed by the modified kernel.

u v G
1G

2

u
v G

1

Figure 3: A toy graph where G2 is compressed via manipulations and a degree-1 vertex u is obtained.

Figure 3 shows a simple example where a degree-1 vertex u appears after the subgraph G2 is compressed
into a single vertex after a set of graph manipulations. To remove u, which is connected to v, three operations
need to be performed: (1) an update on reach[v], (2) an update on ff[v], and (3) setting u as a dependent
of v for post-processing. When u is removed, all the vertices that were being represented by u (which are
the vertices in G2) will be represented by v. Hence, the new value of reach[v] is updated as

reach[v] = reach[v] + reach[u]. (9)

The forwardable farness of u, i.e., ff[u], needs to be added to ff[v] as

ff[v] = ff[v] + ff[u] + reach[u]. (10)

Similar to the bridge removal case, the last term reach[u] is required in the equation since all the reach[u]
vertices that changed their representative to v were one edge closer to u compared to v. As the last operation,
we mark that u is dependent to v and the difference between the overall farness values of u and v is set to

far[u]− far[v] = (|V | − reach[u])− reach[u] (11)

= |V | − 2× reach[u]. (12)

The first term (|V | − reach[u]) in the summation is added since all the vertices in V are one edge far away,
except the ones in Ru, to u compared to v. Similarly, all the vertices in Ru are one edge closer to u. Thus
we have an additional −reach[u] in (11). Sum of these two terms give the dependency equation in (12), i.e.,
the difference in u and v’s farness. Hence, once the overall farness value of v is computed, the farness value
of u can be computed via a simple addition via a post-processing phase.

4.2.2 Compression with side vertices

Let u be a side vertex appearing in a component during the graph manipulation process. Since Γ(u) is a
clique, except the ones starting or ending at u, no shortest path is passing through u, i.e., u is always on the
sideways. Hence, we can remove u if we compensate the effect of the shortest s t paths where u is either
s or t. To do this, we initiate a BFS from u in the original graph G as shown in Algorithm 3.

The main difference between a BFS in side-vertex removal and in the original implementation in Algo-
rithm 1 is line 13 (of Algorithm 3) which adds dst[w] to far[w] for each traversed vertex w. To do that,
a single variable to store the farness value (as in Algorithm 1) is not sufficient since side-vertex removals
update the farness values partially and these updates need to be stored till the end of the graph manipulation
process. Hence, we used an additional far array to perform side-vertex removal operations.

This compression technique has a little impact of the overall time since for a side vertex removal, an
additional BFS (Algorithm 3) is necessary and it is almost as expensive as the original BFS (of Algorithm 1)
we try to avoid. However, these removals can make new special vertices appear during the manipulation
process which enable further splits and compression of the graph in a cheaper way.

9

Algorithm 3: Side-vertex removal BFS for closeness centrality

Data: side vertex u, G = (V,E), far[.]
1 Q← empty queue
2 Q.push(u)
3 dst[u]← 0
4 dst[v]←∞, ∀v ∈ V \ {u}
5 while Q is not empty do

6 v ← Q.pop()
7 for all w ∈ ΓG(v) do
8 if dst[w] =∞ then

9 Q.push(w)
10 dst[w]← dst[v] + 1
11 far[u]← far[u] + dst[w]
1313 far[w]← far[w] + dst[w]

14 cc[u]← 1/far[u]

4.3 Combining and post-processing

We continuously process a reduction on the graph with split and compression operations until no further
reduction possible. We first perform degree-1 removals since they are the cheapest to handle. Next, we split
the graph by first bridges and then articulation vertex clones. The order is important for efficiency since the
former is cheaper than the latter. We iteratively use these three techniques until no reduction is possible.
After that we remove the side vertices to discover new special vertices. The reason behind delaying the
side-vertex removals is that its additional BFS requirement makes it expensive compared to the other graph
manipulation techniques. Hence, we do not use them until we really need them.

After all the graph manipulation techniques, the original CC kernel given in Algorithm 1 cannot compute
the correct centrality values since it does not forward the ff values to the other vertices. We apply a modified
version as shown in Algorithm 4 to compute the CC scores once the split and compression operations are
done and reach and ff attributes are fixed.

Algorithm 4: Cc-Reach: Modified closeness centrality computation

Data: G′ = (V ′, E′), ff[.], reach[.], far[.]
Output: cc[.]

1 for each s ∈ V ′ do

2 · · · ⊲same as Cc-Org

3 while Q is not empty do

4 v ← Q.pop()
5 for all w ∈ ΓG′(v) do
6 if dst[w] =∞ then

7 Q.push(w)
8 dst[w]← dst[v] + 1

1010 fwd← ff[w] + (dst[w]× reach[w])
1212 far[s]← far[s] + fwd

1414 far[s]← far[s] + ff[s]
15 cc[s]← 1/far[s]

16 return cc[.]

Theorem 1. Let G = (V,E) be the original graph and G′ = (V ′, E′) is the reduced graph after split and
compression operations with reach, ff, and far attributes computed for each vertex v ∈ V ′. Assuming these

10

attributes are correct, for all the vertices in V ′, the CC scores of G computed by Algorithm 1 is the same
with the CC scores of G′ computed by Algorithm 4.

Proof. For a source vertex s ∈ V ′ and another vertex w 6= s that is connected to s in G′, ff[w] is forwardable
to far[s] by using the equation at lines 10 and 12 of Algorithm 4. Remember that for a vertex w ∈ G′, all
the reach[w] vertices in Rw are not connected to s. Hence, they are represented by w and from s (and from
any vertex in the same component), they are reachable only through w. Since the shortest-path distance
between s and w is dst[w], the vertices in Rw are dst[w] more edges far away from s when compared to w.
Thus an additional dst[w]× reach[w] farness is required while forwarding the ff[w] value to far[s].

At the end of the algorithm (line 14), we have an extra addition of ff[s] to the total farness value of s.
It is required since while computing the total farness of s and its cc score, we need to consider the farness
due to the vertices in Rs.

4.3.1 Work filtering with identical vertices

If some vertices in G′ are identical, i.e., their adjacency lists are the same, the forwardable farness values from
other vertices to their overall farness will be the same. Hence, it is possible to combine these vertices and
avoid extra computation in Algorithm 4. We use 2 types of identical vertices: Vertices u and v are type-I (or
type-II) identical if and only if Γ(u) = Γ(v) (or Γ(u) ∪ {u} = Γ(v) ∪ {v}), as exemplified in Figure 4.

vu vu

Type I Type II

Figure 4: Type-I (left) and type-II (right) identical vertices u and v.

The compression works as follows: Let G′ = (V ′, E′) be the reduced graph after preprocessing operations,
and let I ⊂ V ′ be a set of identical vertices. We select a proxy vertex u ∈ I, compute its overall farness to
other vertices and CC score as shown in Algorithm 4. Then for a vertex v ∈ I, we compute

far[v] = far[u]− k × (reach[v]− reach[u]), (13)

cc[v] = 1/far[v], (14)

where k, the shortest distance between two identical vertices, is 2 for a type-1 identical vertex set, and 1 for a
type-2 identical vertex set. Note that the only difference between the farness values is k×(reach[v]−reach[u])
according to the lines 10, 12, and 14.

4.3.2 Post-processing for the degree-1 vertices

Once Algorithm 4 is done, the only remaining part is computing the CC scores of removed degree-1 vertices
since they are not in G′ anymore. To do that, we resolve the dependencies created when the degree-1 vertices
are being removed. We do a loop on the vertices and for each vertex u we visit, we check if u’s CC score
is already computed. If not, we recursively follow the dependencies to find the final representative vertex
in G′. While coming back from the recursion path, we use Equation (12) to find the farness and the CC
score(s) of the removed degree-1 vertices. Since the dependencies form a tree and at most O(1) operations
are performed per vertex, we need at most O(|V |) operations to resolve all the dependencies.

11

5 BADIOS for Betweenness Centrality

Here we propose a set of betweenness-preserving graph manipulation techniques similar to the ones described
for closeness centrality. The proposed techniques will make the original graph G = (V,E) smaller and
disconnected while preserving the information required to compute the distance-based metrics by using
some auxiliary arrays.

5.1 Betweenness-preserving graph splits

To correctly compute the BC scores after splitting G, we use the reach attribute as described above and set
reach[v] = 1 for all v ∈ V before the manipulations.

5.1.1 Articulation vertex cloning

Let u be an articulation vertex in a component C obtained during the preprocessing phase whose removal
splits C into k (connected) components Ci for 1 ≤ i ≤ k. As in CC, we remove u and keep a local clone u′

i

at each component Ci. For betweenness centrality on BADIOS, the reach values for each local clone is set
with

reach[u′
i] =

∑

v∈C\Ci

reach[v] (15)

for 1 ≤ i ≤ k.

Algorithm 5: Bc-Reach: Modified betweenness centrality computation

Data: G′ = (V ′, E′) and reach

1 bc′[v]← 0, ∀v ∈ V ′

2 for each s ∈ V ′ do
3 · · · ⊲same as Bc-Org

4 while Q is not empty do
5 · · · ⊲same as Bc-Org

77 δ[v]← reach[v]− 1, ∀v ∈ V ′

8 while S is not empty do
9 w ← S.pop()

10 for v ∈ P[w] do

1212 δ[v]← δ[v] + σ[v]
σ[w]
× (1 + δ[w])

13 if w 6= s then

1515 bc′[w]← bc′[w] + (reach[s]× δ[w])

16 return bc’

Algorithm 5 computes the BC scores of the vertices in a split graph. Note that the only difference with
Bc-Org are lines 7 and 15, and if reach[v] = 1 for all v ∈ V , then the algorithms are equivalent. Hence,
the complexity of Bc-Reach is also O(mn) for a graph with n vertices and m edges.

Let G = (V,E) be the initial graph, |V | = n, and G′ = (V ′, E′) be the split graph obtained via
preprocessing. Let bc and bc′ be the scores computed by Bc-Org(G) and Bc-Reach(G′), respectively. We
will prove that

bc[v] =
∑

v′∈V ′|org(v′)=v

bc′[v′], (16)

when the graph is split at articulation vertices. That is, bc[v] is distributed to bc′[v′]s where v′ is a local
clone of v. Let us start with two lemmas.

Lemma 1. Let u, v, s be vertices of G such that all s v paths contain u. Then, δs(v) = δu(v).

12

Proof. For any target vertex t, if σst(v) is positive then

δst(v) =
σst(v)

σst

=
σsuσut(v)

σsuσut

=
σut(v)

σut

= δut(v)

since all s t paths are passing through u. According to (2), δs(v) = δu(v).

Lemma 2. For any vertex pair s, t ∈ V , there exists exactly one component C of G′ which contains a clone
of t and a representative of s as two distinct vertices.

Proof. (by induction on the number of splits) Given s, t ∈ V , the statement is true for the initial (connected)
graph G since it contains one clone of each vertex. Assume that it is also true after the ℓ-th splitting. Let C
be this component. When C is further split via t’s clone, all but one newly formed (sub)components contains
a clone of t as the representative of s. For the remaining component C ′, rep(C ′, s) = rep(C, s) which is not
a clone of t.

For all components other than C, which contain a clone t′ of t, the representative of s is t′ by the inductive
assumption. When such components are further split, the representative of s will be again a clone of t. Hence
the statement is true for Gℓ+1, and by induction, also for G′.

The local clones of an articulation vertex v, created while splitting, are acting as the original vertex v in
their components. Once the reach value for each clone is set as in (15), line 7 of Bc-Reach handles the BC
contributions from each new component (except the one containing the source), and line 15 of Bc-Reach

fixes the contribution of vertices reachable only via the source s.

Theorem 2. Eq. 16 is correct after splitting G with articulation vertices.

Proof. Let C be a component of G′, s′, v′ be two vertices in C, and s, v be their original vertices in V ,
respectively. Note that reach[v′]− 1 is the number of vertices t 6= v such that t does not have a clone in C
and v lies on all s t paths in G. For all such vertices, δst(v) = 1, and the total dependency of v′ to all
such t is reach[v′]− 1. When the BFS is started from s′, line 7 of Bc-Reach initiates δ[v′] with this value
and computes the final δ[v′] = δs′(v

′). This is the same dependency δs(v) computed by Bc-Org.
Let C be a component of G′, u′ and v′ be two vertices in C, and u = org(u′), v = org(v′). According to

the above paragraph, δu(v) = δu′(v′) where δu(v) and δu′(v′) are the dependencies computed by Bc-Org

and Bc-Reach, respectively. Let s ∈ V be a vertex, s.t. rep(C, s) = u′. According to Lemma 1, δs(v) =
δu(v) = δu′(v′). Since there are reach[u′] vertices represented by u′ in C, the contribution of the BFS from
u′ to the BC score of v′ is reach[u′]× δu′(v′) as shown in line 15 of Bc-Reach. Furthermore, according to
Lemma 2, δs′(v

′) will be added to exactly one clone v′ of v. Hence, (16) is correct.

5.1.2 Bridge removals

Let {u, v} be a bridge in a component C formed during graph manipulations. Let u′ = org(u) and v′ =
org(v). As stated above, a bridge removal operation is similar to a splitting via an articulation vertex,
however, no new clones of u′ or v′ are created. Instead, we let u and v act as a clone of v′ and u′ in the newly
created components Cu and Cv which contain u and v, respectively. Similar to (15), we add

∑

w∈Cv
reach[w]

and
∑

w∈Cu
reach[w] to reach[u] and reach[v], respectively, to make u (v) the representative of all the

vertices in Cv (Cu).
After a bridge removal, updating the reach values is not sufficient to make Lemma 2 correct. No

component contains a distinct representative of u′ (v′) and clone of v′ (u′) anymore. Hence, δv(u
′) and

δu(v
′) will not be added to any clone of u′ and v′, respectively, by Bc-Reach. But we can compute the

difference and add

δv(u) =

((

∑

w∈Cu

reach[w]

)

− 1

)

×
∑

w∈Cv

reach[w],

to bc′[u] and add δu(v) to bc′[v], where δu(v) is computed by interchanging u and v in the right side of the
above equation. Note that Lemma 2 is correct for all other vertex pairs.

13

Corollary 1. Eq. 16 is correct after splitting G with articulation vertices and bridges.

5.2 Betweenness-preserving graph compression

Here we present BADIOS’s betweenness-preserving compression techniques: (1) degree-1 vertex removal,
(2) compression by identical vertices, and (3) side-vertex removal.

5.2.1 Compression with degree-1 vertices

As stated before, although a degree-1 vertex removal is a special instance of a graph split with a bridge, we
handle them separately to avoid trivial components. Let u be a degree-1 vertex connected to v and appeared
in a component C formed during the preprocessing. To remove u, we add reach[u] to reach[v] and increase
bc′[u] and bc′[v], respectively, with

δv(u) = (reach[u]− 1)×
∑

w∈C\{u}

reach[w],

δu(v) =

∑

w∈C\{u}

reach[w]

− 1

× reach[u].

Corollary 2. Eq. 16 is correct after splitting G with articulation vertices and bridges, and compressing it
with degree-1 vertices.

5.2.2 Compression with identical vertices

Instead of basic work filtering applied for CC, BADIOS uses the type-I and type-II identical vertices to
compress the graph further for BC. Hence, it exploits these vertices in a more complex way. To handle the
complexity, an ident attribute is assigned to each vertex where ident(v) denotes the number of vertices in
G that are identical to v in G′. Initially, ident[v] is set to 1 for all v ∈ V .

Let I be a set of identical vertices formed during the preprocessing phase. We remove all vertices
in I except one, which acts as a proxy for the others. Let v be the proxy vertex for I. We increase
ident[v] by

∑

v′∈I,v′ 6=v ident[v
′], and associate a list I\{v} with v. The integration of the identical-vertex

compression is realized in three modifications on Algorithm 2: During the first phase, line 15 is changed to
σ[w] ← σ[w] + σ[v] × ident[v], since v can be a proxy for some vertices other than itself. Similarly, w can

be a proxy, and line 22 is modified as δ[v] ← δ[v] + σ[v]
σ[w] × (δ[w] + 1) × ident[w] to correctly simulate w’s

identical vertices. Finally, the source s can be a proxy, and the current BFS phase can be a representative for
ident[s] phases. To handle that, the BC updates at line 25 are changed to bc′[w]← bc′[w]+ident[s]×δ[w].
The BC scores of all the vertices in I are equal.

The only paths ignored via these modifications are the paths between u ∈ I and v ∈ I. If I is type-II
the u v path contains a single edge and has no effect on dependency (and BC) values. However, if I is
type-I, such paths have some impact. Fortunately, it only impacts the immediate neighbors’ BC scores of I.
Since there are exactly

∑

u∈I(ident[u](
∑

v∈I,u 6=v ident[v])) such paths, this amount is equally distributed
among the immediate neighbors of I.

The technique presented in this section has been presented without taking the reach attribute into
account. Both attributes can be maintained simultaneously. The details are not presented here for brevity.
The main challenge is to keep track of the BC of each identical vertex since they can differ if the reach value
of the identical vertices are not equal to 1.

Corollary 3. Eq. 16 is correct after splitting G with articulation vertices and bridges, and compressing it
with degree-1, and identical vertices.

14

5.2.3 Compression with side vertices

Let u be a side vertex in a component C formed after a set of manipulations on the original graph G. Since
Γ(u) is a clique, no shortest path is passing through u. Hence, we can remove u from C by compensating
the effect of the shortest s t paths where u is either s or t. To do this, we initiate a BFS from u similar
to the one in Bc-Reach. As Algorithm 6 shows, the only differences are two additional lines 12 and 14.
Note that this extra BFS is as expensive as the original one we avoid by removing u. As in CC, BADIOS

performs the side-vertex removals since they can yield new special vertices in the graph, which will be used
to improve the performance.

Algorithm 6: Side-vertex removal BFS for betweenness centrality

Data: Gℓ = (Vℓ, Eℓ), a side vertex s, reach, and bc′

1 · · · ⊲same as Bc-Reach

2 while Q is not empty do
3 · · · ⊲same as the BFS in Bc-Reach

4 δ[v]← reach[v]− 1, ∀v ∈ Vℓ

5 while S is not empty do
6 w ← S.pop()
7 for v ∈ P[w] do

8 δ[v]← δ[v] + σ[v]
σ[w]

(1 + δ[w])

9 if w 6= s then

10 bc′[w]← bc′[w] + (reach[s]× δ[w])+
1212 (reach[s]× (δ[w]− (reach[w]− 1))

1414 bc′[s]← bc′[s] + (reach[s]− 1)× δ[s]
15 return bc’

Let v, w be two vertices in C different than u. Although both vertices will keep existing in C − u, since
u will be removed, δv(w) will be reach[u] × δvu(w) less than it should be. For all such v, the aggregated
dependency will be

∑

v∈C,v 6=w

δvu(w) = δu(w)− (reach[w]− 1),

since none of the reach[w] − 1 vertices represented by w lies on a v u path and δvu(w) = δuv(w). The
same dependency appears for all vertices represented by u. Line 12 of Algorithm 6 takes into account all
these dependencies.

Let s ∈ V be a vertex s.t. rep(C, s) = v 6= u. When we remove u from C, due to Lemma 2, δs(u) = δv(u)
will not be added to any clone of org(u). Since, u is a side vertex, δv(u) = reach[u] − 1. Since there are
∑

v∈C−u reach[v] vertices which are represented by a vertex in C − u, we add

(reach[u]− 1)×
∑

v∈C−u

reach[v]

to bc′[u] after removing u from C. Line 14 of Algorithm 6 compensates this loss.

Corollary 4. Eq. 16 is correct after splitting G with articulation vertices and bridges, and compressing it
with degree-1, identical, and side vertices.

5.3 Combining and post-processing

For betweenness centrality, BADIOS first applies degree-1 removal since it is the cheapest to handle. Next,
it splits the graph by first removing the bridges, and then articulation vertices. It then removes the identical
vertices in the graph in the order of type-II and type-I. Notice that type-II removals can reveal new type-I
identical vertices but the reverse is not possible. The framework iteratively uses these 4 techniques until it

15

Graph Time (in sec.)
name |V | |E| BC org. BC best BC Sp. CC org. CC best CC Sp.
as-22july06 22.9K 48.4K 43.72 8.78 4.9 17.03 5.49 3.1
astro-ph 16.7K 121.2K 40.56 19.41 2.0 14.10 9.15 1.5
cond-mat-2005 40.4K 175.6K 217.41 97.67 2.2 79.16 46.21 1.7
p2p-Gnutella31 62.5K 147.8K 422.09 188.14 2.2 180.27 65.13 2.8
PGPgiantcompo 10.6K 24.3K 10.99 1.55 7.0 4.63 0.75 6.2
power 4.9K 6.5K 1.47 0.60 2.4 0.78 0.27 2.8
protein 9.6K 37.0K 11.76 7.33 1.6 4.12 2.33 1.7

geometric mean 2.8 geometric mean 2.5

amazon0601 403K 2,443K 42,656 36,736 1.1 17,653 11,901 1.5
loc-gowalla 196K 950K 5,926 3,692 1.6 2,117 1,138 1.9
soc-sign-epinions 131K 711K 2,193 839 2.6 889 264 3.4
web-Google 875K 4,322K 153,274 27,581 5.5 83,821 22,935 3.7
web-NotreDame 325K 1,090K 7,365 965 7.6 2,736 517 5.3
wiki-Talk 2,394K 4,659K 452,443 56,778 7.9 279,548 22,029 12.7

geometric mean 3.4 geometric mean 3.7

Table 1: The graphs used in the experiments. Columns BC org. and CC org. show the original execution
times of BC and CC computation without any modification. And BC best and CC best are the minimum
execution times achievable via our framework for BC and CC. The names of the graphs are kept short where
the full names can be found in the text.

reaches a point where no reduction is possible. At that point, it removes the side vertices to discover new
special vertices. Similar to CC, the framework does not use side vertices until it really needs them.

6 Experiments

We implemented our framework in C++. The code is compiled with gcc v4.8.1 and optimization flag -O2.
The graph is kept in memory in the compressed adjacency list format. The experiments are run on a
computer with Intel Xeon E5520 CPU clocked at 2.27GHz and equipped with 48GB of main memory. All
the experiments are run sequentially.

For the experiments, we used 13 real-world networks from the UFL Sparse Matrix Collection (http:
//www.cise.ufl.edu/research/sparse/matrices/). Their properties are summarized in Table 1. They
are from different application areas, such as grid (power), router (as-22july06, p2p-Gnutella31), social (PGP-
giantcompo, astro-ph, cond-mat-2005, soc-sign-epinions, loc-gowalla, amazon0601, wiki-Talk), protein inter-
action (protein), and web networks (web-NotreDame, web-Google). We symmetrized the directed graphs.
We categorized the graphs into two classes; small and large ones (separately shown in Table 1).

Our proposed techniques can be combined in many different ways. In this section we use lower case
abbreviations for representing these combined methods. We will use lower case letters ‘o’ for the BFS
ordering, ‘d’ for degree-1 vertices, ‘b’ for bridge, ‘a’ for articulation vertices, ‘i’ for identical vertices, and ‘s’
for side vertices. The ordering is performed to improve the cache locality during centrality computation by
initiating a BFS from a random source vertex as in Algorithm 1 and renumbering the vertices as their visit
order. Using this scheme, for example, abbreviation das means that the degree-1 removal is followed by the
articulation vertex cloning, which is followed by the side-vertex removal. This pattern is repeated until no
further modification is possible.

We first investigate the efficiency of BADIOS on reducing the graphs. We check the number of remaining
edges by applying our techniques on the test graphs. Figures 5a and 5b show the number of remaining
edges in the reduced graph normalized with respect to the original number of edges in G. We chose the
variants, d, da, and das since these manipulations are the only ones that reduce the number of edges or make
new articulation vertices appear. We measured the remaining number of edges in the largest connected
component as well as the other components (shown as “rest”). Degree-1 vertex removal (going from 1st bar
to 2nd bar) provides 13% and 14% average reductions in the sizes of small and large graphs, respectively.
This result shows that there is a significant amount of degree-1 vertices in real-world graphs and they can be
efficiently utilized by our techniques. When we measure the impact of articulation vertex cloning on total

16

http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	
n
o
rm

a
li
ze
d
	 n
u
m
b
e
r	
o
f	
e
d
g
e
s	

rest	
largest	 component	

(a) Normalized remaining edges for small graphs

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

n
o
rm

a
li
ze
d
	 n
u
m
b
e
r	
o
f	
e
d
g
e
s	

rest	

largest	 component	

(b) Normalized remaining edges for large graphs

Figure 5: The plots on the left and right show the number of remaining edges on the graphs which initially
have less than and more than 500K edges, respectively. They show the ratio of remaining edges of the
variants, which consecutively reduce the number of edges: base, d, da, das. The number of remaining edges
are normalized w.r.t. total number of edges in the graph and divided into two: largest connected component
and rest of the graph.

number of connected components, we observe two facts: (1) there is usually one giant (strongly) connected
component in real-world social networks, and (2) other components are small in size. As can be seen from
the 2nd and 3rd bars, articulation-vertex cloning increases the yellow colored regions in the graph, i.e., splits
the graphs. Lastly, we measure the effect of side vertex removal. The differences between the 3rd and 4th
bars show the reduction by side vertex removal. We observe 9% and 5% average reductions in small and
large graphs.

6.1 Closeness centrality experiments

We measure the performance of BADIOS on CC computation time. We evaluate the preprocessing and
computation time separately. Figures 6a and 6b present the runtimes for each combination normalized w.r.t.
the implementation of Algorithm 1. For each graph, we tested 6 different combinations of the improvements
proposed in this work: They are denoted with o, do, dao, dbao, dbaos, and dbaosi. For each graph, each
figure has 7 stacked bars for the 6 combinations in the order described above plus the base implementation.

In many graph kernels, the order of edge accesses is important to due to cache locality. Therefore, we
order our graphs after split and compression operations. The second bars for each graph at Figures 6a
and 6b show the improvement gained by ordering the graphs. We have 13% and 34% improvements (over
the baseline) with ordering for small and big graphs, respectively. Especially larger graphs benefit more from
the graph ordering and the cache is utilized more efficiently.

In general, the preprocessing phase takes little time for all graphs. At most 7% of the overall execution
time is spent for graph manipulations on small graphs and this value is 6% for large graphs. With split and
compression operations, BADIOS can obtain significant speedup values. When we only remove the degree-1
vertices, we have 16% runtime improvement for small graphs and 54% improvement for large graphs. When
Figures 5a and 5b, are compared with Figures 6a and 6b, the correlation between the reduction on the
number of edges and the improvement on the performance becomes more clear. Furthermore, we observe
larger speedup values for the smaller graphs. In addition to degree-1 removal, if we split the input graph
with articulation vertex cloning, the speedups increase: in large graphs, this reduces the overall execution

17

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	
R
e
la
-
v
e
	 T
im

e
	

preprocessing	

CC	

(a) Normalized execution times for small graphs

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

R
e
la
-
v
e
	 T
im

e
	

preprocessing	

CC	

(b) Normalized execution times for large graphs

Figure 6: The plots on the left and right show the CC computation times on graphs with less than and
more than 500K edges, respectively. They show the normalized runtime of the variants: base, o, do, dao,
dbao, dbaos, dbaosi. The times are normalized w.r.t. base and divided into two: preprocessing, and the CC
computation.

time up to 5%. As expected, when there are more articulation vertices in the graph, the speedups are higher.
As explained in Section 4.1.2, a bridge is always exists between two articulation vertices but bridge removal
is cheaper than articulation vertex cloning. We see the effect of cheap bridge removals when we look at the
combination odab (5th bar): in small graphs, we have 4% improvement with articulation vertex cloning plus
bridge removal over only articulation vertex cloning.

The side vertex removals turn out to be not efficient. We can not observe significant speedups when we
remove the side vertices in graphs. On the other hand, filtering the work via identical vertices brings good
improvements. We gain 8% and 10% in small and large graphs with identical vertex filtering. This shows
that there are significant amount of identical vertices in the reduced graph and they can be utilized for faster
solutions.

Overall, we have decent speedup numbers for CC when all the techniques are applied. Table 1 shows the
runtime of the base algorithm, runtime of the combination where all techniques are used, and the speedup
obtained by that combination. For the largest graph we have, wiki-Talk with 2.3M vertices and 4.6M edges,
we reach 12.7 speedup over base implementation.

6.2 Betweenness centrality experiments

Here we experimentally evaluate the performance of BADIOS for betweenness centrality computations.
As we did for CC, we measure the preprocessing time and BC computation time separately. Figures 7a
and 7b present the runtimes for each combination normalized w.r.t. Brandes’ algorithm. For each graph,
each figure has 7 stacked bars for the 7 combinations in the order described in the caption. To compare the
reductions on the execution times with the reductions on the number of edges and vertices, in Figures 7c–7d,
the number of edges remaining in the graph after the preprocessing phase are given for the combinations d,
da, dai, and dasi.

As Figure 7 shows, there is a direct correlation between the amount of edges remaining after the graph
manipulations and the overall execution time (except for soc-sign-epinions and loc-gowalla. This proves that
our rationale behind investigating splitting and compression techniques is valid also for BC.

Table 1 shows the runtime of the base BC algorithm as well as the runtime of the combination that lead

18

0.0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1.0	

R
e
la
2
v
e
	 2
m
e
	

preprocessing	

phase	 2	

phase	 1	

(a) Normalized execution times for small graphs

0.0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1.0	

R
e
la
2
v
e
	 2
m
e
	

preprocessing	

phase	 2	

phase	 1	

(b) Normalized execution times for large graphs

0.0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1.0	

n
o
rm

a
li
ze
d
	 n
u
m
b
e
r	
o
f	
e
d
g
e
s	

rest	

largest	 component	

(c) #remaining edges for small graphs

0.0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1.0	

n
o
rm

a
li
ze
d
	 n
u
m
b
e
r	
o
f	
e
d
g
e
s	

rest	

largest	 component	

(d) #remaining edges for large graphs

Figure 7: The plots on the left and right show the results on graphs with less than and more than 500K
edges, respectively. The top plots show the runtime of the variants: base, o, do, dao, dbao, dbaio, dbaiso.
The times are normalized w.r.t. base and divided into three: preprocessing, the first phase and the second
phase of the BC computation. The bottom plots show the number of edges in the largest 200 components
after preprocessing.

19

to the best improvement and the speedup obtained by that combination. Almost for all graphs, BADIOS

provides a significant improvement. We observe up to 7.9 speedup on large graphs. For wiki-Talk, applying
all techniques reduced the runtime from 5 days to 16 hours.

Although it is not that common, applying degree-1- and identical-vertex removal can degrade the perfor-
mance by a small amount. When the number of vertices removed is small, their removal does not compensate
the overhead induced by the reach and ident attributes in the algorithms. The only graph BADIOS does
not perform well on is the co-purchasing network of Amazon website, amazon0601, where it brings less than
20% of improvement. This graph contains large cliques formed by the users purchasing the same item, and
hence does not have enough number of special vertices.

7 Related Work

Several techniques have been proposed to cope with large networks with limited success either by using
approximate computations [BP07, GSS08], or by throwing hardware resources to the problem by parallelizing
the computations on distributed memory architectures [LC11], multicore CPUs [MEJ+09], and GPUs [SZ11,
JLH+11].

To the best of our knowledge, there are two concurrent works since our first release, noted in our technical
report [SSKÇ13]. However, their focus is limited to BC computation only. The first work introduces degree-
1 vertex removal for BC [BGPL12]. In the second, Puzis et al. propose to remove articulation vertices
and structurally equivalent vertices which correspond to our type-I identical vertices [PZE+12]. We did
not compare our speedups with theirs for three reasons: the techniques they use form only a subset of the
techniques we proposed in this work, they are not well integrated as we did in BADIOS, and even our
base implementation is already 40–45 times faster than their fastest algorithm (see the results for soc-sign-
epinions [BGPL12] and p2p-Gnutella31 [PZE+12]). We believe that an efficient implementation of a novel
algorithm is mandatory to evaluate any improvement.

8 Conclusion and Future Work

In this work, we proposed theBADIOS framework to reduce the execution time of betweenness and closeness
centrality computations. The proposed framework employs techniques to split graphs into pieces while
keeping and organizing all the information to recompute the shortest path distances, farness values, and
pair dependencies which are the building blocks of CC and BC computations. BADIOS also employs a
set of compression techniques to reduce the number of vertices and edges in the graphs. Combining these
techniques provides great reductions in graph sizes and improvements on the performance. An experimental
evaluation with various networks shows that the proposed techniques are highly effective in practice and
they can be a great arsenal to reduce the execution time for CC and BC computations. For BC, we show
an average speedup 2.8 on small graphs and 3.8 on large ones. In particular, for the largest graph we use,
with 2.3M vertices and 4.6M edges, the computation time is reduced from more than 5 days to less than 16
hours. For CC, the average speedup is 2.4x and 3.6x on small and large networks and 12.7x on the largest
graph in our experiments.

As a future work, we plan to leverage further special structures in graphs to speed up the centrality
computation. For example, two connected vertices, each with degree of 2, have the exact same BC scores.
This property can be utilized for faster BC computation by removing one of the vertices with its adjacent
edges.

References

[BGPL12] M. Baglioni, F. Geraci, M. Pellegrini, and E. Lastres. Fast exact computation of betweenness
centrality in social networks. In ASONAM, 2012.

20

[BP07] U. Brandes and C. Pich. Centrality estimation in large networks. I. J. Bifurcation and Chaos,
17(7), 2007.

[Bra01] U. Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical Sociology,
25(2), 2001.

[Bra08] U. Brandes. On variants of shortest-path betweenness centrality and their generic computation.
Social Networks, 30(2), 2008.

[cB08] Ö. Şimşek and A. G. Barto. Skill characterization based on betweenness. In NIPS, 2008.

[Fre77] L. Freeman. A set of measures of centrality based upon betweenness. Sociometry, 4, 1977.

[GSS08] R. Geisberger, P. Sanders, and D. Schultes. Better approximation of betweenness centrality. In
ALENEX, 2008.

[JHC+10] S. Jin, Z. Huang, Y. Chen, D. Chavarria-Miranda, J. Feo, and P. C. Wong. A novel application
of parallel betweenness centrality to power grid contingency analysis. In IPDPS, 2010.

[JLH+11] Y. Jia, V. Lu, J. Hoberock, M. Garland, and J. C. Hart. Edge vs. node parallelism for graph
centrality metrics. In GPU Computing Gems: Jade Edition. 2011.

[Kin08] S. Kintali. Betweenness centrality : Algorithms and lower bounds. CoRR, abs/0809.1906, 2008.

[Kre02] V. Krebs. Mapping networks of terrorist cells. Connections, 24, 2002.

[KS08] Dirk Koschützki and Falk Schreiber. Centrality analysis methods for biological networks and
their application to gene regulatory networks. Gene Regulation and Systems Biology, 2, 2008.

[LAB+12] A. Lugowski, D. Alber, A. Buluç, J. Gilbert, S. Reinhardt, Y. Teng, and A. Waranis. A flexible
open-source toolbox for scalable complex graph analysis. In Proc. of SDM, 2012.

[LC11] R. Lichtenwalter and N. V. Chawla. DisNet: A framework for distributed graph computation.
In ASONAM, 2011.

[LdLCL10] J-K. Lou, S d. Lin, K-T. Chen, and C-L. Lei. What can the temporal social behavior tell us?
An estimation of vertex-betweenness using dynamic social information. In ASONAM, 2010.

[MEJ+09] K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and D. G. Chavarria-Miranda. A faster parallel
algorithm and efficient multithreaded implementations for evaluating betweenness centrality on
massive datasets. In IPDPS, 2009.

[PZE+12] R. Puzis, P. Zilberman, Y. Elovici, S. Dolev, and U. Brandes. Heuristics for speeding up be-
tweenness centrality computation. In SocialCom, sep. 2012.

[SSKÇ13] A. E. Sarıyüce, E. Saule, K. Kaya, and Ü. V. Çatalyürek. Shattering and compress-
ing networks for betweenness centrality. In SIAM International Conference on Data
Mining (SDM), May 2013. An extended version is available as a Tech Rep on ¡a
href=”http://arxiv.org/abs/1209.6007”¿ArXiv¡/a¿.

[SZ11] Z. Shi and B. Zhang. Fast network centrality analysis using GPUs. BMC Bioinformatics, 12:149,
2011.

21

	Introduction
	Notation and Background
	Closeness centrality
	Betweenness centrality

	The BADIOS Framework
	BADIOS for Closeness Centrality
	Closeness-preserving graph splits
	Articulation vertex cloning
	Bridge removals

	Closeness-preserving graph compression
	Compression with degree-1 vertices
	Compression with side vertices

	Combining and post-processing
	Work filtering with identical vertices
	Post-processing for the degree-1 vertices

	BADIOS for Betweenness Centrality
	Betweenness-preserving graph splits
	Articulation vertex cloning
	Bridge removals

	Betweenness-preserving graph compression
	Compression with degree-1 vertices
	Compression with identical vertices
	Compression with side vertices

	Combining and post-processing

	Experiments
	Closeness centrality experiments
	Betweenness centrality experiments

	Related Work
	Conclusion and Future Work

