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Graph Matching With a
Dual-Step EM Algorithm

Andrew D.J. Cross and Edwin R. Hancock

Abstract—This paper describes a new approach to matching geometric structure in 2D point-sets. The novel feature is to unify the

tasks of estimating transformation geometry and identifying point-correspondence matches. Unification is realized by constructing a

mixture model over the bipartite graph representing the correspondence match and by affecting optimization using the EM

algorithm. According to our EM framework, the probabilities of structural correspondence gate contributions to the expected

likelihood function used to estimate maximum likelihood transformation parameters. These gating probabilities measure the

consistency of the matched neighborhoods in the graphs. The recovery of transformational geometry and hard correspondence

matches are interleaved and are realized by applying coupled update operations to the expected log-likelihood function. In this way,

the two processes bootstrap one another. This provides a means of rejecting structural outliers. We evaluate the technique on two

real-world problems. The first involves the matching of different perspective views of 3.5-inch floppy discs. The second example is

furnished by the matching of a digital map against aerial images that are subject to severe barrel distortion due to a line-scan

sampling process. We complement these experiments with a sensitivity study based on synthetic data.

Index Terms—EM Algorithm, graph-matching, affine geometry, perspective geometry, relational constraints, Delaunay graph,

discrete relaxation.

——————————���F���——————————

1 INTRODUCTION

HE estimation of transformational geometry from point-
sets is key to many problems of computer vision and

robotics [29], [31]. Broadly speaking, the aim is to recover a
matrix representation of the transformation between image
and model coordinate systems. Estimating the matrix re-
quires a set of correspondence matches between features in
the two coordinate systems [37]. In other words, the feature
points must be labeled. Posed in this way, there is a basic
chicken-and-egg problem. Before good correspondences
can be estimated, there needs to be reasonable bounds on
the transformational geometry. Yet, this geometry is, after
all, the ultimate goal of computation. This problem is usu-
ally overcome by invoking constraints to bootstrap the es-
timation of feasible correspondence matches [17], [27]. One
of the most popular ideas is to use the epipolar constraint to
prune the space of potential correspondences [17]. If reli-
able correspondences are not available, then a robust fitting
method must be employed [36], [35]. This involves remov-
ing rogue correspondences through outlier rejection. An
example is furnished by the recent work of Torr and
Murray [37].

In this paper, we adopt a somewhat different approach
to the problem of recovering transformational geometry. We
take the view that the available correspondences are, at
best, uncertain and may contain a substantial proportion of
errors. However, rather than rejecting those correspon-
dences which give rise to a large registration error, we at-

tempt to iteratively correct them. In a nutshell, our idea is to
bootstrap by alternating between estimating transforma-
tional parameters and refining correspondence matches.
The framework for this study is furnished by a variant of
the EM algorithm. Specifically, we use a structural gating
process inspired by Jordan and Jacob’s [23] hierarchical
mixture of experts architecture to control contributions to
the log-likelihood function for the transformation parame-
ters. The structural gating is based on the consistency of the
correspondence matches and draws on adjacency con-
straints for the point sets under consideration.

1.1 Related Literature
The problem of point pattern matching has attracted sus-
tained interest in both the vision and statistics communities
for several decades. For instance, Kendall [24] has general-
ized the process to projective manifolds using the concept
of Procrustes distance. In the vision literature, the problem
has attracted increased recent interest because of the pivotal
role of rigidity constraints in recovering structure from mo-
tion sequences. As a concrete example, McReynolds and
Lowe show how rigidity constraints can be used in per-
spective matching [27]. Historically, it was Ullman [39] who
was one of the first to recognize the importance of exploit-
ing rigidity constraints in the correspondence matching of
point-sets. Recently, several authors have drawn inspiration
from Ullman’s ideas in developing general purpose corre-
spondence matching algorithms using the Gaussian
weighted proximity matrix.

There are two contrasting uses of the proximity-matrix
which deserve special mention. Scott and Longuet-Higgins
[33] locate correspondences by finding a singular value
decomposition of the interimage proximity matrix. Sha-
piro and Brady [36], [35], on the other hand, match by
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comparing the modal eigenstructure of the intraimage
proximity matrix. In fact, these techniques provide the basic
ground-work on which the deformable shape models of
Cootes et al. [8] and Sclaroff and Pentland [34] build.

This work on the coordinate proximity matrix is closely
akin to that of Umeyama [40] who shows how point-sets
abstracted in a structural manner using weighted adjacency
graphs can be matched using an eigendecomposition
method. These ideas have been extended to accommodate
parametererized transformations [41], which can be applied
to the matching of articulated objects [42]. More recently,
there have been several attempts at modeling the structural
deformation of point-sets. For instance, Amit and Kong [5]
have used a graph-based representation (graphical tem-
plates) to model deforming two-dimensional shapes in
medical images. Lades et al. [26] have used a dynamic mesh
to model intensity-based appearance in images.

However, these contributions fall well short of formally
integrating structural constraints into the recovery of trans-
formational geometry. The basic idea behind this paper is to
address this deficiency. We take the view that, although
the importance of structural constraints in the recovery of
correspondence matches has been clearly identified, the
adopted statistical framework leaves considerable scope
for improvement. In particular, there is little attempt to
explicitly characterize the representation of point-structure
or to quantify in a statistical way acceptable geometric de-
formations.

1.2 Paper Overview
The aim in this paper is to develop a synergistic framework
for matching. Specifically, we aim to facilitate feedback
between the two problems of estimating transformational
geometry and locating correspondence matches. The key
idea is to use a bipartite graph to represent the current con-
figuration of correspondence match. This graphical struc-
ture provides an architecture that can be used to gate con-
tributions to the likelihood function for the geometric pa-
rameters using structural constraints. Correspondence
matches and transformation parameters are estimated by
applying the EM algorithm to the gated likelihood function.
In this way, we arrive at dual maximization steps. When a
Gaussian measurement process is assumed, then maximum
likelihood parameters are found by minimizing the struc-
turally gated squared error residuals between features in
the two images being matched. Correspondence matches
are updated so as to maximize the a posteriori probability
of the observed structural configuration on the bipartite
association graph.

It is important to stress that the idea of using a graphical
model to provide structural constraints on parameter esti-
mation is a task of generic importance. Although the EM
algorithm has been used to extract affine and Euclidean
parameters from point-sets [43], [15] or line-sets [28], there
has been no attempt to impose structural constraints on the
correspondence matches. Viewed from the perspective of
graphical template matching [5], [26], our EM algorithm
allows an explicit deformational model to be imposed on a
set of feature points. Since the method delivers statistical
estimates for both the transformation parameters and their

associated covariance matrix, it offers significant advan-
tages in terms of its adaptive capabilities. When viewed in
this way, our method has some conceptual similarity with
Pollefeys and Van Gool’s [32] stratified self-calibration.
Here, the calibration process is bootstrapped by interleav-
ing the estimation of affine geometry and refining corre-
spondences by imposing rigidity constraints.

The outline of this paper is as follows. Section 2 concerns
the geometry of point-sets. Here, we review the affine and
perspective transformations needed to register point-sets in
our matching experiments. In Section 3, we provide a Baye-
sian framework which can be used to assess the relational
consistency of correspondence matches using the neighbor-
hood structure of the point-sets. Section 4 unifies the no-
tions of geometric registration and correspondence match-
ing introduced in Sections 2 and 3. The framework adopted
here is a variant of the EM algorithm. Experimental
evaluation of the method is presented in Section 5. Finally,
Section 6 offers some conclusions and suggests directions
for future investigation.

2 POINT REGISTRATION

Point registration revolves around transforming the coordi-
nates of the point-sets under a predefined geometry. The
process is a critical ingredient in intermediate level vision
[36], [35], [33]. Concrete applications include camera cali-
bration [6], object recognition [17], motion analysis [25], and
image mosaicing [21]. Depending on the imaging geometry,
the transformation may be Euclidean, affine, or perspective.
The simplest case is the Euclidean similarity transforma-
tion, which involves only translation, rotation and isotropic
scaling. In the affine case, there is an additional anisotropic
scaling process. Most complicated of all is the case of per-
spective geometry, which involves foreshortening in the
vanishing point direction.

As with any estimation process, the basic problem is
how to operate robustly when noise or poor image seg-
mentation are limiting factors. More importantly, an essen-
tial prerequisite to transformation parameter estimation is
the availability of a candidate set of correspondence
matches. It is for this reason that robust estimation strate-
gies [36], [35], [37] are favored over simpler least-squares
methods [27]. Concrete examples include the recent work of
Torr and Murray [37], where the aim is to exclude both
noise-points and false-matches from the estimation process.
However, although robust-estimation methods aim to ex-
clude statistical outliers, they base their rejection criterion
purely upon the distance of points from current estimates
of the model-location. In other words, although there are
extensive examples of utilizing geometric constraints, there
is rarely any attempt to check the structural consistency of
the correspondence matches. Here, we take the view that
existing schemes are limited by the chicken-and-egg rela-
tionship between transformation matrix estimation and
correspondence matching. The novel contribution of this
paper is to develop a synergistic matching process in which
the two processes iteratively bootstrap one another via in-
formation exchange. The framework for this study is pro-
vided by the EM algorithm.
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2.1 Point Sets
Our goal is to recover the parameters of a geometric trans-

formation F
(n)

 that best maps a set of image feature points

w onto their counterparts in a model z. In order to do this,
we represent each point in the image data set by an aug-

mented position vector 
r
w x yi i i

T
= , , 12 7 , where i is the point

index. This augmented vector represents the two-
dimensional point position in a homogeneous coordinate
system. We will assume that all these points lie on a single
plane in the image. In the interests of brevity, we will de-

note the entire set of image points by w = " Œ
r
w ii , '< A ,

where ' is the point index-set. The corresponding fiducial
points constituting the model are similarly represented by

z = " Œ
r
z jj , 0J L , where 0 denotes the index-set for the

model feature-points 
r
zj .

Our aim in this paper is to investigate the matching of
point-sets under two specific geometries. The first and sim-
plest of these is affine geometry. The more complex case is
that of plane perspective geometry.

2.2 Affine Geometry
In the case of the affine transformation, there are six free
parameters. These model the two components of translation
of the origin on the image plane, the overall rotation of the
coordinate system, and the global scale, together with the
two parameters of shear. These parameters can be com-
bined succinctly into an augmented matrix that takes the
form

F n

n n n

n n n0 5

0 5 0 5 0 5

0 5 0 5 0 5=

�

�

�
�
�

�

�

�
�
�

f f f

f f f

1,1 1,2 1,3

2 1 2 2 2 3

0 0 1
, , , .                           (1)

With this representation, the affine transformation of coordi-
nates is computed using the following matrix multiplication

r r
z zj

n n
j

0 5 0 5= F .                                    (2)

Clearly, the result of this multiplication gives us a vector

of the form 
r
z x yj

n T0 5 2 7= , , 1 . The superscript n indicates that

the parameters are taken from the nth iteration of our algo-

rithm. Our goal is to recover the elements f i j
n
,
0 5  of the pa-

rameter matrix F
(n)

, which describes a coordinate system

transformation that the best bring the set of image points w
into registration with the model set z at iteration n.

The recovery of the parameters requires a minimum of
three points that are known to be in correspondence. If
more than three correspondences are known, then the pa-
rameter recovery process is overconstrained and can be
solved using least-squares estimation. Since the affine trans-
formation can be represented in a linear fashion, the least-
squares estimate is easily recovered by matrix inversion.

2.3 Perspective Geometry
Perspective geometry is distinguished from the simpler
Euclidean (translation, rotation, and scaling) and affine
(the addition of shear) cases by the presence of significant

foreshortening. We represent the perspective transforma-
tion by the parameter matrix

F n

n n n

n n n

n n n

0 5

0 5 0 5 0 5

0 5 0 5 0 5

0 5 0 5 0 5
=

�

�

�
�
�

�

�

�
�
�

f f f

f f f

f f f

1,1 1,2 1,3

2 1 2 2 2 3

3 1 3 2 3 3

, , ,

, , ,

.                           (3)

Using homogeneous coordinates, the transformation be-
tween model and data is computed in the following way

r
r

r
z

z
zj

n

j
T n

n
j

0 5
0 5

0 5=
1

. X
F ,                             (4)

where X n n n
T0 5 0 5 0 54 9= f f3 1 3 2 1, ,, ,  is a column-vector formed from

the elements in the bottom row of the transformation matrix.
Because the transformation equations are nonlinear, the

recovery of perspective geometry [4], [16], [11], [29], [20] is
more difficult than the affine case. The main problems stem
from the numerical instabilities associated with the de-
nominator of the transformation equations. Haralick et al.
[16] review the origins of the three-point pose estimation
problem in the geometry and photogrammetry literature,
providing an analysis of numerical sensitivity. One way to
circumvent some of the numerical problems is to use weak-
perspective or paraperspective geometry. For instance,
DeMenthon and Davis [11] have an iterative algorithm that
recovers linear weak-perspective pose if the correspon-
dences between 3D features and 2D image points are
known. Horaud et al. [20] have extended these ideas to de-
velop an iterative algorithm for recovering paraperspective
pose. Finally, Jacobs [22] has an efficient voting algorithm
which uses a hashing technique based on image triangles
to recover the perspective pose of planar objects in 3D
scenes. Notwithstanding these important contributions to
the estimation of perspective pose, it must be stressed that,
in this paper, the problem serves as an exemplar of our
new matching architecture. As a result, our primary inter-
est is not with issues of efficiency or numerical stability.
Moreover, we satisfy ourselves with a simple demonstra-
tion on the matching of planar rather than 3D objects.

3 RELATIONAL GRAPH MATCHING

The gating layer of our matching architecture represents the
state of correspondence match between the point-sets. Rather
than using epipolar constraints to establish putative corre-
spondences [37], we use constraints provided by the spatial
adjacency of the points. These constraints are elicited by
separately triangulating the data and model points. We use
the neighborhood consistency of the correspondences in the
triangulations to weight the contributions to the log-
likelihood function. In the remainder of this section, we de-
scribe how the relational consistency of the correspondence
match can be modeled in a probabilistic manner.

3.1 Point Correspondences
One of our goals in this paper is to exploit structural con-
straints to improve the recovery of transformation parame-
ters from sets of feature points. We abstract the representa-
tion of correspondences using a bipartite graph. Because
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of its well documented robustness to noise and change of
viewpoint, we adopt the Delaunay triangulation as our ba-
sic representation of image structure [38], [13]. We establish
Delaunay triangulations on the data and the model by
seeding Voronoi tessellations from the feature-points [1],
[2], [3].

The process of Delaunay triangulation generates rela-
tional graphs from the two sets of point-features. An exam-
ple is shown in Fig. 1. More formally, the point-sets are the
nodes of a data graph GD = {', ED} and a model graph GM =
{0, EM}. Here, ED Õ ' ¥ ' and EM Õ 0 ¥ 0 are the edge-
sets of the data and model graphs. Key to our matching
process is the idea of using the edge-structure of Delaunay
graphs to constrain the correspondence matches between
the two point-sets. This correspondence matching is de-
noted by the function f : '  Æ 0 from the nodes of the
data-graph to those of the model graph. According to this
notation, the statement f

(n)
(i) = j indicates that there is a

match between the node i Œ ' of the model-graph to the
node j Œ 0 of the data-graph at iteration n of the algo-
rithm. We use the binary indicator or assignment variable

s f i j
i j
n

n

,
0 5 0 50 5= =%

&
'
1
0

if 
otherwise

                           (5)

to represent the configuration of correspondence matches.

3.2 Relational Constraints
In performing the matches of the nodes in the data graph

GD, we will be interested in exploiting structural constraints

provided by the edges of the model graph GM. These con-

straints are purely symbolic in nature and are represented
by configurations of nodes in the model graph. We use rep-
resentational units or subgraphs that consist of neighbor-
hoods of nodes that are connected to a center node by arcs
to impose consistency constraints. For convenience, we re-
fer to these structural subunits or N-ary relations as super-
cliques. The superclique centered on the node indexed i in

the data graph GD with arc-set ED is denoted by the set of

nodes C i k i k Ei
D

D= » Œ; ,1 6< A . The matched realization of

this superclique is denoted by the relation 

Gi C
f u f u f u

i
D

=
�
��

�
��

�

�
�

�

�
�1 22 7 2 7, , ,K .

Key to our matching scheme is the idea of computing the
probability of the match of the data-graph node i to the
model-graph node j. We realize this goal by comparing the
configuration of matches residing on the data-graph super-

clique Ci
D  with the configuration of nodes that constitute

the model-graph superclique centered on the node j, i.e.,

C j l j l Ej
M

M= ŒU ; ,1 6= B .
To realize this comparison we require a dictionary of

possible mappings between the nodes of the data-graph

clique Ci
D  and those of the model-graph superclique Cj

M  so

as to bind matches for the purposes of comparison. If the
two supercliques are of the same size, then these so-called
structure-preserving mappings are found by permuting the
noncenter nodes. However, when the supercliques are of
different size, then we must pad the smaller unit with
dummy nodes to raise it to the same size as the larger unit.
This increases the complexity of the task of dictionary com-
pilation. First, we must insert one or more dummy edges
into the smaller superclique between each pair of the exist-
ing edges. Second, we perform cyclic permutation of each
of the resulting padded configurations. This process is il-
lustrated in Fig. 2. The process effectively models the dis-
ruption of the adjacency structure of the data graph caused
by the addition of clutter elements or the loss of elements
due to segmental drop-out. Since it is intrinsically symbolic
in nature, the resulting dictionary is invariant to scene
translations, scalings, or rotations.

To be more formal, the set of feasible mappings, or dic-

tionary, for the model-graph superclique Cj
M  is denoted by

Qj = {S}. The individual structure-preserving mappings are

sets of Cartesian pairs which associate individual data-graph

                                                                       (a)                                                                                (b)

Fig. 1. An example of Delaunay graph editing by node deletion. (a) The original graph. (b) The edited graph resulting from a node deletion.
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nodes from the superclique Ci
D  with counterparts in the

model-graph superclique Cj
M . The center nodes are always

paired with one another. The neighborhood nodes are
paired either with other neighborhood nodes or with
dummy nodes. Each dictionary item is a structure-
preserving mapping of the form

S i j k l k l C i dummyi
D= » Œ - », , ; ,1 6 1 6 1 6 : ?4 9J

¥ - »C j dummyj
M ; @4 9 L .                                        (6)

It is the size of the dictionary which poses the main
computational bottleneck in the application of our match-
ing scheme. For instance, if we are considering the match-
ing of supercliques of the same size, i.e., no padding is re-

quired, then there are Cj  cyclic dictionary items of the su-

perclique Cj. If, on the other hand, the cyclicity constraint is

lifted, then there are Cj !  items. When padding is intro-

duced, then the complexity is increased. If the model-graph
relation S is being compared with the match residing on the

data-graph clique Cj, then there are

S

C S Cj j

-

- -

1

1

2 7
4 9 4 9

!

! !

cyclic dictionary items and

S C

S C

j

j

-

-

12 7
4 9

!

!

noncyclic dictionary items.

3.3 Structural Matching Probabilities
In this section, we present a simple model which can be
used to assign probabilities to putative correspondence
matches based on their consistency with the assigned
matches on neighboring nodes of the graph. This model
draws on a refinement of the relational consistency measure
originally reported by Wilson and Hancock [45]. Our goal is
to compute the probability of assigning the correspondence

match f
(n+1)

(i) = j to the center node i of the data-graph

clique Ci
D  at iteration n + 1. In order to draw on contextual

information concerning the consistency of this putative cor-
respondence match, we condition the probability on the
matches assigned to the neighboring nodes of the clique at
iteration n of the algorithm, The relevant set of neighbor-
hood matches is denoted by the configuration

$ ;Gi
n n

i
Df l l C i0 5 0 51 6 : ?J L= Œ - .

In other words, we aim to compute the correspondence
matching probability

P f i j
P f i j

P

n
i

n

n
i

n

i
n

+

+

=�� �� =
=

1

1

0 5 0 5
0 5 0 5

0 50 5
0 54 9
4 9

$
, $

$
G

G

G
.             (7)

Since the probability of the assigned neighborhood configu-

ration P i
n$G0 54 9  appearing in the denominator is a fixed

property of the data-graph clique Ci
D  at iteration n, we can

confine our attention to developing the joint configura-

tional probability P f i j
n

i
n+ =10 5 0 50 54 9, $G  appearing in the nu-

merator. According to the Bayes formula,

P f i j
P f i j

P f i j

n
i

n

n
i

n

n
i

n

j

+

+

+

Œ

=�� �� =
=

=Â
1

1

1

0 5 0 5
0 5 0 5

0 5 0 50 5
0 54 9
0 54 9

$
, $

, $
G

G

G
0

.          (8)

To simplify the development, we use the notation

Gi j
n n

i
Df i j f l l C i, , ,= = " Œ -+10 5 0 50 5 1 6 : ?J L to represent the

configuration of matched nodes on the superclique Ci
D  with

the putative update f
(n+1)

(i) = j at the center node.

As we noted in Section 3.2, the consistent labelings
available for gauging the quality of the putative match

f
(n)

(i) = j are represented by the set of relational mappings

from the data-graph clique Ci
D  onto the model graph clique

centered on the node j, i.e., Cj
M  is encapsulated by the dic-

tionary Qj. To evaluate the consistency of the putative con-

figuration of matches Gi,j, we use the Bayes rule to expand

the probability P(Gi,j) over the structure preserving map-

pings between the supercliques Ci
D  and Cj

M  belonging to

the dictionary Qj. In other words, we write

P P S P Si j i j
S j

G G
Q

, , .4 9 4 9 0 5=
Œ
Â .                        (9)

The development of a useful graph-mapping measure
from this expression requires models of the processes at
play in producing matching errors. These models are repre-
sented in terms of the joint conditional matching probabili-

ties P Si jG ,4 9  and of the joint priors P(S) for the consistent

Fig. 2. Example superclique mapping: The diagram shows the cyclic permutation with dummy insertion for matching a data-graph superclique
with four nodes being matched onto a model-graph superclique containing only three nodes.



CROSS AND HANCOCK: GRAPH MATCHING WITH A DUAL-STEP EM ALGORITHM 1241

relations in the dictionary. In developing the required mod-
els, we will limit our assumptions to the case of matching
errors which are memoryless and occur with a uniform
probability distribution.

To commence our modeling of the conditional probabili-
ties, we assume that the various types of matching error for
nodes belonging to the same superclique are memoryless.
In direct consequence of this assumption, we may factor-
ize the required probability distribution over the symbolic
constituents of the relational mapping under considera-

tion. As a result, the conditional probabilities P Si jG ,4 9  may

be expressed in terms of a product over label confusion
probabilities

P S P f k li j
k l S

G ,
,

4 9 1 63 8
1 5

=
Œ

’ .                        (10)

Our next step is to propose a two component model of the
processes which give rise to erroneous matches. The first of
these processes is initialization error, which we aim to rec-
tify by iterative label updates. We assume that initialization
errors occur with a uniform and memoryless probability Pe.
The second source of error is structural disturbance of the
relational graphs caused by noise, clutter or segmentation
error. We assume that structural errors can also be modeled
by a uniform distribution which occurs with probability Pf.
This probability governs the insertion of dummy nodes
necessary to make the comparison of differently sized
cliques feasible. Dummy nodes are inserted into the smaller
clique to raise it to the same size as the larger clique. Under
these dual assumptions concerning the nature of matching
errors, the confusion probabilities appearing under the
product of (10) may be assigned according to the following
distribution rule

P f k l

P P f k l

P P f k l l

P
k

l

e

e1 63 8
4 92 7 1 6
4 9 1 6=

- - =

- π π

=

%

&

K
KK

'

K
K
K

1 1

1

f

f

f

if  

if   and dummy

if  = dummy or 

    dummy

  (11)

The three cases under this distribution rule require fur-
ther explanation. The first case corresponds to the situation
in which there is agreement between the current match and
that demanded by the dictionary item S. The second case
corresponds to matching disagreements which do not in-
volve dummy nodes. The third case arises when the super-
cliques under consideration are of different size. If either
the data-graph node k or model-graph node l is a dummy
node inserted for the purposes of padding, then the null-
match probability is assigned.

As a natural consequence of this distribution rule, the
joint conditional probability is a function of three physically
meaningful variables. The first of these is the Hamming

distance H(Gi,j, S) between the assigned matching and the

feasible relational mapping S. This quantity counts the
number of conflicts between the putative configuration of

matches Gi,j assigned to the data-graph superclique Ci
D  and

those assignments demanded by the relational mapping S

onto the model-graph superclique Cj
M . With the binary in-

dicator variables used to represent the matching process,
the Hamming distance is given by

H S si j k l
n

k l S

G , ,
,

,4 9 4 90 5

1 5
= -

Œ
Â 1 .                       (12)

The second variable is the sum of the number of dummy
nodes required for padding. This second quantity is equal

to the size difference between data-graph clique Ci
D  and the

model-graph clique Cj
M  and is denoted by

Y Gi j i
D

j
MC C,4 9 = - .                          (13)

The final variable is the size of the larger superclique, i.e.,

R C Ci j i
D

j
M

, max ,= .                          (14)

With these ingredients, the resulting expression for the joint
conditional probability acquires an exponential character

P S P Pi j e

R H Si j i j i j
G

G Y G

,

,, , ,

4 9 4 92 7
4 9 4 9

= - -
- -

1 1f

                              ¥ -1 P Pe

H Si j

f4 9
4 9G , ,

                      ¥ P
i j

f

Y G ,4 9
.                                                 (15)

Finally, in order to compute the superclique matching prob-
ability P(Gi,j), we require a model of the joint-priors for the
dictionary items. Here, we assume that the unit probability
mass is uniformly distributed over the relevant items, i.e.,

P S

j

0 5 =
1

Q
.                                    (16)

Collecting together terms in the expression for P(GiΩS) and
substituting for the joint priors for the dictionary items, we
obtain the following expression for the superclique match-
ing probability

P
K

k H S ki j

i j

j

e i j i j
S j

G
Q

G Y G
Q

,

,

, ,exp ,4 9 4 9 4 94 9= - +�
! 

"
$#

Œ
Â f ,      (17)

where K P Pi j e

Ri j

,

,
= - -1 12 74 9f . The two exponential con-

stants appearing in the above expression are related to
the matching-error probability and the null match prob-
ability, i.e.,

k
P

Pe
e

e

=
-

ln
12 7

and

k
P P

P
e

f

f

f
=

- -
ln

1 12 74 9
.

In the work reported here, we set the correspondence error
probability and the structural error probability according to
the size differences between the graphs, i.e.,
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P Pe = =
-

+f

2 0 '

0 '
.                          (18)

The probability distribution given in (17) may be re-
garded as providing a natural way of softening the hard
relational constraints operating in the model graph. The
most striking and critical feature of the expression for P(Gi,j)
is that the consistency of match is gauged by a series of ex-
ponentials that are compounded over the dictionary of con-
sistently mapped relations.

The key idea underlying our dual-step EM algorithm for
recovering transformational geometry is to gate contribu-
tions to the expected log-likelihood function using rela-
tional constraints. In order to realize this process, we re-
quire the expected value of the assignment variables, i.e.,

E si j
n
,
0 5 . With the ingredients outlined in this section, the

expected assignment variable is equal to

E s

P S P S

P S P S
i j
n

i j
n

i j
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0 5 0 5
4 9 0 5

4 9 0 5
= =

Œ

ŒŒ

Â

ÂÂ
z

G

G

Q

Q0

.               (19)

Substituting from (17), we make the role of Hamming dis-
tance and the number of padding or dummy nodes more
explicit by writing

z

f

f

i j
n

i j

j

e i j i j
S

i j

j

e i j i j
Sj

K
k H S k
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4 THE UNIFIED MATCHING ALGORITHM

Our aim is to extract geometric transformation parameters
and correspondence matches from the two point-sets using
the EM algorithm. When couched probabilistically, the goal
can be succinctly stated as that of jointly maximizing the
data-likelihood p(wΩz, f, F) over the space of correspon-
dence matches f and the matrix of transformation parame-
ters F. We realize this process using a dual-step or hierar-
chical version of the EM algorithm. The utility measure un-
derpinning the algorithm is the expected log-likelihood
function which allows parameters to be estimated when
confronted with incomplete data. The basic idea underlying
the algorithm is to iterate between the expectation and
maximization steps until convergence is reached. Expecta-
tion involves updating the a posteriori probabilities of the
missing data using the most recently available parameter
estimates. In the maximization phase, the model parame-
ters are recomputed to maximize the expected value of the
incomplete data likelihood.

According to the original work of Dempster et al. [12]
the expected likelihood function is computed by weighting
the current log-probability density by the a posteriori
measurement probabilities estimated from the preceding
maximum likelihood parameters. Here, we wish to exploit
Jordan and Jacobs [23] idea of augmenting the maximum

likelihood process with a graphical model. From an archi-
tectural standpoint, the graphical model can be regarded as
a supervisor network which effectively gates contributions
to the expected log-likelihood function. The novelty of the
work reported here is to develop a variant of this idea in
which it is the bipartite graph, i.e., f, which gates the likeli-
hood function for the transformation parameters F. This
graph represent the current state of correspondence match
between the two point-sets.

We extract both maximum likelihood geometric trans-
formation parameters and maximum a posteriori matching
probabilities by applying coupled update operations to the
gated likelihood function. In this way, the consistency of the
structural matching process can guide the pose recovery
process. Likewise, error probabilities derived from the po-
sition residuals are used to guide the correspondence
matching process. When the joint likelihood function is
maximized in this way, then the correspondence matches
play the role of missing data.

4.1 Mixture Model
Our basic aim is to jointly maximize the data-likelihood
p(wΩz, f, F) over the space of correspondence matches f and
the matrix of geometric transformation parameters F. We
can regard the set of data-graph measurement vectors, i.e.,
w, as the input to our process. The model-graph measure-
ments, i.e., z, on the other hand, are the outputs which are
to be stochastically recovered from the transformation pa-
rameters, i.e., F and the structural state of the bipartite cor-
respondence matching graph, i.e., f. For this reason, rather
than commencing our discussion from the complete likeli-
hood function p(wΩz, f, F), we turn to the incomplete data
likelihood, i.e., p(wΩf, F).

Our first model assumption is that the incomplete data-
likelihood can be factorized over the set of data-graph
measurement vectors. In other words, we assume that the
measurement process is conditionally independent given
the transformation parameters and the model-graph meas-
urements. As a result, we write

p f p w fi
i

w , ,F F3 8 3 8=
Œ
’ r

'

.                       (21)

The next step is to account for the missing variables by de-
veloping a mixture model over the set of model-graph
measurements. Using the Bayes rule, we expand the in-
complete data-likelihood over the set of model-graph
measurements

p w f p w z fi i j
j

r r r
, , ,F F3 8 4 9=

Œ
Â
0

.                   (22)

Our key modeling ingredient is to exploit the binary as-
signment variables as exponential indicators in developing
a measurement density for the correspondence matches. We
take the view that if data graph node i matches to model-

graph node j, then it is the measurement density p w zi j

r r
, F4 9

that is appropriate in gauging the coordinate similarity of
the points 

r
wi  and 

r
zj . If this is not the case, then we assign a

uniform measurement density r which is independent of
coordinates and models the outlier process. With this mod-
eling ingredient, we may write
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p w z f p w zi j i j

s si j i jr r r r
, , ,

, ,F F4 9 4 9=
-

r
1

.                (23)

We are now in a position to assemble the expression for
the incomplete data-likelihood by substituting (22) and (23)
into (21). The result is

p f p w zi j

s s

ji

i j i jw , ,
, ,F F3 8 4 9=

-

ŒŒ
Â’ r r

r
1

0'

.            (24)

Our route to maximizing the incomplete data-likelihood is
to apply the EM algorithm [12], [23] to the expected log-
likelihood function. The idea behind the EM algorithm is
to compute the conditional log-likelihood for a new pa-
rameter set given the preceding parameter estimates. In
the case of our incomplete data-likelihood, the conditional
log-likelihood is

  Q P z w
n n

i
j i

n

j

F F F+

Œ Œ
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� = �

�
�
�Â Â10 5 0 5 0 5

' 0
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i j
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i j
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, ,ln , ln0 5 0 5 0 54 9
r r

F +�
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�
� + -�

! 
"
$#

1
1 r . (25)

To simplify matters, we make a mean-field approximation

and replace si j
n
,
0 5  by its average value, i.e., we make use of

the fact that E si j
n

i j
n

, ,
0 5 0 54 9 = z . In this way, the structural

matching probabilities gate contributions to the expected
likelihood function, i.e.,
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j i
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�
! 

"
$#

1
.  (26)

This is an important statement of our matching framework.
The first term inside the round-braces is appropriate to pa-
rameter estimation, while the second term is appropriate to
the computation of correspondence matches. In the case of
parameter estimation and as demonstrated by Dempster, et
al. [12], maximizing the incomplete expected likelihood
function is equivalent to maximizing the following condi-
tional likelihood function

                $ ,Q P z w
n n

j i
n

ji

F F F+

ŒŒ

�
�

�
� = �

�
�
�ÂÂ10 5 0 5 0 5r r
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1
.            (27)

The structure of this component of the expected log-
likelihood function requires further comment. The meas-

urement densities p w zi j
nr r

, F +�
�

�
�

10 5  model the distribution of

error-residuals between the observed data-point position
r
wi  and the predicted position of the model point 

r
zj  under

the current set of transformation parameters F
(n+1)

. The log-

likelihood contributions at iteration n + 1 are weighted by

the a posteriori measurement probabilities P z wj i
nr r

, F0 5�
�

�
�

computed at the previous iteration n of the algorithm. The
individual contributions to the expected log-likelihood

function are gated by the structural matching probabilities

z i j
n
,
0 5 . This chimes with the hierarchical mixture of experts

algorithm of Jordan and Jacobs [23], where an expert layer
is responsible for gating. However, whereas Jordan and
Jacobs gating layer is parametric, ours is structural.

We now turn our attention to the recovery of correspon-
dence matches. As we mentioned earlier, the component of
the expected log-likelihood appropriate to this task is the
second term under the round braces of (26). Since the uni-
form density r is a constant whose value is less than unity,
the goal of correspondence matching is to maximize the
quantity

Z P z w
j

j i
n

i j
n

i

= �
�

�
�

ŒŒ
ÂÂ
0'

r r
, ,F0 5 0 5z .                   (28)

It is interesting to note that this is just the MAP criterion
used by Wilson and Hancock [45] in their work on graph-
matching by discrete relaxation.

4.2 Expectation
In the expectation step of the EM algorithm, the a posteriori
probabilities of the missing data (i.e., the model-graph
measurement vectors, 

r
zj ) are updated by substituting the

revised parameter vector into the conditional measurement
distribution. Using the Bayes rule, we can rewrite the a
posteriori measurement probabilities in terms of the com-
ponents of the corresponding conditional measurement
densities

P z w
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The mixing proportions are computed by averaging the a
posteriori probabilities over the set of data-points, i.e.,

a i j
n

j i
n

i

P z w, ,
+

Œ

= �
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�Â1 10 5 0 5

'
'

r r
F .                    (30)

In order to proceed with the development of a point
registration process, we require a model for the conditional

measurement densities, i.e., p w zi j
nr r

, F0 5�
�

�
� . Here, we assume

that the required model can be specified in terms of a mul-
tivariate Gaussian distribution. The random variables ap-
pearing in these distributions are the error residuals for the
position predictions of the jth model point delivered by the
current estimated transformation parameters. Accordingly,
we write

      p w zi j
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, F0 5�
�

�
� =
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In the above expression, S is the variance-covariance matrix

for the vector of error-residuals ei j
n

i j
n

w z, F0 5 0 54 9 = -
r r

 between

the components of the predicted measurement vectors 
r
zj

n0 5
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and their counterparts in the data, i.e., 
r
wi . Formally, the

matrix is related to the expectation of the outer-product of

the error-residuals i.e., Â =
�
! 

"
$#

E i j
n

i j
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e e, ,F F0 5 0 54 9 4 9 . Accord-

ingly, we compute the following estimate of S
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4.3 Maximization
As pointed out earlier, the maximization step of our unified
or synergistic matching algorithm is based on dual coupled
update processes. The first of these aims to locate maxi-
mum a posteriori probability correspondence matches. The
second update operation is concerned with locating maxi-
mum likelihood transformation parameters. We effect the
coupling by allowing information flow between the two
processes. In the remainder of this section, we detail the
maximization steps used to realize this coupling.

4.3.1 Maximum a posteriori Probability Matches

Point correspondences are sought so as to maximize the a
posteriori probability of structural match. The updated con-
figuration of correspondence matches is located by maxi-
mizing the second component of the expected log-
likelihood function defined in (26). The resulting update
formula is

f i P z w
n

j
j i

n
i j
n+

Œ

+= �
�

�
�

1 10 5 0 5 0 50 5 arg max , ,
0

r r
F z .              (33)

Once this update equation has been applied, the un-
matched model-graph nodes are identified for removal
from the triangulation. At this point, the edited set of model
feature-points is retriangulated to correct potential struc-
tural errors. We provide more details of this graph-editing
process in the next subsection. The structural matching

probabilities z i j
n
,

+10 5  are also updated using (20) as outlined

in Section 3.

4.3.2 Updating the Triangulation

In order to overcome this source of potential structural
corruption, at the end of each iteration we retriangulate
the graph in order to accurately reflect the structure of the
points under the current estimate of the transformation
parameters. We have recently shown how this process of
active graph reconfiguration or editing can be realized as
a MAP estimation process [44]. However, rather than con-
fining itself purely to node relabeling, the algorithm now
encompasses the possibility of node insertions or dele-
tions together with the implied modification of the Delau-
nay edge-set. This process is illustrated in Fig. 1. Details of
the derivation are outside the scope of this paper. The ba-
sic idea is to gauge the net effect of deleting a node by
examining those contributions to the consistency measure
that arise from modification of the supercliques containing
the node in question. This set is constructed by identifying
those nodes that form a superclique with node i in graph

GD, i.e., C ii
D - : ?, and determining the new superclique set

for these nodes in the reconfigured graph ¢GD . We let c i
+

denote the superclique set of object i in graph GD and c i
-

denote the corresponding superclique set in the reconfig-
ured graph ¢GM . With this notation, the change in the MAP

criterion of (28) caused by the deletion of the node i is
proportional to
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By contrast, when considering the change in the MAP
criterion caused by reinsertion of the node i, it is the super-

clique set c i
+  to which we turn our attention. The corre-

sponding change to the MAP criterion is proportional to
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The decision criteria for node deletion or reinsertion are

as follows. We delete node i provided D Di i
+ -<  and reinstate

it provided D Di i
+ -> . In addition to this structural modifica-

tion, we can improve the robustness of parameter estima-
tion by removing points in the model-set which have no
correspondence in the data-set when computing the ex-
pected log-likelihood function in the expectation step of the
EM algorithm. Once these points are removed, we must
once again retriangulate the point set in order to reflect the
change in structure. At each iteration of the maximization
stage, we also try reintroducing any deleted points back
into the data set.

4.3.3 Maximum Likelihood Parameters

With the Gaussian measurement process described in
Section 4.2, the maximization step of the EM algorithm
simply reduces to computing the weighted squared error
criterion

    ¢��
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- �
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In other words, the a posteriori probabilities

P z wj i
nr r

, F0 5�
�

�
�  and the structural matching probabilities z i j

n
,
0 5

effectively regulate the contributions to a weighted
squared-error criterion. In the remainder of this subsection,
we provide details of how maximization is realized for the
two different geometries described in Section 2.

•� Affine Geometry: In the case of affine geometry, the
transformation is linear in the parameters. This allows
us to locate the maximum-likelihood parameters di-
rectly by solving the following system of saddle-point

equations for the independent affine parameters f k l
n
,
+10 5

running over the indices k = 1, 2 and l = 1, 2, 3
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For the affine transformation the set of saddle-point
equations is linear and are, hence, easily solved by us-
ing matrix inversion. It is straightforward to show that
the updated matrix of affine parameters must satisfy
the following implied system of linear equations
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where the elements of the matrix U are the partial de-
rivatives of the affine transformation matrix with re-
spect to the individual parameters, i.e.,

U =
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1 1 1
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.                            (39)

As a result, the updated solution matrix is given by
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This allows us to recover a set of improved transfor-
mation parameters at iteration n + 1. Once these are
computed, the a posteriori measurement probabilities
may be updated by applying the Bayes formula to the
measurement density function. The update procedure
involves substituting the parameter matrix of (1) into
the Gaussian density of (31) and applying the Bayes
theorem.

•� Perspective Geometry: In the case of perspective geome-
try where we have used homogeneous coordinates, the
saddle-point equations are no longer soluble in a
closed-form linear fashion. The maximum likelihood
transformation parameters satisfy the condition
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Following Horaud et al. [20], we solve this maximi-
zation problem using the Levenberg-Marquardt tech-
nique. This is a nonlinear optimization technique that
offers a compromise between the steepest gradient
and inverse Hessian methods. The former is used
when close to the optimum while the latter is used far
from it. In other words, when close to the optimum,
parameter updating takes place with step-size pro-

portional to the gradient — ¢��
�
�F F FQ

n0 5 . When far

from the optimum, the optimization procedure uses
second-order information residing in the Hessian, H,

of ¢��
�
�Q

nF F0 5 ; the corresponding step-size for the pa-

rameter matrix F is H Q
n- — �

�
�
�

1
F F F0 5 . Central to the

Levenberg-Marquardt method is the idea of exerting
control over these two update modes using a positive

parameter l. This parameter defines the elements of

the matrix L
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otherwise                    (42)

According to the Levenberg-Marquardt method, the
step-size dfl for the parameter fl is found by solving
the following set of linear equations
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The parameter l is chosen to be large if the log-
likelihood increases when an optimization step is
taken; in this case, the optimization process operates
in steepest gradient mode. If, on the other hand, the
expected likelihood decreases, then l is reduced to-
wards zero; in this case, the optimization process op-
erates in inverse Hessian mode. When controlled ef-
fectively, this method is less prone to local conver-
gence than the standard steepest gradient descent
method, while offering efficiency gains over the in-
verse Hessian method. In fact, we find the Levenberg-
Marquardt optimization converges in 5-10 iterations.
Steepest-gradient takes up to 10 times longer to con-
verge. Although our research-code is not optimized
for efficient execution, typical registration experi-
ments involving up to 100 points take tens of seconds
on an SGI RS5000 workstation.

Before proceeding, it is important to offer a word of caution
and to stress that degeneracies may be encountered in the
estimation process if we confront affine data with a per-
spective model. We have not investigated this pathological
case in our experiments.

Our final comment on the implementation concerns the
execution speed of the algorithms. The main computational
bottleneck is the evaluation of the structural matching
probabilities. As outlined in Section 3.2, here, the main
source of complexity is the size of the dictionary. Compared
with this, the computation of transformation parameters
represents a relatively small overhead. In the case of affine
geometry, the recovery process can be realized rapidly us-
ing efficient matrix inversion. In the perspective case, pa-
rameter recovery is slower since iterative numerical optimi-
zation is needed. However, it must be stressed that we have
not investigated the use of efficient search algorithms here
because of the bottleneck associated with the dictionary
prior. As a concrete example, when run on a SGI RS5000
processor, our registration method takes tens of minutes.

5 EXPERIMENTAL RESULTS

In this section, we will provide experimental evaluation of
our new coupled matching process. This investigation has
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two distinct strands. First, we will provide an algorithm sen-
sitivity analysis. Here, we confine ourselves to the affine
variant of the matching process. The aim is to experimentally
compare our dual-step algorithm with the performance of
each of its components taken individually. In other words,
we provide comparison with maximum a posteriori probability
correspondence matching and least squares parameter re-
covery. These two comparisons serve to demonstrate that the
combined modeling of both point correspondences and
transformation geometry yields significant advantages in
terms of accuracy of convergence over their individual use.

In the second strand of our experimental investigation,
we will furnish examples demonstrating the use of the
dual-step matching scheme on real world imagery. Here,
we will use two different data sets. The first of these in-
volves perspective views of 3.5-inch floppy discs. The sec-
ond example involves matching distorted aerial image data
against a digital map.

5.1 Algorithm Comparison
The aim of this section is to demonstrate how the dual-
step matching algorithm performs in comparison with the
repeated iteration of its individual component parts. In
this part of our study, we confine our attention to the
matching of synthetic point-sets under affine geometry.
The two algorithms used for comparison are

•� Maximum a posteriori probability correspondence
matching: In this set of experiments, we aim to dem-
onstrate how our dual-step EM method performs in
comparison with MAP correspondence matching us-
ing structural constraints [45]. The update process is
realized by keeping the parameter matrix static at the
value F

(0)
 and iteratively updating the discrete corre-

spondence assignments. The update rule for the cor-
respondence matches is
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This aspect of our study aims to investigate the role
played by the explicit modeling of the transforma-
tional geometry.

•� Maximum Likelihood Registration: Here, we focus
on the iterative estimation of affine registration pa-
rameters by applying the standard EM algorithm to
the ungated log-likelihood function. This corresponds
to clamping the structural gating probabilities with a
uniform and static distribution over the complete
space of possible correspondences during the itera-
tion of the parameter estimation process. The update
equation for the affine parameter matrix is
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The aim here is to investigate the effect of structural
gating on the estimation of transformation parameters.

The results of the comparative study have been obtained
using random point sets. This allows us to compare algo-
rithm sensitivity in a controlled manner under varying
noise conditions. This experimental methodology also al-
lows the results to be averaged over a large number of ran-
dom experiments and meaningful error bars to be derived
from the population statistics. Each of our reported data-
points is averaged over 100 random experiments. The error-
bars are the standard errors over the set of trials.

5.1.1 Comparison With Standard Structural Matching

In order to demonstrate the relative stability of the dual-
step matching scheme under initial parameter choice, we
will compare it with a structural graph matching scheme.
The algorithm used in this comparison is essentially the
discrete relaxation process of Wilson and Hancock [45]. This
structural matching technique results solely from the itera-
tion of the MAP update process defined in (34), leaving the
parameter estimates static. The aim of our study is to dem-
onstrate the sensitivity of our method to initial differences
in isotropic image scale and overall point-set orientation.
The study is based on random dot patterns in which the
ground-truth transformational geometry is known.

In Figs. 3a and 3b, we respectively show the final frac-
tion of points in correct correspondence as a function of the
initial difference in orientation and scale. The dotted lines
show the sensitivity of the standard structural matching
scheme, while the solid lines are for the dual-step matching
method. It is clear that our dual-step expectation-
maximization approach consistently outperforms the stan-
dard relational matching scheme. In particular, the range of
both rotation and scale over which the dual-step EM
scheme successfully recovers meaningful results is signifi-
cantly greater than that for the purely structural scheme.
For instance, our dual-step method copes well with angle
differences of up to 35 degrees, whereas the structural
method must be initialized to within 10 degrees. In the case
of the scale difference, the dual-step method copes with
differences in the range 0.7 to 1.6, whereas the MAP scheme
only functions effectively over the range 0.9 to 1.1. How-
ever, it must be stressed that the structural method could be
rendered considerably more robust if affine invariant
measures are used to compute the initial a posteriori
matching probabilities.

5.1.2 Comparison With Least Squares Fitting Algorithms

Our aim in this experiment is to demonstrate the effect of
the structural component upon the recovery of affine trans-
formation parameters. We commence our simulation study
by generating random point sets. By applying Voronoi tes-
sellation and Delaunay triangulation to the point-sets, we
have constructed model graphs. The corresponding data-
graphs are generated by deleting at random a controlled
number of points from the original point-set and randomly
re-inserting new points. The fraction of modified points is
taken as a measure of structural corruption. Our measure of
registration accuracy is the average magnitude of the, un-
weighted, distance between the points that are known to be
in correspondence. Suppose that T Ã 0 ¥ ' is the set of
ground-truth correspondences between the uncorrupted
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portion of the data-graph and the model. If n• is the final
iteration number for the matching algorithm, then the
measure of registration accuracy is

A
T
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1 r r2 7

1 6,

.                         (46)

It is important to stress that this figure of merit includes
only unmodified points from the original model graphs. In
other words, we exclude nodes deleted from the graphs in
the re-triangulation step.

Fig. 4a shows a comparison of the new matching scheme
(dashed curve) and the ungated maximum likelihood
method (solid curve) of affine parameter estimation. Here,
the size of original point-set is 20. Fig. 4b repeats this ex-
periment when the size of the point-set is 30. The plots
show the average registered point-distance as a function of
the fraction of correct correspondence matches.

The main feature to note from these plots is that, pro-
vided sufficient correspondences are available, then the

dual-step method outperforms the least-squares method in
terms of the registration error. Moreover, provided that the
degree of structural error is less than 50 percent, then the
average registration error for the dual-step method is con-
siderably smaller than for the conventional EM registration
method. In fact, when this is the case, then an average point
error of less than 0.01 is achievable.

This limiting degree of structural corruption deserves
further comment. In Fig. 5, we show a plot of the fraction of
supercliques containing a structural error as a function of
the fraction of added noise points for the Delaunay graph.
From this plot, it is clear that when the fraction of corrupt
nodes is 50 percent, then 70 percent of the supercliques
contain at least one corrupt edge. In other words, our dual-
step EM approach outperforms its conventional counter-
part provided that more than 30 percent of the structure of
the Delaunay graph remains is intact. Although our
matching method is dependent on structural information, it
can tolerate a significant degree of structural corruption.

     
                                                           (a)                                                                                                                  (b)

Fig. 3. Sensitivity study: The two plots show how the dual-step EM algorithm (solid curve) outperforms MAP-matching (dashed curve) in terms of
the fraction of correct correspondence matches. (a) Affine rotation. (b) Affine scaling.

     
                                                            (a)                                                                                                                  (b)

Fig. 4. Comparing the dual-step matching scheme with a least squares approach: The plots compare the performance of the dual-step EM algo-
rithm (dotted curve) with standard least-squares estimation (solid curve). (a) Graph size 20 nodes. (b) Graph size 30 nodes.
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5.2 Real World Imagery
In order to demonstrate the effectiveness of the new
matching process on real world imagery, we will consider
the following two data-sets:

•� Disk Set: This data set consists of a set of digital
photographs of 3.5-inch floppy disks. This data-set
was chosen since it allows for controlled shifts in
viewpoint to be made. The images under investiga-
tion include both small viewpoint shifts that are
nearly affine, and very large shifts where the con-
trolled introduction of strong perspective foreshort-
ening will be investigated.

•� Road Network: In this experiment, we are concerned
with the registration of aerial infrared images against
a digital map. The images were taken at nighttime.
Under these imaging conditions, the most prominent
features are those that radiate absorbed heat. In the
urban scenes under study, these features are the tar-
mac roads. We therefore chose the road networks as
the basis for our graph structures. The nodes in our
Delaunay graphs are junctions detected in the road
network. It is important to note that these images are
distorted due to the geometry of the line-scan proc-
ess. The images are captured using horizontal line-
scan as the aircraft moves in the vertical direction.
The line-scan process is controlled by the rotation of
a mirror. For this reason, the images are subject to
barrel distortion in the horizontal-direction. In the
vertical-direction, there are also sampling irregulari-
ties due to the aircraft changing heading due to
banking or turbulence.

We will first consider the task of recognizing planar
objects in different 3D poses, which is posed by the set of
images of floppy disks. The object used in this study is
placed on a desktop. The different object viewing angles
are contrived so as to introduce increasing degrees of per-
spective foreshortening. The feature points used to trian-
gulate the object are corners which are extracted by hand.
Fig. 6 shows a sequence of object-views with the triangu-
lations of the hand segmented feature-points superim-
posed. The first oblique view in the sequence is taken as
the object-model; the remaining object-poses are used to
test the matching process.

Fig. 5. Effect of adding controlled fractions of relational clutter to De-
launay graphs.

    

 
   

Fig. 6. The six views of used in the matching experiments.
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Fig. 7 shows the initial and final poses for the registra-
tion of various images in the dataset. In each case, the
fraction of correct initial correspondences was approxi-

mately 50 percent. From the superimposed images, it is
clear that the recovered final poses are accurate.

        

          

        

        

         
                                                                            (a)                                                                         (b)

Fig. 7. Some initial (a) and final (b) registration configurations.
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Next, we provide an illustration of the iterative prop-
erties of our matching algorithm. The sequence in Fig. 8
shows the iterative recovery of the full perspective ge-
ometry. Here, we illustrate the iterative registration of the
fourth (taken to be the data-graph) and fifth (taken to be
the model-graph) images in the test sequence. In this case,
the direction of perspective foreshortening is rotated
through 90 degrees with respect to the disc. Each state
shows the model-graph of the fifth image mapped onto
the fourth image using the current set of recovered per-
spective parameters. The initial parameters are selected at
random. The registration process converges on a good
solution after three iterations.

To illustrate that the matching process is not sensitive
to structural errors, we now provide some examples
when the data-graph used in the previous experiment is
subsumed in clutter. Figs. 9 and 10 show the initial and
final correspondence matches. In each case, the model-
graph is on the left and the data-graph is on the right.
The blue lines between the two halves of the figures rep-
resent correspondence matches between the graphs. Ini-
tially, there are many matching errors. Once the algo-
rithm has converged, the consistency of the pattern of
matches is significantly improved. Moreover, there are
no erroneous matches to the extraneous clutter nodes.
Finally, the model-pose is in good agreement with the
corresponding points in the data.

To illustrate that our method is not sensitive to the ac-
curacy of the assumed transformational geometry, we
now provide some experiments which involve matching
perspectively distorted images using only affine geome-
try. Here, we use the first floppy disc image as a model,
while the fourth floppy disc image is again the data.
Clearly, in this case, the affine transformation is insufficient

to represent the image deformation. Fig. 11 shows the
iterative registration for this experiment. The registration
converges upon a pose that is a good approximation to
the full perspective transformation in about six itera-
tions. In Fig. 12, we show the Delaunay triangulation
iterating in synchronization with the image registration
of Fig. 11.

Fig. 9. Initial correspondence match for a cluttered scene.

Fig. 10. Final correspondence match for a cluttered scene.

        

        

Fig. 8. The iterative registration of the model: The different iterations of the algorithm are ordered from left-to-right and top-to-bottom.
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The final piece of experimentation involves the registra-
tion of a digital map against a set of aerial infrared images.
Fig. 13 shows the map data together with the raw images
used in this example. The salient structure in this imagery is
a road network. The feature points used in our matching
experiments are junctions in the road network. These points
are used to seed the Delaunay triangulation. There are three
factors which complicate the matching process. First, there

are cartographic errors. As a result, there are features for
which no correspondence exists even when the map is
brought into exact registration with the images. Second,
there is a significant amount of barrel distortion in these
images. This process is not faithfully captured by our affine
transformation model. Finally, the extracted Delaunay tri-
angulations exhibit a significant degree of structural cor-
ruption. Fig. 13 shows the final affine transformations of the

      

      

Fig. 11. Iterative convergence using an affine transformation: The different iterations of the algorithm are ordered from left-to-right and top-to-
bottom.

    

    

Fig. 12. The graphs iterating in synchronization with the registration process: The different iterations of the algorithm are ordered from left-to-right
and top-to-bottom.
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map superimposed on the different aerial images. The
matching process commences from a random initial esti-
mate of the affine transformation matrix. It is clear that the
recovered transformations are reasonably accurate given
the poor geometric model.

6 CONCLUSIONS

Our main contribution in this paper has been to develop
a new synergistic matching algorithm. This two-step itera-
tive process involves coupled operations to locate point-
correspondences and estimate geometric transformation
parameters. Point correspondences are located by maxi-
mum a posteriori graph-matching. Maximum likelihood
parameters are recovered using the expectation-
maximization algorithm. These coupled iterative processes
communicate by exchanging separate pieces of matching
information. The point-correspondences passed by the
matching process improve the robustness of maximum
likelihood parameter estimation. In their turn, the maximum
likelihood parameters are used to estimate a posteriori
measurement probabilities which improve the accuracy of
the point-correspondences.

We illustrate the effectiveness of the resulting matching
process under affine and perspective geometries. These
transformations are of generic importance in computer
vision with applications in image mosaicing, pose recov-
ery and camera calibration. Here, the coupled matching
process is shown to outperform structural matching.
Moreover, the use of point-correspondences is shown to
offer significant advantages in the control of added image
noise.

In other words, we have presented a flexible matching
method which unifies relational graph matching and pose-
recovery. The framework is Bayesian and relies on some
fairly nonrestrictive assumptions concerning the Gaussian
origin of measurement errors and observational independ-
ence. Our future plans revolve around the use of improved
optimization methods and more ambitious point-
deformation models. In fact, we have recently taken some
steps in this direction by demonstrating how the optimiza-

tion of our relational consistency measure can be realized
using soft-assign [14]. Finally, although we have demon-
strated our matching process for the problem of image reg-
istration, the problem of calibration may well provide a
more topical vehicle where our new technique could be
compared with a number of promising alternatives [37], [32].
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