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How does the Web look? How could we tell an “abnormal” social network from a “normal” one?
These and similar questions are important in many fields where the data can intuitively be cast
as a graph; examples range from computer networks to sociology to biology and many more.
Indeed, any M : N relation in database terminology can be represented as a graph. A lot of these
questions boil down to the following: “How can we generate synthetic but realistic graphs?” To
answer this, we must first understand what patterns are common in real-world graphs, and can
thus be considered a mark of normality/realism. This survey give an overview of the incredible
variety of work that has been done on these problems. One of our main contributions is the
integration of points of view from physics, mathematics, sociology and computer science. Further,

we briefly describe recent advances on some related and interesting graph problems.

Categories and Subject Descriptors: E.1 [Data Structures]:

General Terms: Algorithms, Measurement

Additional Key Words and Phrases: Generators, graphs, patterns, social networks

1. INTRODUCTION

Informally, a graph is set of nodes, pairs of which might be connected by edges.
In a wide array of disciplines, data can be intuitively cast into this format. For
example, computer networks consist of routers/computers (nodes) and the links
(edges) between them. Social networks consist of individuals and their intercon-
nections (which could be business relationships, or kinship, or trust, etc.) Protein
interaction networks link proteins which must work together to perform some par-
ticular biological function. Ecological food webs link species with predator-prey
relationships. In these and many other fields, graphs are seemingly ubiquitous.

The problems of detecting abnormalities (“outliers”) in a given graph, and of gen-
erating synthetic but realistic graphs, have received considerable attention recently.
Both are tightly coupled to the problem of finding the distinguishing characteris-
tics of real-world graphs, that is, the “patterns” that show up frequently in such

This material is based upon work supported by the National Science Foundation under Grants
No. IIS-0083148, IIS-0113089, IIS-0209107 IIS-0205224 INT-0318547 SENSOR-0329549 EF-
0331657IIS-0326322 CNS-0433540 by the Pennsylvania Infrastructure Technology Alliance (PITA)

Grant No. 22-901-0001. Additional funding was provided by donations from Intel, and by a gift
from Northrop-Grumman Corporation. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation, or other funding parties.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–78.



2 · D. Chakrabarti and C. Faloutsos

graphs and can thus be considered as marks of “realism.” A good generator will
create graphs which match these patterns. Patterns and generators are important
for many applications:

—Detection of abnormal subgraphs/edges/nodes: Abnormalities should deviate from
the “normal” patterns, so understanding the patterns of naturally occurring
graphs is a prerequisite for detection of such outliers.

—Simulation studies: Algorithms meant for large real-world graphs can be tested
on synthetic graphs which “look like” the original graphs. For example, in order
to test the next-generation Internet protocol, we would like to simulate it on a
graph that is “similar” to what the Internet will look like a few years into the
future.

—Realism of samples: We might want to build a small sample graph that is similar
to a given large graph. This smaller graph needs to match the “patterns” of the
large graph to be realistic.

—Graph compression: Graph patterns represent regularities in the data. Such
regularities can be used to better compress the data.

Thus, we need to detect patterns in graphs, and then generate synthetic graphs
matching such patterns automatically.

This is a hard problem. What patterns should we look for? What do such
patterns mean? How can we generate them? A lot of research ink has been spent on
this problem, not only by computer scientists but also physicists, mathematicians,
sociologists and others. However, there is little interaction among these fields, with
the result that they often use different terminology and do not benefit from each
other’s advances. In this survey, we attempt to give an overview of the main ideas.
Our focus is on combining sources from all the different fields, to gain a coherent
picture of the current state-of-the-art. The interested reader is also referred to
some excellent and entertaining books on the topic [Barabási 2002; Watts 2003;
Dorogovtsev and Mendes 2003].

The organization of this survey is as follows. In section 2, we discuss graph
patterns that appear to be common in real-world graphs. Then, in section 3, we
describe some graph generators which try to match one or more of these patterns.
Typically, we only provide the main ideas and approaches; the interested reader
can read the relevant references for details. In all of these, we attempt to collate
information from several fields of research. In section 4, we consider some interesting
questions from Social Network Analysis which are particularly relevant to social
networks. Some of these appear to have no analogues in other fields. We briefly
touch upon other recent work on related topics in section 5. We present a discussion
on open topics of research in section 6, and finally conclude in section 7. Table I
lists the symbols used in this survey.

2. GRAPH PATTERNS

What are the distinguishing characteristics of graphs? What “rules” and “patterns”
hold for them? When can we say that two different graphs are similar to each other?
In order to come up with models to generate graphs, we need some way of comparing
a natural graph to a synthetically generated one; the better the match, the better
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Symbol Description

N Number of nodes in the graph
E Number of edges in the graph
k Degree for some node

< k > Average degree of nodes in the graph
CC Clustering coefficient of the graph

CC(k) Clustering coefficient of degree-k nodes
γ Power law exponent: y(x) ∝ x−γ

t Time/iterations since the start of an algorithm

Table I. Table of symbols

the model. However, to answer these questions, we need to have some basic set of
graph attributes; these would be our vocabulary in which we can discuss different
graph types. Finding such attributes will be the focus of this section.

What is a “good” pattern? One that can help distinguish between an actual real-
world graph and any fake one. However, we immediately run into several problems.
First, given the plethora of different natural and man-made phenomena which give
rise to graphs, can we expect all such graphs to follow any particular patterns?
Second, is there any single pattern which can help differentiate between all real and
fake graphs? A third problem (more of a constraint than a problem) is that we
want to find patterns which can be computed efficiently; the graphs we are looking
at typically have at least around 105 nodes and 106 edges. A pattern which takes
O(N3) or O(N2) time in the number of nodes N might easily become impractical
for such graphs.

The best answer we can give today is that while there are many differences
between graphs, some patterns show up regularly. Work has focused on finding
several such patterns, which together characterize naturally occurring graphs. The
main ones appear to be:

—Power laws,

—Small diameters, and

—“Community” effects.

Our discussion of graph patterns will follow the same structure. We look at
power laws in Section 2.1, small diameters in Section 2.3, “community” effects in
Section 2.4, and list some other patterns in Section 2.5. For each, we also give
the computational requirements for finding/computing the pattern, and some real-
world examples of that pattern. Definitions are provided for key ideas which are
used repeatedly. In Section 2.6, we will discuss some patterns in the evolution
of graphs over time. Finally, in Section 2.7, we discuss patterns specific to some
well-known graphs, like the Internet and the WWW.

2.1 Power Laws

While the Gaussian distribution is common in nature, there are many cases where
the probability of events far to the right of the mean is significantly higher than
in Gaussians. In the Internet, for example, most routers have a very low degree
(perhaps “home” routers), while a few routers have extremely high degree (perhaps
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the “core” routers of the Internet backbone) [Faloutsos et al. 1999]. Power-law
distributions attempt to model this.

We will divide the following discussion into two parts. First, we will discuss
“traditional” power laws: their definition, how to compute them, and real-world
examples of their presence. Then, we will discuss deviations from pure power laws,
and some common methods to model these.

2.1.1 “Traditional” Power Laws

Definition 2.1 Power Law. Two variables x and y are related by a power law
when:

y(x) = Ax−γ (1)

where A and γ are positive constants. The constant γ is often called the power law
exponent.

Definition 2.2 Power Law Distribution. A random variable is distributed
according to a power law when the probability density function (pdf) is given by:

p(x) = Ax−γ , γ > 1, x ≥ xmin (2)

The extra γ > 1 requirement ensures that p(x) can be normalized. Power laws with
γ < 1 rarely occur in nature, if ever [Newman 2005].

Skewed distributions, such as power laws, occur very often. In the Internet
graph, the degree distribution follows such a power law [Faloutsos et al. 1999]; that
is, the count ck of nodes with degree k, versus the degree k, is a line on a log-log
scale. The eigenvalues of the adjacency matrix of the Internet graph also show a
similar behavior: when eigenvalues are plotted versus their rank on a log-log scale
(called the scree plot), the result is a straight line. A possible explanation of this
is provided by Mihail and Papadimitriou [2002]. The World Wide Web graph also
obeys power laws [Kleinberg et al. 1999]: the in-degree and out-degree distributions
both follow power-laws, as well as the number of the so-called “bipartite cores” (≈
communities, which we will see later) and the distribution of PageRank values [Brin
and Page 1998; Pandurangan et al. 2002]. Redner [1998] shows that the citation
graph of scientific literature follows a power law with exponent 3. Figures 1(a)
and 1(b) show two examples of power laws.

The significance of a power law distribution p(x) lies in the fact that it decay
only polynomially quickly as x → ∞, instead of exponential decay for the Gaussian
distribution. Thus, a power law degree distribution would be much more likely
to have nodes with a very high degree (much larger than the mean) than the
Gaussian distribution. Graphs exhibiting such degree distributions are called scale-
free graphs, because the form of y(x) in Equation 1 remains unchanged to within
a multiplicative factor when the variable x is multiplied by a scaling factor (in
other words, y(ax) = by(x)). Thus, there is no special “characteristic scale” for the
variables; the functional form of the relationship remains the same for all scales.

Computation issues: The process of finding a power law pattern can be divided
into three parts: creating the scatter plot, computing the power law exponent, and
checking for goodness of fit. We discuss these issues below, using the detection of
power laws in degree distributions as an example.
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Fig. 1. Power laws and deviations: Plots (a) and (b) show the in-degree and out-degree dis-
tributions on a log-log scale for the Epinions graph (an online social network of 75, 888 people
and 508, 960 edges [Domingos and Richardson 2001]). Both follow power-laws. In contrast, plot
(c) shows the out-degree distribution of a Clickstream graph (a bipartite graph of users and the
websites they surf [Montgomery and Faloutsos 2001]), which deviates from the power-law pattern.

Creating the scatter plot (for the degree distribution): The algorithm for calculat-
ing the degree distributions (irrespective of whether they are power laws or not)
can be expressed concisely in SQL. Assuming that the graph is represented as a ta-
ble with the schema Graph(fromnode, tonode), the code for calculating in-degree
and out-degree is given below. The case for weighted graphs, with the schema
Graph(fromnode, tonode, weight), is a simple extension of this.

SELECT outdegree, count(*)

FROM

(SELECT count(*) AS outdegree

FROM Graph

GROUP BY fromnode)

GROUP BY outdegree

SELECT indegree, count(*)

FROM

(SELECT count(*) AS indegree

FROM Graph

GROUP BY tonode)

GROUP BY indegree

Computing the power law exponent: This is no simple task: the power law could be
only in the tail of the distribution and not over the entire distribution, estimators
of the power law exponent could be biased, some required assumptions may not
hold, and so on. Several methods are currently employed, though there is no clear
“winner” at present.

(1) Linear regression on the log-log scale: We could plot the data on a log-log scale,
then optionally “bin” them into equal-sized buckets, and finally find the slope
of the linear fit. However, there are at least three problems: (i) this can lead to
biased estimates [Goldstein et al. 2004], (ii) sometimes the power law is only in
the tail of the distribution, and the point where the tail begins needs to be hand-
picked, and (iii) the right end of the distribution is very noisy [Newman 2005].
However, this is the simplest technique, and seems to be the most popular one.

(2) Linear regression after logarithmic binning: This is the same as above, but the
bin widths increase exponentially as we go towards the tail. In other words, the
number of data points in each bin is counted, and then the height of each bin
is then divided by its width to normalize. Plotting the histogram on a log-log
scale would make the bin sizes equal, and the power-law can be fitted to the
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heights of the bins. This reduces the noise in the tail buckets, fixing problem
(iii). However, binning leads to loss of information; all that we retain in a bin
is its average. In addition, issues (i) and (ii) still exist.

(3) Regression on the cumulative distribution: We convert the pdf p(x) (that is,
the scatter plot) into a cumulative distribution F (x):

F (x) = P (X ≥ x) =
∞
∑

z=x

p(z) =
∞
∑

z=x

Az−γ (3)

The approach avoids the loss of data due to averaging inside a histogram bin.
To see how the plot of F (x) versus x will look like, we can bound F (x):

∫ ∞

x

Az−γdz < F (x) < Ax−γ +

∫ ∞

x

Az−γdz

⇒ A

γ − 1
x−(γ−1) < F (x) < Ax−γ +

A

γ − 1
x−(γ−1)

⇒ F (x) ∼ x−(γ−1) (4)

Thus, the cumulative distribution follows a power law with exponent (γ − 1).
However, successive points on the cumulative distribution plot are not mutually
independent, and this can cause problems in fitting the data.

(4) Maximum-Likelihood Estimator (MLE): This chooses a value of the power law
exponent γ such that the likelihood that the data came from the corresponding
power law distribution is maximized. Goldstein et al [2004] find that it gives
good unbiased estimates of γ.

(5) The Hill statistic: Hill [1975] gives an easily computable estimator, that seems
to give reliable results [Newman 2005]. However, it also needs to be told where
the tail of the distribution begins.

(6) Fitting only to extreme-value data: Feuerverger and Hall [1999] propose another
estimator which is claimed to reduce bias compared to the Hill statistic without
significantly increasing variance. Again, the user must provide an estimate of
where the tail begins, but the authors claim that their method is robust against
different choices for this value.

(7) Non-parametric estimators: Crovella and Taqqu [1999] propose a non-parametric
method for estimating the power law exponent without requiring an estimate
of the beginning of the power law tail. While there are no theoretical results
on the variance or bias of this estimator, the authors empirically find that ac-
curacy increases with increasing dataset size, and that it is comparable to the
Hill statistic.

Checking for goodness of fit: The correlation coefficient has typically been used as
an informal measure of the goodness of fit of the degree distribution to a power
law. Recently, there has been some work on developing statistical “hypothesis
testing” methods to do this more formally. Beirlant et al. [2005] derive a bias-
corrected Jackson statistic for measuring goodness of fit of the data to a generalized
Pareto distribution. Goldstein et al. [2004] propose a Kolmogorov-Smirnov test to
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determine the fit. Such measures need to be used more often in the empirical studies
of graph datasets.

Examples of power laws in the real world: Examples of power law degree
distributions include the Internet AS1 graph with exponent 2.1 − 2.2 [Faloutsos
et al. 1999], the Internet router graph with exponent ∼ 2.48 [Faloutsos et al. 1999;
Govindan and Tangmunarunkit 2000], the in-degree and out-degree distributions
of subsets of the WWW with exponents 2.1 and 2.38− 2.72 respectively [Barabási
and Albert 1999; Kumar et al. 1999; Broder et al. 2000], the in-degree distribution
of the African web graph with exponent 1.92 [Boldi et al. 2002], a citation graph
with exponent 3 [Redner 1998], distributions of website sizes and traffic [Adamic
and Huberman 2001], and many others. Newman [2005] provides a comprehensive
list of such work.

2.2 Deviations from Power Laws

Informal description: While power laws appear in a large number of graphs,
deviations from a pure power law are sometimes observed. We discuss these below.

Detailed description: Pennock et al. [2002] and others have observed deviations
from a pure power law distribution in several datasets. Two of the more common
deviations are exponential cutoffs and lognormals.

2.2.1 Exponential cutoffs. Sometimes, the distribution looks like a power law
over the lower range of values along the x-axis, but decays very fast for higher
values. Often, this decay is exponential, and this is usually called an exponential
cutoff:

y(x = k) ∝ e−k/κk−γ (5)

where e−k/κ is the exponential cutoff term and k−γ is the power law term. Ama-
ral et al. [2000] find such behaviors in the electric power-grid graph of Southern
California and the network of airports, the vertices being airports and the links
being non-stop connections between them. They offer two possible explanations for
the existence of such cutoffs. One, high-degree nodes might have taken a long time
to acquire all their edges and now might be “aged”, and this might lead them to
attract fewer new edges (for example, older actors might act in fewer movies). Two,
high-degree nodes might end up reaching their “capacity” to handle new edges; this
might be the case for airports where airlines prefer a small number of high-degree
hubs for economic reasons, but are constrained by limited airport capacity.

2.2.2 Lognormals or the “DGX” distribution. Pennock et al. [2002] recently
found while the whole WWW does exhibit power law degree distributions, subsets
of the WWW (such as university homepages and newspaper homepages) deviate
significantly. They observed unimodal distributions on the log-log scale. Similar
distributions were studied by Bi et al. [2001], who found that a discrete truncated
lognormal (called the Discrete Gaussian Exponential or “DGX” by the authors)

1Autonomous System, typically consisting of many routers administered by the same entity.
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Fig. 2. Hop-plot and effective diameter: This is the hop-plot of the Epinions graph [Domingos
and Richardson 2001; Chakrabarti et al. 2004]. We see that the number of reachable pairs of
nodes flattens out at around 6 hops; thus the effective diameter of this graph is 6.

gives a very good fit. A lognormal is a distribution whose logarithm is a Gaussian; it
looks like a truncated parabola in log-log scales. The DGX distribution extends the
lognormal to discrete distributions (which is what we get in degree distributions),
and can be expressed by the formula:

y(x = k) =
A(µ, σ)

k
exp

[

− (ln k − µ)2

2σ2

]

k = 1, 2, . . . (6)

where µ and σ are parameters and A(µ, σ) is a constant (used for normalization
if y(x) is a probability distribution). The DGX distribution has been used to
fit the degree distribution of a bipartite “clickstream” graph linking websites and
users (Figure 1(c)), telecommunications and other data.

Examples of deviations from power laws in the real world: Several datasets
have shown deviations from a pure power law [Amaral et al. 2000; Pennock et al.
2002; Bi et al. 2001; Mitzenmacher 2001]: examples include the electric power-grid
of Southern California, the network of airports, several topic-based subsets of the
WWW, Web “clickstream” data, sales data in retail chains, file size distributions,
and phone usage data.

2.3 Small Diameters

Informal description: Travers and Milgram [1969] conducted a famous experi-
ment where participants were asked to reach a randomly assigned target individual
by sending a chain letter. They found that for all the chains that completed, the
average length of such chains was six, which is a very small number considering the
large population the participants and targets were chosen from. This leads us to
believe in the concept of “six degrees of separation”: the diameter of a graph is an
attempt to capture exactly this.

Detailed description: Several (often related) terms have been used to describe
the idea of the “diameter” of a graph:

—Expansion and the “hop-plot”: Tangmunarunkit et al. [2001] use a well-known
metric from theoretical computer science called “expansion,” which measures
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the rate of increase of neighborhood with increasing h. This has been called the
“hop-plot” elsewhere [Faloutsos et al. 1999].

Definition 2.3 Hop-plot. Starting from a node u in the graph, we find the
number of nodes Nh(u) in a neighborhood of h hops. We repeat this starting from
each node in the graph, and sum the results to find the total neighborhood size
Nh for h hops (Nh =

∑

u Nh(u)). The hop-plot is just the plot of Nh versus h.

—Effective diameter or Eccentricity: The hop-plot can be used to calculate the
effective diameter (also called the eccentricity) of the graph.

Definition 2.4 Effective diameter. This is the minimum number of hops
in which some fraction (say, 90%) of all connected pairs of nodes can reach each
other [Tauro et al. 2001].

Figure 2 shows the hop-plot and effective diameter of an example graph.

—Characteristic path length: For each node in the graph, consider the shortest
paths from it to every other node in the graph. Take the average length of all
these paths. Now, consider the average path lengths for all possible starting
nodes, and take their median. This is the characteristic path length [Bu and
Towsley 2002].

—Average diameter: This is calculated in the same way as the characteristic path
length, except that we take the mean of the average shortest path lengths over
all nodes, instead of the median.

While the use of “expansion” as a metric is somewhat vague (Tangmunarunkit et al. [2001]
use it only to differentiate between exponential and sub-exponential growth), most
of the other metrics are quite similar. The advantage of eccentricity is that its def-
inition works, as is, even for disconnected graphs, whereas we must consider only
the largest component for the characteristic and average diameters. Characteristic
path length and eccentricity are less vulnerable to outliers than average diameter,
but average diameter might be the better if we want worst case analysis.

A concept related to the hop-plot is that of the hop-exponent: Faloutsos et al. [1999]
conjecture that for many graphs, the neighborhood size Nh grows exponentially
with the number of hops h. In other words, Nh = chH for h much less than the
diameter of the graph. They call the constant H the hop-exponent. However, the
diameter is so small for many graphs that there are too few points in the hop-plot
for this premise to be verified and to calculate the hop-exponent with any accuracy.

Computation issues: One major problem with finding the diameter is the com-
putational cost: all the definitions essentially require computing the “neighborhood
size” of each node in the graph. One approach is to use repeated matrix multipli-
cations on the adjacency matrix of the graph; however, this takes asymptotically
O(N2.88) time and O(N2) memory space. Another technique is to do breadth-first
searches from each node of the graph. This takes O(N + E) space but requires
O(NE) time. Another issue with breadth-first search is that edges are not ac-
cessed sequentially, which can lead to terrible performance on disk-resident graphs.
Palmer et al. [2002] find that randomized breadth-first search algorithms are also
ill-suited for large graphs, and they provide a randomized algorithm for finding the
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hop-plot which takes O((N + E)d) time and O(N) space (apart from the storage
for the graph itself), where N is the number of nodes, E the number of edges and
d the diameter of the graph (typically very small). Their algorithm offers provable
bounds on the quality of the approximated result, and requires only sequential scans
over the data. They find the technique to be far faster than exact computation,
and providing much better estimates than other schemes like sampling.

Examples in the real world: The diameters of several naturally occurring
graphs have been calculated, and in almost all cases they are very small compared
to the graph size. Faloutsos et al. [1999] find an effective diameter of around 4 for
the Internet AS level graph and around 12 for the Router level graph. Govindan
and Tangmunarunkit [2000] find a 97%-effective diameter of around 15 for the In-
ternet Router graph. Broder et al. [2000] find that the average path length in the
WWW (when a path exists at all) is about 16 if we consider the directions of links,
and around 7 if all edges are considered to be undirected. Albert et al. [1999] find
the average diameter of the webpages in the nd.edu domain to be 11.2. Watts and
Strogatz [1998] find the average diameters of the power grid and the network of ac-
tors to be 18.7 and 3.65 respectively. Many other such examples can be found in the
literature; Tables 1 and 2 of [Albert and Barabási 2002] and table 3.1 of [Newman
2003] list some such work.

2.4 “Community” Structure

A community is generally considered to be a set of nodes where each node is “closer”
to the other nodes within the community than to nodes outside it. This effect has
been found (or is believed to exist) in many real-world graphs, especially social
networks: Moody [2001] finds groupings based on race and age in a network of
friendships in one American school, Schwartz and Wood [1993] group people with
shared interests from email logs, Borgs et al. [2004] find communities from “cross-
posts” on Usenet, and Flake et al. [2000] discover communities of webpages in the
WWW.

We will divide the following discussion into two parts. First, we will describe the
clustering coefficient, which is one particular measure of community structure that
has been widely used in the literature. Next, we will look at methods for extracting
community structure from large graphs.

2.4.1 Clustering Coefficient.
Informal description: The clustering coefficient measures the “clumpiness” of
a graph, and has relatively high values in many graphs.

Detailed description: We will first define the clustering coefficient for one node,
following [Watts and Strogatz 1998] and [Newman 2003]:

Definition 2.5 Clustering Coefficient. Suppose a node i has ki neighbors,
and there are ni edges between the neighbors. Then the clustering coefficient of node
i is defined as

Ci =

{ ni

ki
ki > 1

0 ki = 0 or 1
(7)
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X

Fig. 3. Clustering coefficient: Node X has kX = 6 neighbors. There are only nX = 5 edges
between the neighbors. So, the local clustering coefficient of node X is nX/kX = 5/15 = 1/3.

Thus, it measures the degree of “transitivity” of a graph; higher values imply
that “friends of friends” are themselves likely to be friends, leading to a “clumpy”
structure of the graph. See Figure 3 for an example.

For the clustering coefficient of a graph (the global clustering coefficient), there
are two definitions:

(1) Transitivity occurs iff triangles exist in the graph. This can be used to measure
the global clustering coefficient as

C =
3 × number of triangles in the graph

number of connected triples in the graph
(8)

where a “connected triple” is a triple of nodes consisting of a central node
connected to the other two; the flanking nodes are unordered. The equation
counts the fraction of connected triples which actually form triangles; the factor
of three is due to the fact that each triangle corresponds to three triples.

(2) Alternatively, Watts and Strogatz [1998] use equation 7 to define to a global
clustering coefficient for the graph as

C =
N

∑

i=1

Ci/N (9)

The second definition leads to very high variance in the clustering coefficients of
low-degree nodes (for example, a degree 2 node can only have Ci = 0 or 1). The
results given by the definitions can actually be quite different. The first definition is
usually easier to handle analytically, while the second one has been used extensively
in numerical studies.

Computation of the clustering coefficient: Alon et al. [1997] describe a
deterministic algorithm for counting the number of triangles in a graph. Their
method takes O(Nω) time, where ω < 2.376 is the exponent of matrix multiplication
(that is, matrix multiplication takes O(Nω) time). However, this is more than
quadratic in the number of nodes, and might be too slow for large graphs. Bar-
Yossef et al. [2002] describe algorithms to count triangles when the graph is in
streaming format, that is, the data is a stream of edges which can be read only
sequentially and only once. The advantage of streaming algorithms is that they
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require only one pass over the data, and so are very fast; however, they typically
require some temporary storage, and the aim of such algorithms is to minimize this
space requirement. They find an O(log N)-space randomized algorithm for the case
when the edges are sorted on the source node. They also show that if there is no
ordering on the edges, it is impossible to count the number of triangles using o(N2)
space.

Clustering coefficients in the real world: The interesting fact about the
clustering coefficient is that it is almost always larger in real-world graphs than
in a random graph with the same number of nodes and edges (random graphs are
discussed later; basically these are graphs where there are no biases towards any
nodes). Watts and Strogatz [1998] find a clustering coefficient of 0.79 for the actor
network (two actors are linked if they have acted in the same movie) whereas the
corresponding random graph has a coefficient of 0.00027. Similarly, for the power
grid network, the coefficient is 0.08, much greater than 0.005 for the random graph.

Extension of the clustering coefficient idea: While the global clustering
coefficient gives an indication of the overall “clumpiness” of the graph, it is still just
one number describing the entire graph. We can look at the clustering coefficients
at a finer level of granularity by finding the average clustering coefficient C(k) for all
nodes with a particular degree k. Dorogovtsev et al. [2002] find that for scale-free
graphs generated in a particular fashion, C(k) ∝ k−1. Ravasz and Barabási [2002]
investigate the plot of C(k) versus k for several real-world graphs. They find that
C(k) ∝ k−1 gives decent fits to the actor network, the WWW, the Internet AS
level graph and others. However, for certain graphs like the Internet Router level
graph and the power grid graph, C(k) is independent of k. The authors propose an
explanation for this phenomenon: they say that the C(k) ∝ k−1 scaling property
reflects the presence of hierarchies in the graph. Both the Router and power-grid
graphs have geographical constraints (it is uneconomic to lay long wires), and this
presumably prevents them from having a hierarchical topology.

2.4.2 Methods for Extracting Graph Communities. The problem of extracting
communities from a graph, or of dividing the nodes of a graph into distinct commu-
nities, has been approached from several different directions. In fact algorithms for
“community extraction” have appeared in practically all fields: social network anal-
ysis, physics and computer science among others. Here, we collate this information
and present the basic ideas behind some of them. The computational require-
ments for each method are discussed alongside the description of each method. A
survey specifically looking at clustering problems from bioinformatics is provided
in [Madeira and Oliveira 2004], though it focuses only on bipartite graphs.

Dendrograms: Traditionally, the sociological literature has focused on communi-
ties formed through hierarchical clustering [Everitt 1974]: nodes are grouped into
hierarchies, which themselves get grouped into high-level hierarchies and so. The
general approach is to first assign a value Vij for every pair (i, j) of nodes in the
graph. Note that this value is different from the weight of an edge; the weight is a
part of the data in a weighted graph, while the value is computed based on some
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property of the nodes and the graph. This property could be the distance between
the nodes, or the number of node-independent paths between the two nodes (two
paths are node-independent if the only nodes they share are the endpoints). Then,
starting off with only the nodes in the graph (with no edges included), we add edges
one by one in decreasing order of value. At any stage of this algorithm, each of the
connected components corresponds to a community. Thus, each iteration of this
algorithm represents a set of communities; the dendrogram is a tree-like structure,
with the individual nodes of the graph as the leaves of the tree and the communities
in each successive iteration being the internal nodes of the tree. The root node of
the tree is the entire graph (with all edges included).

While such algorithms have been successful in some cases, they tend to sepa-
rate fringe nodes from their “proper” communities [Girvan and Newman 2002].
Such methods are also typically costly; however, a carefully constructed varia-
tion [Clauset et al. 2004] requires only O(Ed log N) time, where E is the number
of edges, N the number of nodes, and d the depth of the dendrogram.

Edge betweenness or Stress: Dendrograms build up communities from the bottom
up, starting from small communities of one node each and growing them in each
iteration. As against this, Girvan and Newman [2002] take the entire graph and
remove edges in each iteration; the connected components in each stage are the
communities. The question is: how do we choose the edges to remove? The authors
remove nodes in decreasing order of their “edge-betweenness,” as defined below.

Definition 2.6 Edge betweenness or Stress. Consider all shortest paths
between all pairs of nodes in a graph. The edge-betweenness or stress of an edge is
the number of these shortest paths that the edge belongs to.

The idea is that edges connecting communities should have high edge-betweenness
values because they should lie on the shortest paths connecting nodes from different
communities. Tyler et al. [2003] have used this algorithm to find communities in
graphs representing email communication between individuals.

The edge-betweenness of all edges can be calculated by using breadth-first search
in O(NE) time; we must do this once for each of the E iterations, giving a total of
(NE2) time. This makes it impractical for large graphs.

Goh et al. [2002] measure the distribution of edge-betweenness, that is, the count
of edges with an edge-betweenness value of v, versus v. They find a power-law
in this, with an exponent of 2.2 for protein interaction networks, and 2.0 for the
Internet and the WWW.

Max-flow min-cut formulation: Flake et al. [2000] define a community to be a
set of nodes with more intra-community edges than inter-community edges. They
formulate the community-extraction problem as a minimum cut problem in the
graph; starting from some seed nodes which are known to belong to a community,
they find the minimal-cut set of edges that disconnects the graph so that all the seed
nodes fall in one connected component. This component is then used to find new
seed nodes; the process is repeated till a good component is found. This component
is the community corresponding to the seed nodes.

One question is the choice of the original seed nodes. The authors use the HITS
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algorithm [Kleinberg 1999a], and choose the hub and authority nodes as seeds
to bootstrap their algorithm. Finding these seed nodes requires finding the first
eigenvectors of the adjacency matrix of the graph, and there are well-known iterative
methods to approximate these [Berry 1992]. The min-cut problem takes polynomial
time using the Ford-Fulkerson algorithm [Cormen et al. 1992]. Thus, the algorithm
is relatively fast, and is quite successful in finding communities for several datasets.

Graph partitioning: A very popular clustering technique involves graph partition-
ing: the graph is broken into two partitions or communities, which may then be
partitioned themselves. Several different measures can be optimized for while par-
titioning a graph. The popular METIS software tries to find the best separator, min-
imizing the number of edges cut in order to form two disconnected components of
relatively similar sizes [Karypis and Kumar 1998]. Other common measures include
coverage (ratio of intra-cluster edges to the total number of edges) and conductance
(ratio of inter-cluster edges to a weighted function of partition sizes) [Brandes et al.
2003]. Detailed discussions on these are beyond the scope of this work.

Several heuristics have been proposed to find good separators; spectral clustering
is one such highly successful heuristic. This uses the first few singular vectors of
the adjacency matrix or its Laplacian to partition the graph (the Laplacian ma-
trix of an undirected graph is obtained by subtracting its adjacency matrix from
a diagonal matrix of its vertex degrees) [Alon 1998; Spielman and Teng 1996].
Kannan et al. [2000] find that spectral heuristics give good separators in terms of
both coverage and conductance. Another heuristic method called Markov Cluster-
ing [2000] uses random walks, the intuition being that a random walk on a dense
cluster will probably not leave the cluster without visiting most of its vertices.
Brandes et al. [2003] combine spectral techniques and minimum spanning trees in
their GMC algorithm.

In general, graph partitioning algorithms are slow; for example, spectral methods
taking polynomial time might still be too slow for problems on large graphs [Kannan
et al. 2000]. However, Drineas et al. [1999] propose combining spectral heuristics
with fast randomized techniques for singular value decomposition to combat this.
Also, the number of communities (e.g., the number of eigenvectors to be considered
in spectral clustering) often needs to be set by the user, though some recent methods
try to find this automatically [Tibshirani et al. 2001; Ben-Hur and Guyon 2003].

Bipartite cores: Another definition of “community” uses the concept of hubs and au-
thorities. According to Kleinberg [1999a], each hub node points to several authority
nodes, and each authority node is pointed to by several hub nodes. Kleinberg pro-
poses the HITS algorithm to find such hub and authority nodes. Gibson et al. [1998]
use this to find communities in the WWW in following fashion. Given a user query,
they use the top (say, 200) results on that query from some search engine as the
seed nodes. Then they find all nodes linking to or linked from these seed nodes;
this gives a subgraph of the WWW which is relevant to the user query. The HITS
algorithm is applied to this subgraph, and the top 10 hub and authority nodes are
together returned as the core community corresponding to the user query.

Kumar et al. [1999] remove the requirement for a user query; they use bipartite
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Set L Set R

(a) Bipartite core (b) Clique

Fig. 4. Indicators of community structure: Plot (a) shows a 4 × 3 bipartite core, with each node
in Set L being connected to each node in Set R. Plot (b) shows a 5-node clique, where each node
is connected to every other node in the clique.

cores as the seed nodes for finding communities. A bipartite core in a graph consists
of two (not necessarily disjoint) sets of nodes L and R such that every node in L
links to every node in R; links from R to L are optional (Figure 4). They describe
an algorithm that uses successive elimination and generation phases to generate
bipartite cores of larger sizes each iteration. As in [Gibson et al. 1998], these cores
are extended to form communities using the HITS algorithm.

HITS requires finding the largest eigenvectors of the AtA matrix, where A is the
adjacency matrix of the graph. This is a well-studied problem. The elimination and
generation passes have bad worst case complexity bounds, but Kumar et al. [1999]
find that it is fast in practice. They attribute this to the strongly skewed distribu-
tions in naturally occurring graphs. However, such algorithms which use hubs and
authorities might have trouble finding webrings, where there are no clearly defined
nodes of “high importance.”

Local Methods: All the previous techniques used global information to determine
clusters. This leads to scalability problems for many algorithms. Virtanen [2003]
devised a clustering algorithm based solely on local information derived from mem-
bers of a cluster. Defining a fitness metric for any cluster candidate, the author uses
simulated annealing to locally find clusters which approximately maximize fitness.
The advantage of this method is the online computation of locally optimal clusters
(with high probability) leading to good scalability, and the absence of any “magic”
parameters in the algorithm. However, the memory and disk access requirements
of this method are unclear.

Cross-Associations: Recently, Chakrabarti et al. [2004] (also see [Chakrabarti
2004]) devised a scalable, parameter-free method for clustering the nodes in a graph
into groups. Following the overall MDL (Minimum Description Length) principle,
they define the goodness of a clustering in terms of the quality of lossless com-
pression that can be attained using that clustering. Heuristic algorithms are used
to find good clusters of nodes, and also to automatically determine the number of
node clusters. The algorithm is linear in the number of edges E in the graph, and
is thus scalable to large graphs.
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Communities via Kirchoff’s Laws: Wu and Huberman [2004] find the community
around a given node by considering the graph as an electric circuit, with each edge
having the same resistance. Now, one Volt is applied to the given node, and zero
Volts to some other randomly chosen node (which will hopefully be outside the
community). The voltages at all nodes are then calculated using Kirchoff’s Laws,
and the nodes are split into two groups by (for example) sorting all the voltages,
picking the median voltage, and splitting the nodes on either side of this median
into two communities. The important idea is that the voltages can be calculated
approximately using iterative methods requiring only O(N +E) time, but with the
quality of approximation depending only on the number of iterations and not on
the graph size.

This is a fast method, but picking the correct nodes to apply zero Volts to is a
problem. The authors propose using randomized trials with repetitions, but further
work is needed to prove formal results on the quality of the output.

2.5 Other Static Graph Patterns

Apart from power laws, small diameters and community effects, some other patterns
have been observed in large real-world graphs. These include the resilience of such
graphs to random failures, and correlations found in the joint degree distributions
of the graphs. We will explore these below.

2.5.1 Resilience.
Informal description: The resilience of a graph is a measure of its robustness to
node or edge failures. Many real-world graphs are resilient against random failures
but vulnerable to targeted attacks.

Detailed description: There are at least two definitions of resilience:

—Tangmunarunkit et al. [2001] define resilience as a function of the number of
nodes n: the resilience R(n) is the “minimum cut-set” size within an n-node
ball around any node in the graph (a ball around a node X refers to a group of
nodes within some fixed number of hops from node X). The “minimum cut-set”
is the minimum number of edges that need to be cut to get two disconnected
components of roughly equal size; intuitively, if this value is large, then it is hard
to disconnect the graph and disrupt communications between its nodes, implying
higher resilience. For example, a 2D grid graph has R(n) ∝ √

n while a tree has
R(n) = 1; thus, a tree is less resilient than a grid.

—Resilience can be related to the graph diameter: a graph whose diameter does
not increase much on node or edge removal has higher resilience [Palmer et al.
2002; Albert et al. 2000].

Computation issues: Calculating the “minimum cut-set” size is NP-hard, but
approximate algorithms exist [Karypis and Kumar 1998]. Computing the graph di-
ameter is also costly (see Section 2.3), but fast randomized algorithms exist [Palmer
et al. 2002].
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Fig. 5. The Densification Power Law: The number of edges E(t) is plotted against the number of
nodes N(t) on log-log scales for (a) the arXiv citation graph, (b) the patents citation graph, and
(c) the Internet Autonomous Systems graph. All of these grow over time, and the growth follows
a power law in all three cases [Leskovec et al. 2005].

Examples in the real world: In general, most real-world networks appear to
be resilient against random node/edge removals, but are susceptible to targeted
attacks: examples include the Internet Router-level and AS-level graphs, as well as
the WWW [Palmer et al. 2002; Albert et al. 2000; Tangmunarunkit et al. 2001].

2.5.2 Joint Distributions. While most of the focus regarding node degrees has
fallen on the in-degree and the out-degree distributions, there are “higher-order”
statistics that could also be considered. We combine all these statistics under the
term joint distributions, differentiating them from the degree-distributions which
are the marginal distributions. Here, we note some of these statistics.

—In and out degree correlation: The in and out degrees might be independent, or
they could be (anti)correlated. Newman et al. [2002] find a positive correlation
in email networks, that is, the email addresses of individuals with large address
books appear in the address books of many others. However, it is hard to measure
this with good accuracy. Calculating this well would require a lot of data, and
it might be still be inaccurate for high-degree nodes (which, due to power law
degree distributions, are quite rare).

—Average neighbor degree: We can measure the average degree dav(i) of the neigh-
bors of node i, and plot it against its degree k(i). Pastor-Satorras et al. [2001]
find that for the Internet AS level graph, this gives a power law with exponent 0.5
(that is, dav(i) ∝ k(i)−0.5).

—Neighbor degree correlation: We could calculate the joint degree distributions of
adjacent nodes; however this is again hard to measure accurately.

2.6 Patterns in Evolving Graphs

The search for graph patterns has focused primarily on static patterns, which can
be extracted from one snapshot of the graph at some time instant. Many graphs,
however, evolve over time (such as the Internet and the WWW) and only recently
have researchers started looking for the patterns of graph evolution. Two key
patterns have emerged:
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—Densification Power Law: Leskovec et al. [2005] found that several real graphs
grow over time according to a power law: the number of nodes N(t) at time t is
related to the number of edges E(t) by the equation:

E(t) ∝ N(t)α 1 ≤ α ≤ 2 (10)

where the parameter α is called the Densification Power Law exponent, and
remains stable over time. They also find that this “law” exists for several different
graphs, such as paper citations, patent citations, and the Internet AS graph.
This quantifies earlier empirical observations that the average degree of a graph
increases over time [Barabási et al. 2002]. It also agrees with theoretical results
showing that only a law like Equation 10 can maintain the power-law degree
distribution of a graph as more nodes and edges get added over time [Dorogovtsev
et al. 2001]. Figure 5 demonstrates the densification law for several real-world
networks.

—Shrinking Diameters: Leskovec et al. [2005] also find that the effective diameters
(definition 2.4) of graphs are actually shrinking over time, even though the graphs
themselves are growing.

These surprising patterns are probably just the tip of the iceberg, and there may
be many other patterns hidden in the dynamics of graph growth.

2.7 The Structure of Specific Graphs

While most graphs found naturally share many features (such as the small-world
phenomenon), there are some specifics associated with each. These might reflect
properties or constraints of the domain to which the graph belongs. We will discuss
some well-known graphs and their specific features below.

2.7.1 The Internet. The networking community has studied the structure of the
Internet for a long time. In general, it can be viewed as a collection of interconnected
routing domains; each domain is a group of nodes (such routers, switches etc.)
under a single technical administration [Calvert et al. 1997]. These domains can
be considered as either a stub domain (which only carries traffic originating or
terminating in one of its members) or a transit domain (which can carry any traffic).
Example stubs include campus networks, or small interconnections of Local Area
Networks (LANs). An example transit domain would be a set of backbone nodes
over a large area, such as a wide-area network (WAN).

The basic idea is that stubs connect nodes locally, while transit domains intercon-
nect the stubs, thus allowing the flow of traffic between nodes from different stubs
(usually distant nodes). This imposes a hierarchy in the Internet structure, with
transit domains at the top, each connecting several stub domains, each of which
connects several LANs.

Apart from hierarchy, another feature of the Internet topology is its apparent
Jellyfish structure at the AS level (Figure 6), found by Tauro et al. [2001]. This
consists of:

—A core, consisting of the highest-degree node and the clique it belongs to; this
usually has 8–13 nodes.
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Core
Layers

Hanging nodes

Fig. 6. The Internet as a “Jellyfish”: The Internet AS-level graph can be thought of as a core,
surrounded by concentric layers around the core. There are many one-degree nodes that hang off
the core and each of the layers.

—Layers around the core. These are organized as concentric circles around the
core; layers further from the core have lower importance.

—Hanging nodes, representing one-degree nodes linked to nodes in the core or
the outer layers. The authors find such nodes to be a large percentage (about
40–45%) of the graph.

2.7.2 The World Wide Web (WWW). Broder et al. [2000] find that the Web
graph is described well by a “bowtie” structure (Figure 7(a)). They find that the
Web can be broken in 4 approximately equal-sized pieces. The core of the bowtie
is the Strongly Connected Component (SCC) of the graph: each node in the SCC has
a directed path to any other node in the SCC. Then, there is the IN component:
each node in the IN component has a directed path to all the nodes in the SCC.
Similarly, there is an OUT component, where each node can be reached by directed
paths from the SCC. Apart from these, there are webpages which can reach some
pages in OUT and can be reached from pages in IN without going through the SCC;
these are the TENDRILS. Occasionally, a tendril can connect nodes in IN and OUT;
the tendril is called a TUBE in this case. The remainder of the webpages fall in
disconnected components. A similar study focused on only the Chilean part of the
Web graph found that the disconnected component is actually very large (nearly
50% of the graph size) [Baeza-Yates and Poblete 2003].

Dill et al. [2001] extend this view of the Web by considering subgraphs of the
WWW at different scales (Figure 7(b)). These subgraphs are groups of webpages
sharing some common trait, such as content or geographical location. They have
several remarkable findings:

(1) Recursive bowtie structure: Each of these subgraphs forms a bowtie of its own.
Thus, the Web graph can be thought of as a hierarchy of bowties, each repre-
senting a specific subgraph.

(2) Ease of navigation: The SCC components of all these bowties are tightly con-
nected together via the SCC of the whole Web graph. This provides a naviga-
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Fig. 7. The “Bowtie” structure of the Web: Plot (a) shows the 4 parts: IN, OUT, SCC and
TENDRILS [Broder et al. 2000]. Plot (b) shows Recursive Bowties: subgraphs of the WWW can
each be considered a bowtie. All these smaller bowties are connected by the navigational backbone
of the main SCC of the Web [Dill et al. 2001].

tional backbone for the Web: starting from a webpage in one bowtie, we can
click to its SCC, then go via the SCC of the entire Web to the destination bowtie.

(3) Resilience: The union of a random collection of subgraphs of the Web has a
large SCC component, meaning that the SCCs of the individual subgraphs have
strong connections to other SCCs. Thus, the Web graph is very resilient to
node deletions and does not depend on the existence of large taxonomies such
as yahoo.com; there are several alternate paths between nodes in the SCC.

3. GRAPH GENERATORS

Graph generators allow us to create synthetic graphs, which can then be used for,
say, simulation studies. But when is such a generated graph “realistic?” This
happens when the synthetic graph matches all (or at least several) of the patterns
mentioned in the previous section. Graph generators can provide insight into graph
creation, by telling us which processes can (or cannot) lead to the development of
certain patterns.

Graph models and generators can be broadly classified into five categories (Fig-
ure 8):

(1) Random graph models: The graphs are generated by a random process. The
basic random graph model has attracted a lot of research interest due to its
phase transition properties.

(2) Preferential attachment models: In these models, the “rich” get “richer” as the
network grows, leading to power law effects. Some of today’s most popular
models belong to this class.

(3) Optimization-based models: Here, power laws are shown to evolve when risks are
minimized using limited resources. Together with the preferential attachment
models, they try to provide mechanisms that automatically lead to power laws.

(4) Geographical models: These models consider the effects of geography (i.e., the
positions of the nodes) on the growth and topology of the network. This is
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Fig. 8. Overview of graph generators: Current generators can be mostly placed under one of these
categories, though there are some hybrids such as BRITE and Inet.

especially important for modeling router or power-grid networks, which involve
laying wires between points on the globe.

(5) Internet-specific models: As the Internet is one of the most important graphs in
computer science, special-purpose generators have been developed to model its
special features. These are often hybrids, using ideas from the other categories
and melding them with Internet-specific requirements.

We will discuss graph generators from each of these categories in Sections 3.1-
3.5. This is not a complete list, but we believe it includes most of the key ideas
from the current literature. Section 3.6 presents work on comparing these graph
generators. In Section 3.7, we discuss the recently proposed R-MAT generator,
which matches many of the patterns mentioned above. For each generator, we will
try to provide the specific problem it aims to solve, followed by a brief description
of the generator itself and its properties, and any open questions. Tables II and III
provide a taxonomy of these.

3.1 Random Graph Models

Random graphs are generated by picking nodes under some random probability
distribution and then connecting them by edges. We first look at the basic Erdös-
Rényi model, which was the first to be studied thoroughly [Erdős and Rényi 1960],
and then we discuss modern variants of the model.

3.1.1 The Erdös-Rényi Random Graph Model.
Problem being solved: Graph theory owes much of its origins to the pioneering
work of Erdös and Rényi in the 1960s [Erdős and Rényi 1960; 1961]. Their random
graph model was the first and the simplest model for generating a graph.

Description and Properties: We start with N nodes, and for every pair of
nodes, an edge is added between them with probability p (as in Figure 9). This
defines a set of graphs GN,p, all of which have the same parameters (N, p).
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Graph type Degree distributions

Power law Exponen-
Generator Undir. Dir. Bip. Self Mult. Geog. Plain Exp. Devia- tial

loops edges info cutoff tion

Erdös–Rényi [1960]
√ √ √ √

PLRG [Aiello et al. 2000],
√ √ √

any γ (Eq. 15)
PLOD [Palmer and Steffan 2000] (user-defined)

Exponential cutoff
√ √ √

any γ (Eq. 16)
√

[Newman et al. 2001] (user-defined)

BA [Barabási and Albert 1999]
√

γ = 3

Initial attractiveness
√ √ √

γ ∈ [2,∞)
[Dorogovtsev and Mendes 2003] (Eq. 21)

AB [Albert and Barabási 2000]
√ √ √

γ ∈ [2,∞)
√

(Eq. 22)

Edge Copying [Kumar et al. 1999],
√ √

γ ∈ (1,∞)
√

[Kleinberg et al. 1999] (Eqs. 23, 24)

GLP [Bu and Towsley 2002]
√ √ √

γ ∈ (2,∞)
(Eq. 26)

Accelerated growth
√ √ √

Power-law mixture of
[Dorogovtsev and Mendes 2003], γ = 2 and γ = 3

[Barabási et al. 2002]

Fitness model
√

γ = 2.2551

[Bianconi and Barabási 2001]

Aiello et al. [2001]
√

γ ∈ [2,∞)
(Eq. 30)

Pandurangan et al. [2002]
√ √

γ =?
√

Inet-3.0 [Winick and Jamin 2002]
√

γ =?2
√

Forest Fire
√

γ =?
[Leskovec et al. 2005]

Pennock et al. [2002]
√ √ √

γ ∈ [2,∞)3
√

Small-world
√ √ √

[Watts and Strogatz 1998]

Waxman [1988]
√ √ √

BRITE [Medina et al. 2000]
√ √

γ =?

Yook et al. [2002]
√ √

γ =?
√

Fabrikant et al. [2002]
√ √

γ =?

R-MAT [Chakrabarti et al. 2004]
√ √ √ √ √

γ =?
√

(DGX)

Table II. Taxonomy of graph generators: This table shows the graph types and degree distribu-
tions that different graph generators can create. The graph type can be undirected, directed,
bipartite, allowing self-loops or multi-graph (multiple edges possible between nodes). The degree
distributions can be power-law (with possible exponential cutoffs, or other deviations such as
lognormal/DGX) or exponential decay. If it can generate a power law, the possible range of the
exponent γ is provided. Empty cells indicate that the corresponding property does not occur in
the corresponding model.
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Diameter or Community Clustering Remarks

Generator Avg path len. Bip. core C(k) vs k coefficient

vs size

Erdös–Rényi [1960] O(log N) Indep. Low, CC ∝ N−1

PLRG [Aiello et al. 2000], O(log N) Indep. CC → 0
PLOD [Palmer and Steffan 2000] for large N

Exponential cutoff O(log N) CC → 0
[Newman et al. 2001] for large N

BA [Barabási and Albert 1999] O(log N) or CC ∝ N−0.75

O( log N

log log N
)

Initial attractiveness
[Dorogovtsev and Mendes 2003]

AB [Albert and Barabási 2000]

Edge copying [Kleinberg et al. 1999], Power-law
[Kumar et al. 1999]

GLP [Bu and Towsley 2002] Higher than Internet
AB, BA, PLRG only

Accelerated growth Non-monotonic
[Dorogovtsev et al. 2001], with N

[Barabási et al. 2002]

Fitness model
[Bianconi and Barabási 2001]

Aiello et al. [2001]

Pandurangan et al. [2002]

Inet [Winick and Jamin 2002] Specific to
the AS graph

Forest Fire “shrinks” as
[Leskovec et al. 2005] N grows

Pennock et al. [2002]

Small-world O(N) for small N , CC(p) ∝ N=num nodes
[Watts and Strogatz 1998] O(ln N) for large N , (1 − p)3, p=rewiring prob

depends on p Indep of N

Waxman [1988]

BRITE [Medina et al. 2000] Low (like in BA) like in BA BA + Waxman
with additions

Yook et al. [2002]

Fabrikant et al. [2002] Tree, density 1

R-MAT [Chakrabarti et al. 2004] Low (empirically)

Table III. Taxonomy of graph generators (Contd.): The comparisons are made for graph diam-
eter, existence of community structure (number of bipartite cores versus core size, or Clustering
coefficient CC(k) of all nodes with degree k versus k), and clustering coefficient. N is the number
of nodes in the graph. The empty cells represent information unknown to the authors, and require
further research.
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Fig. 9. The Erdös-Rényi model: The black circles represent the nodes of the graph. Every possible
edge occurs with equal probability.

Degree Distribution: The probability of a vertex having degree k is

pk =

(

N

k

)

pk(1 − p)N−k ≈ zke−z

k!
with z = p(N − 1) (11)

For this reason, this model is often called the “Poisson” model.

Size of the largest component: Many properties of this model can be solved exactly
in the limit of large N . A property is defined to hold for parameters (N, p) if the
probability that the property holds on every graph in GN,p approaches 1 as N → ∞.
One of the most noted properties concerns the size of the largest component (sub-
graph) of the graph. For a low value of p, the graphs in GN,p have low density with
few edges and all the components are small, having an exponential size distribution
and finite mean size. However, with a high value of p, the graphs have a giant
component with O(N) of the nodes in the graph belonging to this component. The
rest of the components again have an exponential size distribution with finite mean
size. The changeover (called the phase transition) between these two regimes occurs
at p = 1

N . A heuristic argument for this is given below, and can be skipped by the
reader.

Finding the phase transition point: Let the fraction of nodes not belonging to the
giant component be u. Thus, the probability of random node not belonging to the
giant component is also u. But the neighbors of this node also do not belong to the
giant component. If there are k neighbors, then the probability of this happening
is uk. Considering all degrees k, we get

u =

∞
∑

k=0

pkuk

1P (k) ∝ k−2.255/ ln k; [Bianconi and Barabási 2001] study a special case, but other values of the
exponent γ may be possible with similar models.
2Inet-3.0 matches the Internet AS graph very well, but formal results on the degree-distribution
are not available.
3γ = 1 + 1

α
as k → ∞ (Eq. 32)
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= e−z
∞
∑

k=0

(uz)k

k!
(using Eq 11)

= e−zeuz = ez(u−1) (12)

Thus, the fraction of nodes in the giant component is

S = 1 − u = 1 − e−zS (13)

Equation 13 has no closed-form solutions, but we can see that when z < 1, the only
solution is S = 0 (because e−x > 1 − x for x ∈ (0, 1)). When z > 1, we can have
a solution for S, and this is the size of the giant component. The phase transition
occurs at z = p(N − 1) = 1. Thus, a giant component appears only when p scales
faster than N−1 as N increases.

Tree-shaped subgraphs: Similar results hold for the appearance of trees of different
sizes in the graph. The critical probability at which almost every graph contains
a subgraph of k nodes and l edges is achieved when p scales as Nz where z =
−k

l [Bollobás 1985]. Thus, for z < − 3
2 , almost all graphs consist of isolated nodes

and edges; when z passes through − 3
2 , trees of order 3 suddenly appear, and so on.

Diameter: Random graphs have a diameter concentrated around log N/ log z, where
z is the average degree of the nodes in the graph. Thus, the diameter grows slowly
as the number of nodes increases.

Clustering coefficient: The probability that any two neighbors of a node are them-

selves connected is the connection probability p = <k>
N , where < k > is the average

node degree. Therefore, the clustering coefficient is:

CCrandom = p =
< k >

N
(14)

Open questions and discussion: It is hard to exaggerate the importance of
the Erdös-Rényi model in the development of modern graph theory. Even a simple
graph generation method has been shown to exhibit phase transitions and critical-
ity. Many mathematical techniques for the analysis of graph properties were first
developed for the random graph model.

However, even though random graphs exhibit such interesting phenomena, they
do not match real-world graphs particularly well. Their degree distribution is Pois-
son (as shown by Equation 11), which has a very different shape from power-laws
or lognormals. There are no correlations between the degrees of adjacent nodes,
nor does it show any form of “community” structure (which often shows up in real
graphs like the WWW). Also, according to Equation 14, CCrandom

<k> = 1
N ; but for

many real-world graphs, CC
<k> is independent of N (See figure 9 from [Albert and

Barabási 2002]).
Thus, even though the Erdös-Rényi random graph model has proven to be very

useful in the early development of this field, it is not used in most of the recent
work on modeling real graphs. To address some of these issues, researchers have
extended the model to the so-called Generalized Random Graph Models, where the
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degree distribution can be set by the user (typically, set to be a power law).

3.1.2 Generalized Random Graph Models.
Problem being solved: Erdös-Rényi graphs result in a Poisson degree distribu-
tion, which often conflicts with the degree distributions of many real-world graphs.
Generalized random graph models extend the basic random graph model to allow
arbitrary degree distributions.

Description and properties: Given a degree distribution, we can randomly
assign a degree to each node of the graph so as to match the given distribution.
Edges are formed by randomly linking two nodes till no node has extra degrees
left. We describe two different models below: the PLRG model and the Exponen-
tial Cutoffs model. These differ only in the degree distributions used; the rest of
the graph-generation process remains the same. The graphs thus created can, in
general, include self-graphs and multigraphs (having multiple edges between two
nodes).

The PLRG model: One of the obvious modifications to the Erdös-Rényi model is
to change the degree distribution from Poisson to power-law. One such model is the
Power-Law Random Graph (PLRG) model of Aiello et al. [2000] (a similar model
is the Power Law Out Degree (PLOD) model of Palmer and Steffan [2000]). There
are two parameters: α and β. The number of nodes of degree k is given by eα/kβ.

PLRG degree distribution: By construction, the degree distribution is specifically
a power law:

pk ∝ k−β (15)

where β is the power-law exponent.

PLRG connected component sizes: The authors show that graphs generated by this
model can have several possible properties, based only on the value of β. When
β < 1, the graph is almost surely connected. For 1 < β < 2, a giant component
exists, and smaller components are of size O(1). For 2 < β < β0 ∼ 3.48, the giant
component exists and the smaller components are of size O(log N). At β = β0, the
smaller components are of size O(log N/ log log N). For β > β0, no giant component
exists. Thus, for the giant component, we have a phase transition at β = β0 = 3.48;
there is also a change in the size of the smaller components at β = 2.

The Exponential cutoffs model: Another generalized random graph model is due
to Newman et al. [2001]. Here, the probability that a node has k edges is given by

pk = Ck−γe−k/κ (16)

where C, γ and κ are constants.

Exponential cutoffs degree distribution: This model has a power law (the k−γ term)

augmented by an exponential cutoff (the e−k/κ term). The exponential cutoff,
which is believed to be present in some social and biological networks, reduces the
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heavy-tail behavior of a pure power-law degree distribution. The results of this
model agree with those of [Aiello et al. 2000] when κ → ∞.

Average path length for exponential cutoffs: Analytic expressions are known for the
average path length of this model, but this typically tends to be somewhat less than
that in real-world graphs [Albert and Barabási 2002].

Apart from PLRG and the exponential cutoffs model, some other related models
have also been proposed. One important model is that of Aiello et al. [2001], who
assign weights to nodes and then form edges probabilistically based on the product
of the weights of their end-points. The exact mechanics are, however, close to
preferential attachment, and we discuss this later in Section 3.2.8.

Similar models have also been proposed for generating directed and bipartite
random graphs. Recent work has provided analytical results for the sizes of the
strongly connected components and cycles in such graphs [Cooper and Frieze 2004;
Dorogovtsev et al. 2001]. We do not discuss these any further; the interested reader
is referred to [Newman et al. 2001].

Open questions and discussion: Generalized random graph models retain the
simplicity and ease of analysis of the Erdös-Rényi model, while removing one of
its weaknesses: the unrealistic Poisson degree distribution. However, most such
models only attempt to match the degree distribution of real graphs, and no other
patterns. For example, in most random graph models, the probability that two
neighbors of a node are themselves connected goes as O(N−1). This is exactly the
clustering coefficient of the graph, and goes to zero for large N ; but for many real-
world graphs, CC

<k> is independent of N (See figure 9 from [Albert and Barabási
2002]). Also, many real world graphs (such as the WWW) exhibit the existence of
communities of nodes, with stronger ties within the community than outside (see
Section 2.4.2); random graphs do not appear to show any such behavior. Further
work is needed to accommodate these patterns into the random graph generation
process.

3.2 Preferential Attachment and Variants

Problem being solved: Generalized random graph models try to model the
power law or other degree distribution of real graphs. However, they do not make
any statement about the processes generating the network. The search for a mech-
anism for network generation was a major factor in fueling the growth of the pref-
erential attachment models, which we discuss below.

The rest of this section is organized as follows: in section 3.2.1, we describe the
basic preferential attachment process. This has proven very successful in explain-
ing many features of real-world graphs. Sections 3.2.3-3.2.11 describe progress on
modifying the basic model to make it even more precise.

3.2.1 Basic Preferential Attachment. In the mid-1950s, Herbert Simon [1955]
showed that power law tails arise when “the rich get richer.” Derek Price applied
this idea (which he called cumulative advantage) to the case of networks [de Solla Price
1976], as follows. We grow a network by adding vertices over time. Each vertex
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New node

Fig. 10. The Barabási-Albert model: New nodes are added; each new node prefers to connect to
existing nodes of high degree. The dashed lines show some possible edges for the new node, with
thicker lines implying higher probability.

gets a certain out-degree, which may be different for different vertices but whose
mean remains at a constant value m over time. Each outgoing edge from the new
vertex connects to an old vertex with a probability proportional to the in-degree
of the old vertex. This, however, leads to a problem since all nodes initially start
off with in-degree zero. Price corrected this by adding a constant to the current
in-degree of a node in the probability term, to get

P (edge to existing vertex v) =
k(v) + k0

∑

i(k(i) + k0)
(17)

where k(i) represents the current in-degree of an existing node i, and k0 is a con-
stant.

A similar model was proposed by Barabási and Albert [1999]. It has been a very
influential model, and formed the basis for a large body of further work. Hence, we
will look at the Barabási-Albert model (henceforth called the BA model) in detail.

Description of the BA model: The BA model proposes that structure emerges
in network topologies as the result of two processes:

(1) Growth: Contrary to several other existing models (such as random graph
models) which keep a fixed number of nodes during the process of network
formation, the BA model starts off with a small set of nodes and grows the
network as nodes and edges are added over time.

(2) Preferential Attachment: This is the same as the “rich get richer” idea. The
probability of connecting to a node is proportional to the current degree of that
node.

Using these principles, the BA model generates an undirected network as follows.
The network starts with m0 nodes, and grows in stages. In each stage, one node is
added along with m edges which link the new node to m existing nodes (Figure 10).
The probability of choosing an existing node as an endpoint for these edges is given
by

P (edge to existing vertex v) =
k(v)

∑

i k(i)
(18)

where k(i) is the degree of node i. Note that since the generated network is undi-
rected, we do not need to distinguish between out-degrees and in-degrees. The
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effect of this equation is that nodes which already have more edges connecting to
them, get even more edges. This represents the “rich get richer” scenario.

There are a few differences from Price’s model. One is that the number of edges
per new node is fixed at m (a positive integer); in Price’s model only the mean
number of added edges needed to be m. However, the major difference is that
while Price’s model generates a directed network, the BA model is undirected.
This avoids the problem of the initial in-degree of nodes being zero; however, many
real graphs are directed, and the BA model fails to model this important feature.

Properties of the BA model: We will now discuss some of the known properties
of the BA model. These include the degree distribution, diameter, and correlations
hidden in the model.

Degree distribution: The degree distribution of the BA model [Dorogovtsev et al.
2000] is given by:

pk ≈ k−3 (19)

for large k. In other words, the degree distribution has a power law “tail” with
exponent 3, independent of the value of m.

Diameter: Bollobás and Riordan [2002] show that for large N , the diameter grows
as O(log N) for m = 1, and as O(log N/ log log N) for m ≥ 2. Thus, this model
displays the small-world effect: the distance between two nodes is, on average, far
less than the total number of nodes in the graph.

Correlations between variables: Krapivsky and Redner [2001] find two correlations
in the BA model. First, they find that degree and age are positively correlated:
older nodes have higher mean degree. The second correlation is in the degrees of
neighboring nodes, so that nodes with similar degree are more likely to be con-
nected. However, this asymptotically goes to 0 as N → ∞.

Open questions and discussion: The twin ideas of growth and preferential
attachment are definitely an immense contribution to the understanding of network
generation processes. However, the BA model attempts to explain graph structure
using only these two factors; most real-world graphs are probably generated by a
slew of different factors. The price for this is some inflexibility in graph properties
of the BA model.

—The power-law exponent of the degree distribution is fixed at γ = 3, and many
real-world graphs deviate from this value.

—The BA model generates undirected graphs only; this prevents the model from
being used for the many naturally occurring directed graphs.

—While Krapivsky and Redner show that the BA model should have correla-
tions between node degree and node age (discussed above), Adamic and Hu-
berman [2000] apparently find no such correlations in the WWW.

—The generated graphs have exactly one connected component. However, many
real graphs have several isolated components. For example, websites for compa-
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nies often have private set of webpages for employees/projects only. These are a
part of the WWW, but there are no paths to those webpages from outside the
set. Military routers in the Internet router topology are another example.

—The BA model has a constant average degree of m; however, the average degree
of some graphs (such as citation networks) actually increases over time accord-
ing to a Densification Power Law [Barabási et al. 2002; Leskovec et al. 2005;
Dorogovtsev et al. 2001] (see Section 2.6).

—The diameter of the BA model increases as N increases; however, many graphs
exhibit shrinking diameters (see Section 2.6).

Also, further work is needed to confirm the existence or absence of a community
structure in the generated graphs.

While the basic BA model does have these limitations, its simplicity and power
make it an excellent base on which to build extended models. In fact, the bulk of
graph generators in use today can probably trace their lineage back to this model. In
the next few sections, we will look at some of these extensions and variations; as we
will see, most of these are aimed at removing one or the other of the aforementioned
limitations.

3.2.2 Initial attractiveness.
Problem being solved: While the BA model generates graphs with a power
law degree distribution, the power law exponent is stuck at γ = 3. Dorogovt-
sev et al. [2000; 2003] propose a simple one-parameter extension of the basic model
which allows γ ∈ [2,∞). Other methods, such as the AB model described later,
also do this, but they require more parameters.

Description and properties: The BA model is modified by adding an extra
parameter A ≥ 0 as follows:

P (edge to existing vertex v) =
A + k(v)

∑

i (A + k(i))
(20)

where k(i) is the degree of node i. The parameter A models the “initial attractive-
ness” of each site, and governs the probability of “young” sites gaining new edges.
Note that the BA model is a special case of this model (when A = 0).

Degree distribution: The degree distribution is found to be a power law with expo-
nent

γ = 2 +
A

m

where m is the number of new edges being added at each timestep. Thus, depending
on the value of A and m, γ ∈ [2,∞).

Open questions and discussion: This model adds a lot of flexibility to the
BA model while requiring just a single parameter. As an extension of this, we
could consider assigning different “initial attractiveness” values to different nodes;
for example, this might be more realistic for new websites coming online on the
WWW. Some progress has been made by Barabási and Bianconi [2001], but their
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“fitness” parameters are used differently, and it is an open question what would
happen if the parameter A in equation 20 were to be replaced by Av.

3.2.3 Internal edges and Rewiring.
Problem being solved: Graphs generated by the BA model have degree distri-
butions with a power-law exponent of 3. However, the value of this exponent is
often different for many naturally occurring graphs. The model described below
attempts to remedy this.

Description and properties: In the BA model, one node and m edges are added
to the graph every iteration. Albert and Barabási [2000] decouple this addition of
nodes and edges, and also extend the model by introducing the concept of edge
rewiring. Starting with a small set of m0 nodes, the resulting model (henceforth
called the AB model) combines 3 processes:

—With probability p, add m (m ≤ m0) new edges: For each edge, one endpoint is
chosen at random, and the other endpoint is chosen with probability

p(v) =
k(v) + 1

∑

i(k(i) + 1)
(21)

where p(v) represents the probability of node v being the endpoint, and k(i)
representing the degree of node i.

—With probability q, rewire m links: Choose a node i at random, and then choose
one of its edges eij , remove it, and reconnect node i to some other node chosen
using preferential attachment (Equation 21). This whole process is then repeated
m times. This is effectively a way to locally reshuffle connections.

—With probability 1−p−q, add a new node with m edges: One end of these m edges
is the new node; the other ends are chosen using preferential attachment (Equa-
tion 21). This was the only step in the BA model.

Note that in general, graphs generated by the AB model might have self-loops and
multiple edges between two nodes.

Degree distribution: This model exhibits either a power-law or exponential degree
distribution, depending on the parameters used. When q < qmax = min(1− p, (1−
p + m)/(1 + 2m)), the distribution is a power law with exponent γ given by

γ =
2m(1 − q) + 1 − p − q

m
+ 1 (22)

However, for q > qmax, the distribution becomes exponential.

Validity of the model for the Internet graph: Chen et al. [2001] try to check the
validity of these processes in the context of the Internet. Their findings are sum-
marized below:

—Incremental Growth: The Internet AS graph does grow incrementally, with nodes
and edges being added gradually over time.
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—Linear Preferential Attachment: However, they find that new ASes have a much
stronger preference for connecting to the high-degree ASes than predicted by
linear preferential attachment.

—Addition of Internal Edges: They also consider the addition of new edges between
pre-existing ASes; this corresponds to the creation of new internal edges in the
AB model. For the addition of every new internal edge, they put the end vertex
with the smaller degree in a “Small Vertex” class, and the other end vertex in
the “Large Vertex” class. They compare the degree distributions of these classes
to that from the AS graph and find that while the “Small Vertex” class matches
the real graph pretty well, the distribution of the “Large Vertex” class is very
different between the AB model and the Internet.

—Edge Rewiring: They find that rewiring is probably not a factor in the evolution
of the Internet.

Open questions and discussion: The AB model provides flexibility in the power
law exponent of the degree distribution. Further research is needed to show the
presence or absence of a “community” structure in the generated graphs. Also, we
are unaware of any work on analytically finding the diameter of graphs generated
by this model.

3.2.4 Edge Copying Models.
Problem being solved: Several graphs show community behavior, such as
topic-based communities of websites on the WWW. Kleinberg et al. [1999] and
Kumar et al. [1999] try to model this by using the intuition that most webpage
creators will be familiar with webpages on topics of interest to them, and so when
they create new webpages, they will link to some of these existing topical web-
pages. Thus, most new webpages will enhance the “topical community” effect of
the WWW.

Description and properties: The Kleinberg [1999] generator creates a directed
graph. The model involves the following processes:

—Node creation and deletion: In each iteration, nodes may be independently cre-
ated and deleted under some probability distribution. All edges incident on the
deleted nodes are also removed.

—Edge creation: In each iteration, we choose some node v and some number of
edges k to add to node v. With probability β, these k edges are linked to nodes
chosen uniformly and independently at random. With probability 1 − β, edges
are copied from another node: we choose a node u at random, choose k of its
edges (u, w), and create edges (v, w) (as shown in Figure 11). If the chosen node
u does not have enough edges, all its edges are copied and the remaining edges
are copied from another randomly chosen node.

—Edge deletion: Random edges can be picked and deleted according to some prob-
ability distribution.

This is similar to preferential attachment because the pages with high-degree will
be linked to by many other pages, and so have a greater chance of getting copied.

ACM Journal Name, Vol. V, No. N, Month 20YY.



Graphs: Laws, Generators and Algorithms · 33

�
�
�
� �

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Copy

New node

Fig. 11. The edge copying model: New nodes can choose to copy the edges of an existing node.
This models the copying of links from other peoples’ websites to create a new website.

Kumar et al. [1999] propose a very similar model. However, there are some
important differences. Whenever a new node is added, only one new edge is added.
The edge need not be incident on the new node. With a probability α, the tail
of the new edge (recall that this is a directed graph; the edge points from head to
tail) is the new node, otherwise it is the tail of some randomly chosen existing edge.
Similarly, with a probability β, the head of the new edge is the new node, otherwise
it is the head of some random edge. Thus, the copying process takes place when
head or tail of some existing edge gets chosen as the endpoint of the new edge.

Since important nodes on each “topic” might be expected to start off with a
large number of edges incident on them, the edge copying process would tend to
enhance the number of edges linking to them. Thus, the graph would gain several
“communities”, with nodes in the community linking to the “important” nodes of
that community.

This and similar models by analyzed by Kumar et al. [2000]. They found the
following interesting properties.

Degree distributions: For the Kleinberg model [1999], the in-degree distribution is
a power law with exponent given by

γin =
1

1 − β
(23)

For the model of Kumar et al. [1999], both the in-degree and out-degree distribu-
tions follow power laws

γin =
1

1 − α

γout =
1

1 − β
(24)

“Community” effect: They also show that such graphs can be expected to have a
large number of bipartite cores (which leads to the community effect). However,
more experiments might be needed to conclusively prove these results.

Open questions and discussion: The Kleinberg model [1999] generates a tree;
no “back-edges” are formed from the old nodes to the new nodes. Also, in the model
of Kumar et al. [1999], a fixed fraction of the nodes have zero in-degree or zero out-
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degree; this might not be the case for all real-world graphs (see Aiello et al. [2001]
for related issues).

However, the simple idea of copying edges can clearly lead to both power laws
as well as community effects. “Edge copying” models are, thus, a very promising
direction for future research.

3.2.5 Modifying the preferential attachment equation.
Problem being solved: Chen et al. [2001] had found the AB model somewhat
lacking in modeling the Web (Section 3.2.3). Specifically, they found that the
preference for connecting to high-degree nodes is stronger than that predicted by
linear preferential attachment. Bu and Towsley [2002] attempt to address this issue.

Description and properties: The AB model [Albert and Barabási 2000] is
changed by removing the edge rewiring process, and modifying the linear preferen-
tial attachment equation of the AB model to show higher preference for nodes with
high degrees (as in [Chen et al. 2001]). Their new preferential attachment equation
is:

p(v) =
k(v) − β

∑

i(k(i) − β)
(25)

where p(v) represents the probability of node v being the endpoint, k(i) representing
the degree of node i, and β ∈ (−∞, 1) is a tunable parameter. The smaller the
value of β, the less preference is given to nodes with higher degree. Since β < 1,
any node of degree 1 has a non-zero probability of acquiring new edges. This is
called the GLP (Generalized Linear Preference) model.

Degree distribution: The degree distribution follows a power law with exponent

γ =
2m − β(1 − p)

(1 + p)m
+ 1 (26)

Clustering coefficient: They also find empirically that the clustering coefficient for
a GLP graph is much closer to that of the Internet than the BA, AB and Power-Law
Random Graph (PLRG [Aiello et al. 2000]) models.

Bu and Towsley kept the preferential attachment equation linear (Equation 25);
others such as Krapivsky and Redner [2001] have studied non-linear preferential
attachment:

p(v) ∝ kα (27)

They achieve an important result, albeit a negative one. They find that power-law
degree distributions occur only for linear attachment (α = 1). When the preferential
attachment is sublinear (α < 1), the number of high-degree nodes decays faster than
a power law. This goes against the findings of Chen et al. [2001]. In the superlinear
case (α > 1), a single “gel” node emerges, which connects to nearly all other nodes.
Again, many graphs, like the Internet, do not have this property.

3.2.6 Modeling increasing average degree.
Problem being solved: The average degree of several real-world graphs (such
as citation graphs) increases over time [Dorogovtsev et al. 2001; Barabási et al. 2002;
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Leskovec et al. 2005], according to a Densification Power Law. Barabási et al. [Barabási
et al. 2002] attempt to modify the basic BA model to accommodate this effect.

Description and properties: In their model, nodes join the graph at a constant
rate, and form m edges to currently existing nodes with the linear preferential
attachment equation (Equation 18), as in the BA model. Also, nodes already
present in the graph form new internal edges, based on a different preferential
attachment equation:

P (u, v) ∝ k(u).k(v) (28)

In other words, the edge chooses both its endpoints by preferential attachment.
The number of internal nodes added per iteration is proportional to the the current
number of nodes in the graph. Thus, it leads to the phenomenon of accelerated
growth: the average degree of the graph increases linearly over time.

Degree distribution: However, the analysis of this model shows that it has two
power-law regimes. The power law exponent is γ = 2 for low degrees, and γ = 3 for
high degrees. In fact, over a long period of time, the exponent converges to γ = 2.

Open questions and discussion: While this model allows for increasing average
degree over time, the degree distribution is constrained to a power law with fixed
exponents. Also, it is unknown if this model matches the “shrinking diameter”
effect observed for growing graphs (see Section 2.6).

3.2.7 Node fitness measures.
Problem being solved: The preferential attachment models noted above tend
to have a correlation between the age of a node and its degree: higher the age,
more the degree [Krapivsky and Redner 2001]. However, Adamic and Huberman
find that this does not hold for the WWW [Adamic and Huberman 2000]. There
are websites which were created late but still have far higher in-degree than many
older websites. Bianconi and Barabási [2001] try to model this.

Description and properties: The model attaches a fitness parameter ηi to each
node i, which does not change over time. The idea is that even a node which is
added late could overtake older nodes in terms of degree, if the newer node has a
much higher fitness value. The basic linear preferential attachment equation now
becomes a weighted equation

P (edge to existing vertex v) =
ηvk(v)

∑

i ηik(i)
(29)

Degree distribution: The authors analyze the case when the fitness parameters are
drawn randomly from a uniform [0, 1] distribution. The resulting degree distribu-
tion is a power law with an extra inverse logarithmic factor. For the case where all
fitness values are the same, this model becomes the simple BA model.

Open questions and discussion: Having a node’s popularity depend on its
“fitness” intuitively makes a lot of sense. Further research is needed to determine
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the distribution of node fitness values in real-world graphs. For this “fitness distri-
bution,” we also need to compute the corresponding degree distribution, and ensure
that it matches reality.

3.2.8 Generalizing preferential attachment.
Problem being solved: The BA model is undirected. A simple adaptation to
the directed case is: new edges are created to point from the new nodes to existing
nodes chosen preferentially according to their in-degree. However, the out-degree
distribution of this model would not be a power law. Aiello et al. [2001] propose
a very general model for generating directed graphs which give power laws for
both in-degree and out-degree distributions. A similar model was also proposed by
Bollobás et al. [2003].

Description and properties: The basic idea is the following:

—Generate 4 random numbers m(n, n), m(n, e), m(e, n) and m(e, e) according to
some bounded probability distributions; the numbers need not be independent.

—One node is added to the graph in each iteration.

—m(n, n) edges are added from new node to new node (forming self-loops).

—m(n, e) edges are added from the new node to random existing nodes, chosen
preferentially according to their in-degree (higher in-degree nodes having higher
chance of being chosen).

—m(e, n) edges are added from existing nodes to the new node; the existing nodes
are chosen randomly with probability proportional to their out-degrees.

—m(e, e) edges are added between existing nodes. Again, the choices are propor-
tional to the in-degrees and out-degrees of the nodes.

Finally, nodes with 0 in and out degrees are ignored.

Degree distributions: The authors show that even in this general case, both the in-
degree and out-degree distributions follow power laws, with the following exponents:

γin = 2 +
m(n, n) + m(e, n)

m(n, e) + m(e, e)

γout = 2 +
m(n, n) + m(n, e)

m(e, n) + m(e, e)
(30)

A similar result is obtained by Cooper and Frieze [2003] for a model which also
allows some edge endpoints to be chosen uniformly at random, instead of always
via preferential attachment.

Open questions and discussion: The work referenced above shows that even
a very general version of preferential attachment can lead to power law degree
distributions. Further research is needed to test for all the other graph patterns,
such as diameter, community effects and so on.

3.2.9 PageRank-based preferential attachment.
Problem being solved: Pandurangan et al. [2002] found that the PageRank [Brin
and Page 1998] values for a snapshot of the Web graph follow a power law. They
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propose a model that tries to match this PageRank distribution of real-world graphs,
in addition to the degree distributions.

Description and properties: They modify the basic preferential attachment
mechanism by adding a PageRank-based preferential attachment component:

—With probability a, new edges preferentially connect to higher-degree nodes. This
is typical preferential attachment.

—With probability b, new edges preferentially connect to nodes with high PageR-
ank. According to the authors, this represents linking to nodes which are found
by using a search engine which uses PageRank-based rankings.

—With probability 1 − a − b, new edges connect to randomly chosen nodes.

Degree and PageRank distributions: They empirically show that this model can
match both the degree distributions as well as the PageRank distribution of the
Web graph. However, closed-form formulas for the degree distributions are not
provided for this model.

Open questions and discussion: This model offers an intuitive method of in-
corporating the effects of Web search engines into the growth of the Web. However,
the authors also found that the plain edge-copying model of Kumar et al. [1999]
could also match the PageRank distribution (in addition to the degree distribu-
tions) without specifically attempting to do so. Thus, this work might be taken to
be another alternative model of the Web.

3.2.10 The Forest Fire model.
Problem being solved: Leskovec et al. [2005] develop a preferential-attachment
based model which matches the Densification Power Law and the shrinking diameter
patterns of graph evolution, in addition to the power law degree distribution.

Description and properties: The model has two parameters: a forward burning
probability p, and a backward burning ratio r. The graph grows one node at a time.
The new node v adds links to the existing nodes according to a “forest fire” process:

(1) Pick ambassador: Node v chooses an ambassador node w uniformly at random,
and links to w.

(2) Select some of the ambassador’s edges: A random number x is chosen from a
binomial distribution with mean (1 − p)−1. Node v then selects x edges of w,
both in-links and out-links, but selecting in-links with probability r times less
than out-links. Let w1, w2, . . . , wx be the other ends of these selected edges.

(3) Follow these edges and repeat: Node v forms edges pointing to each of these
nodes w1, . . . , wx, and then recursively applies step (2) to these nodes.

This process conceptually captures a “forest fire” in the existing graph; the fire
starts at the ambassador node and then probabilistically spreads to the other nodes
if they are connected to nodes which are currently “burning.” Some nodes end up
creating large “conflagrations,” which forms many out-links before the fire dies out,
thus resulting in power laws.

ACM Journal Name, Vol. V, No. N, Month 20YY.



38 · D. Chakrabarti and C. Faloutsos

Degree distributions: Both the in-degree and out-degree distribution are empirically
found to follow power laws.

Community structure: This method is similar to the edge copying model discussed
earlier (section 3.2.4) because existing links are “copied” to the new node v as the
fire spreads. This leads to a community of nodes, which share similar edges.

Densification Power Law and Shrinking Diameter: The Forest Fire model empir-
ically seems to follow both of these patterns. The intuition behind densification
is clear: as the graph grows, the chances of a larger fire also grow, and so new
nodes have higher chances of getting more edges. However, the intuition behind
the shrinking diameter effect is not clear.

Open questions and discussion: This is certainly a very interesting and intu-
itive model, but the authors note that rigorous analysis of this model appears to
be quite difficult. The R-MAT generator (discussed later in section 3.7) and its
recently proposed generalization into Kronecker graphs [Leskovec et al. 2005] is one
possible approach that offers formal results for these graph patterns.

3.2.11 Deviations from power laws.
Problem being solved: Pennock et al. [2002] find that while the WWW as a
whole might exhibit power-law degree distributions, subgraphs of webpages belong-
ing to specific categories or topics often show significant deviations from a power law
(see Section 2.2). They attempt to model this deviation from power-law behavior.

Description and properties: Their model is similar to the BA model (Sec-
tion 3.2.1) , except for two differences:

—Internal edges: The m new edges added in each iteration need not be incident on
the new node being added that iteration. Thus, the new edges could be internal
edges.

—Combining random and preferential attachment: Instead of pure preferential at-
tachment, the endpoints of new edges are chosen according to a linear combina-
tion of preferential attachment and uniform random attachment. The probability
of a node v being chosen as one endpoint of an edge is given by:

p(v) = α
k(v)

2mt
+ (1 − α)

1

m0 + t
(31)

Here, k(v) represents the current degree of node v, 2mt is the total number of
edges at time t, (m0 + t) is the current number of nodes at time t, and α ∈ [0, 1]
is a free parameter. To rephrase the equation, in order to choose a node as an
endpoint for a new edge, we either do preferential attachment with probability
α, or we pick a node at random with probability (1 − α).

One point of interest is that even if a node is added with degree 0, there is always
a chance for it to gain new edges via the uniform random attachment process. The
preferential attachment and uniform attachment parts of Equation 31 represent two
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different behaviors of webpage creators (according to the authors):

—The preferential attachment term represents adding links which the creator be-
came aware of because they were popular.

—The uniform attachment term represents the case when the author adds a link
because it is relevant to him, and this is irrespective of the popularity of the
linked page. This allows even the poorer sites to gain some edges.

Degree distribution: The authors derive a degree distribution function for this
model:

P (k) ∝ (k + c)−1− 1

α (32)

where c is a function of m and α. This gives a power-law of exponent (1 + 1/α) in
the tail. However, for low degrees, it deviates from the power-law, as the authors
wanted.

Power-law degree distributions have shown up in many real-world graphs. How-
ever, it is clear that deviations in this do show up in practice. This is one of the
few models we are aware of that specifically attempt to model such deviations, and
as such, is a step in the right direction.

Open questions and discussion: This model can match deviations from power
laws in degree distributions. However, further work is needed to test for other graph
patterns, like diameter, community structure and such.

3.2.12 Implementation issues. Here, we will briefly discuss certain implemen-
tation aspects. Consider the BA model. In each iteration, we must choose edge
endpoints according to the linear preferential attachment equation. Naively, each
time we need to add a new edge, we could go over all the existing nodes and find
the probability of choosing each node as an endpoint, based on its current degree.
However, this would take O(N) time each iteration, and O(N2) time to generate
the entire graph. A better approach [Newman 2003] is to keep an array: whenever
a new edge is added, its endpoints are appended to the array. Thus, each node
appears in the array as many times as its degree. Whenever we must choose a node
according to preferential attachment, we can choose any cell of the array uniformly
at random, and the node stored in that cell can be considered to have been cho-
sen under preferential attachment. This requires O(1) time for each iteration, and
O(N) time to generate the entire graph; however, it needs extra space to store the
edgelist.

This technique can be easily extended to the case when the preferential attach-
ment equation involves a constant β, such as P (v) ∝ (k(v)−β) for the GLP model
(Equation 25). If the constant β is a negative integer (say, β = −1 as in the AB
model, Equation 21), we can handle this easily by adding |β| entries for every ex-
isting node into the array. However, if this is not the case, the method needs to
be modified slightly: with some probability α, the node is chosen according to the
simple preferential attachment equation (like in the BA model). With probability
(1 − α), it is chosen uniformly at random from the set of existing nodes. For each
iteration, the value of α can be chosen so that the final effect is that of choosing
nodes according to the modified preferential attachment equation.
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3.2.13 Summary of Preferential Attachment Models. All preferential attach-
ment models use the idea that the “rich get richer”: high-degree nodes attract
more edges, or high-PageRank nodes attract more edges, and so on. This simple
process, along with the idea of network growth over time, automatically leads to
the power-law degree distributions seen in many real-world graphs. As such, these
models made a very important contribution to the field of graph mining. Still, most
of these models appear to suffer from some limitations: for example, they do not
seem to generate any “community” structure in the graphs they generate. Also,
apart from the work of Pennock et al. [2002], little effort has gone into finding rea-
sons for deviations from power-law behaviors for some graphs. It appears that we
need to consider additional processes to understand and model such characteristics.

3.3 Incorporating Geographical Information

Both the random graph and preferential attachment models have neglected one
attribute of many real graphs: the constraints of geography. For example, it is
easier (cheaper) to link two routers which are physically close to each other; most
of our social contacts are people we meet often, and who consequently probably live
close to us (say, in the same town or city), and so on. In the following paragraphs,
we discuss some important models which try to incorporate this information.

3.3.1 The Small-World Model.
Problem being solved: The small-world model is motivated by the observation
that most real-world graphs seem to have low average distance between nodes (a
global property), but have high clustering coefficients (a local property). Two
experiments from the field of sociology shed light on this phenomenon.

Travers and Milgram [1969] conducted an experiment where participants had
to reach randomly chosen individuals in the U.S.A. using a chain letter between
close acquaintances. Their surprising find was that, for the chains that completed,
the average length of the chain was only six, in spite of the large population of
individuals in the “social network.” While only around 29% of the chains were
completed, the idea of small paths in large graphs was still a landmark find.

The reason behind the short paths was discovered by Mark Granovetter [1973],
who tried to find out how people found jobs. The expectation was that the job
seeker and his eventual employer would be linked by long paths; however, the
actual paths were empirically found to be very short, usually of length one or two.
This corresponds to the low average path length mentioned above. Also, when
asked whether a friend had told them about their current job, a frequent answer of
the respondents was “Not a friend, an acquaintance”. Thus, this low average path
length was being caused by acquaintances, with whom the subjects only shared
weak ties. Each acquaintance belonged to a different social circle and had access to
different information. Thus, while the social graph has high clustering coefficient
(i.e., is “clique-ish”), the low diameter is caused by weak ties joining faraway cliques.

Description and properties: Watts and Strogatz [1998] independently came up
with a model which had exactly these characteristics: it has high clustering coeffi-
cient but low diameter . Their model (Figure 12), which has only one parameter
p, is described below.
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Fig. 12. The small-world model: Nodes are arranged in a ring lattice; each node has links to its
immediate neighbors (solid lines) and some long-range connections (dashed lines).

—Regular ring lattice: Start with a ring lattice (N, k): this is a graph with N nodes
set in a circle. Each node has k edges to its closest neighbors, with k/2 edges on
each side. This is the set of close friendships, and has high clustering coefficient.
Let N ≫ k ≫ lnN ≫ 1.

—Rewiring: For each node u, each of its edges (u, v) is rewired with probability
p to form some different edge (u, w), where node w is chosen uniformly at ran-
dom. Self-loops and duplicate edges are forbidden. This accounts for the weak
acquaintances.

Distance between nodes, and Clustering coefficient: With p = 0, the graph remains
a plain ring lattice. Both the clustering coefficient and the average distance between
nodes are fairly high (CC(p = 0) ∼ 3/4 and L(p = 0) ∼ N/2k ≫ 1). Thus, small-
world structure is absent. When p = 1, both the clustering coefficient and the
average distance are fairly low (CC(p = 1) ∼ k/N ≪ 1 and L(p = 1) ∼ lnN/ ln k).
Thus, the graph is not “clique-ish” enough. However, there exists a range of p
values for which L(p) ∼ L(1) but CC(p) ≫ CC(1); that is, the average distance
remains low while the clustering coefficient is high. These are exactly the desired
properties.

The reason for this is that the introduction of a few long-range edges (which
are exactly the weak ties of Granovetter) leads to a highly nonlinear effect on the
average distance L. Distance is contracted not only between the endpoints of the
edge, but also their immediate neighborhoods (circles of friends). However, these
few edges lead to a very small change in the clustering coefficient. Thus, we get
a broad range of p for which the small-world phenomenon coexists with a high
clustering coefficient.

Degree distribution: All nodes start off with degree k, and the only changes to their
degrees are due to rewiring. The shape of the degree distribution is similar to that
of a random graph, with a strong peak at k, and it decays exponentially for large
k.

Open questions and discussion: The small-world model is very successful
in combining two important graph patterns: small diameters and high clustering
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Fig. 13. The Waxman model: New nodes prefer to connect to existing nodes which are closer in
distance.

coefficients. However, the degree distribution decays exponentially, and does not
match the power-law distributions of many real-world graphs. Extension of the
basic model to power law distributions is a promising research direction.

3.3.2 The Waxman Model.
Problem being solved: The Internet graph is constrained by geography: it is
cheaper to link two routers which are close in distance. Waxman [1988] proposed
a very simple model which focuses on this interaction of network generation with
geography (Figure 13).

Description and properties: The Waxman generator places random points in
Cartesian two-dimensional space (representing the placement of routers on land).
An edge (u, v) is placed between two points u and v with probability

P (u, v) = β exp
−d(u, v)

Lα
(33)

Here, α and β are parameters in the range (0, 1), d(u, v) is the Euclidean distance
between points u and v, and L is the maximum Euclidean distance between points.

The parameters α and β control the geographical constraints. The value of
β affects the edge density: larger values of β result in graphs with higher edge
densities. The value of α relates the short edges to longer ones: a small value of α
increases the density of short edges relative to longer edges.

Open questions and discussion: The Waxman generator has been very popular
in the networking community. However, it does not yield a power law degree
distribution, and further work is needed to analyze the other graph patterns for
this generator.

3.3.3 The BRITE generator.
Problem being solved: Medina et al. [2000] try to combine the geographical
properties of the Waxman generator with the incremental growth and preferential
attachment techniques of the BA model. Their graph generator, called BRITE, has
been extensively used in the networking community for simulating the structure of
the Internet.

Description and properties: The main features of BRITE are:

—Node Placement: The geography is assumed to be a square grid. Nodes can either
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be placed randomly, or with a heavy-tailed distribution.

—Links per node: As in the BA model, this is set to m, a model parameter.

—Incremental Growth: Either we could start off by placing all the nodes and then
adding links (as in the Waxman model), or we could add nodes and links as we
go along (as in the BA model). The latter gives us incremental growth.

—Wiring of edges: The authors provide three cases. (1) The edges could link
randomly chosen nodes. (2) We could have pure preferential connectivity, as
in the BA model. (3) The interesting case is when we combine preferential
connectivity with geographical constraints. Suppose that we want to add an
edge to node u. The probability of the other endpoint of the edge being node
v is a weighted preferential attachment equation, with the weights being the the
probability of that edge existing in the pure Waxman model (Equation 33)

P (u, v) =
w(u, v)k(v)

∑

i w(u, i)k(i)
(34)

where w(u, v) = β exp
−d(u, v)

Lα
as in Eq. 33

Open questions and discussion: The emphasis of BRITE is on creating a
system that can be used to generate different kinds of topologies. This allows the
user a lot of flexibility, and is one reason behind the widespread use of BRITE in
the networking community. However, there is little discussion of parameter fitting:
how can the model parameters be set so as to generate synthetic graphs which
successfully match the properties (such as the power law exponent) of some given
real-world graph? Developing algorithms for parameter fitting, and understanding
the scenarios which lead to power law graphs (such as the Heuristically Optimized
Tradeoffs model described later in section 3.4.2), are interesting avenues for further
research.

3.3.4 Other Geographical Constraints.
Problem being solved: Yook et al. [2002] find two interesting linkages between
geography and networks (specifically the Internet):

(1) The geographical distribution of Internet routers and Autonomous Systems
(AS) is a fractal, and is strongly correlated with population density. This is
intuitive: more people require more bandwidth and more routers. This finding
is at odds with most of the previous models, which usually expect the nodes
to be spread uniformly at random in some geographical area (BRITE allows
inhomogeneous distributions, but not fractals).

(2) They plot the probability of an edge versus the length of the edge and find that
the probability is inversely proportional to the Euclidean distance between the
endpoints of the edge. They explain this by saying that the cost of linking
two routers is essentially the cost of administration (fixed) and the cost of
the physical wire (proportional to distance). For long links, the distance-cost
dominates, so the probability of the link should be inversely proportional to
distance. However, in the Waxman and BRITE models, this probability decays
exponentially with length (Equation 33).
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Description and properties: To remedy the first problem, they suggest using
a self-similar geographical distribution of nodes. For the second problem, they
propose a modified version of the BA model. Each new node u is placed on the
map using the self-similar distribution, and adds edges to m existing nodes. For
each of these edges, the probability of choosing node v as the endpoint is given by
a modified preferential attachment equation:

P (node u links to existing node v) ∝ k(v)α

d(u, v)σ
(35)

where k(v) is the current degree of node v and d(u, v) is the Euclidean distance
between the two nodes. The values α and σ are parameters, with α = σ = 1 giving
the best fits to the Internet. They show that varying the values of α and σ can
lead to significant differences in the topology of the generated graph.

Similar geographical constraints may hold for social networks as well: individuals
are more likely to have friends in the same city as compared to other cities, in the
same state as compared to other states, and so on recursively. Watts et al. [2002]
and (independently) Kleinberg [2001] propose a hierarchical model to explain this
phenomenon; we will discuss both in more detail in section 5.3.

3.4 Topology from Resource Optimizations

Most of the methods described above have approached power-law degree distribu-
tions from the preferential-attachment viewpoint: if the “rich get richer”, power-
laws might result. However, another point of view is that power laws can result
from resource optimizations. We will discuss some such models below.

3.4.1 The Highly Optimized Tolerance model.
Problem being solved: Carlson and Doyle [1999; 2000] have proposed an
optimization-based reason for the existence of power laws in graphs. They say
that power laws may arise in systems due to tradeoffs between yield (or profit),
resources (to prevent a risk from causing damage) and tolerance to risks.

Description and properties: As an example, suppose we have a forest which is
prone to forest fires. Each portion of the forest has a different chance of starting
the fire (say, the dryer parts of the forest are more likely to catch fire). We wish to
minimize the damage by assigning resources such as firebreaks at different positions
in the forest. However, the total available resources are limited. The problem is to
place the firebreaks so that the expected cost of forest fires is minimized.

In this model, called the Highly Optimized Tolerance (HOT) model, we have n
possible events (starting position of a forest fire), each with an associated probability
pi(1 ≤ i ≤ n) (dryer areas have higher probability). Each event can lead to some
loss li, which is a function of the resources ri allocated for that event: li = f(ri).
Also, the total resources are limited:

∑

i ri ≤ R for some given R. The aim is to
minimize the expected cost

J =

{

∑

i

pili | li = f(ri),
∑

i

ri ≤ R

}

(36)
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Degree distribution: The authors show that if we assume that cost and resource

usage are related by a power law li ∝ rβ
i , then, under certain assumptions on the

probability distribution pi, resources are spent on places having higher probability
of costly events. In fact, resource placement is related to the probability distribution
pi by a power law. Also, the probability of events which cause a loss greater than
some value k is related to k by a power law.

The salient points of this model are:

—high efficiency, performance and robustness to designed-for uncertainties

—hypersensitivity to design flaws and unanticipated perturbations

—nongeneric, specialized, structured configurations, and

—power laws.

Resilience under attack: This concurs with other research regarding the vulnera-
bility of the Internet to attacks. Several researchers have found that while a large
number of randomly chosen nodes and edges can be removed from the Internet
graph without appreciable disruption in service, attacks targeting important nodes
can disrupt the network very quickly and dramatically [Palmer et al. 2002; Albert
et al. 2000]. The HOT model also predicts a similar behavior: since routers and
links are expected to be down occasionally, it is a “designed-for” uncertainty and
the Internet is impervious to it. However, a targeted attack is not designed for, and
can be devastating.

Newman et al. [2002] modify HOT using a utility function which can be used
to incorporate “risk aversion.” Their model (called Constrained Optimization with
Limited Deviations or COLD) truncates the tails of the power laws, lowering the
probability of disastrous events.

HOT has been used to model the sizes of files found on the WWW. The idea is
that dividing a single file into several smaller files leads to faster load times, but
increases the cost of navigating through the links. They show good matches with
this dataset.

Open questions and discussion: The HOT model offers a completely new
recipe for generating power laws; power laws can result as a by-product of resource
optimizations. However, this model requires that the resources be spread in an
globally-optimal fashion, which does not appear to be true for several large graphs
(such as the WWW). This led to an alternative model by Fabrikant et al. [2002],
which we discuss below.

3.4.2 The Heuristically Optimized Tradeoffs model.
Problem being solved: The previous model requires globally-optimal resource
allocations. However, graphs like the Internet appear to have evolved by local
decisions taken by the engineers/administrators on the spot. Fabrikant et al. [2002]
propose an alternative model in which the graph grows as a result of trade-offs
made heuristically and locally (as opposed to optimally, for the HOT model).

Description and properties: The model assumes that nodes are spread out over
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Fig. 14. The Heuristically Optimized Tradeoffs model: A new node prefers to link to existing
nodes which are both close in distance and occupy a “central” position in the network.

a geographical area. One new node is added in every iteration, and is connected
to the rest of the network with one link. The other endpoint of this link is chosen
to optimize between two conflicting goals: (1) minimizing the “last-mile” distance,
that is, the geographical length of wire needed to connect a new node to a pre-
existing graph (like the Internet), and, (2) minimizing the transmission delays based
on number of hops, or, the distance along the network to reach other nodes. The
authors try to optimize a linear combination of the two (Figure 14). Thus, a new
node i should be connected to an existing node j chosen to minimize

α.dij + hj (j < i) (37)

where dij is the distance between nodes i and j, hj is some measure of the “cen-
trality” of node j, and α is a constant that controls the relative importance of the
two.

Degree distribution: The authors find that the characteristics of the network de-
pend greatly on the value of α: when α is less than a particular constant based on
the shape of the geography, the “centrality” constraints dominate and the generated
network is a star (one central “hub” node which connects to all the other “spoke”
nodes). On the other hand, when α grows as fast as log N , the geographical con-
straints dominate and the degree distribution falls off exponentially fast. However,
if α is anywhere in between, power-law degree distributions result.

Open questions and discussion: As in the Highly Optimized Tolerance model
described before (Section 3.4.1), power laws are seen to fall off as a by-product of
resource optimizations. However, only local optimizations are now needed, instead
of global optimizations. This makes the Heuristically Optimized Tradeoffs model
very appealing.

In its current version, however, the model only generates graphs of density 1
(that is, one edge per node). This also implies that the graph is actually a tree,
whereas many real-world graphs have cycles (for example, a node might have mul-
tiple connections to the Internet to maintain connectivity in case one of its links
fails). Also, in addition to the degree distribution, the generated graphs need to
be analyzed for all other graph patterns too. Further research needs to modify
the basic model to address these issues. One step in this direction is the recent
work of Berger et al. [2005], who generalize the Heuristically Optimized Tradeoffs
model, and show that it is equivalent to a form of preferential attachment; thus,
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competition between opposing forces can give rise to preferential attachment, and
we already know that preferential attachment can, in turn, lead to power laws and
exponential cutoffs.

3.5 Generators for the Internet Topology

While the generators described above are applicable to any graphs, some special-
purpose generators have been proposed to specifically model the Internet topology.
Structural generators exploit the hierarchical structure of the Internet, while the
Inet generator modifies the basic preferential attachment model to better fit the
Internet topology. We look at both of these below.

3.5.1 Structural Generators.
Problem being solved: Work done in the networking community on the struc-
ture of the Internet has led to the discovery of hierarchies in the topology. At the
lowest level are the Local Area Networks (LANs); a group of LANs are connected
by stub domains, and a set of transit domains connect the stubs and allow the flow
of traffic between nodes from different stubs. More details are provided in Sec-
tion 2.7.1. However, the previous models do not explicitly enforce such hierarchies
on the generated graphs.

Description and properties: Calvert et al. [1997] propose a graph generation al-
gorithm which specifically models this hierarchical structure. The general topology
of a graph is specified by six parameters, which are the numbers of transit domains,
stub domains and LANs, and the number of nodes in each. More parameters are
needed to model the connectivities within and across these hierarchies. To generate
a graph, points in a plane are used to represent the locations of the centers of the
transit domains. The nodes for each of these domains are spread out around these
centers, and are connected by edges. Now, the stub domains are placed on the plane
and are connected to the corresponding transit node. The process is repeated with
nodes representing LANs.

The authors provide two implementations of this idea. The first, called Transit-
Stub, does not model LANs. Also, the method of generating connected subgraphs is
to keep generating graphs till we get one that is connected. The second, called Tiers,
allows multiple stubs and LANs, but allows only one transit domain. The graph is
made connected by connecting nodes using a minimum spanning tree algorithm.

Open questions and discussion: These models can specifically match the hier-
archical nature of the Internet, but they make no attempt to match any other graph
pattern. For example, the degree distributions of the generated graphs need not be
power laws. Hence, while these models have been widely used in the networking
community, the need modifications to be as useful in other settings.

Tangmunarunkit et al. [2001] compare such structural generators against gen-
erators which focus only on power-law distributions. They find that even though
power-law generators do not explicitly model hierarchies, the graphs generated by
them have a substantial level of hierarchy, though not as strict as with the gener-
ators described above. Thus, the hierarchical nature of the structural generators
can also be mimicked by other generators.
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3.5.2 The Inet topology generator.
Problem being solved: Winick and Jamin [2002] developed the Inet generator to
model only the Internet Autonomous System (AS) topology, and to match features
specific to it.

Description and properties: Inet-2.2 generates the graph by the following steps:

—Each node is assigned a degree from a power-law distribution with an exponential
cutoff (as in Equation 16).

—A spanning tree is formed from all nodes with degree greater than 1.

—All nodes with degree one are attached to his spanning tree using linear prefer-
ential attachment.

—All nodes in the spanning tree get extra edges using linear preferential attachment
till they reach their assigned degree.

The main advantage of this technique is in ensuring that the final graph remains
connected.

However, they find that under this scheme, too many of the low degree nodes
get attached to other low-degree nodes. For example, in the Inet-2.2 topology, 35%
of degree 2 nodes have adjacent nodes with degree 3 or less; for the Internet, this
happens only for 5% of the degree-2 nodes. Also, the highest degree nodes in Inet-
2.2 do not connect to as many low-degree nodes as the Internet. To correct this,
Winick and Jamin come up with the Inet-3 generator, with a modified preferential
attachment system.

The preferential attachment equation now has a weighting factor which uses the
degrees of the nodes on both ends of some edge. The probability of a degree i node
connecting to a degree j node is

P (degree i node connects to degree j node) ∝ wj
i .j (38)

where wj
i = MAX



1,

√

(

log
i

j

)2

+

(

log
f(i)

f(j)

)2


 (39)

Here, f(i) and f(j) are the number of nodes with degrees i and j respectively, and
can be easily obtained from the degree distribution equation. Intuitively, what this
weighting scheme is doing is the following: when the degrees i and j are close, the
preferential attachment equation remains linear. However, when there is a large
difference in degrees, the weight is the Euclidean distance between the points on
the log-log plot of the degree distribution corresponding to degrees i and j, and
this distance increases with increasing difference in degrees. Thus, edges connecting
nodes with a big difference in degrees are preferred.

Open questions and discussion: Inet has been extensively used in the network-
ing literature. However, the fact that it is so specific to the Internet AS topology
makes it somewhat unsuitable for any other topologies.
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3.6 Comparison Studies

While a large body of work has been done on developing new graph generators,
effort has also gone into comparing different graph generators, especially on certain
graphs like the Internet. However, different studies have used different metrics for
comparing different graph generators. We combine the results of several studies
in our discussion below [Tangmunarunkit et al. 2001; 2002; Bu and Towsley 2002;
Albert et al. 2000].

We have already seen some of the patterns and metrics that were used in these
studies: expansion (section 2.3), resilience (section 2.5.1), the hierarchical structure
of the Internet (section 3.5.1), characteristic path lengths and average diameter
(section 2.3), and the clustering coefficient (section 2.4.1). Apart from these, Tang-
munarunkit et al. [2001; 2002] also looked at graph distortion, defined as follows.

Definition 3.1 Distortion. Consider any spanning tree T on the graph. Then,
the distortion for T is the average distance on T between any two nodes that are
connected by an edge in the graph. The distortion for the graph is the smallest such
average over all possible spanning trees.

The graph distortion measures the difference between the real graph and its span-
ning tree. Tangmunarunkit et al. [2001; 2002] use heuristics to evaluate this metric.

Now we will describe the results for each of these metrics. When possible, we will
try to explain the reasons behind the results; we note, however, that most of these
results are as yet formally unexplained.

Expansion: Both the Internet AS level and Router level graphs exhibit high ex-

pansion2 [Tangmunarunkit et al. 2001; 2002]. The PLRG model (section 3.1.2)
matches this pattern. The Tiers model (section 3.5.1) has low expansion.

Resilience under random failures: Both the Internet AS level and Router level
graphs show high resilience under random failures [Tangmunarunkit et al. 2001;
2002; Palmer et al. 2002]. The PLRG and AB (section 3.2.3) models match this: in
fact, power law graphs remain unaffected even when as many as 5% of the nodes are
randomly chosen and removed [Albert et al. 2000; Bollobás et al. 2003]. However,
for graphs with exponentially decaying degree distributions, such as the Erdós-
Rényi random graph (section 3.1.1) and the Small-World model (section 3.3.1),
the average diameter increases monotonically as random nodes are removed. The
Transit-Stub model (section 3.5.1) also has low resilience.

Resilience under targeted attacks: When nodes are removed in decreasing order
of degree, the situation is the complete reverse of the “random failures” scenario.
Power-law graphs show drastic increases in average diameter (doubling the original
value as the top 5% of the highest-degree nodes are removed), while exponen-
tial graphs exhibit more or less the same behavior as for the failure case. This

2For the expansion, resilience and distortion metrics, Tangmunarunkit et al. [2001; 2002] distin-
guish between only two states: “low” and “high” (for example, exponential expansion is high, and
sub-exponential is low).
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brings to the forefront the importance of the most-connected nodes in power-law
graphs [Palmer et al. 2002; Albert et al. 2000; Bollobás et al. 2003].

Distortion: Both the Internet AS level and Router level graphs have low distortion,
and the PLRG model matches this [Tangmunarunkit et al. 2001; 2002]. The Wax-
man model (section 3.3.2) has high distortion. Inet-3.0 is found to show similar
distortion as the Internet AS level graph [Winick and Jamin 2002].

Hierarchical structure of the Internet: Even though power-law models do not lead
to any explicit hierarchy of nodes, a hierarchy shows up nonetheless in graphs
generated by such models. Tangmunarunkit et al. [2001; 2002] surmise that this
hierarchy is a side effect of the power-law distribution: nodes with high degree
function appear to be near the top of the hierarchy, while low-degree nodes form
the leaves.

Characteristic path length: The AB, GLP, and Inet models (sections 3.2.3, 3.2.5,
and 3.5.2) give similar path lengths as the Internet AS level graph with proper
choice of parameters, while PLRG does not. PLRG also shows very high variance
for this metric [Bu and Towsley 2002]. Inet-3.0 has similar characteristic path
lengths over time as the Internet AS graph [Winick and Jamin 2002].

Clustering coefficient: The clustering coefficient of GLP is closer to the Internet
AS level graph than those for AB, PLRG, and Inet [Bu and Towsley 2002]. Inet-3.0
exhibits lower clustering coefficient than the Internet AS graph, possibly because
it does not have a large, dense clique connecting the high-degree “core” nodes, as
is seen in the Internet graph [Winick and Jamin 2002].

In addition, Winick and Jamin [2002] compared the Inet-3.0 generator to the
Internet AS graph for several other patterns, and observed good fits for many of
these. Note, however, that Inet-3.0 was developed specifically for the Internet AS
topology.

Reasons behind the resilience properties of the Internet: Much effort has
gone into understanding the resilience properties of the Internet (resilient under
random failures, but drastically affected by targeted attacks). Albert et al. [Albert
et al. 2000] propose that in power law graphs like the Internet, the high-degree
nodes are the ones “maintaining” most of the connectivity, and since there are so
few of them, it is unlikely for them to be chosen for removal under random failures.
Targeted attacks remove exactly these nodes, leading to severe connectivity failures.

Tauro et al. [2001] propose a solution based on the structure of the Internet AS
graph. They say that the graph is organized as a Jellyfish (or concentric rings
around a core), with the most important nodes in the core, and layers further from
the core decreasing in importance (see Section 2.7.1). Random node removal mostly
removes one-degree nodes which hang off the core or the layers, and do not affect
connectivity. However, targeted node removal removes nodes from the (small) core
and then successively from the important layers; since most nodes connect in or
towards the central core, this leads to a devastating loss of connectivity. Perhaps
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the Internet power law graph was generated in a fashion such that the “core” nodes
achieved the highest connectivity; that would agree with both [Tauro et al. 2001]
and [Albert et al. 2000].

Interestingly, similar behavior is exhibited by metabolic pathways in organisms;
Jeong et al. [2000] show that the diameter does not change under random node
removal, but increases fourfold when only 8% of the most connected nodes are
removed. Solé and Montoya [2001] see the same thing with ecological networks,
and Newman et al. [2002] for email networks.

3.7 The R-MAT (Recursive MATrix) graph generator

We have seen that most of the current graph generators focus on only one graph
pattern – typically the degree distribution – and give low importance to all the
others. There is also the question of how to fit model parameters to match a
given graph. What we would like is a tradeoff between parsimony (few model
parameters), realism (matching most graph patterns, if not all), and efficiency (in
parameter fitting and graph generation speed). In this section, we present the
R-MAT generator, which attempts to address all of these concerns.

Problem being solved: The R-MAT [Chakrabarti et al. 2004] generator tries to
meet several desiderata:

—The generated graph should match several graph patterns, including but not
limited to power-law degree distributions (such as hop-plots and eigenvalue plots).

—It should be able to generate graphs exhibiting deviations from power-laws, as
observed in some real-world graphs [Pennock et al. 2002].

—It should exhibit a strong “community” effect.

—It should be able to generate directed, undirected, bipartite or weighted graphs
with the same methodology.

—It should use as few parameters as possible.

—There should be a fast parameter-fitting algorithm.

—The generation algorithm should be efficient and scalable.

Description and properties:

The R-MAT generator creates directed graphs with 2n nodes and E edges, where
both values are provided by the user. We start with an empty adjacency matrix,
and divide it into four equal-sized partitions. One of the four partitions is chosen
with probabilities a, b, c, d respectively (a + b + c + d = 1), as in Figure 15. The
chosen partition is again subdivided into four smaller partitions, and the procedure
is repeated until we reach a simple cell (=1× 1 partition). The nodes (that is, row
and column) corresponding to this cell are linked by an edge in the graph. This
process is repeated E times to generate the full graph. There is a subtle point
here: we may have duplicate edges (ie., edges which fall into the same cell in the
adjacency matrix), but we only keep one of them when generating an unweighted
graph. To smooth out fluctuations in the degree distributions, some noise is added
to the (a, b, c, d) values at each stage of the recursion, followed by renormalization
(so that a + b + c + d = 1). Typically, a ≥ b, a ≥ c, a ≥ d.
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Fig. 15. The R-MAT model: The adjacency matrix is broken into four equal-sized partitions, and
one of those four is chosen according to a (possibly non-uniform) probability distribution. This
partition is then split recursively till we reach a single cell, where an edge is placed. Multiple such
edge placements are used to generate the full synthetic graph.

Degree distribution: There are only 3 parameters (the partition probabilities a, b,
and c; d = 1−a− b− c). The skew in these parameters (a ≥ d) leads to lognormals
and the DGX [Bi et al. 2001] distribution, which can successfully model both power-
law and “unimodal” distributions [Pennock et al. 2002] under different parameter
settings.

Communities: Intuitively, this technique is generating “communities” in the graph:

—The partitions a and d represent separate groups of nodes which correspond to
communities (say, “Linux” and “Windows” users).

—The partitions b and c are the cross-links between these two groups; edges there
would denote friends with separate preferences.

—The recursive nature of the partitions means that we automatically get sub-
communities within existing communities (say, “RedHat” and “Mandrake” en-
thusiasts within the “Linux” group).

Diameter, singular values and other properties: We show experimentally that graphs
generated by R-MAT have small diameter and match several other criteria as well.

Extensions to undirected, bipartite and weighted graphs: The basic model gener-
ates directed graphs; all the other types of graphs can be easily generated by minor
modifications of the model. For undirected graphs, a directed graph is generated
and then made symmetric. For bipartite graphs, the same approach is used; the only
difference is that the adjacency matrix is now rectangular instead of square. For
weighted graphs, the number of duplicate edges in each cell of the adjacency matrix
is taken to be the weight of that edge. More details may be found in [Chakrabarti
et al. 2004].

Parameter fitting algorithm: We are given some input graph, and need to fit the
R-MAT model parameters so that the generated graph matches the input graph in
terms of graph patterns.

We can calculate the expected degree distribution: the probability pk of a node
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having outdegree k is given by

pk =
1

2n

(

E

k

) n
∑

i=0

(

n

i

)

[

αn−i(1 − α)i
]k [

1 − αn−i(1 − α)i
]E−k

where 2n is the number of nodes in the R-MAT graph, E is the number of edges, and
α = a+ b. Fitting this to the outdegree distribution of the input graph provides an
estimate for α = a+ b. Similarly, the indegree distribution of the input graph gives
us the value of b + c. Conjecturing that the a : b and a : c ratios are approximately
75 : 25 (as seen in many real world scenarios), we can calculate the parameters
(a, b, c, d).

Next, we show experimentally that R-MAT can match both power-law distribu-
tions as well as deviations from power-laws.

Experiments: We show experiments on the following graphs:
Epinions: A directed graph of who-trusts-whom from epinions.com [Richardson
and Domingos 2002]: N = 75, 879; E = 508, 960.
Epinions-U: An undirected version of the Epinions graph: N = 75, 879; E =
811, 602.
Clickstream: A bipartite graph of Internet users’ browsing behavior [Montgomery
and Faloutsos 2001]. An edge (u, p) denotes that user u accessed page p. It has
23, 396 users, 199, 308 pages and 952, 580 edges.

The graph patterns we look at are:

(1) Both indegree and outdegree distributions.

(2) “Hop-plot” and “effective diameter”: The “hop-plot” shows the number of
reachable pairs of nodes, versus the number of hops (see Definitions 2.3 and 2.4).

(3) Singular value vs. rank plots: Singular values [Press et al. 1992] are similar to
eigenvalues (they are the same for undirected graphs), but eigenvalues may not
exist for bipartite graphs, while singular values do.

(4) “Singular vector value” versus rank plots: The “singular vector value” of a
node is the absolute value of the corresponding component of the first singular
vector of the graph. It can be considered to be a measure of the “importance” of
the node, and as we will see later, is closely related to the widely-used concept
of “Bonacich centrality” in social network analysis.

(5) “Stress” distribution: The “stress” of an edge is the number of shortest paths
between node pairs that it is a part of (see Definition 2.6).

In addition to R-MAT, we show the fits achieved by some other models, chosen for
their popularity or recency: these are the AB, GLP, and PG models (Sections 3.2.3,
3.2.5, and 3.2.11 respectively). All three can only generate undirected graphs; thus,
we can compare them with R-MAT only on Epinions-U. The parameters of these
three models are set by exhaustive search; we use the terms AB+, PG+ and GLP+
to stand for the original models augmented by our parameter fitting.

Epinions-U: Figure 16 shows the comparison plots on this undirected graph. R-
MAT gives the closest fits. Also, note that all the y-scales are logarithmic, so small
differences in the plots actually represent significant deviations.
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Fig. 16. Epinions-U undirected graph: We show (a) degree, (b) hop-plot, (c) singular
value, (d) “singular vector value,” and (e) stress distributions for the Epinions-U
dataset. R-MAT gives the best matches to the Epinions-U graph, among all the
generators. In fact, for the stress distribution, the R-MAT and Epinions-U plots
are almost indistinguishable.

Epinions: Figure 17 shows results on this directed graph. The R-MAT fit is very
good; the other models considered are not applicable.

Clickstream: Figure 18 shows results on this bipartite graph. As before, the R-MAT
fit is very good. In particular, note that the indegree distribution is a power law
while the outdegree distribution deviates significantly from a power law; R-MAT
matches both of these very well. This is because R-MAT generates a “truncated
discrete lognormal” (a DGX distribution [Bi et al. 2001]) which, under the correct
parameter settings, can give good fits to power laws as well. Again, the other
models are not applicable.

Open questions and discussion: While the R-MAT model shows promise, there
has not been any thorough analytical study of this model. Also, it seems that only
3 parameters might not provide enough “degrees of freedom” to match all varieties
of graphs; extensions of this model should be investigated. A step in this direction
is the Kronecker graph generator [Leskovec et al. 2005], which generalizes the R-
MAT model and can match several interesting patterns such as the Densification
Power Law and the shrinking diameters effect (see Section 2.6) in addition to all
the patterns that R-MAT matches.

ACM Journal Name, Vol. V, No. N, Month 20YY.



Graphs: Laws, Generators and Algorithms · 55

1

10

100

1000

10000

100000

1 10 100 1000 10000

C
ou

nt

Indegree

real graph
R-MAT graph

PG+
AB+

GLP+

1

10

100

1000

10000

100000

1 10 100 1000 10000

C
ou

nt

Outdegree

real graph
R-MAT graph

PG+
AB+

GLP+

10

100

1000

1 10 100

S
in

gu
la

r 
va

lu
e

Rank

real ep
R-MAT ep

PG+
AB+

GLP+

(a) Indegree (b) Outdegree (c) Singular values

1e-5

1e-3

0.1

1

1 100 1e+4 1e+6

S
in

gu
la

r 
ve

ct
or

 v
al

ue

Rank

real graph u1
R-MAT graph u1

PG+
AB+

GLP+

1e-5

1e-3

0.1

1

1 100 1e+4 1e+6

S
in

gu
la

r 
ve

ct
or

 v
al

ue

Rank

real graph v1
R-MAT graph v1

PG+
AB+

GLP+

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

1 2 3 4 5 6 7 8 9 10
N

ei
gh

bo
rh

oo
d 

si
ze

Hops

Original Epinions data
Synthetic Data

Effective Diameter = 4

1

10

100

1000

10000

100000

1 10 100 1000 10000

C
ou

nt

Link use Frequency (Stress)

Original Stress
R-MAT Stress

AB+
PG+
GLP+

(d) First left singular vec. (e) First right singular vec. (f) Hop-plot (g) Stress

Fig. 17. Epinions directed graph: The AB+, PG+ and GLP+ methods do not

apply. The crosses and dashed lines represent the R-MAT generated graphs, while
the pluses and strong lines represent the real graph.
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Term from Social Network Analysis Meaning

Social network, or Sociogram Graph
Actor Node
Link Edge
Ego Current node under discussion
Alters Other nodes, from the point of view of the Ego
Bonacich centrality of a node Absolute value of the first eigenvector component

corresponding to that node
Betweenness centrality “Stress” (see Definition 2.6)

Table IV. Social networks terminology: We provide a list of typical terms used in Social Network
Analysis, and their how they correspond to terms we are familiar with.

3.8 Graph Generators: A summary

We have seen many graph generators in the preceding pages. Is any generator the
“best?” Which one should we use? The answer seems to depend on the application
area: the Inet generator is specific to the Internet and can match its properties
very well, the BRITE generator allows geographical considerations to be taken into
account, “edge copying” models provide a good intuitive mechanism for modeling
the growth of the Web along with matching degree distributions and community
effects, and so on. However, the final word has not yet been spoken on this topic.
Almost all graph generators focus on only one or two patterns, typically the degree
distribution; there is a need for generators which can combine many of the ideas
presented in this section, so that they can match most, if not all, of the graph
patterns. R-MAT is a step in this direction.

4. SOCIAL NETWORKS

While the field of Graph Mining has been a relatively recent development in the
Data Mining community, it has been studied under different guises by other groups
of researchers, most notably by sociologists. Their work has culminated in the
acceptance and usage of Social Network Analysis (SNA) as a tool for investigating
the structure of social groups and organizations. For example, Cross et al. [2002]
use it to analyze the “invisible” patterns of interaction in organizations and map
the informal networks in use. Weeks et al. [2002] map the social network of drug
users who exchange needles (and hence may spread AIDS).

Below, we give a very brief introduction to some of the important concepts.
Interested readers are referred to the excellent book by Wasserman and Faust [1994].
A nice introduction can also be found in [Hanneman and Riddle 2005]. Many of the
concepts discussed in the previous sections also show up in Social Network Analysis,
but under different names; Table IV gives the meanings of some of them.

4.1 Mapping social networks

One important aspect of SNA is getting the data itself. Unlike networks like
the Internet, WWW or metabolic pathways, social network mapping is not eas-
ily amenable to automated techniques. The primary method of explication involves
interviewing the subjects. Formulation of interview questions is interesting in its
own right, but not relevant to our work. Another question is: how do we choose
the people to interview? There are two basic approaches:
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—Full network methods: Here, we prespecify the set of actors, and then collect data
on all the edges in the graph. This is similar to a census, and the final result
is information about all the existing ties among the actors. Thus, the mapped
social network is complete, but collecting the data is very hard.

—Snowball methods: We start with a focal actor or set of actors. We ask them to
name their neighbors in the graph. These neighbors are added to the set, and we
continue the process till some stopping criterion is reached. While this method
is cheaper, it does not locate “isolated” actors, nor does it guarantee finding all
connected individuals in the population. This method also tends to overstate the
“solidarity” of the population.

4.2 Dataset characteristics

In general, the patterns we look for in SNA are similar to the ones discussed pre-
viously in Section 2. For each actor, we check his/her in-degree (related to his
prestige), out-degree (related to his influence) and distance to other actors. For the
entire network, we can calculate size (number of nodes), density, reciprocity (if I
know you, what are the chances that you know me too?) and transitivity (equivalent
to the clustering coefficient). Freeman [1977] defines betweenness, which we have
already seen in previous sections. UCINET [Borgatti et al. 1999] is one well-known
software implementing these.

An important aspect of SNA is the determination of an actor’s centrality in
the network. Many measures of centrality are in use, each having some distinct
characteristics:

—Degree centrality: Nodes with high degree are considered to be more central.
However, this weights a node only by its immediate neighbors and not by, say,
its 2-hop and 3-hop neighbors.

—Bonacich centrality: This measure uses the degree of the indirect neighbors
too [Bonacich 1987]. The Bonacich centralities of the nodes in a graph are pre-
cisely the components of the first eigenvector of the graph.

—Closeness centrality: This is the (normalized) inverse of the average distance
metric. Nodes which have low distance to all other nodes in the graph have high
closeness centrality.

—Betweenness centrality: Nodes with high betweenness values occur on more
“shortest-paths”, and are presumably more important than nodes with low be-
tweenness.

—Flow centrality: This is similar to betweenness centrality, except that instead of
considering only the shortest paths between pairs of nodes, we consider all paths.

4.3 Structure from data

The classic “community structure” is a clique. However, the strict clique definition
may be too strong for various applications. Several relaxed definitions have been
proposed, such as:

—N-clique: Each node in an N -clique must be able to reach every other node in
it within N hops. However, these paths may pass through non-members of the
N -clique.
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Fig. 19. Social “roles” and equivalences: (a) Nodes u and v are structurally equivalent because
they are linked to exactly the same set of nodes: x, y, and z. (b) Nodes u and v of plot (b1) are au-
tomorphically equivalent because we can exchange their positions, and then re-label the rest of the
nodes as in plot (b2), so that the new graph is isomorphic to the original. (c) The squares (“hus-

bands”), circles (“wives”) and rhombuses (“children”) form three regularly-equivalent classes. A
“husband” connects to a “wife” and a ‘child”; a “wife” to a “husband,” “child,” and other “wives”;
a “child” connects to a “husband” and a “wife.” Thus, each class is defined by its set of rela-
tionships to the other classes. Note that child C1 and C4 are not structurally or automorphically
equivalent, but they are regularly equivalent.

—N-clan: This is an N -clique with the restriction that all pairs of nodes in it should
have a path of at most N hops passing only through other nodes of the N -clan.

—K-plex: Each member must have edges to all but K other members.

—K-core: Each member must have edges to at least K other members.

Another common notion in SNA is that of a core/periphery structure. Intuitively,
a (sub)graph consists of a cohesive core with some sparse peripheral nodes. Bor-
gatti and Everett [1999] model an “ideal” core/periphery structure as an adjacency
matrix with a block of 1 values for the core-core edges and a block of 0 values for
the periphery-periphery edges. To actually find the core and periphery nodes in a
given network, they use a function optimization routine which tries to maximize
the correlation between the given graph and such an “ideal” graph. This, however,
might not be easy or efficient for huge graphs.

4.4 Social “roles”

This refers to an abstract concept regarding the “position” of a actor in society.
This could be based, in part, on the relationships that the actor in question has with
other actors. For example, the “husband” role is defined in part as being linked to
another actor in a “wife” role. In other words, social roles could be thought of as
representing regularities in the relationships between actors.

Actors playing a particular social role have to be equivalent/similar to each other
by some metric. In general, the following three kinds of similarities are considered,
in decreasing order of constraints [Hanneman and Riddle 2005; Borgatti and Everett
1989]:
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—Structural equivalence: Two actors u and v in a graph G = (V, E) are structurally
equivalent iff [Borgatti and Everett 1989]

∀ actors x ∈ V , (u, x) ∈ E ⇔ (v, x) ∈ E

and, (x, u) ∈ E ⇔ (x, v) ∈ E

In other words, they are linked to exactly the same set of nodes, with (in the case
of directed graphs) the arrows pointing in the same directions. Two structurally
equivalent actors can exchange their positions without changing the network.
Figure 19(a) shows an example of this.

—Automorphic equivalence: Two actors u and v of a labeled graph G are auto-
morphically equivalent iff all the actors of G can be re-labeled to form and iso-
morphic graph with the labels of u and v interchanged [Hanneman and Riddle
2005]. Two automorphically equivalent vertices share exactly the same label-
independent properties. For example, in figure 19(b1), nodes u and v are not
structurally equivalent (u and v have neighbors with different labels). However,
if we exchange their positions, we can re-label the rest of the nodes (by exchanging
x and a, y and b, and z and c) such that the new labeled graph of figure 19(b2) is
isomorphic to the original. Thus, automorphic equivalence is a weaker condition
than structural equivalence.

—Regular equivalence: If G = (V, E) is a connected graph and ≡ is an equivalence
relation on V , then ≡ is a regular equivalence iff [Borgatti and Everett 1989]

∀a, b, c ∈ V, a ≡ b ⇔
{

(i) (a, c) ∈ E ⇒ ∃d ∈ V such that (b, d) ∈ E and d ≡ c
(ii) (c, a) ∈ E ⇒ ∃d ∈ V such that (d, b) ∈ E and d ≡ c

Two actors u and v are regularly equivalent if they are equally related to equiva-
lent others; thus, the definition is recursive. Figure 19(c) shows an example with
three regularly-equivalent classes, each of which connects to a particular subset
of classes (e.g., a “child” connects to a “husband” and a “wife.”)

Structural equivalence has the strongest constraints, while regular equivalence has
the weakest. However, regular equivalence is the hardest to compute, and is the
equivalence of most interest to sociologists.

Practical computation of these equivalence classes can be computationally ex-
pensive [Hanneman and Riddle 2005], so the definitions are usually relaxed while
analyzing real-world graphs. The following heuristics are often used:

—Computing structural equivalence: The correlation coefficient between actors is
often used to measure the degree of structural equivalence between actors.

—Computing automorphic equivalence: Automorphic equivalence classes can be
approximated using inter-actor distances: for each actor, we form a sorted vector
of its distances to other actors. Two automorphic actors should have exactly the
same distance profiles, and two “almost-automorphic” actors should have “simi-
lar” profiles. This idea is encapsulated in a heuristic which computes Euclidean
distances between distance profiles, and clusters actors with low profile distances.

—Computing regular equivalence: Heuristics are used to compute some similarity
measure between actors. However, irrespective of the similarity metric used,
finding equivalent actors essentially reduces to a problem of clustering actors
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Fig. 20. Two concepts of social capital: Node X has importance because it bridges the structural
hole between the two clusters. Node Y is in the middle of a dense web, which provides easy access
to reliable information; thus Y also has a good position in the network.

based on the (perhaps thresholded) similarity matrix. One such technique uses
Tabu search [Glover 1989] to group actors (forming blocks in the matrix) so that
the variance within the blocks is minimized.

Finding such equivalence classes is a major goal of social network analysis, and any
advances in algorithms or heuristics can have a major impact in this field.

4.5 Social capital

Social capital is essentially the idea that better connected people enjoy higher re-
turns on their efforts. An individual occupying some special location in the social
network might be in a position to broker information or facilitate the work of others
or be important to others in some fashion. This importance could be leveraged to
gain some profit. However, the problem is: what does “better connected” mean?

In general, there are two viewpoints on what generates social capital (Figure 20):

—Structural holes: Weak connections between groups are holes in the social struc-
ture, and create an advantage for individuals whose relationships span the holes [Burt
1992]. Such individuals get lots of brokerage opportunities, and can control the
flow of information between groups to their benefit.

—Network closure: This is the view that networks with lots of connections are
the source of social capital [Coleman 1988]. When the social network around
an actor Y is dense, it means that information flow to Y is quick and usually
reliable. Also, the high density means that no one around Y can escape the notice
of others; hence, everyone is forced to be trustworthy (or face losing reputation).
Thus, it is less risky for Y to trust others, and this can be beneficial to him/her.

Burt [2001] finds that these two viewpoints might not be totally at odds with each
other. If a group has high closure but low contacts across holes, the group is cohesive
but has only one perspective/skill. Low closure but high contacts across holes leads
to disintegrated group of diverse perspectives. The best performance is achieved
when both are high. Thus, structural holes and network closure supplement each
other.

4.6 Recent research directions

Social Network Analysis has been used to analyze many networks, from organi-
zational to networks of drug use to networks of friendship in schools, and many
others. Now, SNA is moving in new directions, some of which are discussed below.
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4.6.1 Terrorist and covert networks. Recent events have focused attention on
the mapping and analysis of terrorist networks. There are several problems unique
to this setting [Sparrow 1991], primarily due to lack of information:

—Incompleteness due to missing nodes and edges.

—Fuzzy boundaries due to not knowing whom to include or exclude form the
mapped network.

—Dynamism of the network due to changing edges and the strengths of association
of the nodes.

Baker and Faulkner [1993] find that while the need for efficiency drives the struc-
ture of legal social networks, secrecy is the paramount concern in illegal networks.
When the information processing needs are low, it leads to decentralized structures
which protect the “ringleaders.” However, for high information processing situa-
tions, the leaders must necessarily be at the core of the illegal network, increasing
their vulnerability.

Krebs [2001] tries to map the social network of the September-11 hijackers and
some of their contacts, using only public data sources. He finds a very sparse
network where many hijackers on the same team were far away from each other
on the network. Coordination between far-off nodes is achieved via shortcuts in
the network (as in the Small-World model of Watts and Strogatz [1998]). Trusted
prior contacts kept the cells interconnected. Dombroski et al. [2003] use the high-
clustering-coefficient and other properties of typical networks to estimate missing
information in covert networks.

4.6.2 The Key Player problem. Who are the most important actors in a given
social network? Borgatti [2002] defines two “key-player” problems:

—(KPP-1) Find a set of k nodes whose removal maximally disrupts/disconnects
the network. These individuals might be targeted for immunization to prevent
an infection from becoming an epidemic.

—(KPP-2) Find a set of k nodes which are maximally connected to the rest of the
network. These individuals could be targeted to diffuse information in a social
network in the shortest possible time.

The “importances” of nodes are related, and choosing one node to be part of the
top-k set changes the importances of others. Thus, finding the best set requires
combinatorial optimization, which is very costly. Borgatti suggests using a greedy
heuristic to solve this. However, formal error bounds on such heuristics are still not
available.

4.7 Differences from Graph Mining

We have seen in the previous paragraphs that Graph Mining and Social Network
Analysis share many concepts and ideas. However, there are important differences
too, the primary one being that of network size. Social networks are in general
small, with the larger studies considering a few hundred nodes only. Graph Mining
datasets, on the other hand, typically consist of hundreds of thousands of nodes
and millions of edges. This difference in scale leads to many effects:
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—Power laws: As we have seen in Section 2.1, power laws show up in a variety of
situations in Graph Mining datasets, whereas they seem to be absent in almost
all Social Network literature. This should be, in part, due to the fact that power
law patterns can be observed reliably only in large datasets.

—Focus on computation costs: For small networks, the existence of efficient al-
gorithms is not an issue; even brute force algorithms can finish in a reasonably
short time. However, some of the algorithms in use in SNA (such as combinatorial
optimizations) become impractical for large datasets.

There has also been a difference in problems attracting research interest. The
Graph Mining community does not seem to have worked on anything equivalent
to social “roles” or the “power” of nodes. This might be due to the different
semantics of the datasets in use. However, as newer and larger social network
datasets (such as the “who-trusts-whom” dataset from epinions.com, the “who-
reads-whose-weblog” dataset from blogspace, or the “who-knows-whom” dataset
from friendster.com) become available, we might see a confluence of research in
these two communities.

5. OTHER RELATED WORK

Several topics are closely related to graph mining, but have a different focus. Re-
lational learning looks at the graph formed by interlinked relations in a database,
and attempts to find patterns in it. Studies of rumor or viral propagation in a
network look for key properties of the network which determine the susceptibility
to epidemics. New graph navigation algorithms try to devise graphs so that local
routing decisions can lead to nearly-optimal global routes. These and other issues
are discussed below.

5.1 Relational learning

Relational data mining has attracted a lot of research interest recently [Džeroski
and Lavrač 2001]. While traditional data mining looks for patterns in a single
database table, relational mining also uses the structure of linkage between multiple
tables/relations. For example, given a database of movies, actors, awards and
the labeled links between them (ie., a graph), McGovern and Jensen [2003] find
the patterns associated with movies being nominated for awards. The patterns
themselves can be described as subgraphs with some relations as the nodes and
some links between these relations as the edges.

Finding such patterns involves searching through a space of possible hypotheses,
and we can do this search exhaustively or heuristically. One essential ingredient
is the pruning of search paths which are not expected to lead to the solution.
A widely used technique is Inductive Logic Programming (ILP), where patterns
are expressed as logic programs. An advantage of this approach is the ability to
easily incorporate background knowledge specific to the problem in the form of
logic clauses. An alternative technique involves converting the relational data into
a flat propositional format and then using well-known data mining tools on this
flat relation; however, this conversion is non-trivial. In both cases, we run into
efficiency concerns: the space of possible hypotheses is much larger than the case
when we have a single relation, and searching in this space can be very costly. For
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example, even checking for the validity of a clause in ILP can be a costly affair, and
solving a logic program typically involves checking the validity of many clauses.

Relational learning is a broad topic, and its details are beyond the scope of this
work. Here, we only point out differences from Graph Mining :

—Relational learning typically focuses on finding small structures/patterns at the
local level (such as a chemical motif that occurs frequently in carcinogenic com-
pounds [Dehaspe et al. 1998]), while Graph mining looks far more at the global
structure (for example, the distribution of eigenvalues of the entire graph).

—Graph mining has been (at least till the present) more about the topological
structure and properties of a graph, while the graphs used in Relational learning
usually have labeled nodes and edges and their semantics are important.

5.2 Finding frequent subgraphs

The mining of frequent patterns was first introduced in a databases context by
Agrawal and Srikant [Agrawal and Srikant 1994], and is possibly one of the most
popular data mining techniques. Recently, these ideas have been extended and
applied to large graph datasets, to find the most common patterns or “motifs”
hidden in the graph structure, to compress the graph dataset, and for many other
problems. Below, we will discuss several of these methods.

5.2.1 APRIORI-like algorithms. Frequently occurring subgraphs in a large graph
or a set of graphs could represent important motifs in the data. However, finding
such motifs involves solving the graph and subgraph isomorphism problems, for
which efficient solutions are not known (and subgraph isomorphism is known to be
NP-complete). Most algorithms follow the general principle of the Apriori algo-
rithm [Agrawal and Srikant 1994] for association rule mining. Inokuchi et al. [2000]
develop an Apriori-inspired algorithm called AGM, where they find a “canonical
code” for any adjacency matrix and use these canonical codes for subgraph match-
ing. However, this suffers from computational intractability when the graph size
becomes too large. Kuramochi and Karypis [2001] propose the FSG algorithm which
also has the same flavor: starting with frequent subgraphs of 1 and 2 nodes, it suc-
cessively generates larger subgraphs which still occur frequently in the graph. The
algorithm expects a graph with colored edges and nodes; our graphs are a special
case where all nodes and edges have only one color. However, it also needs to solve
the graph and subgraph isomorphism problems repeatedly, and this is very slow
and inefficient for graphs with only one color. Yan and Han [2002] propose using a
different canonical code based on depth-first search on subgraphs, and report faster
results using this coding scheme.

On graphs where vertex coordinates are available, a more constrained version
of this problem requires finding frequent geometric subgraphs. In this case, sub-
graph matching involves both topological and layout matching. Kuramochi and
Karypis [2002] find an algorithm that finds frequent geometric subgraphs that can
be rotation, scaling and translation invariant. This extra constraint allows the
algorithm to finish in polynomial time.

5.2.2 “Difference from random” algorithm. Milo et al. [2002] use another ap-
proach to find “interesting” motifs in a given graph. They define motifs to be
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“patterns that recur more frequently [in a statistically significant sense] in the
real network than in an ensemble of randomized networks” (italics added). Each
randomized network is generated so that each node in it has the same in-degree and
out-degree as the corresponding node in the real network. However, this method
assumes that matching the in and out degrees of a graph gives a good model of the
graph; the motifs found under this assumption might not be statistically frequent
if we used a better graph model.

5.2.3 Greedy algorithm. Holder et al. [1994] try to solve a related but slightly
different problem, that of compressing graphs using frequently occurring subgraphs.
The subgraphs are chosen to minimize the minimum description length of the entire
graph. They also allow inexact matching of subgraphs by assigning a cost to each
“distortion” like deletion, insertion or substitution of nodes and edges. However, to
avoid the excessive computational overhead, they use a (suboptimal) greedy beam
search.

5.2.4 Using Inductive Logic Programming (ILP). Instead of defining a subgraph
as just a labeled graph topology, Dehaspe and Toivonen [1999] use ILP to allow
first order predicates in the description of frequent subgraphs. Their WARMR system
lets many subgraphs have one succinct description, and can reveal a higher-order
pattern than just the simple “propositional” subgraphs. However, this involves
checking for equivalence of different first-order clauses, which is NP-complete. Ni-
jssen and Kok [2001] use a weaker equivalence condition in their FARMAR system
to speed up the search. Still, finding first-order patterns is harder than finding
propositional patterns, and it is unclear how fast such techniques will work on very
large graph datasets.

5.3 Navigation in graphs

The participants in Milgram’s experiment [Travers and Milgram 1969] were able to
build a chain to an unknown target individual, even though they knew only a few
individuals in the full social network. We can navigate to websites containing the
information we need, in spite of the immense size of the web. Such facts imply that
large real-world graphs can be navigated with ease. In the following paragraphs,
we will discuss methods of navigation that can be employed, and why real world
graphs seem to be so easy to navigate.

5.3.1 Methods of navigation. Some common methods for navigating large graphs
include crawling, focused crawling, guided search based on power laws, and gossip
protocols. We discuss each of these below.

Crawling: One question of interest in a graph is: given a starting node s in the
graph, how can we reach some randomly assigned target node t? One technique
involves having a search engine “crawl” the graph and store its data in a searchable
form in some centralized system. Queries regarding the target node t can then be
directed to this central server; this is the technique used by Web search engines like
Google [Brin and Page 1998] or CiteSeer [Giles et al. 1998].

Focused crawling: How should we crawl pages while specifically looking for a par-
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ticular topic? Chakrabarti et al. [2002; 1999; 1999] propose a machine-learning
approach to the problem using two “learners” working in tandem: (1) a “baseline
learner” which can compute the degree of relevance of a given webpage to the re-
quired topic, and (2) an “apprentice learner” which computes the chances that a
particular hyperlink points to a relevant webpage. Such a technique prevents the
crawler from wasting effort on irrelevant portions of the Web; thus, the crawls can
be conducted more frequently and the crawled data can be kept fresher.

Guided search using the power-law degree distribution: In case such a “directory”
of nodes is not available, an alternative is to do a guided search. This involves mak-
ing decisions based on local information only. Adamic et al. [2001] use a message-
passing system to search efficiently for some target data in the Gnutella network.
The start node polls all its neighbors to see if any of them contains the required
data, and if not, the search is forwarded to the neighbor with the highest degree.
This neighbor now searches for the data among its neighbors, and so on. Full back-
tracking is implemented to prevent getting stuck in loops, and nodes do not get
to see the same query twice. This technique is based on two ideas: (1) In scale-
free networks, the path to a node of very high degree is usually short, and (2) the
highest-connected nodes can (presumably) quickly spread the query all other nodes
in the network. However, this technique still requires O(N) query messages to be
sent between nodes, even though the path to the node containing the required data
may be small.

Gossip protocols: Kempe et al. [2001] take a different approach to search for “re-
sources” in a network. They use a gossip protocol to spread information throughout
a network about the availability of a “resource” at a particular node. Nodes share
information with each other; the probability of communication between nodes u
and v is a non-uniform inverse-polynomial function. However, this work assumes
that any pair of nodes can communicate between themselves, and does not take the
underlying graph structure into account.

5.3.2 Relationship between graph topology and ease of navigation. We will first
discuss how a “good-for-navigation” graph can be designed, and then briefly touch
upon some work investigating the reasons behind the ease of navigation on the
WWW.

5.3.2.1 Designing “good-for-navigation” graphs. Can we build a graph so that
local routing decisions can be used to reach any target node via a short path? This
is clearly what is happening in the social network of Milgram’s experiment [Travers
and Milgram 1969; Milgram 1967]: not only does a short path exist between two
randomly chosen people in the network, but such paths can also be found by the
people, who forward the letters based only on the (local) information they have
about the network structure. The problem has been studied in several forms, as
described below.

2D Grid: Kleinberg [1999b] considers a model similar to that of Watts and Stro-
gatz [1998], but with a 2D lattice instead of a ring. Each node is connected to its
neighbors in the lattice, but also has some long-range contacts; the probability of
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such a contact decreases exponentially with distance: P (u, v) ∝ d(u, v)−r. Based
on the value of r, there are several cases:

—When r = 2, local routing decisions can lead to a path of expected length
O(log N).

—When 0 ≤ r < 2, a local routing algorithm cannot use any “clues” provided by
the geometry of the lattice, due to which path lengths are polynomial in N . This
is in spite of the fact that (say for r = 0) there exist paths of length bounded by
log N with high probability.

—When r > 2, long-range contacts are too few. Thus, the speed of moving towards
the target node is too slow, leading to path lengths polynomial in N .

Thus, local routing decisions lead to a good path only when r = 2. The important
points are twofold:

(1) Minimizing the minimum expected number of steps from source to target is not
necessarily the same as minimizing the diameter of the network.

(2) In addition to having short paths, a network should also contain some latent
structural clues to help make good routing decisions based on local information.

Hierarchies of attributes: Watts et al. [2002] and (independently) Kleinberg [2001]
also proposed a different model to explain the goodness of local routing choices. The
basic idea is that each person has a set of attributes, and is more likely to know
people with similar attributes.

—Each person (node) has an individual identity, consisting of H attributes such as
location, job, etc.

—Each attribute leads to a hierarchy/tree of nodes. For example, everyone in
Boston is one cluster/leaf, everyone in NY is another leaf, and the Boston and
NY leaves are closer by tree distance than, say, the Boston and LA leaves. Sim-
ilar hierarchies exist for each attribute. Note that these hierarchies are extra
information, and are unrelated to the social network itself.

—Two nodes u and v have a edge between them with a probability depending
on how close they are in the attribute hierarchies. Specifically, let da(u, v) be
the height of the lowest common ancestor of nodes u and v in the hierarchy for
attribute a. This measures the “distance” between the two nodes according to
attribute a. We take the minimum distance over all hierarchies to be the “distance
between u and v” d(u, v). The probability of an edge (u, v) is exponential in this
distance: P (u, v) ∝ e−αd(u,v).

The parameter α defines the structure of the social network; when it is large, we
get isolated cliques, and the network looks more like a random graph as α increases.
To pass on a message towards a prespecified target, everyone in the chain makes a
local decision: he/she passes the letter to the node perceived to be closest to the
target in terms of the minimum distance mentioned above.

Watts et al. observe that there is a wide range of α and H (the number of
attributes) which lead to good routing decisions. In fact, they find that the best
routing choices are made when H = 2 or 3, which agrees very well with certain
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sociological experiments [Killworth and Bernard 1978]. Kleinberg [2001] extends
this to cases where we can form groups of individuals, which need not be hierarchies.

However, neither Watts et al. nor Kleinberg appear to consider the effect of
power-law degree distributions in such graphs. Also, the probability of edge (u, v)
is equal to that of the reverse edge (v, u); this might not hold always hold in practice.

5.3.2.2 Navigation in real-world graphs. In the context of social networks, Mil-
gram’s experiment [Travers and Milgram 1969; Milgram 1967] shows the ability
of people to choose “good” people to forward a letter to, so that the target can
receive the letter in only a few steps. Dill et al. [2001] find similar behavior in the
WWW. In Section 2.7.2, we discussed the basic structure of the WWW, consisting
of several subgraphs with one Strongly Connected Component (SCC) each. The au-
thors find that the SCCs of the different subgraphs are actually very well-connected
between themselves, via the SCC of the entire WWW. This allows easy navigation
of webpages: starting from a webpage, we progress to its SCC, travel via the SCC of
the Web to the SCC of the target webpage, and from there onwards to the target.

5.4 Spread of viruses in graphs

Given a network, how do diseases/information/computer-viruses spread across it?
Answering this would help devise global strategies to combat viruses, instead of
the local “curing” done by most current anti-virus software. We will divide our
discussion into three parts: viral propagation models, “epidemic thresholds,” and
immunization policies.

Viral propagation models: Epidemiological models have been used to study
this problem [Bailey 1974], and two models have been borrowed from the disease
propagation literature:

—The SIR model: Each node can be in one of three states: Susceptible(S) meaning
that it is not diseased but might get infected later, Infective(I) meaning that it
is currently infected and can pass on the disease, and Removed(R) meaning that
it has recovered from the disease and is immune to further infections.

—The SIS model: Once an Infective node is cured, it goes back into the Susceptible
state (instead of the Removed state of the SIR model).

Associated with each edge (i, j) is its rate of spreading infection, called the birth
rate βij . Each Infective node u also has a rate of getting cured, called the death
rate δu. Typically, these are assumed to be homogeneous, that is, βij = β and
δu = δ for all nodes i, j and u.

The “epidemic threshold”: The spread of infections depends not on the exact
values of β and δ, but on their ration β/δ. A primary focus of research is finding a
critical value for this ratio, called the “epidemic threshold” τ , above which an “epi-
demic” outbreak is possible. However, the term “epidemic” has different meanings
under the SIR and SIS models, and so we will look at each separately.

Epidemic threshold in the SIR model: In the SIR model, an infection becomes an
epidemic when the initial outbreak spreads to a significant size. Callaway et al. [2000]
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modeled the viral outbreak as a percolation problem (common in the physics liter-
ature), with the epidemic threshold occurring exactly at the percolation transition;
the formation of a giant component beyond the transition corresponds to the in-
fection becoming an epidemic. They find exact solutions only for a few cases, but
the equations can be simulated for any set of conditions. However, given a network
G, their formulation considers all networks with the degree distribution of G; the
actual epidemic threshold for G might be different from the results they obtain.

Epidemic threshold in the SIS model: For the SIS model, an infection becomes an
epidemic when it does not die out over time (called an endemic disease). Assuming
homogeneous birth and death rates (ie., βij = β and δu = δ for all nodes i, j and
u) and an Erdös-Rényi network, Kephart and White [1991; 1993] find that:

β

δ
> τKW =

1

E[k]
implies that an epidemic is possible (40)

where E[k] is the expected (average) degree of the nodes in the graph, and τKW is
the epidemic threshold. Pastor-Satorras and Vespignani [2001b; 2001a; 2002a] find
a formula for general graphs; their epidemic threshold is:

τSV =
E[k]

E[k2]
(41)

where E[k2] represents the expected value of the squared-degree of nodes. An in-
teresting conclusion is that for certain infinite scale-free networks, the epidemic
threshold is zero. Thus, any initial infection can be expected to grow into an epi-
demic! Boguñá and Pastor-Satorras [2002] consider viral propagation on undirected
Markovian networks, where the connectivity of a node is correlated with the degrees
of its immediate neighbors. While correlations might exist in real networks, they
may not necessarily be just Markovian.

However, none of the above models use the exact topology of the network under
consideration; all graphs with the same degree distribution are treated equally.
Wang et al. [2003] find that the epidemic threshold depends critically on the exact
topology of the graph:

τWCWF =
1

λ
(42)

where λ is the largest eigenvalue of the adjacency matrix of the graph (considering
a connected symmetric graph).

Immunization policies: Another related topic has been on finding the right
immunization policy. Pastor-Satorras and Vespignani [2002b] find that randomly
selecting nodes for immunization performs much worse than “targeted” immuniza-
tion, which selects the nodes with the highest connectivity. This is as expected;
removing the highest-degree nodes quickly disconnects the graph [Palmer et al.
2002; Albert et al. 2000; Bollobás et al. 2003], preventing the spread of infection.

5.5 Using social networks in other fields

5.5.1 Viral Marketing. Traditional mass marketing techniques promote a prod-
uct indiscriminately to all potential customers. Better than that is direct marketing,
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where we first attempt to select the most profitable customers to market to, and
then market only to them. However, this only considers each person in isolation;
the effects of one person’s buying decisions on his/her neighbors in the social net-
work are not considered. Viral marketing is based on the idea that considering
social “word-of-mouth” effects might lower marketing costs.

Domingos and Richardson [2001] model the problem as finding a boolean vector
of whether to market to a person or not, such that the expected profit over the
entire network is maximized. The key assumption is that each person’s decisions
on whether to buy a product or not are independent of the entire network, given
the decisions of his/her neighbors. However, this formalism has poor scalability.
The same authors make linearity assumptions to make the problem tractable for
large graphs, and also allow the exact amount of discount offered to each person
to be optimized [Richardson and Domingos 2002]. The effect of a person on his
neighbors might be mined from collaborative filtering systems or knowledge-sharing
sites such as www.epinions.com. This is a very promising area of research, and is
of prime interest to businesses.

5.5.2 Recommendation systems. Collaborative filtering systems have been widely
used to provide recommendations to users based on previous information about
their personal tastes. Examples include the EachMovie system to recommend
movies (www.research.compaq.com/src/eachmovie/) and the product recommen-
dation system of www.amazon.com. Such systems have been combined with social
networks in the ReferralWeb system [Kautz et al. 1997]. Given a particular topic,
it tries to find an expert on that topic who is related to the user by a short path in
the social network. This path of referrals might give the user a measure of trust in
the recommended expert; it might also encourage the expert to answer the user’s
query.

6. DISCUSSION AND FUTURE RESEARCH DIRECTIONS

Several questions remain unanswered, or partially answered at best. These are rich
topics for future investigation. Most of the work on graph mining has concentrated
on undirected/directed self-graphs, where the endpoints of each edge are from the
same set of nodes. Less attention has been paid to the modeling of real-world
bipartite graphs, where the edge endpoints belong to two different sets of nodes.
An example is that of web access patterns, where each edge connects a user to a
website.

Another topic of interest is that of weighted graphs, where each edge has an
associated weight. This weight could signify the strength of the link; for example,
each link in the Internet router graph has an associated bandwidth specifying the
maximum speed of communication over the link. Neglecting this weight might lead
to incorrect estimates of the stress distribution and inaccurate identification of the
bottlenecks or choke points in the graph.

The nodes and edges of a graph can also be labeled, and the relationships between
the labels of connected nodes/edges provides extra information for data mining. For
example, a social network could have edge labels specifying the relationship between
the nodes at the endpoints (such as kinship, business relationship or social contact).
The label of a node in the network would specify its “social role.” This could be
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extended by allowing each node (person) to have multiple labels/roles (such as wife
and professor). Such graphs could be thought of as the superimposition of several
graphs over the same set of nodes, each representing one type of linkage between
nodes (such as a kinship graph overlaid on a financial transactions graph).

When a graph has multiple types of nodes, one interesting pattern to look for is
“(dis)assortative mixing,” or, the selective linking between nodes of (different) same
types [Newman 2003]. For example, assortative mixing by race is often observed
in social networks. On the other hand, disassortative mixing is often found in
“informational” networks: for example, in the Internet topology, customers talk to
ISPs (and rarely to each other) and ISPs talk to the backbone routers. This could
be extended to patterns among nodes within a 2-hop radius, and so on.

A problem plaguing research on these topics is the lack of relevant real-world
data. For example, the bandwidth of links between Internet routers is rarely made
public. However, new studies might be able to collect/infer such data. All of the
aforementioned topics are fertile areas for future work.

7. CONCLUSIONS

Naturally occurring graphs, perhaps collected from a variety of different sources,
still tend to possess several common patterns. The most common of these are:

—Power laws, in degree distributions, in PageRank distributions, in eigenvalue-
versus-rank plots and many others,

—Small diameters, such as the “six degrees of separation” for the US social network,
4 for the Internet AS level graph, and 12 for the Router level graph, and

—“Community” structure, as shown by high clustering coefficients, large numbers
of bipartite cores, etc.

Graph generators attempt to create synthetic but “realistic” graphs, which can
mimic these patterns found in real-world graphs. Recent research has shown that
generators based on some very simple ideas can match some of the patterns:

—Preferential attachment: Existing nodes with high degree tend to attract more
edges to themselves. This basic idea can lead to power-law degree distributions
and small diameter.

—“Copying” models: Popular nodes get “copied” by new nodes, and this leads to
power law degree distributions as well as a community structure.

—Constrained optimization: Power laws can also result from optimizations of re-
source allocation under constraints.

—Small-world models: Each node connects to all of its “close” neighbors and a
few “far-off” acquaintances. This can yield low diameters and high clustering
coefficients.

These are only some of the models; there are many other models which add new
ideas, or combine existing models in novel ways. We have looked at many of these,
and discussed their strengths and weaknesses. In addition, we discussed the recently
proposed R-MAT model, which can match most of the graph patterns for several
real-world graphs.
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While a lot of progress has been made on answering these questions, a lot still
needs to be done. More patterns need to be found; though there is probably a point
of “diminishing returns” where extra patterns do not add much information, we do
not think that point has yet been reached. Also, typical generators try to match
only one or two patterns; more emphasis needs to be placed on matching the entire
gamut of patterns. This cycle between finding more patterns and better generators
which match these new patterns should eventually help us gain a deep insight into
the formation and properties of real-world graphs.
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