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Abstract. In this paper, we propose an approach to

explore large texts by highlighting coherent sub-parts.

The exploration method relies on a graph representation

of the text according to Hoey’s linguistic model which

allows the selection and the binding of adjacent and

non-adjacent sentences. The main contribution of our

work consists in proposing a method based on both

Hoey’s linguistic model and a special graph mining

technique, called CoHoP mining, to extract coherent

sub-parts of the graph representation of the text. We

have conducted some experiments on several English

texts showing the interest of the proposed approach.

Keywords. Text coherence, graph representation, graph

mining, Hoey’s linguistic model.

Minería de grafos bajo restricciones
lingüísticas para exploración de textos

grandes

Resumen. En este artículo se propone el enfoque

para la exploración de textos grandes destacando las

sub-partes coherentes. El método de exploración se

basa en la representación del texto mediante un gráfo

de acuerdo con el modelo lingüístico de Hoey, el cual

permite la selección y vinculación de frases adyacentes

y no adyacentes. La principal aportación de este

trabajo es la propuesta del método basado en el modelo

lingüístico de Hoey por un lado y por otro lado en la

técnica especial de minería de grafos llamada minería

CoHoP, con el fin de extraer las sub-partes coherentes

de la representación gráfica del texto. Se realizaron unos

experimentos sobre varios textos en inglés mostrando el

interés del enfoque propuesto.

Palabras clave. Coherencia de texto, representación

con un grafo, minería de grafos, el modelo lingüístico de

Hoey.

1 Introduction

Due to the availability of huge corpora, linguists,

humanities scholars or other researchers can

easily have access to large collections of texts in

order to give a critical interpretation, or a discursive

and textual analysis of them. However, such tasks

are not easy to apply on large texts. For instance,

linguists could want to discover new knowledge

without knowing exactly what they are looking for.

To do so, they analyze a text, and try to formulate

and validate some assumptions. The main issue

is the treatment of large texts. Indeed, in this case

it is difficult to formulate and validate hypotheses

by hand over the whole text. It is therefore crucial

to design automatic methods to help the experts

by highlighting some relevant and coherent parts

of the texts. In addition, it could be useful to use

some parameters to set the size of the visualized

coherent parts so as to tune correlatively the

granularity level of lexical cohesion in the textual

parts.

On the one hand, visualization, automatic

summarization, and clustering techniques can help

the linguists to explore, or analyze large texts.

Visualization tools can allow a user to explore

a text collection by highlighting frequent textual

patterns within the collection [4]. Summarization
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Fig. 1. CoHoPs extracted from the same two attributes, for two values of k

approaches aim at producing a reduced text

made up of salient sentences either selected or

generalized from the original text [8]. Although

visualization and summarization techniques allow

to pinpoint the relevant sentences of a text, they

do not provide a view of the relations between the

sentences which can be interesting to analyze a

text. Clustering is a well-known technique used in

the field of text mining [5] to automatically group

similar objects (e.g., sentences) that share some

similarities (e.g., topics). The drawback of such

approaches is that each sentence belongs to one

and only one cluster although some sentences

may refer to several topics. Nevertheless,

clustering offers a good baseline for evaluating

our approach (see Section 5.2). On the other

hand, computational linguistic models like the

ones based on the Rhetorical Structure Theory

(RST) [11] aim at identifying elementary discourse

units (e.g., sentences, clauses) and relations

between them. However, these relations only hold

between adjacent units.

A linguistic model to analyze non-narrative texts

based on lexical repetitions, the Hoey model,

is presented in [6]. The approach highlights

the organization of the text (development of a

text, conceptual content), by revealing the binding

of adjacent and non-adjacent sentences. This

approach is interesting for several tasks, like

retrieving a logical reasoning about a specific

subject in a text, studying the lexical cohesion of

a text [9], or summarizing a text [14]. Whereas

this approach is hard to apply by hand on large

texts, few works are based on a computational

implementation of the Hoey model [9, 14]. The

main drawback of these implementations is that

the sentence networks thus built are very large.

Therefore, it is difficult to display the whole

networks in a user-friendly way.

In this paper, we propose an approach to

automatically extract, from a text, subsets of

sentences that are coherent from a lexical point of

view. Furthermore, the subsets are represented

by graphs which offer a view of the relationships

between the sentences. In addition, the size of

those sentence subsets is manageable for linguists

to analyze them. The main contribution of our

work consists in proposing a method based on

both an implementation of Hoey linguistic model to

represent the text as a graph and a special graph

mining technique to extract coherent sub-parts of

this graph. Graph mining has gained an increasing

interest in the field of data mining for discovering

new knowledge [16]. In this paper, we focus on

the mining of a certain type of patterns called

collections of homogeneous k-clique percolated

components (CoHoPs) [12]. We use them to

extract homogeneous parts of sentence networks.

Moreover, some constraints can be set to mine the

graphs which makes it possible to vary the size of

the sub-graphs and their degree of coherence. To

our knowledge, this graph mining technique has

never been used in the field of natural language

processing. In our approach, the mining is said to

be done “under linguistic constraints” because the

original structure of the graph is built according to

Hoey’s model.

The rest of the paper is organized as follows.

Section 2 introduces the Hoey linguistic model

and Section 3 presents the used graph mining
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technique. Then, our approach based on mining

sentence networks under linguistic constraints is

described in Section 4. Finally, Section 5 reports

some experimental results.

2 Hoey’s Linguistic Model

Based on lexical repetitions, the main idea of the

Hoey model [6] is the identification of sentences

sharing at least three lexical units. A lexical

repetition can be the strict repetition of the lexical

unit (e.g., brain/brain) but also lexical units that

share the same lemma or the same stem (e.g.,

produce/production), a synonymy relation (e.g.,

buy/purchase), etc. When two sentences share

at least three lexical units, the pair of sentences

is bounded. A set of at least three sentences

such that each sentence is bounded directly or

indirectly with all the other sentences of the set

is called a sentence network. Figures 6a and 6b

show excerpts of sentence networks. In these

examples, the lexical repetition is only based on

shared lemmas. It is interesting to note that the

distance between the sentences can be really high

(the position of the sentence in the text is given

in square brackets at its beginning). The set of

sentence networks of a text is called the hypotext.

Note that unbounded sentences do not appear in

the hypotext.

The Hoey linguistic model is useful to represent a

text so as to analyze its lexical cohesion. However,

the main drawback of the Hoey-based approaches

is that the sentence networks thus built are too

wide to be entirely displayed which make tedious

the analysis of large texts. That is why, we need

a method to extract homogeneous parts of the

sentence networks so as to ease the analysis of

the networks. For that purpose, we introduce the

CoHoP mining approach.

3 Graph Mining: CoHoP Patterns

A CoHoP mining algorithm, as the one proposed

by [12], allows the extraction of CoHoP patterns

from boolean attributed graphs. A CoHoP can be

seen as a set of communities where the elements

share similar properties: a community corresponds

to what is called a k-clique percolated component

(k-PC).

3.1 k-clique Percolated Components (k-PCs)

In a graph, a k-clique is a set of k vertices in

which every pair of distinct vertices is connected

by an edge. A k-clique percolated component

(k-PC) is a relaxed version of the concept of

cliques. A k-PC was defined by [3] as the union

of all the k-cliques connected by overlaps of k −
1 vertices. Therefore, in a k-PC, each k-clique

can be reached from any other k-clique through a

series of adjacent k-cliques and each vertex of a

k-PC can be reached from any other vertex through

well connected subsets of vertices (the k-cliques).

In Figure 1a, there are 4 k-PCs: {913, 4872,

5547}, {1109, 1733, 2373}, {4573, 5539, 5546},

and {1345, 4573, 4712, 5036, 5077}. The first three

k-PCs only contain one 3-clique whereas the last

k-PC contains five overlapping 3-cliques: {1345,

4573, 4712}, {1345, 4573, 5036}, {1345, 4712,

5036}, {4573, 4712, 5036}, and {4573, 5036, 5071}

(with k = 3, the overlaps of 3-cliques contain two

vertices). Note that a clique is contained in at most

one k-PC but a vertex can be part of several k-PCs

as it can belong to several k-cliques.

3.2 Collections of Homogeneous k-PCs
(CoHoPs)

A collection of homogeneous k-PCs (CoHoPs) was

defined by [12] as a set of vertices such that, with k,

α, and γ being positive integers defined by users:

— all vertices are homogeneous, i.e. they share

at least α true-valued attributes,

— the collection contains at least γ k-PCs,

— and all k-PCs showing the same true-valued

attributes are in the collection.

Figure 1a illustrates such a CoHoP extracted from

a set of two attributes {a1, a2} and containing four

k-PCs (α = 2, k = 3, γ = 4). Note that, as opposed

to the computation of the k-PCs, the extraction of

the CoHoPs is done from the sets of attributes of

the vertices. In Figure 1a, the sets of attributes

of the vertices are not displayed (in order not to

overload the figure) but each vertex, Vi, is labeled

with a set of attributes, Ai, that contains at least a1
and a2.

Therefore, parameter α allows the setting of the

minimum number of attributes needed to be shared

by the vertices of the extracted CoHoPs, whereas

γ allows the setting of the minimum number of
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Fig. 2. Overview of our approach

k-PCs in the CoHoPs. Parameter k has an

important impact on the structure of the extracted

CoHoPs. Indeed, increasing it also increases the

coherence that need to have the vertices belonging

to the same k-PC. Figure 1b represents the CoHoP

extracted from the same set of attributes as in

Figure 1a but when choosing k = 2. This CoHoP

now contains 15 vertices distributed in only two

k-PCs, the biggest one corresponding to the four

k-PCs of Figure 1a. Thus, choosing the value

of k allows setting the wanted level of cohesion

between the vertices of each k-PC. Indeed, the

vertices need to be more strongly bounded when

increasing the value of k.

4 Methodology

In this section, we propose a new approach to

extract coherent parts of sentence networks: it

is based on both the Hoey linguistic model and

the extraction of CoHoP patterns. Figure 2

illustrates the various steps of the approach that

are presented in greater details in the following

sub-sections.

4.1 Pre-Processing and Construction of the
Hypotext

First, the text is POS-tagged using TreeTagger [15]

and split into sentences at punctuation marks of

the following set: {“.”, “?”, “!", “:“}. The sentences

are then filtered so as to keep only their relevant

lexical units. In our case, it consists in keeping

their lexemes (nouns, adjectives, adverbs, and

verbs except auxiliaries). Actually, we consider

the lemmas of these lexemes. Therefore, each

sentence of the filtered text is represented by

its lexeme lemmas. For example, the sentence

“Online emotional experiences may be compared

to receiving a salary without earning it by hard

work.” is represented by the set {online, emotional,

experience, compare, receive, salary, earn, hard,

work }.

From the filtered text, we build its graph

representation (hypotext) by applying the Hoey

linguistic model. To create the hypotext as defined

in Section 2, we bound all pairs of sentences

that share at least three lexeme lemmas. Note

that unbounded sentences do not appear in the

hypotext.

4.2 Mining Sentence Networks Under Linguistic
Constraints

The goal of this final step is to extract

homogeneous parts of the hypotext created

as described previously. The hypotext can be

seen as an attributed graph where each vertex

represents a sentence and each edge represents

a bond between two sentences that share at

least three lexical units. Furthermore, the set of

lexical units of a sentence is associated as a set

of attributes to its corresponding vertex. With this

representation of the hypotext as an attributed

graph, we can use CoHoP mining algorithms,

as presented in Section 3. In our approach,

the mining is said to be done “under linguistic

constraints” because the original graph is built

according to the Hoey linguistic model. Moreover,

the set of attributes labeling a vertex corresponds

to the lexical units of the underlying sentence.

Each extracted CoHoP pattern corresponds

to what we call a collection of homogeneous

sentence sub-networks (CoHoSS). In the same

way a CoHoP is made up of homogeneous k-PCs

(i.e., sets of vertices that share the same set of

attributes), a CoHoSS is made up of homogeneous

sentence sub-networks (i.e., sets of sentences

that share the same set of lexical units). Each

sentence sub-network corresponds to the definition

of a k-PC. Thus, in a sentence sub-network,

each sentence is either directly bounded by an

edge to the other sentences of the sub-network

(if they share at least three lexical units), or

indirectly reachable from any other sentence

through well connected subsets of sentences (each

subset corresponds to a k-clique, as defined in

Section 3.1). Therefore, CoHoSSs represent

collections of sub-networks of the overall sentence

network that have a certain lexical cohesion w.r.t.
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Table 1. Quantitative results on the hypotext

construction

Corpus Speech Love

#Sentences 5 308 5 571

#Words 127 563 112 325

#Total lexemes 59 657 53 035

#Bonds 50 277 131 497

#Sentence networks 2 2

%Sentences in the hypotext 75.6 % 79.0 %

the considered set of lexical units from which they

are extracted. The structure of the CoHoSSs

can then be analyzed by linguists, for example to

interpret each of the sub-network and the way they

are connected.

5 Experimental Results

In this section, we report two sets of experiments

on the implementation of Hoey’s model and

more particularly on the extraction of CoHoSS

patterns. The first experiment is done on two large

English texts (see Section 5.1) and the second

experiment is done on a short scientific paper (see

Section 5.2).

5.1 Mining Sentence Networks from Large
Texts

5.1.1 Settings: Data and Tools

First, to evaluate our proposed approach, we chose

two large corpora, each one corresponding to an

expositive English text: “The Origin of Speech” [10]

(denoted Speech) and “Love Online: Emotions

on the Internet” [2] (denoted Love). These texts

contain 416 and 302 pages, respectively. Note

that, after the pre-processing steps presented

in Section 4.1, each sentence of the texts is

represented by its corresponding set of filtered

lexical units.

In order to extract the CoHoPs as presented in

Section 4.2, we use CoHoP Miner [12]. It allows

the extraction of CoHoPs by setting the various

parameters of the mining process (k,α, γ).

5.1.2 Quantitative Results on Applying Hoey’s
Linguistic Model

The quantitative results on the hypotext created to

represent each considered corpus are summarized

in Table 1. We can note that a sentence contains

on average 10 lexemes for Speech and 11 lexemes

for Love whereas it contains on average 24 words

for Speech and 20 words for Love. Therefore,

representing sentences by their lexemes allows a

reduction of the number of attributes describing

a sentence without losing meaningful information.

Furthermore, the hypotexts are very large w.r.t.

the number of sentences: more than 75%. It

suggests a strong lexical cohesion in the texts

(each sentence of the hypotext is bounded on

average with 13 sentences for Speech and with

30 sentences for Love). We can note that, for

each corpus, few sentence networks, only two, are

found: a very small sentence network with very

few sentences and a very large one. The analysis

of the large network is not manageable by hand

and therefore requires methods to extract coherent

sub-parts from this network as proposed by our

approach.

5.1.3 Quantitative Results on the Extracted
CoHoSSs

The number of extracted CoHoSSs using CoHoP

Miner depends on the value of the parameters k,

α and γ. The value of γ allows to choose the

minimum number of sub-sentence networks that

compose the CoHoSSs (see Section 3.2). In the

experiments, we set γ to 1 i.e. we do not limit the

number of sub-sentence networks in the CoHoSSs.

Figures 3a and 3b plot the number of extracted

CoHoSSs for various values of k w.r.t. the minimum

number of attributes, for both corpora. Each

point of the curves corresponds to the number

of CoHoSSs extracted from at least α attributes.

For example, in Figure 3a, with k = 3, 11 624

CoHoSSs were extracted from a set of at least

3 attributes. We can see that the majority of

the CoHoSSs are based on 1 to 6 attributes.

Furthermore, most of the CoHoSSs are based on

at most 4 attributes. It means that the topics in

the CoHoSSs are expressed by less than 4 lexical

units. The behaviour of the curves is the same on

both corpora and for the various values of k.

Figures 4a and 4b plot the number of extracted

CoHoSSs for various values of k (from 2 to 4)
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w.r.t. the minimum number of sentences, n, that

belong to them, for both corpora. Each point of

the curves corresponds to the number of CoHoSSs

that contain at least n sentences. For example,

in Figure 4a, 7 559 CoHoSSs contain at least 5

sentences, for k = 3. We can see that the majority

of the CoHoSSs contain at most 20 sentences.

Furthermore, most of the CoHoSSs contain less

than 10 sentences. It means that we extract a

lot of small sets of sentences that are thus easier

to analyze from a linguistic point of view than the

whole hypotext. The behaviour of the curves is

also the same on both corpora and for the various

values of k. Moreover, the CoHoSSs that contain

a lot of sentences are actually based on a single

attribute which is a lexical unit with a general

meaning relatively to the considered corpus. For

example, with k = 3, for the text “The Origin

of Speech”, the CoHoSS from the word “speech”

contains 608 sentences whereas the CoHoSS from

the word “origin” contains 590 sentences.

Finally, we can see that the number of

extracted CoHoSSs decreases when the value of

k increases. This is because k sets the granularity

level of lexical cohesion for the sub-networks

in the CoHoSSs (see Section 3.2). When k

increases, the level of lexical cohesion increases

too, which limits the number of extracted CoHoSSs.

In conclusion, the value of k may be chosen

according to the granularity level of lexical cohesion

needed in the CoHoSSs. Furthermore, the value

of γ may be chosen to limit the total number of

extracted CoHoSSs by selecting the largest ones.

Finally, the setting of α allows to focus the linguistic

analysis on bounded sentences that share at least

a minimum number of lexical units.

5.1.4 Examples of Extracted CoHoSS and
Linguistic Interpretation

Figure 5a illustrates the first considered CoHoSS,

extracted from the text “The Origin of Speech”,

and Figure 6a gives the corresponding sentences

of the text. The CoHoSS was extracted from the

attribute “adaptation”, using the following values

for the mining parameters: k = 3,α = 1, γ =

1. It is made up of two sub-networks. The

first sub-network (KPC1) deals with the general

topic of the CoHoSS, i.e. the phenomenon of

adaptation. This sub-network is relatively coherent

whereas the distance between its sentences is

very high (corresponding to a span of more

KPC1

KPC2
(a) {adaptation} (b) {person, further,

develop, relationship}

Fig. 5. CoHoSSs extracted from given attributes (k = 3)

than 2 000 sentences in the text). The second

sub-network (KPC2) develops a more specific

topic of adaptation: the specialization of the

left-hemispheric. This sub-network starts with

sentence 687 which is connected to the prior

sub-network by sentence 824. We can see that

the span of the CoHoSS is very large since

the CoHoSS starts at sentence 54 and ends

at sentence 5204. This interesting property

of sentence non-contiguousness in the sentence

networks can therefore be seen in the CoHoSSs

extracted from the networks but also in the

sub-networks of the CoHoSSs.

A second example of extracted CoHoSS, from

“Love Online: Emotions on the Internet”, is

illustrated by Figure 5b (Figure 6b gives its

corresponding sentences). The CoHoSS was

extracted from the attributes “person, further,

develop, relationship” using the following values for

the mining parameters: k = 3,α = 4, γ = 1. It

highlights the three main stages of a relationship

between two persons: the keen attention to

the signals conveyed by the other person; the

development of the relationship after the first

face-to-face meeting; the principle of reality when

the two partners know each other better.

5.2 Mining Sentence Networks from a Scientific
Paper

5.2.1 Settings: Data and Experimental Protocol

To show the interest of our approach based on the

extraction of CoHoSSs, we evaluate the coherence

of the CoHoSSs w.r.t. a baseline clustering

method. Because we have to evaluate by hand the

coherence of all the extracted CoHoSSs, it would

be too tedious to do so on one of the corpora

used in Section 5.1 since too many CoHoSSs
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[54] I take the standpoint of an evolutionary1 biologist who, according to Mayr ( 1982), "studies the forces that bring about changes in faunas and
floras ... [and] studies the steps by which have evolved2 the miraculous adaptations3 so characteristic of every aspect of the organic world" ( pp.69
– 70).
[251] An important connotation of the tinkering metaphor, for Jacob, is that adaptations3 exploit whatever is available in order to respond successfully
to selection pressures, whether or not4 they originally evolved2 for the use they’re now put to.
[295] "language5 cannot be as novel as it seems, for evolutionary1 adaptation3 does not4 evolve2 out of the blue" ( p.7).
[824] Indeed, the same claim about the genes could be made for organisms without language5 and culture, because the evolutionary1 process
involves2 adaptation3 to a particular niche.
[2196] "language5 cannot be as novel as it seems, for evolutionary1 adaptations3 do not4 evolve2 out of the blue" ( Bickerton, 1990, p.7).

[687] In my view15, speech1 is an adaptation2 that made the rich message-sending capacity3 of spoken language4 possible.
[3242] The most prevalent view15 of the origin5 of the hand16 – mouth relationship in the latter part of the last century was that the adaptation2

in tool use which occurred in Homo6 habilis7 about 2 million years ago led to a left-hemispheric8 specialization for manual " praxis " ( basically
motor skill) and that the first language4 was a gestural language4 built on this basis.
[3271] This led to the conclusion14 that the origin5 of the human left-hemispheric8 praxic specialization, commonly thought to be a basis for the
left-hemisphere9 speech1 capacity3, cannot be attributed to the tool-use adaptation2 in Homo6 habilis7 ( MacNeilage, in press).
[3431] One implication of the origin5 of a left-hemisphere9 routine-action-control specialization10 in early vertebrates is that this already-existing
left-hemisphere9 action specialization10 may have been put to use in the form of the right-side dominance associated with the clinging and leaping
motor adaptation2 characteristic of everyday early prosimian13 life.
[3434] If so, then the left-hemisphere9 action-control capacity3 favoring right-sided postural11 support may have triggered the asymmetric
reaching adaptation2 favoring the hand16 on the side less dominant for postural support – the left hand16 – before the manual-predation
specialization10 in vertical clingers and leapers, and its accompanying ballistic reaching capacity3, evolved12.
[5204] As evidence for the highly specialized nature of this emergent adaptation2, he cites the conclusion14 of the postural11 origins5 theory
that left-hand16 preferences for prehension evolved12 in prosimians13 ( see Chapter 10).

(a) {adaptation}

[700] However, the online lover, lacking many types of sensory information, must be sensitive to every signal conveyed by the other person1 –
otherwise, their relationship4 cannot develop3 further2.
[3148] When there is no significant discrepancy between the imagined partner and the one revealed5 in the first face-to-face meeting, there is a
good chance that the relationship4 will develop3 further2, as each person1 already has a positive attitude toward the other.
[3841] As the relationship4 develops3 further2, more negative aspects about the person1 will be revealed5, thus making this person1 more real.

(b) {person, further, develop, relationship}

Fig. 6. Corresponding sentences for the CoHoSSs of Figure 5

were extracted. That is why we chose to do this

evaluation on one of our scientific papers [13]. This

paper contains 12 pages and 188 sentences that

were pre-processed as presented in Section 4.1.

In addition, each sentence is actually represented

by the corresponding set of its filtered lexical units

that are used to build the hypotext: the total number

of filtered lexical units is 498.

As a baseline clustering method, we used a

k-means clustering with a cosine distance. Each

sentence is represented by a vector of 498

elements, each element being set to 1 or 0

depending on whether the sentence contains or

not the corresponding lexical unit. To extract the

clusters, we used Elki [1] with the kMeansLloyd

algorithm and the cosine distance. To set the

value of k (the number of clusters) we chose

empirically the value so as to maximize the number

of clusters that contain between 3 to 10 sentences.

Indeed, in the rest of the evaluation, we will only

consider clusters and CoHoSSs that contain 3

to 10 sentences. These values were chosen

because assessing the coherence of very small

clusters or CoHoSSs (containing 2 sentences) is

not interesting and it is difficult to obtain quite

large coherent clusters or CoHoSSs (the upper

bound of 10 sentences represents clusters or

CoHoSSs containing 5% of the sentences of the

text). Therefore, the value of k (the number of

clusters) is set to 60: 38 of the 60 clusters contain

3 to 10 sentences. To extract the CoHoSSs, we

used CoHoP Miner with the following settings: k =

3,α = 1, γ = 1. Out of the 509 extracted CoHoSSs,

457 contain 3 to 10 sentences: only the latter

CoHoSSs will be used for the evaluation.

Table 2. Mean and standard deviation of the scores

Judge Shared CoHoSSs All CoHoSSs Clusters

J1 2.5± 0.7 2.6± 0.6 2.2± 0.8

J2 2.3± 0.8 2.3± 0.8 1.8± 0.8

J3 2.4± 0.7 2.4± 0.7 1.7± 0.8

All judges 2.4± 0.6 2.4± 0.7 1.8± 0.7

For the evaluation, CoHoSSs and clusters are

presented to three judges: the 38 clusters, 50

CoHoSSs shared by the three judges (randomly

selected among the 457 CoHoSSs), and 135-137

CoHoSSs owned only by each judge (randomly

selected among the remaining 407 CoHoSSs). In

order to perform a blind evaluation, we randomly

mix the clusters and the CoHoSSs presented to

each judge. Therefore, each judge has to evaluate

the coherence of 223-225 lists of sentences without

knowing whether the lists correspond to CoHoSSs

or clusters. Note that the sentences in the lists are
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Table 3. Distribution of the scores, s, attributed to CoHoSSs and clusters

Judge 1 ≤ s < 2 2 ≤ s < 3 s = 3

CoHoSSs Clusters CoHoSSs Clusters CoHoSSs Clusters

J1 6.5% 28.9% 27.6% 26.3% 65.9% 44.7%
J2 21.1% 44.7% 29.7% 28.9% 49.2% 26.3%
J3 13.9% 55.3% 30.5% 23.7% 55.6% 21.1%

All judges 13.6% 47.4% 32.2% 42.1% 54.3% 10.5%

ordered according to their position in the text. As

the evaluation, the judges were asked to determine

the coherence of the lists of sentences on a scale

from 1 to 3 (a score of respectively 1, 2, and

3 means that respectively 0-33%, 33-75%, and

75-100% of the sentences belonging to a cluster

or a CoHoSS are considered coherent). The

following definition given in [7] is used to assess

the coherence: “A paragraph is coherent when the

information in successive sentences follows some

pattern of inference or of knowledge with which

the hearer is familiar. To signal such inferences,

speakers usually use relations that link successive

sentences in fixed ways”.

5.2.2 Human Evaluation of the CoHoSSs w.r.t.
Clusters

Table 2 gives the mean and the standard deviation

of the scores given to the CoHoSSs and clusters

by each judge as well as by all of them. In the

latter case, the score of each CoHoSS or cluster

is either the score given by one judge (if it was

only evaluated by one judge) or the mean of the

scores given by the three judges. We can see

that a better mean score is given to the CoHoSSs.

Thus, the lists of sentences obtained through the

CoHoP mining process are judged more coherent

than the ones obtained with a baseline clustering

algorithm.

Table 3 gives the distribution of the scores

attributed to the CoHoSSs and clusters by each

judge as well as by all of the judges. When

considering the scores of all the judges, we can

see that more than half of the CoHoSSs were given

the highest score of 3 whereas a little less than

half the clusters were given the lowest score of 1.

Furthermore, as the total number of CoHoSSs is

higher than the total number of clusters, the CoHoP

mining process extracts more coherent CoHoSSs

that could be analyzed from a linguistic point of

view. Indeed, in absolute values, 248 CoHoSSs

are coherent whereas only 4 clusters are coherent.

This manual evaluation of the coherence of

CoHoSSs showed the interest of our proposed

approach w.r.t. a state of the art clustering method

to extract coherent sets of sentences from a text.

Another advantage of our approach is that we do

not need to set the number of CoHoSSs to extract

whereas the number of clusters to create has to

be set. Furthermore, in a clustering method, each

sentence of the text is assigned to one and only

one cluster whereas some sentences may not be

informative and some of them may be associated to

several lists of sentences. Hence the advantage of

extracting CoHoSSs where a sentence may belong

to several CoHoSSs or to no CoHoSS at all.

6 Conclusion

In this paper, we have proposed an automatic

approach to explore large texts based on both

a linguistic model (Hoey’s model) to represent

the text as a graph and a graph mining method

(CoHoP pattern mining) to extract relevant parts

of it. The method allows to discover subsets

of sentences (aka collections of homogeneous

sentence sub-networks) that are coherent from a

lexical point of view. The advantages are twofold.

First, the graph representation offers a view of

the relationships between the sentences. Second,

graph mining techniques allows the scalability

of Hoey’s linguistic model. In particular, tuning

the parameters allows selecting relevant parts

of the sentence network representing the text

and refining the needed granularity level of the

extracted collection of homogeneous sentence

sub-networks. In linguistic terms, it highlights the

lexical cohesion of the extracted sentences. We

have conducted some experiments on two large

English corpora to validate this approach. We have

also compared our approach to a state of the art

clustering method on a short scientific text.
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