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Abstract

We prove Wagner’s conjecture, that for every infinite set of finite graphs, one of its members is
isomorphic to a minor of another.
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1. Introduction

A famous conjecture of Wagner[6] asserts that for any infinite set of graphs, one of its
members is isomorphic to a minor of another (all graphs in this paper are finite). It has been
one of the main goals of this series of papers to prove the conjecture, and in this paper the
proof is completed.
Our method is roughly as follows. If{G1,G2, . . .} is a counterexample to Wagner’s

conjecture then none ofG2,G3, . . . has aminor isomorphic toG1, and so to proveWagner’s
conjecture it suffices to show the following.

1.1. For every graph H and every infinite set of graphs each with no minor isomorphic to
H, some member of the set is isomorphic to a minor of another member of the set.
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It was shown in[3] that

1.2. For every graph H, if G has no minor isomorphic to H, then every“highly connected
component” of G can“almost” be drawn on a surface on which H cannot be drawn.

(Themeanings of “highly connected component” and “almost” here are complicated and
we shall postpone the exact statement of this theorem as long as possible.Surfacesare
connected and compact.)
We may assume the surface in1.2is without boundary; and since up to homeomorphism

there are only finitely many such surfaces in whichH cannot be drawn, to prove1.1 and
henceWagner’s conjecture it suffices to show that

1.3. If �1, . . . ,�n are surfaces then for every infinite setF of graphs, if every highly
connected component of every member ofF can almost be drawn in one of�1, . . . ,�n,
then some member ofF is isomorphic to a minor of another member ofF .

Toprove1.3weuse themain results of twoother papersof this series[4,5].Themain result
of [4] asserts that, ifF is an infinite set of graphs and all the highly connected components
of all members ofF have a certain “well-behaved” structure, then some member ofF
is isomorphic to a minor of another member ofF . It therefore suffices to show that the
hypothesis of1.3 implies that all these highly connected components have a well-behaved
structure. To show this, we apply themain result of[5], which asserts that for any infinite set
of hypergraphs all drawable in a fixed surface (where the edges of the hypergraphs all have
two or three ends, and each edge is labeled from a fixed well-quasi-order), some member
of the set is isomorphic to a minor of another (with an appropriate definition of “minor” for
hypergraphs).
In Sections 2–10 we finish the proof ofWagner’s conjecture, and in Section 11 we prove

a slight strengthening.

2. Hypergraphs and tangles

For the purposes of this paper, ahypergraph Gconsists of a finite setV (G) of vertices,
a finite setE(G) of edges, and an incidence relation between them. The vertices incident
with an edge are theendsof the edge (A hypergraph is thus a graph if every edge has one
or two ends.) A hypergraphH is asubhypergraphof a hypergraphG (writtenH ⊆ G) if
V (H) ⊆ V (G),E(H) ⊆ E(G), and for everyv ∈ V (G) ande ∈ E(H), e is incident with
v in G if and only if v ∈ V (H) ande is incident withv in H. If G1,G2 are subhypergraphs
ofGwe denote byG1∪G2,G1∩G2 the subhypergraphs with vertex setsV (G1)∪V (G2),
V (G1)∩V (G2) and edge setsE(G1)∪E(G2),E(G1)∩E(G2), respectively.Aseparation
ofG is anorderedpair(G1,G2)of subhypergraphswithG1∪G2 = GandE(G1∩G2) = ∅,
and itsorder is |V (G1 ∩ G2)|.
A central idea in our approach is that of atanglein a hypergraph, which was introduced in

[2]. Intuitively, a tangle of order� is a “�-connected component” of the hypergraph, which
therefore resides on one side or the other of every separation of order< �. Formally, letG



N. Robertson, P.D. Seymour / Journal of Combinatorial Theory, Series B 92 (2004) 325–357327

be a hypergraph and��1 an integer. Atangle of order� in G is a setT of separations of
G, each of order< �, such that
• for every separation(A,B) of G of order< �, T contains one of(A,B), (B,A),
• if (Ai, Bi) ∈ T (i = 1,2,3) thenA1 ∪ A2 ∪ A3 �= G,
• if (A,B) ∈ T thenV (A) �= V (G).
Let us mention one lemma that we shall need later.

2.1. Let G be a hypergraph, letG′ ⊆ G and letT ′ be a tangle inG′ of order�. LetT be
the set of all separations(A,B) of G of order< � such that(A ∩ G′, B ∩ G′) ∈ T ′. Then
T is a tangle in G of order�.

The proof is clear.
A tie-breakerin a hypergraphG is a function� which maps each separation(A,B) ofG

to some member�(A,B) of a linearly ordered set(�, �) (we call�(A,B) the�-orderof
(A,B)) in such a way that for all separations(A,B), (C,D) of G,
• �(A,B) = �(C,D) if and only if (A,B) = (C,D) or (A,B) = (D,C),
• either�(A ∪ C,B ∩ D)��(A,B) or �(A ∩ C,B ∪ D) < �(C,D),
• if |V (A ∩ B)| < |V (C ∩ D)| then�(A,B) < �(C,D).
Let � be a tie-breaker in a hypergraphG. If T1, T2 are tangles inGwith T1�T2 andT2�T1,
then there is a unique(A,B) ∈ T1 such that(B,A) ∈ T2 of minimum�-order, called the
(T1, T2)-distinction.
A march in a setV is a finite sequence of distinct elements ofV; and if � is the march

v1, . . . , vk, we denote the set{v1, . . . , vk} by �̄. We denote the null march by 0. Arooted
hypergraph Gis a pair(G−,�(G)) whereG− is a hypergraph and�(G) is a march in
V (G−).We defineV (G) = V (G−),E(G) = E(G−). If G is a rooted hypergraph, atangle
in G is a tangle inG−, and atie-breakerin G is a tie-breaker inG−.
A separationof a rooted hypergraphG is a pair(A,B) of rooted hypergraphs such that

(A−, B−) is a separation ofG−, �̄(A) = V (A ∩ B), and�(B) = �(G). If G, A are rooted
hypergraphs, we writeA ⊆ G if A− ⊆ G−. If A ⊆ G, we sayA is complementedif there
existsB ⊆ G such that(A,B) is a separation ofG, and we defineG \ A = B. A rooted
location in a rooted hypergraphG is a setL of complemented rooted hypergraphsA with
A ⊆ G such thatE(A−

1 ∩A−
2 ) = ∅ andV (A−

1 ∩A−
2 ) = �̄(A1)∩ �̄(A2) for all distinctA1,

A2 ∈ L. Itsorder is max(|�̄(A)| : A ∈ L), or 0 if L = ∅. If L is a rooted location inG, we
defineL− = {(A−, (G\A)−) : A ∈ L}, andwe defineM(G,L) to be∩((G\A)− : A ∈ L)
if L /∈ ∅, and to beG− if L = ∅.
LetG be a rooted hypergraph, letT be a tangle inG, and let� be a tie-breaker inG. A

rooted locationL in G is said to�-isolateT if ��1, L has order< �, L− ⊆ T , and for
eachA ∈ L, and for every tangleT ′ in G of order�� with ((G \ A)−, A−) ∈ T ′, the
(T , T ′)-distinction(C,D) satisfiesC ⊆ A− and(G \ A)− ⊆ D.

3. Patchworks

If V is a finite set we denote byKV the complete graph onV, that is, the simple graph with
vertex setVand edge set the set of all subsets ofVof cardinality 2, with the natural incidence
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relation. Agrouping in V is a subgraph ofKV every component of which is complete. A
pairing in V is a grouping inV every component of which has most two vertices. A pairing
K in V is said topair X,Y if X, Y ⊆ V are disjoint and
• every 2-vertex component ofK has one vertex inX and the other inY, and
• every vertex ofX ∪ Y belongs to some 2-vertex component ofK.
A patch� inVconsists of a subsetV (�) ⊆ V , and a collection of groupings inV, each with
the same vertex setV (�) ⊆ V . We denote the collection of groupings by the same symbol
�. A patch� is freeif it contains every grouping inVwith vertex setV (�); and it isrobust
if for every choice ofX, Y ⊆ V (�) with |X| = |Y | andX ∩ Y = ∅, there is a pairing in�
which pairsX,Y.
A patchworkis a tripleP = (G,�,�), where

• G is a rooted hypergraph,
• � is a function with domaindom(�) ⊆ E(G); and for eache ∈ dom(�), �(e) is a march
with �̄(e) the set of ends ofe in G,

• � is a function with domainE(G), and for eache ∈ E(G),�(e) is a patch withV (�(e))
the set of ends ofe; and for eache ∈ E(G) \ dom(�), �(e) is free.

Thepatchwork isrobustif each�(e)(e ∈ E(G)) is robust (This is automatic fore /∈ dom(�),
since free patches are robust.) It isrootlessif �̄(G) = ∅.
A quasi-order� is a pair(E(�), �), whereE(�) is a set and� is a reflective transitive

relation onE(�). It is awell-quasi-orderif for every countable sequencexi (i = 1,2, . . .)
of elements ofE(�) there existj > i�1 such thatxi �xj . If �1,�2 are quasi-orders with
E(�1)∩E(�2) = ∅we denote by�1∪�2 the quasi-order�withE(�) = E(�1)∪E(�2)
in which x�y if for somei (i = 1,2)x, y ∈ E(�i ) andx�y in �i . If �1, �2 are quasi-
orders we write�1 ⊆ �2 if E(�1) ⊆ E(�2) and forx, y ∈ E(�1), x�y in �1 if and only
if x�y in �2.
If � is a quasi-order, apartial�-patchworkis a quadruple(G,�,�,	), where(G,�,�)

is a patchwork and	 is a function from a subsetdom(	) of E(G) into E(�). It is
an�-patchworkif dom(	) = E(G). It is robust if (G,�,�) is robust. It isrootlessif
�̄(G) = ∅.
If V is a finite set,NV denotes the graph with vertex setV and no edges. Arealizationof

a patchwork(G,�,�) is a subgraph ofKV (G) expressible in the form

NV (G) ∪
⋃

e∈E(G)


e,

where
e ∈ �(e) for eache ∈ E(G). A realizationof a partial�-patchwork(G,�,�,	)
is a realization of(G,�,�). If �1, �2 are marches with the same length, we denote by
�1 → �2 the bijection from�1 onto �2 that maps�1 onto �2. Let P = (G,�,�,	),
P ′ = (G′,�,�′,	′) be�-patchworks.AnexpansionofP in P ′ is a function�with domain
V (G) ∪ E(G) such that
• for eachv ∈ V (G), �(v) is a non-empty subset ofV (G′), and for eache ∈ E(G),

�(e) ∈ E(G′),
• for distinctv1, v2 ∈ V (G), �(v1) ∩ �(v2) = ∅,
• for distincte1, e2 ∈ E(G), �(e1) �= �(e2),
• for eache ∈ E(G), e ∈ dom(�) if and only if �(e) ∈ dom(�′),
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• for eache ∈ E(G) \ dom(�), if v is an end ofe in G then�(v) contains an end of�(e)
in G′,

• for eache ∈ dom(�), �(e) and�′(�(e)) have the same length,k say, and for 1� i�k,
�(v) contains theith term of�′(�(e)) wherev is theith term of�(e),

• �(G) and�(G′) have the same length,k say, and for 1� i�k, �(v) contains theith term
of �(G′) wherev is theith term of�(G),

• for eache ∈ dom(�), �′(�(e)) is the image of�(e) under�(e) → �′(�(e)),
• for eache ∈ E(G), 	(e)�	′(�(e)).
If G is a hypergraph andF ⊆ E(G), G\F denotes the subhypergraph with the same

vertex set andedgesetE(G)\F . IfG is a rootedhypergraph,G\F denotes(G−\F ,�(G)). If
P = (G,�,�,	) is an�-patchwork andF ⊆ E(G),P \F denotes the�-patchwork(G\F ,
�′ �′, 	′) where�′, �′, 	′ are the restrictions of�, �, 	 to dom(�) ∩ E(G\F), E(G\F),
E(G\F), respectively. Let� be an expansion ofP = (G,�,�,	) in P ′ = (G′,�′,�′,	).
A realizationH of P ′\�(E(G)) is said torealize� if for everyv ∈ V (G), �(v) is the vertex
set of some component ofH; and if there is such a realization,� is said to berealizable. Let
us say thatP is simulatedin P ′ if there is a realizable expansion ofP in P ′.
If P = (G,�,�) is patchwork andA is a rooted hypergraph withA ⊆ G, we denote by

P |A the patchwork(A,�′,�′), where�′,�′ are the restrictions of�,� toE(A)∩ dom(�),
E(A), respectively. IfP = (G,�,�,	) is a partial�-patchwork,P |A is the partial�-
patchwork(A,�′,�′,	′)where�′,�′ are as before and	′ is the restriction of	 toE(A)∩
dom(	).
Let P = (G,�,�) be a patchwork. A groupingK is feasiblein P if V (K) = �̄(G) and

there is a realizationH of P such that for distinctx, y ∈ V (K), x andy belong to the same
component ofH if and only if they are adjacent inK.
Let P = (G,�,�) be a patchwork and letL be a rooted location inG. For eachA ∈ L

let e(A) be a new element, and letG′ be the rooted hypergraph with
V (G′)= V (M(G,L)),
E(G′)=E(M(G,L)) ∪ {e(A) : A ∈ L},
�(G′)= �(G),

where fore ∈ E(M(G,L)) its ends are as inG−, and forA ∈ L the ends ofe(A) are
the vertices in̄�(A). For e ∈ E(M(G,L)) ∩ dom(�) let �′(e) = �(e), and forA ∈ L let
�′(e(A)) = �(A). For e ∈ E(M(G,L)) let �′(e) = �(e), and forA ∈ L let �′(e(A)) be
the set of all groupings feasible inP |A, with V (�′(e(A))) = �̄(A). Then(G′,�′,�′) is a
patchwork which we call aheartof (P,L) (It is unique up to the choice of the new elements
e(A).)
Now let P ′ = (G,�,�,	) be an�-patchwork, and letP = (G,�,�) andL be as

before. Fore ∈ E(M(G,L)) let 	′(e) = 	(e); then, withG′, �′, �′ defined as before,
(G′,�′,�′,	′) is a partial�-patchwork which we call aheartof (P ′,L).
LetP = (G,�,�,	) be a partial�-patchwork, and let�′ be a quasi-order with� ⊆ �′.

By an�′-completionof Pwe mean an�′-patchwork(G,�,�,	′) such that	′(e) = 	(e)
for eache ∈ dom(	). A setC of partial�-patchworks iswell-behavedif � is a well-
quasi-order and for every well-quasi-order�′ with � ⊆ �′ and every countable sequence
P ′
i (i = 1,2, . . .) of �′-completions of members ofC there existj > i�1 such thatP ′

i

is simulated inP ′
j . Let �1 ⊆ �2 be well-quasi-orders, and letC be a set of partial�1-
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patchworks. ThenC is also a set of partial�2-patchworks; and it is an easy exercise to show
thatC is well-behaved taking� = �1, if and only if it is well-behaved with� = �2. Thus,
our terminology suppressing the dependence on� is not misleading.
The following is Theorem 6.7 of[4].

3.1. Let � be a well-quasi-order, let F be a well-behaved set of rootless partial�-
patchworks, and let��1 be an integer. LetPi = (Gi,�i ,�i ,	i ) (i = 1,2, . . .) be a
countable sequence of rootless robust�-patchworks. For eachi�1 let �i be a tie-breaker
in Gi ; and suppose that for every tangleT in Gi of order �� there is a rooted location
L in Gi such thatL �-isolatesT and(Pi,L) has a heart inF . Then there existj > i�1
such thatPi is simulated inPj .

4. Well-behaved sets of patchworks

The previous result3.1, combined with the main result of[3] (see10.3of the present
paper), almost proves Wagner’s conjecture. Not quite, however; although the rooted lo-
cations provided by[3] have hearts in a well-behaved set, they do not quite�-isolate the
corresponding tangles and so3.1 cannot be applied to them. In the next few sections we
prove a strengthening7.3of 3.1, that bridges the gap.We show that the locations of[3] can
be modified such that the new locations still have hearts in a (new) well-behaved set and do
�′-isolate the corresponding tangles, for an appropriate�′. The main problem is that there
are a bounded number of vertices that need to be removed; and in essence7.3addresses the
problems caused by removing these vertices.
To prove7.3, we first need to develop ways of constructing new well-behaved sets of

patchworks from old ones, and that is the object of this section. Incidentally, the rooted
locationsL provided by[3] have the property that⋃(A− : A ∈ L) = G−, which has two
desirable consequences; that their hearts have no “isolated vertices”, and that their hearts
have no edges labeled from�, and hence are more naturally regarded as patchworks than
as partial�-patchworks. This motivates the following.
If P = (G,�,�) is a patchwork and� is a quasi-order, we call every�-patchwork

(G,�,�,	) an�-completion of P. A setF of patchworks iswell-behavedif for every
well-quasi-order� and every countable sequencePi (i = 1,2, . . .) of �-completions of
members ofF there existj > i�1 such thatPi is simulated inPj .

4.1. If F is well-behaved, then there existsN�0 such that if(G,�,�) ∈ F and e ∈
dom(�) then|�̄(e)|�N .

Proof. Let�be thewell-quasi-orderwithE(�) = {�1,�2} say,where�1,�2 are incompa-
rable (that is,�1 ���2 ���1). Suppose that there is noNas in the theorem. Then there exist
integersni andPi = (Gi,�i ,�i ) ∈ F andei ∈ E(Gi) ∩ dom(�1) with |�̄i (ei)| = ni for
i = 1,2, . . . , such thatn1 < n2 < . . .. For i�1, define	i : E(Gi) → E(�) by	i (ei) =
�2 and	i (e) = �1(e �= ei). Then(Gi,�i ,�i ,	i ) (= Qi , say) is an�-completion ofPi .
SinceF is well-behaved, there existj > i�1 such that there is a realizable expansion� of
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Qi inQj . Consequently

�2 = 	i (ei)�	j (�(ei))

and so	j (�(ei)) = �2, that is,�(ei) = ej . But ei ∈ dom(�i ), and so�i (ei) and�j (�(ei))
have the same length; that is,

ni = |�̄i (ei)| = |�̄j (�(ei))| = |�̄j (ej )| = nj ,

a contradiction. The result follows.�

Let�1, �2 be quasi-orders, and letFi be a set of�i-patchworks(i = 1,2). A function
 : F2 → F1 is anencodingof F2 in F1 if P is simulated inP ′ for all P, P ′ ∈ F2 such
that (P ) is simulated in(P ′). The following is a convenient lemma for producing new
well-behaved sets of patchworks.

4.2. LetF1, F2 be sets of patchworks whereF1 is well-behaved. Suppose that for every
well-quasi-order�2 there is a well-quasi-order�1 and an encoding of the set of all�2-
completions of members ofF2 in the set of all�1-completions of members ofF1. ThenF2
is well-behaved.

The proof is clear.

4.3. Let F1 be a well-behaved set of patchworks. LetF2 be the set of all patchworks
P2 = (G2,�,�) such that there exist(G1,�,�) ∈ F1 andv ∈ V (G1) \ �̄(G1) such that
G−
2 = G−

1 and�(G2) is the concatenation of�(G1)with a new last term v and v is incident
with some edgee ∈ dom(�). ThenF2 is well-behaved.

Proof. ChooseNas in4.1(withF replaced byF1). For 1�r�N , letCr be the set of those
patchworksP2 = (G2,�,�) ∈ F2 such thatv, emay be chosen as above withv the rth
term of�(e). SinceF2 = F1 ∪ · · · ∪ FN and the union of finitely many well-behaved sets
is well-behaved, it suffices to show thatF r is well-behaved for eachr.
Let�2 be awell-quasi-order. Let�3 be an isomorphic copy of�2 withE(�2)∩E(�3) =

∅, and let� = �2 → �3 be an isomorphism. Let�1 = �2∪ �3. LetQ2 = (G2,�,�,	2)
be an�2-completion of a memberP2 = (G2,�,�) of F r . Let v be the last term of�(G2),
and letG1 be the hypergraph withG

−
1 = G−

2 and�(G1) the sequence obtained from�(G2)
by deletingv. ThenP1 = (G1,�,�) ∈ C1. Choosef ∈ dom(�) such thatv is therth term
of �(f ). Define an�1-completionQ1 = (G1,�,�,	1) of P1 as follows:

	1(e) = 	2(e) (e ∈ E(G1) \ {f }),
	1(f ) = �(	2(f )).

We define�(Q2) = Q1, and claim that is an encoding. For suppose that(Q′
2) = Q′

1,
whereQ′

2 = (G′
2,�

′,�′,	′
2), etc., and� is a realizable expansion ofQ1 in Q′

1. Then
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�(f ) = f ′, sincef ′ is the only edgeeofQ′
2 with 	′

1(e) ∈ E(�3). Sincef ∈ dom(�) and
f ′ ∈ dom(�′) it follows thatv′ ∈ �(v), and hence� is a realizable expansion ofQ2 inQ′

2,
as required. Thus is an encoding, and the theorem follows from4.2. �

4.4. Let F1 be a well-behaved set of patchworks, and letF2 be the set of all rootless
patchworksP2 = (G2,�,�) such that there exists(G1,�,�) ∈ F1 withG−

1 = G−
2 . Then

F2 is well-behaved.

Theproof is clear (for any realizationexpansionof onepatchwork inanother is a realizable
expansion of the corresponding patchworks with roots forgotten).
A patchwork(G,�,�) is activeif every vertex ofG is incident with somee ∈ dom(�).

4.5. Let F1 be a well-behaved set of active patchworks, let k�0 and letF2 be the set
of all patchworks(G2,�,�) such that|�̄(G2)|�k and there exists(G1,�,�) ∈ F1 with
G−
1 = G−

2 . ThenF2 is well-behaved.

Proof. It suffices to prove that{(G2,�,�) ∈ F2 : |�̄(G2)| = k′} is well-behaved, for each
k′ with 0�k′ �k. Fork′ = 0 this follows from4.4, and in general by induction onk′ from
4.3. �

4.6. LetF1 be a well-behaved set of patchworks, and letF2 be a set of patchworks such
that for eachP2 = (G2,�2,�2) ∈ F2 there existsf ∈ E(G2) such thatP2\{f } ∈ F1 and
every end of f belongs tō�(G2). ThenF2 is well-behaved.

The proof is clear.
LetP1 = (G1,�1,�1) be a patchwork andf ∈ dom(�1). Take a new vertexvand letG2

be the rooted hypergraph with�(G2) = �(G1), E(G2) = E(G1), V (G2) = V (G1) ∪ {v}
wheref is incident withvbut otherwise the incidence relation is the same as forG. Let�2(f )
be an arbitrary march and let�2(f ) be an arbitrary patch, except that�̄(f ), V (�2(f ))
are both the set of ends off in G2. For e ∈ dom(�1) \ {f } let �2(e) = �1(e), and for
e ∈ E(G1) \ {f } let�2(e) = �1(e). Then(G2,�2,�2) is a patchwork, which we say is a
1-vertex extensionof (G1,�1,�1).

4.7. LetF1 be a well-behaved set of patchworks and letF2 be a set of patchworks each
of which is a1-vertex extension of a member ofF1. ThenF2 is well-behaved.

Proof. Let �2 be a well-quasi-order, and letN�0 be an integer such that for every
(G,�,�) ∈ F1 and everye ∈ dom(�), e has�N ends. Let� be the well-quasi-order
withE(�) the set of all�2-patchworks(G,�,�,	)with |E(G)| = 1 and|V (G)|�N +1,
ordered by simulation (Evidently, this is indeed a well-quasi-order.) We may assume that
E(�) ∩ E(�2) = ∅. Let�1 = � ∪ �2.
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LetQ2 = (G2,�2,�2,	2)bean�2-completionofamemberofF2.Choose(G1,�1,�1)
∈ F1 andf ∈ dom(�1) andv ∈ V (G2), as in the definition of 1-vertex extension. Let
Q1 = (G1,�1,�1,	1) be the�1-completion of(G1,�1,�1) where

	1(e) = 	2(e) (e ∈ E(G1) \ {f }),
	1(f ) = Q2|H,

whereH is the rooted hypergraph such thatH ⊆ G2, �(H) = �1(f ), E(H) = {f }, and
V (H) is the set of ends off in G2. Let us defineQ1 = �(Q2); then it is easy to see that�
is an encoding, and the result follows from4.2. �

4.8. Let F1 be a well-behaved set of patchworks, let k�0, and letF2 be the set of all
patchworksP2 such that there existP1 ∈ F1 and a sequence

P1 = P 0, P 1, . . . , P k′ = P2

wherek′ �k and for1� i�k′,P i is a1-vertex extension ofP i−1.ThenF2 is well-behaved.

Proof. Let us expressF2 = F0 ∪ F1 ∪ · · · ∪ Fk, where forP2 ∈ F i thek′ above can be
chosen withk′ = i. By repeated use of4.7, Fk′

is well-behaved for eachk′, and henceF2
is well-behaved. �

If G is a hypergraph andW ⊆ V (G), G/W denotes the hypergraphG′ with V (G′) =
V (G) \ W andE(G′) = E(G), in which v ∈ V (G) \ W ande ∈ E(G) are incident if
and only if they are incident inG. If � is a march in a setV andW ⊆ V , �/W denotes the
march obtained by omitting all terms inW. If G is a rooted hypergraph andW ⊆ V (G),
G/W denotes(G−/W,�(G),W). If P = (G,�,�) is a patchwork andW ⊆ V (G),P/W

denotes the patchwork(G/W,�′,�′) where fore ∈ dom(�), �′(e) = �(e)/W , and for
e ∈ E(G), if Zdenotes the set of ends ofe inG then�′(e) consists of all groupingsK ′ with
vertex setZ \W such thatK ′ ∪NW∩Z ∈ �(e). If P = (G,�,�,	) is an�-patchwork and
W ⊆ V (G), P/W denotes the�-patchwork(G/W,�′,�′,	), where�′,�′ are as before.

4.9. Let F1 be a well-behaved set of patchworks, let ��0, and letF2 be the set of all
patchworksP2 = (G2,�2,�2) such thatdom(�2) = E(G2) and there existsW ⊆ V (G2)

with |W |�� andP2/W ∈ F1. ThenF2 is well-behaved.

Proof. It suffices (by induction on|W |) to prove thiswhen for eachP2 = (G2,�2,�2) ∈ F2
there existsv ∈ V (G2) such thatP2/{v} ∈ F1. Let �2 be a well-quasi-order and define
N,�,�1 as in the proof of4.7. Let Q2 = (G2,�2,�2,	2) be an�2-completion of a
memberP2 of F2, and choosev ∈ V (G2) such thatP2/{v} = P1 ∈ F1. Let P1 =
(G1,�1,�1) and letQ1 be the�1-completion(G1,�1,�1,	1) of P1 where

	1(e) = 	2(e) if e ∈ E(G1) is not incident withv in G2,

	1(e) = Q2|H if e ∈ E(G1) is incident withv in G2,
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where in the second case,H is the rooted hypergraph such thatH ⊆ G2, �(H) = �2(e),
E(H) = {e} andV (H) is the set of ends ofe in G2. Let us define(Q2) = Q1; then it is
easy to see that is an encoding and the result follows from4.2. �

Let P1 = (G1,�1,�1) andP2 = (G2,�2,�2) be patchworks. We say thatP1 is a
condensationof P2 if V (G1) = V (G2), �(G1) = �(G2), dom(�1) = E(G1), dom(�2) =
E(G2), for eache ∈ E(G1) there is a rooted subhypergraphAe ⊆ G2 with the following
properties:
• V (Ae) is the set of ends ofe in G1, and�(Ae) = �1(e),
• ⋃

e∈E(G1)

E(Ae) = E(G2),

• for distincte, e′ ∈ E(G1), E(Ae) ∩ E(Ae′) = ∅,
• for eache ∈ E(G1) andK ∈ �1(e), K is feasible inP2|Ae.
A patchworkP = (G,�,�) is removableif for every e ∈ E(G), �(e) containsNV where
V is the set of ends ofe.

4.10. LetF1 be a well-behaved set of removable patchworks and letF2 be a set of patch-
works such that for eachP2 ∈ F2 someP1 ∈ F1 is a condensation ofP2. ThenF2 is
well-behaved.

Proof. ChooseN�0 (by4.1) such that for every(G,�,�) ∈ F1 and everye ∈ dom(�), e
has�N ends. Now let�2 be awell-quasi-order. Let�1 be thewell-quasi-order withE(�1)
the set of all�2-patchworks(G,�,�,	) where|V (G)|�N , and(G,�,�) is removable,
ordered by simulation (That�1 is a well-quasi-order is proved in the same way as theorem
8.4 of [1] and we omit the proof.)
Now letQ2 = (G2,�2,�2,	2) be an�2-completion of someP2 ∈ F2. ChooseP1 =

(G1,�1,�1) ∈ F1 such thatP1 is a condensation ofP2, and choose the rooted subhyper-
graphsAe (e ∈ E(G1)) as in the definition of condensation. LetQ1 = (G1,�1,�1,	1)
be the�1-completion ofP1 where	1(e) = Q2|Ae for eache ∈ dom(�1) = E(G1). Let
Q1 = (Q2); then theorem 5.7 of[4] implies that is an encoding, and the result follows.

�

4.11. Let F1 be a well-behaved set of active patchworks, and letF2 be the set of all
patchworksP2 = (G2,�2,�2) such that there existsP1 = (G1,�1,�1) ∈ F1 withG2 ⊆
G1, �(G2) = �(G1),G2 complemented inG1 andP2 = P1|G2.ThenF2 is well-behaved.

Proof. Let �2 be a well-quasi-order. Let∗ /∈ E(�2) be a new element and let�1 be the
well-quasi-order with�2 ⊆ �1 andE(�1) = E(�2) ∪ {∗}, where ifx�∗ or ∗�x then
x = ∗. Now letQ2 = (G2,�2,�2,	2) be an�2-completion ofP2 = (G2,�2,�2) ∈ F2.
ChooseP1 = (G1,�1,�1) ∈ F1 so thatG2 ⊆ G1, �(G2) = �(G1),G2 is complemented
in G1, andP2 = P1|G2. LetQ1 = (G1,�1,�1,	1) be the�-completion ofP1 where

	1(e)= 	2(e) (e ∈ E(G2))

= ∗ (e ∈ E(G1) \ E(G2)).

Let (Q2) = Q1; we claim that is an encoding.
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LetQ′
i = (G′

i ,�
′
i ,�

′
i ,	

′
i ) (i = 1,2), such that(Q′

2) = Q′
1, and let� be a realizable

expansion ofQ1 in Q′
1. We shall show that there is a realizable expansion ofQ2 in Q′

2.
Define�2 by

�2(v)= �(v) ∩ V (G′
2) (v ∈ V (G2)),

�2(e)= �(e) (e ∈ E(G2)).

(1) For eache ∈ E(G2), �2(e) ∈ E(G′
2) and	2(e)�	′

2(�2(e)).

Subproof:Certainly	1(e)�	′
1(�(e)) and so	

′
1(�(e)) �= ∗, since	1(e) �= ∗; hence

�(e) ∈ E(G′
2) and the claim follows.

(2) For eachv ∈ V (G2), �2(v) �= ∅.

Subproof:If v ∈ �̄(G1) andv is the ith term of�(G1) say, then�(v) contains theith
term of�(G′

1), which belongs toV (G′
2) since�(G

′
1) = �(G′

2). Thus we may assume that
v /∈ �̄(G1). SinceG1 is active, there is an edgee ∈ E(G1) incident withv, and then
e ∈ E(G2) sincev /∈ �̄(G2) andG2 is complemented inG1. Then�(e) is incident with a
vertex of�(v); but every end of�(e) is inV (G′

2) by (1), and so�2(v) �= ∅. This proves (2).

From (1) and (2) it is easy to verify that�2 is an expansion ofQ2 in Q′
2. Now letH1

be a realization ofQ′
1\�(E(G1)) realizing�. LetG′

3 = G′
1 \ G′

2. ThenH1 = H2 ∪ H3
whereHi is a realization of(Q′

1\�(E(G1)))|(G′
i \ (E(G′

i ) ∩ �(E(G1)))) (i = 2,3). Now
for e ∈ E(G1)

e /∈ E(G2) ⇔ 	1(e) = ∗ ⇔ 	2(�(e)) = ∗ ⇔ �(e) /∈ E(G′
2)

and so�(E(G1)) ∩ E(G′
2) = �(E(G2)). Hence

(Q′
1\�(E(G1)))|(G′

2 \ (E(G′
2) ∩ �(E(G1)))) = Q′

2\�(E(G2))

and soH2 is a realization ofQ′
2\�(E(G2)).We claim thatH2 realizes�2. For letv ∈ V (G2).

We must show that�2(v) is the vertex set of a component ofH2. LetC1 be a component
of H1 with V (C1) = �(v). ThenV (C1) contains at most one vertex of�̄(G′

2), since
�(G′

2) = �(G′
1) and� is an expansion ofQ1 in Q′

1. ChooseC2 ⊆ H2, C3 ⊆ H3 such that
C1 = C2 ∪ C3, with V (Ci) = V (C1) ∩ V (Hi) (i = 2,3). SinceC3 contains at most one
vertex of�̄(G′

2) andG
′
3 is a complement ofG

′
2, it follows that|V (C2∩C3)|�1 and hence

C2 is connected, and is therefore a component ofH2, since

V (C2) = V (C1) ∩ V (H2) = �2(v) �= ∅.
This proves thatH2 realizes�2, and completes the proof of the theorem.�

4.12. LetF1 be a well-behaved set of active patchworks, let k�0, and letF2 be a set of
patchworks such that for eachP2 = (G2,�2,�2) ∈ F2 there existsf ∈ dom(�2) with
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�k ends andP1 = (G1,�1,�1) ∈ F1 so thatG2\f = G1 \ A and�(A) = �2(f ) for
some complemented rooted hypergraphA ⊆ G1, andP2\{f } = P1|(G2\{f }). ThenF2 is
well-behaved.

Proof. Let F3 be the set of all patchworks(G3,�3,�3) such that|�̄(G3)|�k and there
exists a march� such that((G−

3 ,�),�3,�3) ∈ F1. By 4.5, F3 is well-behaved. LetF4
be related toF3 asF2 is to F1 in 4.11. By 4.11, F4 is well-behaved. LetF5 be related
to F4 asF2 is to F1 in 4.6. By 4.6, F5 is well-behaved. We claim thatF2 ⊆ F5; for
let P2 = (G2,�2,�2) ∈ F2, and letf, P1 be as in the statement of the theorem. Then
((G−

1 ,�2(f )),�1,�1) ∈ F3, and soP2 \ f ∈ F4, and thereforeP2 ∈ F5. This proves that
F2 ⊆ F5, and the result follows. �

By w applications of4.12, we deduce

4.13. LetF1 be a well-behaved set of active patchworks, let k, w�0 and letF2 be a set
of patchworks such that for eachP2 = (G2,�2,�2) ∈ F2 there existsF ⊆ dom(�2) with
|F |�w andP1 = (G1,�1,�1) ∈ F1, and a rooted locationL = {Af : f ∈ F } in G1,
such that
• G−

2 \F = G−
1 ∩ ⋂

((G1 \ A)− : A ∈ L),
• P2\F = P1|(G2\F), and
• for eachf ∈ F , �(Af ) = �2(f ) and f has�k ends.
ThenF2 is well-behaved.

5. Isolation modulo a subset

In the previous section we gave several ways to construct new well-behaved sets from
old. Now, we use these constructions to begin to bridge the gap between what is given by
the theorem of[3] and what is required by3.1.
If G is a hypergraph or rooted hypergraph, we denoteV (G) ∪E(G) byZ(G). LetT be

a tangle in a hypergraphG, let � be a tie-breaker inG, let ��1, and letW ⊆ Z(G). We
defineM(T ,W, �) to be the set of all separations(A,B) ∈ T such that
• (A,B) has order< � andW�Z(B),
• (A,B) is the(T , T ′)-distinction for some tangleT ′,
• there is no(A′, B ′) ∈ T with (A′, B ′) �= (A,B) satisfying the first two conditions with
A ⊆ A′ andB ′ ⊆ B.

5.1. Let(C,D) ∈ M(T ,W, �), and let(A,B) be the(T , T ′)-distinction for some tangle
T ′. Then eitherA ⊆ C andD ⊆ B, or A ⊆ D andC ⊆ B, or C ⊆ A andB ⊆ D, and if
(A,B) has order< � then one of the first two alternatives holds.

Proof. By theorems9.4 and 10.2 of[2], either one of these three alternatives holds orD ⊆ A

andB ⊆ C; and this last is impossible since(A,B), (C,D) ∈ T . If (A,B) has order< �
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then the third alternative also is impossible, because of the third condition in the definition
ofM(T ,W, �), unless(A,B) = (C,D) when the first alternative holds as well.�

5.2. If (A,B), (A′, B ′) ∈ M(T ,W, �) are distinct thenA ⊆ B ′; andM(T ,W, �) has
cardinality � |W |.

Proof. Suppose thatA�B ′. By 5.1, A ⊆ A′ andB ′ ⊆ B, since(A,B) has order< �
and (A,B) is the (T , T ′)-distinction for someT ′. Similarly, with (A,B) and (A′, B ′)
exchanged, it follows thatA′ ⊆ A andB ⊆ B ′. But then(A,B) = (A′, B ′), a contradiction.
This proves the first claim.
From this, it follows that

E(A) ∪ (V (G) \ V (B)) ((A,B) ∈ M(T ,W, �))

aremutually disjoint, and each contains amember ofW. It follows that|M(T ,W, �)|� |W |,
as required. �

If T is a tangle inG, ��1 is an integer,� is a tie-breaker inG andW ⊆ Z(G), a rooted
locationL in G is said to�-isolateT moduloWif L has order< �, L− ⊆ T , and for each
A ∈ L and every tangleT ′ in G of order�� with ((G \ A)−, A−) ∈ T ′, if (C,D) is the
(T , T ′)-distinction then eitherC ⊆ A− and(G \ A)− ⊆ D, orW�Z(D).
A rooted locationL in a rooted hypergraphG is fine if

⋃
(A− : A ∈ L) = G−. Let

��1 be an integer, letP = (G,�,�) be a patchwork, let� be a tie-breaker inG, let T
be a tangle inG of order��2, and letW ⊆ Z(G) with |W |��. In these circumstances, a
rooted locationL in G is said to beW-suitableif
• L is fine, andL− ⊆ T , andL has order< �2,
• for each tangleT ′ in G of order��2, if (C,D) ∈ L and(D,C) ∈ T ′ and(A,B) is the

(T , T ′)-distinction then eitherA ⊆ C andD ⊆ B, orA ⊆ A∗ andB∗ ⊆ B for some
(A∗, B∗) ∈ M(T ,W, �).

5.3. LetF be a well-behaved set of patchworks and let��1.Then there is a well-behaved
set of patchworksF ′ with the following property. LetP = (G,�,�) be a patchwork, let �
be a tie-breaker in G, let T be a tangle in G of order��2, letW ⊆ Z(G) with |W |��, let
L be a fine rooted location in G that�-isolatesT modulo W, and letF contain a heart of
(P,L). Then there is a rooted locationL′ in G andW ′ ⊆ W such that
• L′ isW ′-suitable andF ′ contains a heart of(P,L′),
• for each(A,B) ∈ M(T ,W ′, �),

◦ V (A ∩ B) ∩ V (C) ⊆ �̄(C) for eachC ∈ L′, and
◦ there is no(C,D) ∈ L′− withA ⊆ C andD ⊆ B.

Proof. LetF ′ be related toF asF2 is toF1 in 4.8,wherek = �2. By4.8,F ′ iswell-behaved,
and we claim that it satisfies the theorem. For letP = (G,�,�), �, T ,W ⊆ Z(G) andL
satisfy the hypotheses of the theorem. ChooseW ′ ⊆ W minimal such thatL �-isolatesT
moduloW ′.
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(1) For each(A,B) ∈ M(T ,W ′, �), there is no(C,D) ∈ L− withA ⊆ C andD ⊆ B.

Subproof:Let (A,B) ∈ M(T ,W ′, �) and suppose that there is such a(C,D). Since
(A,B) ∈ M(T ,W ′, �) there is a tangleT ′ such that(A,B) is the (T , T ′)-distinction,
and there existsz ∈ W ′ \ Z(B). Now from the minimality ofW ′, L does not�-isolateT
moduloW ′ \ {z}, and so there exists(C′,D′) ∈ L− and a tangleT ′′ in G of order��
with (D′, C′) ∈ T ′′ with the property thatW ′ \ {z} ⊆ Z(B ′) and not bothA′ ⊆ C′ and
D′ ⊆ B ′, where(A′, B ′) is the(T , T ′′)-distinction. SinceL does�-isolateT moduloW ′,
it follows thatW ′�Z(B ′) and soz /∈ Z(B ′). HenceB∪B ′ �= G. Moreover, since(A,B) ∈
M(T ,W ′, �), it follows that not bothA ⊆ A′ andB ′ ⊆ B, from the third condition in the
definition ofM(T ,W ′, �). From5.1,A′ ⊆ A andB ⊆ B ′. NowA ⊆ C andD ⊆ B, and so
A′ ⊆ C andD ⊆ B ′; and hence(C,D) �= (C′,D′), since not bothA′ ⊆ C′ andD′ ⊆ B ′.
Moreover,(B ′, A′) ∈ T ′′, andA′ ⊆ C andD ⊆ B ′, and so(D,C) ∈ T ′′ since(D,C) has
order< � andT ′′ has order��. SinceL is a rooted location and(C,D), (C′,D′) ∈ L−
it follows thatD ∪D′ = G−. But (D,C), (D′, C′) ∈ T ′′ contrary to the second axiom for
tangles. This proves (1).

LetX = ⋃
(V (A∩B) : (A,B) ∈ M(T ,W ′, �)).Since|M(T ,W ′, �))|� |W ′|� |W |��

by5.2, it follows that|X|��(�−1). For eachC ∈ L, letf (C) be a rooted hypergraph with
f (C)− = C− and�̄(f (C)) = �̄(C)∪ (X∩V (C)), takingf (C) = C if X∩V (C) ⊆ �̄(C).
Let L′ = {f (C) : C ∈ L}. ThenL′ is a fine rooted location, andL′ has order at most
�(� − 1) more than the order ofL, and hence at most�2 − 1. We observe

(2) For each(C′,D′) ∈ L′− there exists(C,D) ∈ L− with C = C′ andD ⊆ D′; and
E(D′) = E(D), andV (D′) \ V (D) = X ∩ (V (C) \ �̄(C)).

Since|X|��(� − 1) and eachx ∈ X belongs toV (C) \ �̄(C) for at most oneC ∈ L,
we see thatF ′ contains a heart of(P,L′), from the definition ofF ′. SinceT has order
��2 andL− ⊆ T it follows from (2) thatL′− ⊆ T . To verify thatL′ isW ′-suitable, let
T ′ be a tangle of order��2, let (C′,D′) ∈ L′− with (D′, C′) ∈ T ′, and let(A,B) be the
(T , T ′)-distinction. We may assume that:

(3)There is no(A∗, B∗) ∈ M(T ,W ′, �) such thatA ⊆ A∗ andB∗ ⊆ B.

Wemust therefore show thatA ⊆ C′ andD′ ⊆ B. Choose(C,D) as in (2). Then(A,B)

has order at most that of(C,D), and hence< �. If W ′ �⊆ Z(B), then from the definition of
M(T ,W ′, �), there exists some(A∗, B∗) ∈ M(T ,W ′, �) violating (3); soW ′ ⊆ Z(B).
SinceL �-isolatesT moduloW ′ and(D,C) ∈ T ′, it follows thatA ⊆ C andD ⊆ B.
SinceC = C′ it remains to show thatD′ ⊆ B. Let v ∈ V (D′) \ V (D). Thenv ∈ X, and
sov ∈ V (A∗ ∩B∗) for some(A∗, B∗) ∈ M(T ,W ′, �). By 5.1, (3) and the third condition
in the definition ofM(T ,W ′, �), it follows thatA ⊆ B∗ andA∗ ⊆ B; and in particular
v ∈ V (B). ConsequentlyV (D′) \ V (D) ⊆ V (B); and sinceE(D′) = E(D) andD ⊆ B,
it follows thatD′ ⊆ B as required. This proves thatL′ isW ′-suitable. The final statement
holds because of (1) and the definition ofL′. �

If x, y are vertices of a graphH, we say they areconnected in Hif they belong to the
same connected component ofH.
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5.4. LetF be awell-behaved set of patchworks,and let��1.Then there is a well-behaved
set of patchworksF ′ with the following property. LetP = (G,�,�) be a patchwork, let �
be a tie-breaker in G, letT be a tangle in G of order��2, and letW ⊆ Z(G)with |W |��.
Suppose that:
• P is removable,
• L is aW-suitable rooted location in G, such thatF contains a heart of(P,L),
• for each(A∗, B∗) ∈ M(T ,W, �),

◦ V (A∗ ∩ B∗) ∩ V (C) ⊆ �̄(C) for eachC ∈ L, and
◦ there is no(C,D) ∈ L− withA∗ ⊆ C andD ⊆ B∗.

Then there is aW-suitable rooted locationL′ in G such thatF ′ contains a heart of(P,L′),
and for eachC ∈ L′ and each(A∗, B∗) ∈ M(T ,W, �), eitherC− ⊆ A∗ andB∗ ⊆
(G \ C)−, or C− ⊆ B∗ andA∗ ⊆ (G \ C)−.

Proof. Let F ′ be the set of all removable patchworksP ′ such that someP ∈ F is a
condensation ofP ′. By 4.10,F ′ is well-behaved, and we claim the theorem is satisfied. For
let P = (G,�,�), �, T ,W ⊆ Z(G),L be as in the theorem. Let

M(T ,W, �) = {(Ai, Bi) : 1� i�k}.
LetA0 = G− ∩ B1 ∩ · · · ∩ Bk, B0 = A1 ∪ · · · ∪Ak. Then(A0, B0) is a separation ofG−.
For eachC ∈ L and 0� i�k let fi(C) be a rooted hypergraph withfi(C)− = C− ∩ Ai

and�̄(fi(C)) = �̄(C) ∩ V (Ai).
(1) For eachC ∈ L,

• C− = f0(C)
− ∪ f1(C)− ∪ · · · ∪ fk(C)−,

• �̄(C) = �̄(A0) ∪ �̄(A1) ∪ · · · �̄(Ak),
• for 1� i�k, fi(C)− ⊆ Ai andBi ⊆ (G \ fi(C))−, and
• for 0� i < j�k, V (fi(C)) ∩ V (fj (C)) ⊆ �̄(fi(C)) ∩ �̄(fj (C)).

Subproof:The first two statements follow sinceA−
0 ∪ A−

1 ∪ · · · ∪ A−
k = G−. For the

third, let 1� i�k. Then(fi(C))− ⊆ Ai by definition, and soE(Bi) ⊆ E(G \ fi(C));
it remains to prove the same inclusion for vertex sets. Letv ∈ V (Bi), and suppose for
a contradiction thatv /∈ V (G \ fi(C)). Thusv ∈ V (fi(C)) \ �̄(fi(C)). Consequently
v ∈ V (Ai ∩ Bi) ⊆ �̄(C), and yetV (fi(C)) ∩ �̄(C) = �̄(fi(C)), a contradiction. This
proves the third statement. For the fourth, let 0� i < j�k, and letv ∈ V (fi(C)) ∩
V (fj (C)). Thenv ∈ V (C) ∩ V (Ai) ∩ V (Aj ) ⊆ V (C) ∩ V (Aj ∩ Bj ), and sincej�1 it
follows from the hypothesis thatv ∈ �̄(C). Consequentlyv ∈ �̄(fi(C)) ∩ �̄(fj (C)). This
proves (1).

(2)LetC ∈ L and let K be a grouping feasible inP |C.Then there are groupingsKi feasible
in P |fi(C) (0� i�k) such that for distinct x, y ∈ �̄(C), x and y are adjacent in K if and
only if x and y are connected inK0 ∪ K1 ∪ · · · ∪ Kk.

Subproof:Let H be a realization ofP |C such that for distinctx, y ∈ �̄(C), x andy are
adjacent inK if andonly ifxandyare connected inH. ThenH = H0∪H1∪· · ·∪Hk whereHi

is a realizationofP |fi(C) (0� i�k)by (1). LetKi be thegroupingwithV (Ki) = �̄(fi(C))
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such that distinctx, y ∈ �̄(fi(C)) are adjacent inKi if and only if they are connected in
Hi . By k + 1 applications of (1) and theorem 5.1 of[4], distinctx, y ∈ �̄(C) are connected
in H if and only if they are connected inK0 ∪ K1 ∪ · · · ∪ Kk. This proves (2).

Let L′ = {fi(C) : C ∈ L, 0� i�k}. Then by (1),L′ is a fine rooted location inG, and
L′ ⊆ T , andL′ has order at most that ofL, and hence< �2.
Toverify thatL′ isW-suitable, takeamemberofL′−, say(fh(C),G\fh(C))whereC ∈ L

and 0�h�k. Let T ′ be a tangle inG of order��2 such that(G \ fh(C), fh(C)) ∈ T ′,
and let(A′, B ′) be the(T , T ′)-distinction. We will show that either
• h = 0 andA′ ⊆ f0(C) andG \ f0(C) ⊆ B ′, or
• A′ ⊆ Ai andBi ⊆ B ′ for somei with 1� i�k.
Since(G \ fh(C), fh(C)) ∈ T ′ it follows that ((G \ C)−, C−) ∈ T ′ sinceT ′ has order
��2 and|�̄(C)| < �2. We may assume thatA′ ⊆ C− and(G \C)− ⊆ B ′, since otherwise
the second alternative above holds becauseL isW-suitable. For 1� i�k it is not true that
Ai ⊆ A′ andB ′ ⊆ Bi , since that would imply thatAi ⊆ C− and(G\C)− ⊆ Bi contrary to
the hypothesis.Wemay also assume it is not true thatA′ ⊆ Ai andBi ⊆ B ′, since otherwise
we are done. By5.1 it follows thatAi ⊆ B ′ andA′ ⊆ Bi for 1� i�k, and henceA′ ⊆ A0
andB0 ⊆ B ′. Since(B ′, A′), (G \ fh(C), fh(C)) ∈ T ′, it follows thatfh(C) �⊆ B ′, and so
fh(C) �⊆ B0. Consequentlyh = 0, and the first alternative above holds, as required. This
proves thatL′ isW-suitable.
From (2) and the facts thatP is removable andL, L′ are both fine (and hence their

hearts(G1,�1,�1), (G2,�2,�2) satisfydom(�i ) = E(Gi) (i = 1,2)), it follows that
F ′ contains a heart of(P,L′). Let C ∈ L and 0� i�k. For 1�j�k, if i = j then
fi(C)

− ⊆ Ai = Aj andBj = Bi ⊆ (G \ fi(C))−; and if i �= j thenfi(C)− ⊆ Ai ⊆ Bj

andAj ⊆ Bi ⊆ (G \ fi(C))−. This proves5.4. �

5.5. LetF be a well-behaved set of patchworks and let��1.Then there is a well-behaved
set of patchworksF ′ with the following property. LetP = (G,�,�) be a patchwork, let �
be a tie-breaker in G, letT be a tangle in G of order��2, and letW ⊆ Z(G)with |W |��.
Suppose that
• P is rootless,
• L is aW-suitable rooted location in G such thatF contains a heart of(P,L), and
• for eachC ∈ L and each(A∗, B∗) ∈ M(T ,W, �), either

◦ C− ⊆ A∗ andB∗ ⊆ (G \ C)− or
◦ C− ⊆ B∗ andA∗ ⊆ (G \ C)−.

Then there is a fine rooted locationL′ such thatL′ �2-isolatesT andF ′ contains a heart
of (P,L′).

Proof. Let F1 be the set of active members ofF , and letF2 be defined as in4.13, taking
k = w = �. We claim thatF2 satisfies the theorem. For letP = (G,�,�), �, T ,W,L
be as above. LetL = L1 ∪ L2 whereC ∈ L belongs toL2 if and only if there exists
(A∗, B∗) ∈ M(T ,W, �) with C− ⊆ A∗ andB∗ ⊆ (G \ C)−, andL1 = L \ L2. For
each(A,B) ∈ M(T ,W, �), let f (A,B) be a rooted hypergraph withf (A,B)− = A and
�̄(f (A,B)) = V (A ∩ B). LetL′ = L1 ∪ {f (A∗, B∗) : (A∗, B∗) ∈ M(T ,W, �)}.
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(1)L′ is a fine rooted location.

Subproof:CertainlyL1 and{f (A∗, B∗) : (A∗, B∗) ∈ M(T ,W, �)} are rooted locations
(by 5.2, and sinceP is rootless), and so to check thatL′ is a rooted location it suffices to
show that for eachC ∈ L1 and each(A∗, B∗) ∈ M(T ,W, �),

V (C− ∩ f (A∗, B∗)−) ⊆ �̄(C) ∩ �̄(f (A∗, B∗)),
E(C− ∩ f (A∗, B∗)−) = ∅.

Suppose, therefore, thatC ∈ L1 and (A∗, B∗) ∈ M(T ,W, �). Then sinceC /∈ L2 it
follows that not bothC− ⊆ A∗ andB∗ ⊆ (G \ C)−. Hence from the hypothesis of the
theorem,C− ⊆ B∗ andA∗ ⊆ (G \ C)−. Sincef (A∗, B∗)− = A∗, and

V (C− ∩ A∗) ⊆ V (C− ∩ (G \ C)−) ∩ V (A∗ ∩ B∗) = �̄(C) ∩ �̄(f (A∗, B∗)),
E(C− ∩ A∗) ⊆ E(A∗ ∩ B∗) = ∅

it follows thatL′ is a rooted location. To see that it is fine, we observe that
⋃

(C− : C ∈ L′) =
⋃

(C− : C ∈ L1) ∪
⋃

(f (A∗, B∗)− : (A∗, B∗)
∈ M(T ,W, �))

=
⋃

(C− : C ∈ L1) ∪
⋃

(A∗ : (A∗, B∗) ∈ M(T ,W, �))

⊇
⋃

(C− : C ∈ L1) ∪
⋃

(C− : C ∈ L2) = G−

the inclusion holding since ifC ∈ L2 thenC− ⊆ A∗ for some(A∗, B∗) ∈ M(T ,W, �).
This proves (1).

(2)L′ �2-isolatesT .

Subproof:NowL′− ⊆ T and its members have order< �2. Let T ′ be a tangle of order
��2, let (A′, B ′) ∈ L′− with (B ′, A′) ∈ T ′, and let(A,B) be the(T , T ′)-distinction.
Suppose first that(A′, B ′) ∈ L−

1 . Then sinceL isW-suitable, eitherA ⊆ A′ andB ′ ⊆ B or
A ⊆ A∗ andB∗ ⊆ B for some(A∗, B∗) ∈ M(T ,W, �). The first is the desired conclusion,
and we assume the second. Then(B∗, A∗) ∈ T ′ sinceA ⊆ A∗ and(B,A) ∈ T ′ andT ′
has order��2 and(B∗, A∗) has order< ���2. Since(A′, B ′) /∈ L−

2 , it follows as in the
proof of (1) thatA′ ⊆ B∗, and soB∗ ∪ B ′ = G−, a contradiction to the second tangle
axiom since(B ′, A′), (B∗, A∗) ∈ T ′. We may assume then that(A′, B ′) /∈ L−

1 ; and so
(A′, B ′) ∈ M(T ,W, �), and therefore(A′, B ′) has order< �. Since(B ′, A′) ∈ T ′ it
follows that (A,B) has order at most that of(A′, B ′) and hence< �. From5.1, either
A ⊆ A′ andB ′ ⊆ B, orA ⊆ B ′ andA′ ⊆ B. The first is the desired conclusion and the
second is impossible since(B ′, A′), (B,A) ∈ T ′. This proves (2).

Now |�̄(f (A,B))| < � for each(A,B) ∈ M(T ,W, �), and the heart of(P,L) in F
is active (sinceL is fine) and hence belongs toF1. Consequently,(P,L′) has heart inF2.
This proves5.5. �
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By applying5.3–5.5 in turn, we deduce:

5.6. LetF be awell-behaved set of patchworks,and let��1.Then there is a well-behaved
set of patchworksF ′ with the following property. LetP = (G,�,�) be a rootless removable
patchwork, let�bea tie-breaker inG, letT bea tangle inGoforder��2,and letW ⊆ Z(G)

with |W |��.Suppose thatL is a fine rooted location in G such thatL �-isolatesT modulo
W, andF contains a heart of(P,L). Then there is a fine rooted locationL′ in G such that
L �2-isolatesT andF ′ contains a heart of(P,L′).

From3.1and5.6we deduce the main result of this section:

5.7. Let� be a well-quasi-order, letF be a well-behaved set of patchworks, and let��1.
Let Pi = (Gi,�i ,�i ,	i ) (i = 1,2, . . .) be a countable sequence of rootless robust�-
patchworks. For eachi�1 let �i be a tie-breaker inGi ; and suppose that for each tangle
T in Gi of order��, there existW ⊆ Z(Gi) with |W |�� and a fine rooted locationL in
Gi , such thatL �-isolatesT moduloW, andF contains a heart of((Gi,�i ,�i ),L). Then
there existj > i�1 such thatPi is simulated inPj .

Proof. DefineF ′ as in 5.6, and letF ′′ be the set of all rootless partial�-patchworks
(G,�,�,	) with dom(	) = ∅ and(G,�,�) ∈ F ′. ThusF ′′ is a well-behaved set of
partial�-patchworks. We claim that the hypothesis of3.1are satisfied, withF , � replaced
by F ′′, �2. For let i�1, letQ = (Gi,�i ,�i ), and letT be a tangle inGi of order��2.
ThenT has order��, and so there existW, L as in the hypothesis of5.7. HenceQ, �i , Ti ,
W, L satisfy the hypothesis of5.6 (in particularQ is removable, since it is robust), and so
there is a fine rooted locationL′ inGi which�2-isolatesT , such thatF ′ contains a heart of
(Q,L′). SinceL′ is fine andQ is rootless, the heart of(Pi,L′) belongs toF ′′. Consequently
the hypotheses of3.1are satisfied, and the result follows from3.1. �

6. Eliminating the tie-breaker

Our next objective is to prove a form of5.7with no tie-breakers. LetG be a hypergraph
and letf ∈ E(G). For eachx ∈ Z(G) let �(x) > 0 be a real number, such that the
numbers�(x) (x ∈ Z(G)) are rationally independent. For each separation(A,B) ofGwith
f ∈ E(A), we define

�(A,B) = (|V (A ∩ B)|,�(�(x) : x ∈ Z(G) \ Z(A)),�(�(x) : x ∈ V (A ∩ B))).

Thus each�(A,B) is a triple of real numbers. We orderR3 lexicographically, that is,
(a1, a2, a3) < (b1, b2, b3) if for somek ∈ {1,2,3}, ai = bi for 1� i < k andak < bk. If
(A,B) is a separation withf ∈ E(B), we define�(A,B) = �(B,A).

6.1. � is a tie-breaker.
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Proof.We must verify the three axioms. Suppose first that(A,B), (C,D) are separations
and�(A,B) = �(C,D). We may assume thatf ∈ E(A) andf ∈ E(C). Hence|V (A ∩
B)| = |V (C ∩ D)|, andZ(G) \ Z(A) = Z(G) \ Z(C), that is,A = C, since the�’s are
rationally independent; and for the same reason,V (A ∩ B) = V (C ∩ D). SinceE(A) =
E(C) it follows thatE(B) = E(D); and sinceV (A ∩ B) = V (C ∩ D), it follows that
B = D. Thus(A,B) = (C,D). This proves the first axiom, for the “if” part of the first
axiom is clear.
For the second axiom, let(A,B), (C,D) be separations, and suppose that�(A∪C,B ∩

D) > �(A,B) and�(A ∩ C,B ∪ D)��(C,D). Now (A ∪ C,B ∩ D) has order at least
that of (A,B), and(A ∩ C,B ∪ D) has order at least that of(C,D). But the sum of the
orders of(A ∪ C,B ∩ D) and(A ∩ C,B ∪ D) equals the sum of the orders of(A,B) and
(C,D), and so we have equality; that is,(A∪C,B ∩D) has the same order as(A,B), and
(A ∩ C,B ∪ D) has the same order as(C,D).
Suppose first thatf ∈ E(A). Since�(A ∪ C,B ∩ D) > �(A,B), it follows that

�(�(x) : x ∈ Z(A ∪ C))��(�(x) : x ∈ Z(A))

and soC ⊆ A (since�(x) > 0 for all x). HenceV ((A∪C)∩ (B ∩D)) ⊆ V (A∩B), and so
equality holds since these two sets have the same cardinality. But then�(A∪C,B ∩D) =
�(A,B), a contradiction.
Thusf ∈ E(B). Suppose thatf ∈ E(D). Since�(A∩C,B ∪D)��(C,D)we deduce,

as above, thatB ⊆ D andV ((A∩C)∩ (B ∪D)) = V (C ∩D), and so�(A∩C,B ∪D) =
�(C,D). By the first axiom,(A ∩ C,B ∪ D) = (C,D) or (D,C), and sincef ∈ E(D) it
follows that(A∩C,B ∪D) = (C,D). ThusC ⊆ A andB ⊆ D, and so(A∪C,B ∩D) =
(A,B). But �(A ∪ C,B ∩ D) �= �(A,B), a contradiction.
We have shown then thatf /∈ E(A) andf /∈ E(D), and sof ∈ E(B ∩ C). Since

�(A ∪ C,B ∩ D) > �(A,B) it follows that

�(�(x) : x ∈ Z(A ∪ C))��(�(x) : x ∈ Z(B)).

Since�(A ∩ C,B ∪ D)��(C,D) it follows that

�(�(x) : x ∈ Z(B ∪ D))��(�(x) : x ∈ Z(C)).

ButZ(A ∪ C) ⊇ Z(C) andZ(B ∪ D) ⊇ Z(B), and so we have equality throughout, that
is Z(A ∪ C) = Z(C) andZ(B ∪ D) = Z(B); and consequentlyA ⊆ C andD ⊆ B.
Moreover,

�(�(x) : x ∈ Z(B)) = �(�(x) : x ∈ Z(C))

and soB = C. Since(A,B) is a separation andA ⊆ C = B, it follows thatB = G.
From comparing the third components of the tie-breaker, we deduce

�(�(x) : x ∈ V ((A ∪ C) ∩ B ∩ D)) > �(�(x) : x ∈ V (A ∩ B)),

that is,

�(�(x) : x ∈ V (D)) > �(�(x) : x ∈ V (A))
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and

�(�(x) : x ∈ V ((A ∩ C) ∪ (B ∪ D)))��(�(x) : x ∈ V (C ∩ D)),

that is,

�(�(x) : x ∈ V (A))��(�(x) : x ∈ V (D)),

a contradiction. This proves the second axiom.
The third axiom is clear because of the lexicographical order onR3. This proves6.1. �

We call a tie-breaker� as in6.1the tie-breakerdefined by f, �; we call tie-breakers of this
form edge-based.
LetG be a rooted hypergraph, and letT be a tangle inG. A rooted locationL is linked

to T if L− ⊆ T and for eachA ∈ L there is no(A′, B ′) ∈ T of order less than|�̄(A)| with
A− ⊆ A′ andB ′ ⊆ (G\A)−. If T is a tangle in a hypergraphGof order�, andW ⊆ V (G)

with |W | < �, we define

T /W = {(A/W,B/W) : (A,B) ∈ T ,W ⊆ V (A ∩ B)}.
It is shown in theorem 6.2 of[2] thatT /W is a tangle inG/W of order� − |W |.
If L is a rooted location in a rooted hypergraphG, andW ⊆ V (G), andW ⊆ �̄(A) for

all A ∈ L, then{A/W : A ∈ L} is a rooted location inG/W which we denote byL/W .

6.2. Let G be a rooted hypergraph, and letT be a tangle in G of order��1. Let� be an
edge-based tie-breaker in G defined by f, � say. LetL be a rooted location in G with order
< �, and letW ⊆ V (G) be such thatW ⊆ �̄(A) for all A ∈ L. LetL/W be linked to
T /W . ThenL �-isolatesT moduloW ∪ {f }.

Proof. Let A ∈ L, and letB = G \ A. SinceL/W is linked toT /W , it follows that
(A−/W,B−/W) ∈ T /W , and so(A−, B−) ∈ T . Let T ′ be a tangle inG of order��
with (B−, A−) ∈ T ′, and let(C,D) be the(T , T ′)-distinction. We must show that either
C ⊆ A− andB− ⊆ D, orW ∪ {f }�Z(D). We assume thatW ∪ {f } ⊆ Z(D), and in
particularf ∈ E(D).

(1) �(A− ∩ C,B− ∪ D)��(C,D)

Subproof:We may assume that the separation(A− ∩ C,B− ∪ D) has order at most that
of (C,D), for otherwise the desired inequality holds. But(C,D) has order at most the
order of(A−, B−), since(A−, B−) ∈ T and(B−, A−) ∈ T ′, and hence(C,D) has order
< �. Consequently(A− ∩ C,B− ∪ D) has order< �, and so(A− ∩ C,B− ∪ D) ∈ T
since(A−, B−) ∈ T . But (A− ∩ C,B− ∪ D) /∈ T ′ since(B−, A−), (D,C) ∈ T ′ and
(A− ∩ C) ∪ B− ∪ D = G−. Consequently(B− ∪ D,A− ∩ C) ∈ T ′. Since(C,D) is the
(T , T ′)-distinction it follows that�(A− ∩ C,B− ∪ D)��(C,D). This proves (1).
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By (1) and the second tie-breaker axiom and6.1, �(A− ∪ C,B− ∩ D)��(A−, B−). In
particular,(A− ∪ C,B− ∩ D) has order< �, and so(A− ∪ C,B− ∩ D) ∈ T (because
(B− ∩ D,A− ∪ C) /∈ T by the second tangle axiom, since(A−, B−), (C,D) ∈ T ).
But W ⊆ V (A− ∩ B−) sinceW ⊆ �̄(A); andW ⊆ V ((A− ∪ C) ∩ (B− ∩ D)) since
W ⊆ V (D) by our previous assumption. SinceL/W is linked toT /W , andA/W ∈ L/W ,
and((A− ∪C)/W , (B− ∩D)/W) ∈ T /W , it follows that the order of(A−/W,B−/W) is
at most that of((A− ∪C)/W , (B− ∩D)/W); that is, the order of(A−, B−) is at most that
of (A− ∪ C,B− ∩ D). Since�(A− ∪ C,B− ∩ D)��(A−, B−), it follows that(A−, B−)
has the same order as(A− ∪ C,B− ∩ D).
Now the sum of the orders of(A− ∪C,B− ∩D) and(A− ∩C,B− ∪D) equals the sum

of the orders of(A−, B−) and(C,D); and so(A− ∩ C,B− ∪ D) has the same order as
(C,D). Since�(A− ∩ C,B− ∪ D)��(C,D), andf ∈ E(D), it follows that

�(�(x) : x ∈ Z(B− ∪ D))��(�(x) : x ∈ Z(D))

and soB− ⊆ D. Hence

V ((A− ∩ C) ∪ (B− ∪ D)) ⊆ V (C ∩ D);
but these two sets have the same cardinality, and so equality holds. Consequently�(A− ∩
C,B−∪D) = �(C,D), and soA−∩C = C by the first tie-breaker axiom (forA−∩C �= D

sincef ∈ E(D)). HenceC ⊆ A−. This proves6.2. �

By combining6.2and5.7we obtain a form of5.7which does not involve tie-breakers,
the following.

6.3. Let� be a well-quasi-order, letF be a well-behaved set of patchworks, and let��1.
Let Pi = (Gi,�i ,�i ,	i ) (i = 1,2, . . .) be a countable sequence of rootless robust�-
patchworks. Suppose that for each tangleT in Gi of order ��, there existW ⊆ V (Gi)

with |W | < � and a fine rooted locationL in Gi , such that
• W ⊆ �̄(A) for all A ∈ L,
• L/W is linked toT /W , and
• F contains a heart of((Gi,�i ,�i ),L).
Then there existj > i�1 such thatPi is simulated inPj .

Proof. If P, P ′ are two rootless�-patchworks withE(P ) = E(P ′) = ∅, then one ofP,
P ′ is simulated in the other. We may therefore assume thatE(Gi) �= ∅ for eachi�1. For
i�1, let �i be an edge-based tie-breaker inGi defined byfi , �i say. We claim that the
hypotheses of5.7are satisfied. For letT be a tangle inGi of order��, and letT ′ be the
set of all(A,B) ∈ T of order< �. ThenT ′ is a tangle inGi of order�. ChooseW, L as
in 6.3 (with T replaced byT ′). SinceL/W is linked toT ′/W , it follows thatL/W has
order< � − |W |, and soL has order< �. SinceL/W is linked toT ′/W , it follows that
L/W is linked toT /W . By 6.2,L �-isolatesT moduloW ∪ {fi}. Since|W ∪ {fi}|��, the
hypotheses of5.7are satisfied. The result follows from5.7. �
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7. Another adjustment

Before we apply6.3 to Wagner’s conjecture, it is convenient to make one further small
adjustment to it.Webeginwith the following lemma.Apatchwork(G,�,�)or�-patchwork
(G,�,�,	) is free if �(e) is free for alle ∈ E(G).

7.1. Let P = (G,�,�) be a free patchwork andW ⊆ �̄(G). Let K be a grouping with
V (K) = �̄(G) \ W . Then K is feasible inP/W if and only ifK ∪ NW is feasible in P.

Proof. If K is feasible inP/W , let

H ′ = NV (G)\W ∪
⋃

(
′
e : e ∈ E(G))

be a realization ofP/W such that for distinctx, y ∈ �̄(G) \W , x andy are connected inH
if and only if they are adjacent inK. For eache ∈ E(G) there exists
e ∈ �(e) such that
the vertices of
e inWare isolated vertices of
e and their removal yields


′
e. Let

H = NV (G) ∪
⋃

(
e : e ∈ E(G)).

Then for distinctx y ∈ �̄(G), x andy are connected inH if and only if they are adjacent in
K ∪ NW , as required.
For the converse, letK ∪ NW be feasible inP, and choose a corresponding realization

H = NV (G) ∪
⋃

(
e ∈ E(G)).

SinceP is free, we may chooseH and the
e’s such that for eache ∈ E(G)) every vertex of
W in V (
e) is an isolated vertex of
e. ThenH/W is a realization ofP/W with the required
properties. This proves7.1. �

7.2. LetF be a well-behaved set of patchworks and let��1.Then there is a well-behaved
set of patchworksF ′ with the following property. LetP = (G,�,�) be a free patchwork,
letT be a tangle in G of order��, letW ⊆ V (G) with |W | < �, and letL be a fine rooted
location inG/W such thatL is linked toT /W , andF contains a heart of(P/W,L).Then
there is a fine rooted locationL′ in G such that
• W ⊆ �̄(A) for all A ∈ L′
• L′/W = L and hence is linked toT /W , and
• F ′ contains a heart of(P,L′).

Proof. Let F ′ be related toF asF2 is related toF1 in 4.9. By 4.9, F ′ is well-behaved,
and we claim it satisfies the theorem. For letP, T ,W, L be as above. LetL′ be the rooted
location inG such thatW ⊆ �̄(A) for everyA ∈ L′ andL′/W = L. We claim thatL′
has the desired properties. Certainly the first two statements holds. To see the third, let
P ′ = (G′,�′,�′) be a heart of(P,L′). ThenP ′/W is defined. We claim thatP ′/W is a



N. Robertson, P.D. Seymour / Journal of Combinatorial Theory, Series B 92 (2004) 325–357347

heart of(P/W,L). To show this, it suffices to show that ifA ∈ L′ andK is a grouping with
V (K) = �̄(A) \W , thenK is feasible in(P/W)|(A/W) if and only ifK ∪NW is feasible
in P |A. But this follows from7.1, since(P/W)|(A/W) = (P |A)/W , andP |A is free.
HenceP ′/W is a heart of(P/W,L) as claimed. SinceF contains a heart of(P/W,L),
we may chooseP ′ such thatP ′/W ∈ F . But dom(�′) = E(G′) since no edge ofG′ is an
edge ofG, and soP ′ ∈ F ′. This proves that the third statement holds, as required.�

Incidentally, the hypothesis thatP be free in7.2 is not really necessary, but it makes the
proof slightly easier, and our only application is to a free patchwork anyway. From7.2and
6.3we obtain another variant of3.1, as follows.

7.3. Let � be a well-quasi-order, let F be a well-behaved set of patchworks, and let
��1. Let Pi = (Gi,�i ,�i ,	i ) (i = 1,2, . . .) be a countable sequence of free rootless
�-patchworks. Suppose that for each tangleT inGi of order��, there existW ⊆ V (Gi)

with |W | < � and a fine rooted locationL in G/W , such thatL is linked toT /W , andF
contains a heart of((Gi,�i ,�i )/W,L).Then there existj > i�1such thatPi is simulated
in Pj .

Proof. LetF ′ be as in7.2.We claim that the hypotheses of6.3are satisfied (withF replaced
by F ′). For letT be a tangle inGi of order��. LetW, L be as in the hypotheses of7.3,
and chooseL′ as in the proof of7.2. Thus the hypotheses of6.3hold (withL replaced by
L′) and the result follows from6.3. �

8. Surfaces and paintings

Nowwecome to the secondpart of thepaper,whereweshall apply7.3to deduceWagner’s
conjecture from a theorem about hypergraphs drawn on a fixed surface. In this paper, by a
surfacewe mean a compact connected 2-manifold with (possibly null) boundary. If� is a
surface, its boundary is denoted bybd(�), and each component ofbd(�) is acuffof �. An
O-arc in � is a subset of� homeomorphic to a circle; every cuff is thus anO-arc. A line is
a subset homeomorphic to the closed interval [0,1]. IfX ⊆ � the closure ofX is denoted
by X̄ andX̄ \ X by X̃.
A painting� in a surface� is a triple(U,N, ), whereU ⊆ � is closed,N ⊆ U is finite,

and
• bd(�) ⊆ U , andU \ N has only finitely many arc-wise connected components, called
cells,

• for each cellc, c̄ is a closed disc and|c̃| = 2 or 3 andc̄ ∩ N = c̃ ⊆ bd(c̄),
• for each cellc, if c ∩ bd(�) �= ∅ then|c̃| = 2, andc̄ ∩ bd(�) is a line and its ends are
the members of̃c,

• for each cellc, (c) is a march� with �̄ = c̃,
We writeU(�) = U,N(�) = N, � = , and denote the set of cells of� by C(�). The

members ofN(�) are callednodes. If c ∈ C(�) and 1� i� |c̃|, we call theith term of(c)
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the ith node of c; and in particular, the first node ofc is its tail. A cell c is aborder cellif
c ∩ bd(�) �= ∅, and otherwise isinternal. Nodes inbd(�) areborder nodesand the others
areinternal. If � is a cuff, we say a cellc or noden borders� if c∩ � �= ∅ or n ∈ �. The
sizeof a cellc is |c̃|. The components of� \U(�) are theregionsof �. A subsetX ⊆ � is
�-normal if X ∩ U(�) ⊆ N(�). A painting� is 3-connectedif
• for every�-normal O-arcF in � with |F ∩N(�)|�2 there is a closed disc� ⊆ � with

bd(�) = F which includes at most one cell of� and with� ∩ N(�) ⊆ F ,
• for every�-normal lineF in � with |F ∩ N(�)|�2 and with both ends inbd(�) and
with no other point inbd(�), there is a closed disc� ⊆ �with F ⊆ bd(�) ⊆ F ∪bd(�)
which includes at most one cell of� and with� ∩ N(�) ⊆ F .
Let� be a painting in�. We define itsskeletonsk(�) to be the subgraph ofKN(�) with

vertex setN(�) in which for distinctn1, n2 ∈ N(�), n1 andn2 are adjacent insk(�) if and
only if there is a cellc ∈ C(�) with n1, n2 ∈ c̃.
Let�, �′ be paintings in�. Let � be a function with domainC(�) ∪ N(�) and with the

following properties:
• �(c) ∈ C(�′) for eachc ∈ C(�), and�(c) has the same size asc, and for each cuff�, c
borders� if and only if �(c) does (and hencec is internal if and only if�(c) is),

• �(c1) �= �(c2) for all distinctc1, c2 ∈ C(�),
• for each cuff�, if c ∈ C(�) borders� and we orient� so that the tail ofc immediately
precedesc ∩ �, then the tail of�(c) immediately precedes�(c) ∩ � under the same
orientation of�,

• for eachn ∈ N(�), �(n) is a non-null induced connected subgraph ofsk(�′),
• �(n1) and�(n2) are disjoint for distinctn1, n2 ∈ N(�),
• for all n ∈ N(�) andc ∈ C(�) and 1� i� |c̃|, n is theith node ofc if and only if �(n)
contains theith node of�(c),

• for every border cellc′ ∈ C(�′), if c′ /∈ �(C(�)) then the nodes ofc′ are adjacent in�(n)
for somen ∈ N(�).

We call such a function� a linear inflationof � in �′ (There are no “nonlinear” inflations
in this paper, but there were in[5].) Theorem 2.1 of[5] implies the following (Note that
there is a minor discrepancy between the meanings of “painting” in these two papers; in
this paper, if|c̃| = 2 then the closure ofc is a disc, while in[5], the closure ofc is a line.
But it is easy to convert from one version to the other; make the discs narrow and the lines
thick.)

8.1. Let � be a surface and let� be a well-quasi-order. For eachi�1 let �i be a3-
connected painting in� and let	i : C(�i ) → E(�) be a function. Then there existj >

i�1 and a linear inflation� of�i in �j such that	i (c)�	j (�(c)) for eachc ∈ C(�i ).

The objective of the next two sections is to deduceWagner’s conjecture from8.1and the
main theorem of[3].

9. Patchworks from a surface

We wish now to discuss certain patchworks associated with paintings in a surface. Let�
be a surface, and for each cuff� let�(�)�0 be an integer.We call(�,�) agraded surface.
Let � be a 3-connected painting in�, and letG be a hypergraph withN(�) ⊆ V (G) and
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(C(�) = E(G), such that for eachn ∈ N(�) andc ∈ C(�), n ∈ c̃ if and only ifn is incident
with c in G. For each border noden ∈ N(�), let�(n) ⊆ V (G), such that
• for eachn ∈ N(�) ∩ bd(�), �(n) ∩ N(�) = ∅ and|�(n)| = �(�), where� is the cuff
bordered byn; for nodesn1, n2 bordering distinct cuffs,�(n1) ∩ �(n2) = ∅; and

V (G) = N(�) ∪
⋃

(�(n) : n ∈ N(�) ∩ bd(�)),

• for each internal cellc, the set of ends ofc in G is c̃; and for each border cellcwith n1,
n2 the set of ends ofc in G is �(n1) ∪ �(n2) ∪ {n1, n2},

• if n1,n2,n3,n4 ∈ N(�)border thesamecuff in order, then�(n1)∩�(n3) ⊆ �(n2)∪�(n4).
In these circumstances,(�,�) is said to be a(�,�)-hull for G. Now letP = (G,�,�)

be a patchwork. We say thatP is (�,�)-hulled if there is a(�,�)-hull (�,�) for G− such
that
• for each internal cellc ∈ C(�), �(c) is free,
• for each border cellc ∈ C(�) with c̃ = {n1, n2}, there is a pairingMc with V (Mc) =

�(n1)∪ �(n2)∪ {n1, n2}, such thatn1, n2 are adjacent inMc, andMc has|�(n1)| + 1=
|�(n2)|+1components, eachcontainingonevertexof�(n1)∪{n1}andoneof�(n2)∪{n2}
(possibly the same), and either

◦ Mc ∈ �(c) or
◦ Mc \ n1n2 ∈ �(c) (wheren1n2 denotes the edge ofMc joining n1, n2) and there is
an internal cellc′ of � with n1, n2 ∈ c̃′.

• �(G) = 0 anddom(�) = E(G); and for each internal cellc, and for 1� i� |c̃| the ith
term of�(c) is theith node ofc.
The main result of this section is the following.

9.1. For every graded surface(�,�), the set of all(�,�)-hulled patchworks is well-
behaved.

Proof. Let � be a well-quasi-order. Letr = max �(�), taken over all cuffs�, and
r = 0 if bd(�) = ∅. Let �0 be the well-quasi-order withE(�0) the set of all 7-tuples
(�,�0,�1,�2,�,�, t) where
• � is a march with�2r + 3 terms,
• �0, �1, �2 are marches in̄�,
• � is a patch withV (�) = �̄,
• � ∈ E(�),
• t = 0 or 1,
where we say that(�,�0,�1,�2,�,�, t)�(�′,�′

0,�
′
1,�

′
2,�

′,�′, t ′) if t = t ′, ���′, �
and�′ have the same lengthk say, and the bijection from̄� to �̄′ mapping� to�′ also maps
�i to�′

i (i = 0,1,2) andmaps� to�′. It is easy to see that�0 is indeed a well-quasi-order.
We may assume thatE(�0) ∩ E(�) = ∅; let�1 = � ∪ �0.
Now letP = (G,�,�,	) be an�-completion of a(�,�)-hulled patchwork. Let(�,�)

be a(�,�)-hull for P. For each cuff� let c� be a cell of� bordering�. For each noden
bordering� let us choose a march�(n) with �̄(n) = �(n), such that for each cellc �= c�
bordering� with nodesn1, n2 and for 1� i��(�), theith term of�(n1) and theith term
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of �(n2) belong to the same component ofMc (whereMc is as in the second part of the
definition of(�,�)-hulled patchwork).
For eachc ∈ C(�) we define�(c) as follows. Ifc is internal we let�(c) = 	(c), and so

we assume thatc borders a cuff�, with nodesn1, n2, wheren1 is the first node ofc. We
define

�(c) = (�(c), (n1, n2),�(n1),�(n2),�(c),	(c), t),

wheret = 0 if c �= c� andt = 1 if c = c�.
In view of 8.1, to complete the proof it suffices (cf.4.3) to show that ifP = (G,�,�,	)

and(�,�) is a(�,�)-hull for Pwith groupings denoted byMc as before, and� is defined
as above, and alsoP ′ = (G′,�′,�′,	′), (�′,�′), M ′

c′ , �
′ are related similarly (with the

same graded surface and same well-quasi-orders�,�1) and� is a linear inflation of� in�′
such that�(c)��′(�(c)) for eachc ∈ C(�), thenP is simulated inP ′. Let �(n) (for each
border noden) be defined as before, and let�′(n′) be defined analogously for each border
noden′ of �′.

(1) For each cuff�, �(c�) = c′
�.

Subproof:Let �(c�) = c′. Thenc′ borders� (since� is a linear inflation) and�(c�)�
�′(c′), and so the seventh term of�′(c′) is 1. This proves (1).

For v ∈ V (G) \ N(�) we define�(v) to be the set of all verticesv′ ∈ V (G′) such that
there exist a cuff� andn ∈ N(�) ∩ � andn′ ∈ V (�(n)) ∩ � and an integeri > 0 such
that v is the ith term of�(n) andv′ is the ith term of�′(n′). For n ∈ N(�) we define
�(n) = V (�(n)). Forc ∈ C(�) we define�(c) = �(c). Our next objective is to show that�
is an expansion ofP in P ′.

(2) For eachv ∈ V (G), �(v) �= ∅.

Subproof:If v ∈ N(�) then�(v) is not null and so�(v) �= ∅. If v ∈ �(n) for some
n ∈ N(�) ∩ � where� is a cuff, letv be theith term of�(n), let n′ ∈ V (�(n)) ∩ �, and
let v′ be theith term of�′(n′). Thenv′ ∈ �(v) and so�(v) �= ∅. This proves (2).

(3) Let v ∈ V (G) \ N(�) and let v′ ∈ �(v). For eachn ∈ N(�) ∩ bd(�) and n′ ∈
V (�(n)) ∩ bd(�), if v′ is the ith term of�′(n′) then v is the ith term of�(n).

Subproof:By the third condition in the definition of a(�,�)-hull, there is a lineF ⊆ �
for some cuff�, such that for eachn′ ∈ N(�) ∩ bd(�), v′ ∈ �′(n′) if and only if n′ ∈ F .
Let us say thatn′ ∈ N(�′)∩F isgoodif for somei > 0,v′ is theith term of�′(n′) andv is
the ith term of�(n) wheren′ ∈ V (�(n)). Certainly some node inN(�′) ∩ F is good since
v′ ∈ �(v); and we wish to prove that all are good. It suffices therefore to show that ifn′

1,
n′
2 ∈ N(�′)∩F are consecutive andn′

1 is good then so isn
′
2. Letv

′ be theith term of�′(n′
1)

and thejth term of�′(n′
2); and letn

′
1 ∈ V (�(n1)), n′

2 ∈ V (�(n2)). Thenv is the ith term
of �(n1), and we must show that it is thejth term of�(n2). Let c′ ∈ C(�) border� with
nodesn′

1, n
′
2. If n1 = n2 thenc′ /∈ �(C(�)) and soc′ �= c′

� by (1); hencei = j because
the ith term of�′(n′

1) and thejth term of�′(n′
2) are equal and hence belong to the same
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component ofM ′
c′ and the claim is trivial. We assume then thatn1 �= n2. Hencec′ = �(c)

for somec ∈ C(�) (because otherwisen′
1, n

′
2 would be adjacent in and hence both belong

to some�(n) for n ∈ N(�), contrary ton1 �= n2). Since�(c)��′(c′) and theith term of
�′(n′

1) is thejth term of�
′(n′

2) it follows that theith term of�(n1) is thejth term of�(n2),
that is,v is thejth term ofn2. This proves (3).

(4) For distinctv1, v2 ∈ V (G), �(v1) ∩ �(v2) = ∅.
Subproof:Letv′ ∈ �(v1)∩�(v2). If v′ ∈ N(�′) thenv1,v2 ∈ N(�) and henceV (�(v1))∩

V (�(v2)) �= ∅ and sov1 = v2. If v′ /∈ N(�′) thenv1, v2 /∈ N(�) and there existn1 ∈
N(�) ∩ bd(�) andn′

1 ∈ V (�(n1)) ∩ bd(�) andi > 0 such thatv1 is theith term of�′(n′
1)

andv′ is theith term of�′(n′
1). Sincev

′ ∈ �(v2) it follows from (3) thatv2 is theith term
of �(n1) and hencev1 = v2. This proves (4).

(5)For eachc ∈ C(�), �(c) and�′(�(c)) have the same length k say, and for1� i�k, �(v)
contains the ith term of�′(�(c)) where v is the ith term of�(c).

Subproof:Let c′ = �(c). Since�(c)��′(c′) and|c̃| = |c̃′| it follows that�(c) and�′(c′)
have the same lengthk say. Let 1� i�k, let v be theith term of�(c), and letv′ be theith
term of�′(c′). We must show thatv′ ∈ �(v). If c is internal then so isc′, andv is the ith
node ofc and hence�(v) = V (�(v)) contains theith node ofc′, that is,v′ as required. (We
are using here the third condition in the definition of(�,�)-hulled.) We assume then that
c and hencec′ are border cells. Ifv ∈ N(�) thenv ∈ c̃; let v be thejth node ofc. Then
since�(c)��′(c′), v′ is thejth node ofc′, and hence belongs to�(v) = V (�(v)) since�
is a linear inflation. We assume then thatv /∈ N(�). Choosen ∈ c̃ with v ∈ �(n), and letv
be thejth term of�(n). Let n′ be the corresponding node ofc′ (that is, the first node ofc′
if and only if n is the first node ofc). Since�(c)��′(c′), v′ is thejth term of�′(n′) and so
v′ ∈ �(v). This proves (5).

(6) For eachc ∈ C(�), 	(c)�	′(�(c)) and the bijection from̄�(c) to �̄′(�(c)) mapping
�(c) to �′(�(c)) also maps�(c) to�′(�(c)).

Subproof:If c is internal then	(c) = �(c)��′(�(c)) = 	′(�(c)) and�(c), �′(�(c))
are both free. Ifc is a border cell the claim follows since�(c)��′(�(c)). This proves (6).

From (2)–(6) we deduce

(7) � is an expansion of P inP ′.
For eachc′ ∈ C(�′) \ �(C(�)) we choose
c′ ∈ �(c′) as follows. Ifc′ is a border cell and

M ′
c′ ∈ �(c′), let 
c′ = M ′

c′ . If c′ is a border cell andM ′
c′ /∈ �(c′), let 
c′ = M ′

c′ \ e, where
e is the edge ofM ′

c′ joining the two nodes ofc′. If c′ is internal let
c′ be the groupingK

with V (K) = c̃′ in which distinctn1, n2 ∈ c̃′ are adjacent inK if and only if there exists
n ∈ N(�) with n1, n2 ∈ V (�(n)). Then
c′ ∈ �(c′) since�(c′) is free. Let

H = NV (G′) ∪
⋃

(
c′ : c′ ∈ C(�′) \ �(C(�))).
ThenH is a realization ofP ′\�(E(G)). We shall show that it realizes�.
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(8) For eachn ∈ N(�) there is a component J of H withV (J ) = V (�(n)); and for every
component J of H not of this form withE(J ) �= ∅ there is a cuff� such thatV (J ) ⊆⋃
(�(n) : n ∈ N(�)

⋂
�).

Subproof:Every edge ofH either joins two nodes inN(�′) or joins two vertices both
in

⋃
(�(n) : n ∈ N(�) ∩ �) for some cuff�. Let n′

1, n
′
2 ∈ N(�′); we claim that they

are connected inH if and only if they both belong toV (�(n)) for somen ∈ N(�). First
we prove the “only if” portion. Ifn′

1, n
′
2 are connected inH then they are joined by a path

of H, all the vertices of which belong toN(�′), and so it suffices to prove the claim when
n′
1, n

′
2 are adjacent inH. Choosec

′ ∈ C(�′) \ �(C(�)) such that the edge ofH joining
n′
1, n

′
2 belongs to
c′ . If c′ is internal, then it follows from the definition of
c′ that there

existsn ∈ N(�) with n1, n2 ∈ V (�(n)) as required. Ifc′ is a border cell then from the
seventh condition in the definition of “linear inflation”, it follows thatn′

1, n
′
2 are adjacent

in V (�(n)) for somen, and again the claim holds. This proves “only if”. Now for the “if”
portion, assume thatn′

1, n
′
2 ∈ V (�(n)). Since�(n) is a connected subgraph ofsk(�′), we

may assume thatn′
1, n

′
2 are adjacent insk(�

′) and hence inV (�(n)). Let c′ be a cell of�′

such thatn′
1, n

′
2 ∈ c̃′. Since�(n) contains two different nodes of̃c′, it follows (from the

sixth condition in the definition of “linear inflation”) thatc′ /∈ �(C(�)). If c′ is internal, it
follows thatn′

1, n
′
2 are adjacent inH from the definition of
c′ , so we may assume thatc′ is

a border cell, and there is no internal cellc′′ ∈ C(�′) \ �(C(�)) with n′
1, n

′
2 ∈ c̃′′. But then

again it follows thatn′
1, n

′
2 are adjacent inH from the definition of
c′ . This proves the “if”

assertion, and thereby proves (8).

(9) Let n ∈ N(�) ∩ �, for some cuff�. Let n′
1, n

′
2 ∈ V (�(n)) ∩ � and let1� i��(�).

Then the ith terms of�′(n′
1) and�′(n′

2) are connected in H.

Subproof:Since there is a lineF ⊆ � such that forn′ ∈ N(�′)∩�, n′ ∈ V (�(n)) if and
only if n′ ∈ F , we may assume thatn′

1, n
′
2 are both nodes of some cellc

′ ∈ C(�) bordering
�. Sincen′

1, n
′
2 ∈ V (�(n)) it follows thatc′ /∈ �(C(�)) and soc′ �= c′

� by (1). Hencev′
1,

v′
2 are connected inM

′
c′ from the defining property of�′, and hence they are connected in

H. This proves (9).

(10) Let n1, n2 ∈ N(�) ∩ � for some cuff�, let i > 0, and let the ith term of�(n1) be
the ith term of�(n2). Letn′

1 ∈ V (�(n1))∩ � andn′
2 ∈ V (�(n2))∩ �. Then the ith term of

�′(n′
1) and the ith term of�′(n′

2) are connected in H.

Subproof:By (9) the result holds ifn1 = n2. Let v be theith term of�(n1). Since there
is a lineF ⊆ � such that forn ∈ N(�) ∩ �, v ∈ �(n) if and only if n ∈ F , we may
assume (by the argument used in the proof of (3)) thatn1, n2 are both nodes of some cellc
bordering�. By (9) wemay replacen′

1 by any other element ofV (�(n1))∩�, for the result
holds for the old element if and only if it holds for the new; and hence we may assume that
n′
1 and similarlyn

′
2 are nodes ofc

′ = �(c). Since�(c)��′(c′) and theith term of�(n1)
is thejth term of�(n2) we deduce that theith term of�′(n′

1) is thejth term of�
′(n′

2). This
proves (10).
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(11)For eachv ∈ V (G) every two members of�(v) are connected in H.

Subproof:If v ∈ N(�) then this follows from (8). Ifv /∈ N(�) it follows from (10).

(12) If v′
1, v

′
2 are adjacent in H then there existsv ∈ V (G) with v′

1, v
′
2 ∈ �(v).

Subproof:Let e ∈ E(H) have endsv′
1, v

′
2. From (8) we may assume thatv′

1 ∈ �′(n′
1),

v′
2 ∈ �′(n′

2)wheren
′
1, n

′
2 are the nodes of some border cellc′ ∈ C(�′)with e ∈ E(M ′

c′) and
c′ /∈ �(C(�)). Letv′

1 be theith term of�
′(n′

1); then sincec
′ �= c′

� by (1) it follows from the
property of�′ thatv′

2 is theith term of�′(n′
2). Sincec

′ /∈ �(C(�)) there existsn ∈ N(�)
with n′

1, n
′
2 ∈ V (�(n)); let v be theith term of�(n). Thenv′

1, v
′
2 ∈ �(v). This proves (12).

From (11) and (12) it follows thatH realizes�. This completes the proof of9.1. �

10. Excluding a minor

If G is a hypergraph, its 1-skeletonsk(G) is the subgraph ofKV (G) with vertex setV (G)

in which distinctv1, v2 ∈ V (G) are adjacent if there is an edge ofG incident with bothv1
andv2.

10.1. Let P = (G,�,�) be a free patchwork, and let C be a subgraph ofsk(G). Then
there is a realization H of P such that for all x, y ∈ V (C), x and y are connected in C if and
only if they are connected in H.

Proof. For eache ∈ E(G), choose
e ∈ �(e) such that for distinctx, y ∈ V (
e), xandyare
adjacent in
e if and only if they belong toV (C) and are connected inC (This is possible
sinceP is free.) Let

H = NV (G) ∪
⋃

(
e : e ∈ E(G))).

Clearly if x, y ∈ V (C) are connected inH then they are connected inC. On the other hand,
C is a subgraph ofH; for if x, y ∈ V (C) are adjacent inC, choosee ∈ E(G) such thatx, y
are ends ofe; thenx, y are adjacent inH. The result follows. �

Let (�,�) be a graded surface, letP = (G,�,�) be a free rootless patchwork, and let
L be a rooted location inG. We say that(P,L) is (�,�)-shelledif L is fine and there is a
heartP ′ of (P,L) whereP ′ = (G′,�′,�′) andE(G′) = {e(A) : A ∈ L}, and there is a
(�,�)-hull (�,�) for G′− such that
• if c ∈ C(�) is internal andc = e(A) whereA ∈ L, then theith node ofc is theith term
of �(A), for 1� i� |c̃|, and for every groupingK with V (K) = c̃ there is a subgraphC
of sk(A−) such that for distinctx, y ∈ c̃, x andy are connected inC if and only if they
are adjacent inK
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• if c ∈ C(�) borders a cuff�, with nodesn1, n2, and�(�) = r, andc = e(A) where
A ∈ L, then there arer mutually disjoint pathsP1, . . . , Pr of sk(A−) \ {n1, n2} from
�(n1) to �(n2), and either there is another pathP0 of sk(A−) from n1, n2 disjoint from
P1 ∪ · · · ∪ Pr , or there is an internal cellc′ of � with n1, n2 ∈ c̃′.

10.2. Let (P,L) be(�,�)-shelled. Then it has a heart which is(�,�)-hulled.

The proof is immediate from10.1.
Let T be a tangle in a hypergraphG, and letH be a graph. We say thatT controls an

H-minor ofsk(G) if there is a function� with domainV (H) ∪ E(H), such that
• for eachv ∈ V (H), �(v) is a non-null connected subgraph ofsk(G), and�(u) and�(v)
are disjoint for all distinctu, v ∈ V (H)

• �(e) ∈ E(sk(G)) for eache ∈ E(H), and�(e) �= �(f ) for all distincte, f ∈ E(H)

• for eache ∈ E(H) with distinct endsu, v, �(e) ∈ E(sk(G)) with one end inV (�(u))
and the other inV (�)v))

• for each loope ∈ E(H)with endv, V (�(v)) contains both ends of�(e) ande /∈ E(�(v))
• there do not exist(A,B) ∈ T of order< |V (H)| andv ∈ V (H) such thatV (�(v)) ⊆

V (A).
Next, we convert a theorem of[3] into the language of this paper.

10.3. For every graph H there exist��1and a setS of graded surfaces, finite up to home-
omorphism, with the following property. LetP = (G,�,�) be a rootless free patchwork,
and letT be a tangle in G of order�� controlling no H-minor ofsk(G). Then there exist
W ⊆ V (G) with |W | < � and a fine rooted locationL in G/W , such that
• (P/W , L) is (�,�)-shelled for some(�,�) ∈ S, and
• L is linked toT /W .

Proof. By theorem14.2 of[3], there are integersp, q, z�0and� > zwith theproperty that,
for every hypergraphGand tangleT inGof order��, if T controls noH-minor ofsk(G),
then there existsW ⊆ V (G)with |W |�z and aT /W -central portrayal� = (�,�, �,�, �)
of G/W with warp�p, such that� has at mostq cuffs andH cannot be drawn in�, and
� is true and(2p + 7)-redundant (We omit the definitions of these terms; see[3]. Note in
particular that “paintings” in[3] are defined slightly differently, in that they are not equipped
with the march function� as in this paper.) LetS be the set of all graded surfaces(�,�)
such that� has the property just mentioned (that is,� has at mostq cuffs andH cannot be
drawn in�), and�(�)�p for each cuff� of �. ThusS is finite up to homeomorphism.
We claim that� andS satisfy the theorem.
For letP = (G,�,�) be a rootless free patchwork, and letT be a tangle inG of order

�� controlling noH-minor ofsk(G). By the theorem just quoted, applied toG, we deduce
that there existWand� = (�,�, �,�, �) as above. Thus|W |�z < �. Now� is a painting
in the sense of[3], but not yet a painting in the sense of this paper, because it lacks a function
�; choose such a function, arbitrarily, and therefore we may regard� as a painting in our
sense. By theorems 8.3 and 8.5 of[3], it follows that� is 3-connected. By replacing�with
a homeomorphic surface, we may assume that�(n) = n for everyn ∈ N(�) (this is just to
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simplify notation a little). LetG′ be the hypergraph with

V (G′) = N(�) ∪
⋃

(�(n) : n ∈ N(�) ∩ bd(�))

andE(G′) = C(�), in which c ∈ C(�) is incident withv ∈ V (G′) if and only if either
v ∈ c̃, orc is a border cell andv ∈ �(n) for somen ∈ c̃. It follows that(�,�) is a(�,�)-hull
for G′, for some(�,�) ∈ S.
For each cellc of �, letAc be a rooted hypergraph withA

−
C = �(c), and with�(Ac) as

follows. If c is internal, let�(Ac) = �(c), and ifc is a border cell with nodesn1, n2 say,
let �(Ac) be some march with�(Ac) = {�(n1), �(n2)} ∪ �(n1) ∪ �(n2). Let L be the set
{Ac : c ∈ C(�)}. ThenL is a fine rooted location inG/W , andG′ is a heart of(G/W,L). It
follows from theorems 9.1 and 9.8 of[3] (and from the definition of “warp”) that(P/W,L)
is (�,�)-shelled.
It remains to check thatL is linked toT /W . Let c ∈ C(�), and suppose that(A,B) ∈

T /W with A−
c ⊆ A. By theorem 11.7 of[3], (A,B) has order at least|�(Ac)|; and soL is

linked toT /W . This proves10.3. �

We deduce

10.4. Let� be a well-quasi-order and letp�0. LetPi = (Gi,�i ,�i ,	i ) (i = 1,2, . . .)
be a countable sequence of free rootless�-patchworks such that for alli�1, sk(G−

i ) has
noKp minor. Then there existj > i�1 such thatPi is simulated inPj .

Proof. Take� andS such that10.3holds (withH = Kp). LetF be the set of all patchworks
which are(�,�)-hulled for some(�,�) ∈ S. SinceS is finite,F is well-behaved by9.1.
For all i�1, if T is a tangle of order�� in Gi , thenT controls noKp-minor of sk(G

−
i ),

because there is noKp-minor ofsk(G
−
i ). By 10.3, there existsWandL as in10.3. By 10.2,

((Gi,�i ,�i )/W , L) has a heart inF . The result follows from7.3. �

As a corollary, we deduce the following form ofWagner’s conjecture for directed graphs
(which immediately implies the standard form of the conjecture for undirected graphs). A
directed graph is aminor of another if the first can be obtained from a subgraph of the
second by contracting edges.

10.5. LetGi (i = 1,2, . . .) be a countable sequence of directed graphs. Then there exist
j > i�1 such thatGi is isomorphic to a minor ofGj .

Proof. Let p = 2|E(G1)| + |V (G1)|; then every tournament withp vertices has a minor
isomorphic toG1. We may therefore assume for eachi�2 that the (undirected) graphG′

i

underlyingGi has no minor isomorphic toKp, for otherwiseGi has a minor isomorphic
toG1. Take� = 1, and let� be the well-quasi-order withE(�) = {0}. For eachi�2 let
Hi be the rooted hypergraph(G′

i ,0). LetPi = (Hi,�,�,	) where fore ∈ E(Gi), �(e) is
the one- or two-vertex sequence enumerating the ends ofe in Gi (tail first), �(e) is {NX,
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KX} whereX is the set of ends ofe, and	(e) = 0. ThenPi is a free�-patchwork. The
hypotheses of10.4are satisfied by the sequencePi (i = 2,3, . . .) because nosk(G′

i ) has a
minor isomorphic toKp. Thus there existj > i�2 such thatPi is simulated inPj . By the
discussion in Section 7 of[2], it follows thatGi is isomorphic to aminor ofGj , as required.

�

11. A refinement

The reader will see that we threw away a great deal in the proof of10.4and10.5. If we
repeat essentially the same argument a little more conservatively, we can obtain a stronger
result which will be of use in the proof of Nash–Williams’ “immersions” conjecture. That
is our next objective.

11.1. For everyp�0, there exist� > 0 and a well-behaved set of patchworksF with the
following property. LetP = (G,�,�) be a rootless free patchwork, and letT be a tangle
in G of order��, controlling noKp-minor ofsk(G−). Then there is a fine rooted location
L in G such that
• (P,L) has a heart inF , and
• L �-isolatesT for every edge-based tie-breaker of G.

Proof. Take�1 andS such that10.3holds (withH = Kp and� replaced by�1). LetF1 be
the set of all patchworks which are(�,�)-hulled for some(�,�) ∈ S. SinceS is finite,F
is well-behaved by9.1. LetF2 be related toF1 asF ′ is related toF in 7.2(with � replaced
by �1). LetF be related toF2 asF ′ is related toF in 5.6, with � replaced by�1 + 1. Let
� = (�1 + 1)2.
Weclaim that�,F satisfy the theorem.For letP = (G,�,�)bea rootless freepatchwork,

and letT be a tangle inG of order��, controlling noKp-minor of sk(G−). From10.3
applied to the setT1 of all (A,B) ∈ T of order< �1, and10.2, we deduce that there exists
W ⊆ V (G) with |W | < �1 and a fine rooted locationL1 inG/W such that(P/W ,L1) has
a heart inF1 andL1 is linked toT1/W .
By 7.2 it follows that there is a fine rooted locationL2 in G such thatW ⊆ �̄(A) for all

A ∈ L2,L2/W is linked toT1/W and(P ,L2) has a heart inF2. In particular,L2 has order
< �1, andL2/W is linked toT /W .
Choosef ∈ E(G) and let� be a tie-breaker defined byf. It follows thatL2 �1-isolates

(and hence(�1 + 1)-isolates)T moduloW ∪ {f }, by 6.2. By 5.6, there is a fine rooted
locationL3 inGsuch thatL3 (�1+1)2-isolatesT and(P,L3) has a heart inF , as required.

�

11.2. Let� be a well-quasi-order, let F be a well-behaved set of partial�-patchworks,
and let��1 andp�0. LetPi = (Gi,�i ,�i ,	i ) (i = 1,2, . . .) be a countable sequence
of free rootless�-patchworks. For eachi�1, let �i be an edge-based tie-breaker inGi .
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Suppose that for eachi�1and each tangleT inGi of order��which controls aKp-minor
of sk(G−

i ), there is a rooted locationL in Gi which�-isolatesT such that(Pi , L) has a
heart inF . Then there existj > i�1 such thatPi is simulated inPj .

Proof. Choose�1 andF1 such that11.1holds (with�, F replaced by�1, F1). LetF2 be
the set of partial�-patchworks(G,�,�,	) with dom(	) = ∅ and(G,�,�) ∈ F1. Then
F2 is well-behaved. LetF3 = F ∪ F2; thenF3 is well-behaved. Moreover, for eachi�1
and each tangleT in Gi of order��2 = max(�, �1), there is a rooted locationL in Gi

such thatL �2-isolatesT and(Pi,L) has a heart inF3; for if T2 controls aKp-minor of
sk(G−

i ), this is true by hypothesis, and if not then this is true by11.1. The result follows
from 3.1. �
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