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Abstract: In recent years, graph neural network algorithm (GNN) for graph semi-supervised classifi-
cation has made great progress. However, in the task of node classification, the neighborhood size
is often difficult to expand. The propagation of nodes always only considers the nearest neighbor
nodes. Some algorithms usually approximately classify by message passing between direct (single-
hop) neighbors. This paper proposes a simple and effective method, named Graph Mixed Random
Network Based on PageRank (PMRGNN) to solve the above problems. In PMRGNN, we design a
PageRank-based random propagation strategy for data augmentation. Then, two feature extractors
are used in combination to supplement the mutual information between features. Finally, a graph
regularization term is designed, which can find more useful information for classification results from
neighbor nodes to improve the performance of the model. Experimental results on graph benchmark
datasets show that the method of this paper outperforms several recently proposed GNN baselines
on the semi-supervised node classification. In the research of over-smoothing and generalization,
PMRGNN always maintains better performance. In classification visualization, it is more intuitive
than other classification methods.

Keywords: graph convolutional neural networks; PageRank; graph representation learning; semi-
supervised learning

1. Introduction

In the real world, graphs are ubiquitous and can be described in various forms.
Graphs can be widely used in recommendation systems, citation networks, construction of
protein structures in biochemistry, etc. Graph data is regarded as a carrier of information
dissemination. As in Figure 1, the Cora dataset in the citation network is introduced. The
Cora dataset consists of machine learning papers. It is a very popular dataset to use for
graph deep learning in recent years. The papers are divided into a total of seven categories.
In the final corpus, there are cited relationships between papers and papers. The lower
part of Figure 1 shows this relationship with a graph data. There are 2708 papers in the
entire corpus. After cataloging the papers, 1433 unique words are left to represent the
papers. Cora dataset contains 1433 unique words, so the feature is 1433 dimensions. 0 and
1 in a single dimension describe whether each word exists in paper. In recent years, the
research on learning from graph-structured data has received extensive attention in the
field of machine learning and deep learning.

Semi-supervised node classification is one of the most popular and important problems
in graph learning. In recent years, many effective node classification methods have been
proposed by a wide range of scholars. In 2017, Kipf et al. proposed a new graph neural net-
work structure, graph convolutional neural network (GCN) [1]. Standard GCNs learn the
information of neighboring nodes, while Higher-Order Graph Convolution Architectures
via Sparsified Neighborhood Mixing (MixHop) [2] can learn mixed neighbor relationships
by repeatedly mixing feature representations of neighbors at different distances. Despite the
great success of these algorithms, these models do not take full advantage of the relevant
information about nodes and their neighbors.
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Figure 1. Citation network and its graph structure (red is class A nodes, purple is class B nodes). 

Semi-supervised node classification is one of the most popular and important prob-

lems in graph learning. In recent years, many effective node classification methods have 

been proposed by a wide range of scholars. In 2017, Kipf et al. proposed a new graph 

neural network structure, graph convolutional neural network (GCN) [1]. Standard GCNs 

learn the information of neighboring nodes, while Higher-Order Graph Convolution Ar-

chitectures via Sparsified Neighborhood Mixing (MixHop) [2] can learn mixed neighbor 

relationships by repeatedly mixing feature representations of neighbors at different dis-

tances. Despite the great success of these algorithms, these models do not take full ad-

vantage of the relevant information about nodes and their neighbors. 

The current hot topic focuses on the deformation of graph adjacency matrix. Yu Rong 

et al. proposed Towards Deep Graph Convolutional Networks on Node Classification 

(Dropedge) [3], an algorithm to randomly remove edges, and Dongsheng Luo et al. pro-

posed Robust Graph Neural Network via Topological Denoising (PTDNet) [4] aiming to 

weed out task-irrelevant edges Both of the algorithms had low time complexity, but they 

did not benefit from added edges. Chen et al. [5] proposed to iteratively add (remove) 

edges among nodes with the same (different) labels while predicting. Although this ap-

proach increased the addition of edges, it depended heavily on the training size and was 

easy to make the error propagation. Recently Tong Zhao et al. proposed a Data Augmen-

tation for Graph Neural Networks (GAUG) [6], a data augmentation method, which mod-

ified the structure of the graph by means of an edge predictor. It deleted unimportant 

edges, added possible data enhanced edges, and finally predicted the data with the mod-

ified edges. 

Klicpera et al. [7] proposed a graph diffusion network (GDN), which coordinated 

spatial message passing and generalized graph diffusion, where diffusion acted as a de-

noising filter to allow messages to pass through higher-order neighborhoods. According 

to the different stages of diffusion, GDN can be divided into early fusion model and late 

fusion model. The early fusion model proposed by Xu et al. [8] and Jiang et al. [9] used 

graph diffusion to determine neighbors. For example, graph diffusion convolution (GDC) 

replaced the adjacency matrix in graph convolution with sparse diffusion matrix (Klicpera 

et al. [7]). The later fusion model (Tsitsulin et al. [10] and Klicpera et al. [11]) projected 

node features into a potential space, and then spread the learned node features. 

In the aspect of the node classification task, how to fully use the large amount of 

unlabeled data becomes one of the important directions of research nowadays. Recently, 
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The current hot topic focuses on the deformation of graph adjacency matrix. Yu Rong
et al. proposed Towards Deep Graph Convolutional Networks on Node Classification
(Dropedge) [3], an algorithm to randomly remove edges, and Dongsheng Luo et al. pro-
posed Robust Graph Neural Network via Topological Denoising (PTDNet) [4] aiming to
weed out task-irrelevant edges Both of the algorithms had low time complexity, but they
did not benefit from added edges. Chen et al. [5] proposed to iteratively add (remove) edges
among nodes with the same (different) labels while predicting. Although this approach
increased the addition of edges, it depended heavily on the training size and was easy to
make the error propagation. Recently Tong Zhao et al. proposed a Data Augmentation for
Graph Neural Networks (GAUG) [6], a data augmentation method, which modified the
structure of the graph by means of an edge predictor. It deleted unimportant edges, added
possible data enhanced edges, and finally predicted the data with the modified edges.

Klicpera et al. [7] proposed a graph diffusion network (GDN), which coordinated
spatial message passing and generalized graph diffusion, where diffusion acted as a
denoising filter to allow messages to pass through higher-order neighborhoods. According
to the different stages of diffusion, GDN can be divided into early fusion model and late
fusion model. The early fusion model proposed by Xu et al. [8] and Jiang et al. [9] used
graph diffusion to determine neighbors. For example, graph diffusion convolution (GDC)
replaced the adjacency matrix in graph convolution with sparse diffusion matrix (Klicpera
et al. [7]). The later fusion model (Tsitsulin et al. [10] and Klicpera et al. [11]) projected node
features into a potential space, and then spread the learned node features.

In the aspect of the node classification task, how to fully use the large amount of
unlabeled data becomes one of the important directions of research nowadays. Recently,
in contrastive learning and unsupervised graph representation learning, Deep Graph
Contrastive Representation Learning (GRACE) [12], Graph Contrastive Learning with
Augmentations (GraphCL) [13] defined positive and negative pairs to maximize mutual
information and expand data. In respect of the computer vision, Prototypical Contrastive
Learning of Unsupervised Representations (PCL) [14], Exploring balanced feature spaces for
representation learning (BalFeat) [15], and Unsupervised data augmentation for consistency
training (UDA) [16] tried to make full use of unlabeled data for consistent regularization
training to improve the generalization performance of the model. These ideas can be
applied to the model to improve the performance of semi-supervised node classification.

The convolutional layers of GCN usually have only two layers, and the performance
is higher when the layers are shallow, but gradually decreases as the layers become deeper.
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Li et al. [5] showed that the reason of over-smoothing was that by repeatedly applying the
Laplacian smoothing, GCN might mix node characteristics from different clusters, making
it difficult to distinguish. To solve the above problem, Jumping Knowledge Networks
(JKNet) [17] alleviated the over-smoothing problem to some extent by combining the
representation of each previous layer with the last layer. Wu et al. proposed Simplifying
graph convolutional networks (SGC) [18], but it was still a shallow model and still had
the risk of over-smoothing. Klicpera et al. proposed the Graph neural networks meet
personalized pagerank (PPNP) [11] algorithm, which separated feature transformation
from propagation and can aggregate multi-order neighbors without increasing the number
of layers of the neural network.

By using a modified Markov diffusion kernel, Hao Zh et al. derived a variant of GCN
named as Simple spectral graph convolution (SSGC) [19], which was able to balance the
global and local information of each node. SSGC effectively utilized the information of the
current node and its multi-order neighbors, while alleviating the over-smoothing problem.

How to effectively aggregate multi-order neighbors is still one of the current re-
search focuses.

We propose the graph random neural network based on PageRank (PMRGNN), a
simple and effective framework. Three approaches are used to solve the above problems:
firstly, we design graph data augmentation for semi-supervised learning. Secondly, we
extract features by combining two feature extractors. Finally, a graph regularization term is
added to improve the performance of the designed model. The experimental results show
that the PMRGNN can effectively improve the accuracy of node classification.

The rest of the paper is organized as follows: Section 2 presents the basic concepts of
graph and semi supervised classification, and introduces the relevant models. Section 3
introduces the three modules of the proposed model and its basic theory, analyzing the
algorithm and time complexity. The experimental design is presented in Section 4, and the
obtained results are listed under Section 4. The conclusions and planned further work have
been explained in the last section.

2. Concept and Related Work
2.1. Graph Concept

Given a simple undirected graph G = (V, E), it consists of a n nodes. As shown in
Figure 2, for G, A denotes the adjacency matrix, defining the interconnection between
nodes, Aij = Aji. For each element of A, Aij = 1 indicates that there is an edge between
nodes vi and vj; Aij = 0 means there is no edge between the two.
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Figure 2. Concept of graph. 
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2.2. Semi-Supervised Classification

The node characteristic matrix is X, X ∈ Rn×d. n is the number of nodes and d is
the dimension. For the node vi, its feature vector is Xi, its label vector is Yi, Y ∈ Rn×C.
C represents the class of the node. The semi-supervised classification task is defined
as follows:

Definition 1. m labeled nodes (0 < m ≤ n), labeled as YL. (n−m) unlabeled nodes, labeled
as YU . Its purpose is to learn the prediction function f : A, X, YL → YU to infer YU of unla-
beled nodes.

In recent years, graph neural networks have become one of the most popular studies
on semi-supervised node classification tasks. GNNs extend the neural networks techniques
to graph, such as graph convolutional networks (GCNs). The propagation rule of a GCN is
defined as:

H(l+1) = σ
(

ÂH(l)W(l)
)

. (1)

where Â is the symmetric normalized adjacency matrix. Â = D̂−1/2(A + I)D̂−1/2, and D̂ is
the corresponding degree matrix of A + I. σ represents the ReLU operation, H(l) and W(l)

is the lth hidden layer node representation and weight matrix. H(0) = X. The propagation
of GCN is shown in the Figure 3. Under the semi-supervised classification task, Xi gets
Zi through the transformation of hidden layers, and Zi gets the prediction structure Yi
through normalization.
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2.3. Related Model
2.3.1. Diffusion Improves Graph Learning

Diffusion Improves Graph Learning (GDC) can be combined with any graph-based
algorithm or model. GDC uses generalized graph diffusion, and the core of diffusion
technology is S = ∑∞

k=1 θkTk, T is the transfer matrix. According to different scenes, T can
be set as random walk transfer matrix and symmetric transfer matrix. θ of GDC can be
personalized PageRank (PPR) [20] and heat kernel [21]. If S represents the adjacency matrix
and D is the diagonal matrix of S, then the corresponding graph diffusion convolution is de-
fined as D−1/2SD−1/2x, GDC eliminates the limitation of using only direct neighborhoods
by introducing a powerful spatially localized graph convolution.

2.3.2. PPNP and APPNP

Klicpera et al. [11] proposed to use the Personalized PageRank to derive a fixed filter
of order K. Let fθ(X) represent the output of the two fully connected layers on the feature
matrix X. PPNP is defined as:

H = α
(
In − (1− α)Â

)−1 fθ(X). (2)
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To avoid computing the inverse
(
In − (1− α)Â

)−1, Klicpera et al. proposed the
Approximate PPNP (APPNP) algorithm, which replaced the costly inverse with an approx-
imation of truncated power iteration:

H(l+1) = (1− α)ÂH(l) + αH(0). (3)

where H(0) = fθ(x) = ReLU(X) or H(0) = fθ(x) = MLP(X). PPNP/APPNP separated feature
transformation from propagation and aggregated information from multi-hop neighbors
without increasing the number of layers in the neural network.

3. Model Analysis
3.1. PMRGNN Model

We first design a data augmentation method to achieve S times graph data augmenta-
tion by a random propagation strategy (a). Then the basic framework which constitutes the
network, a Mixed network structure (b), is introduced, as shown in Figure 4. In addition,
a designed graph regularization term (c) is adopted, aiming to ensure the consistency
between the node and its neighbor representation and improve the generalization ability
under the semi-supervised setting. In this paper, the PMRGNN model is introduced in three
directions: graph data random augmentation, Mixed network architecture, loss function
and graph regularization term, respectively.
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3.2. Random Augmentation of Graph Data

The model uses the method of masking features (MF), where the dimensions are
randomly masked with zeros in the node features. Miller et al. [22] pointed out that
neighbors were more likely to have similar feature representations or labels. Therefore, the
information lost by the node can be compensated by its neighbors. The MF method is to
randomly delete all feature elements of a single node. In other words, MF allows each node
to aggregate information from a subset of its neighbors, ignoring some node properties,
reducing reliance on specific neighbors while generating more random data.

As shown in Figure 5. First, we generate a binary mask εi for each node vi. εi ∼
Bernoulli(1− δ). δ is the set hyperparameter. For the ith row vector of X, X̃i=εi · Xi. Then
according to the generated matrix, we aggregate multi-order fields to produce multiple
augmentation matrices, X = ÃX̃, Ã = ∑ K

k=0γk Âk, where γk = 0, 1, 2 . . . K, γk is the PageR-
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ank weight. γk = α(1− α)k−1, k = 1, 2 . . . k− 1, γK = (1− α)K−1, α is a hyperparameter.
In the following experiment Section 4.4, We set γk to learnable weight or γk = 1/(K + 1).
Experimental result shows the aggregation of multi-order neighbor-hood proposed in this
paper is more effective. Compared with other models, the propagation rule contains more
local information and is not overly parameterized while obtaining more distant information.
Ã is a dense matrix, which is difficult to compute in graph neural network. Therefore, by
iteratively calculating the adjacency matrices Â1 to Âk(1 ≤ k ≤ K) with parameters γk, the
enhanced feature matrix X is obtained. Repeat the above process for S times to generate
multiple enhanced characteristic matrices.
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Â
K

k

k

k

X X
=

=

X

X

 

Figure 5. Graph data augmentation. 

3.3. Mixed Network Architecture 

In this paper, we use a network structure with a mixture of Multilayer Perceptron 

(MLP) and convolutional layers. It captures the key information between nodes, allowing 

the information of node and their neighbors to be used effectively. After random propa-

gation for S times, S  feature matrices is generated, ( )1 s S  .We feed each aug-

mented feature matrix into the designed neural network. The mixed network structure is 

defined as follows: 

( )( )( ) ( ) ( ) ( )

( ) 1 ( ) 2

( 1)

( )
ˆ,ll

s ss

l l lH W AHH W+ = , (4) 

( ) ( ) ( )( )ˆ, ,
s l s

PMRGNNZ f A X = . (5) 

Equation (4), represents a matrix of n  nodes and k -dimensional representations 

on the 
thl  layer generated by the feature matrix 

( )sX ( )

( ) Rn kl

sH  , 
(0) (s)

( )sH X= .   is 

an aggregation function, which can be spliced or added. Its purpose is to aggregate the 

hidden representation of adjacent nodes. 
( ) ( ) '

1 2,l l k kW W R  , are linear transformation 

matrices. 'k  represents the ( )1
th

l +  dimension.   is a nonlinear activation function, 

such as the ReLU. Equation (5), 
( )s

Z  is the output of the mixed network layers, 
( )s n CZ R  .   is PMRGNN weights. 

( )sP  represents the node classification probabil-

ity predicted from 
( )s

Z . 
C( ) [0,1]s nP  , 

( )( ) ( )
ssP softmax Z= . A single feature extrac-

tor may not be able to fully capture the key information between nodes. 

The two feature extractors are MLP and GCN for convolutional layers The method 

of combining two different feature extractors proposed in this paper can effectively utilize 

the information of node and their neighbors. The algorithm Improved Training of GNNs 

(GraphMix) [23] proposed by Vikas et al. is similar to us. It is trained by a fully-connected 

network jointly with the graph neural network via parameter sharing and interpolation-

based regularization. 

In Section 4.3, the case of using MLP and GCN alone is compared. Experiment shows 

using a combination of MLP and GCN layers has better experimental results than using 

them alone. 

3.4. Loss Function and Regularization Term 

Figure 5. Graph data augmentation.

3.3. Mixed Network Architecture

In this paper, we use a network structure with a mixture of Multilayer Perceptron
(MLP) and convolutional layers. It captures the key information between nodes, allowing
the information of node and their neighbors to be used effectively. After random propa-
gation for S times, S feature matrices is generated, (1 ≤ s ≤ S). We feed each augmented
feature matrix into the designed neural network. The mixed network structure is defined
as follows:

H(l+1)
(s) = σ

(
α
(

H(l)
(s)W1

(l), ÂH(l)
(s)W2

(l)
))

, (4)

Z̃(s) = fPMRGNN
(l)
(

Â, X(s), θ
)

. (5)

Equation (4), represents a matrix of n nodes and k-dimensional representations on

the lth layer generated by the feature matrix X(s)H(l)
(s) ∈ Rn×k, H(0)

(s) = X(s). α is an aggre-
gation function, which can be spliced or added. Its purpose is to aggregate the hidden
representation of adjacent nodes. W1

(l), W2
(l) ∈ Rk×k′ , are linear transformation matrices.

k′ represents the (l + 1)th dimension. σ is a nonlinear activation function, such as the
ReLU. Equation (5), Z̃(s) is the output of the mixed network layers, Z̃(s) ∈ Rn×C. θ is
PMRGNN weights. P̃(s) represents the node classification probability predicted from Z̃(s).
P̃(s) ∈ [0, 1]n×C, P̃(s) = so f tmax(Z̃(s)). A single feature extractor may not be able to fully
capture the key information between nodes.

The two feature extractors are MLP and GCN for convolutional layers The method of
combining two different feature extractors proposed in this paper can effectively utilize
the information of node and their neighbors. The algorithm Improved Training of GNNs
(GraphMix) [23] proposed by Vikas et al. is similar to us. It is trained by a fully-connected
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network jointly with the graph neural network via parameter sharing and interpolation-
based regularization.

In Section 4.3, the case of using MLP and GCN alone is compared. Experiment shows
using a combination of MLP and GCN layers has better experimental results than using
them alone.

3.4. Loss Function and Regularization Term

In traditional graph semi-supervised learning, the loss function contains supervision
loss on labeled nodes and graph regularization loss [24,25].

3.4.1. Supervision Loss

In this paper, the loss includes three parts: the supervised loss, the feature extractor
loss to measure the prediction results between MLP and GCN layers, and the graph
regularization loss.

P̃(s) represents the node classification probability predicted from Z̃(s). In a graph,
there are m labeled nodes out of n nodes. The average cross-entropy loss generated by S
augmented matrices is defined as:

Lsup = −
S

∑
s=1

m−1

∑
i=0

YT
i log P̃(s)

i . (6)

3.4.2. Feature Extractors Loss

The output result of the MLP is Z( f ), and the output result of the GCN layers is Z(g).
We use KL divergence to minimize the distance between the two feature extractors, making
efficient use of node and its neighbor information:

LKL =
N

∑
i=1

C

∑
j=1

Z( f )
ij

log
Z( f )

ij

Z(g)
ij

. (7)

3.4.3. Graph Regularization Term

In traditional semi-supervised node classification learning, the graph Laplacian regu-
larization term is usually used to provide the model f (x, θ) with graph structure informa-
tion. With the increasing popularity of GNNs in recent years, applying adjacency matrices
A to the models f (A, X, θ) has become a more common method. Meiqi zhu et al. [26]
pointed out that prediction function in GNN had a Laplacian regularization term. There-
fore, it was unnecessary to add a traditional graph Laplacian regularization term to the
existing GNN. We use a simple and effective variant of Laplacian regularization to improve
the performance of existing GNN model P̃(s)

ij is the predicted probability of the node i in the

class j, P̃(s)
ij = exp(Z̃(s)

ij )/∑C
k=1 exp(Z̃(s)

ik ). By further propagating, Z̃(s)′
ij = ÂZ̃(s)

ij . we obtain

the cross-entropy Q̃(s)
ij = exp(Z̃(s)′

ij )/∑C
k=1 exp(Z̃(s)′

ik ). The regularization term defined in
this paper is:

Lreg =
1
N

S

∑
s=1

ϕ
(

Z̃(s), ÂZ̃(s)
)

, (8)

ϕ = −
N

∑
i=1

C

∑
j=1

P̃(s)
ij log Q̃(s)

ij , (9)

ϕ =
1
2

N

∑
i=1

∣∣∣∣∣∣∣∣(ÂZ(s)
)T

i
−
(

Z(s)
)T

i

∣∣∣∣∣∣∣∣2
2

. (10)

ϕ is a function to measure the degree of difference between two features, which can be
measured by the cross-entropy (9) or the squared error (10). The purpose of adding ϕ is to
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measure the similarity of the same node in different propagation processes. At the same
time, ϕ makes the node similar to its neighbor representation during optimization. Laplace
regularization term is edge centered:

Llap = ∑ (i,j)∈E

∣∣∣∣∣∣ZT
i − ZT

j

∣∣∣∣∣∣. (11)

In this paper, the regularization term is node centered:

ϕ
(
Z, ÂZ

)
=

N

∑
i=1

ϕ
(

ZT
i , (AZ)T

i

)
. (12)

Han et al. [27] proposed that if the number of GCN layers approached infinity, each
node can capture and represent the information of the whole graph, i.e., Z̃ = A∞Z,
z̃1 = . . . = z̃N . Infinite layer convolution has a similar effect to minimizing the square
error of the characteristic matrix (10). Minimizing the square error of the characteristic
matrix in the training process generates the same output vector for each node, i.e., Z̃ ∈
argminZ

∣∣∣∣ÂZ− Z
∣∣∣∣2

F,

∣∣∣∣ÂZ− Z
∣∣∣∣2

F =
∣∣∣∣∣∣(D−1 A− I

)
Z
∣∣∣∣∣∣2

F
=

N

∑
i=1

∣∣∣∣∣∣
∣∣∣∣∣∣
 1

di
∑

j∈N(vi)

zj

− zi

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

. (13)

di represents the degree of node vi, and N(i) represents the neighbor of node vi. If
Equation (10) is minimized iteratively, then:

z(k+1)
i =

1
di

∑
j∈N(vi)

z(k)j . (14)

where k is the number of iteration steps, then the graph convolution of z(k)i is:

z(k+1)
i = ∑

j∈N(vi)

1√
didj

z(k)j . (15)

It can be seen that (14) and Equation (15) are similar. When k→ +∞ , both converge
to a certain point, i.e., Z(k+1) = ÂZ(k). Therefore, minimizing the square error of the
characteristic matrix is similar to using infinite convolution on a graph. The traditional
Laplacian regularization term only shortens the distance between the target node and the
neighbor node. Equation (14) is similar to using the voting results of each node’s neighbors
to represent the target node, providing additional classification information for the node.
In this paper, we use graph regularization term to capture more information for the model.

3.4.4. Final Loss

Final loss contains: the supervised loss (6), the feature extractors loss (7) and the graph
regularization term (8). During epoch of training, the parameters are updated using the
final loss. λ1 and λ2 are the hyperparameters controlling the balance of the loss. The
hyperparameter λ1 is to control the feature extractors loss (7). The hyperparameter λ2
is to control the graph regularization term (8). This paper uses λ1 and λ2 to balance the
final loss:

L =
1
S

Lsup + λ1LKL + λ2
1
S

Lreg. (16)

In summary, the training process of the PageRank-based graph mixed random network
is shown in Algorithm 1.
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Algorithm 1: PMRGNN

Input: Adjacency matrix Â; feature matrix X; propagation step S; mask matrix ratio δ; PageRank
weight α; fMLP(X, θ); fGCN(A, X, θ); fPMRGNN(A, X, θ).

Output: Trained PMRGNN weights θ, Prediction P.
while the not convergence do

for s = 1 : S do
Generate binary mask εi for each node vi:
εi ∼ Bernoulli(1− δ)

Masking feature: X̃(s)
i = εi · Xi

Propagation based on PageRank:

X(s)
= ÃX̃(s),Ã = ∑K

k=0 γk Âk

Generate node embedding:

Z̃(s) = fPMRGNN

(
Â, X(s), θ

)
Propagation again: Z̃(s)′ = ÂZ̃(s)

end for
Generate node embedding using MLP:
Z( f ) = fMLP(X, θ)
Generate node embedding using GCN:
Z(g) = fGCN(A, X, θ)
Calculate Kl regularization term: (7)
Generate graph regularization term: (8)
Calculate supervision loss: (6)
Calculate total loss: (16)
Update the model weight θ according to the
gradient descent method.

end while
return PMRGNN weights θ, Prediction P.

3.5. Time Complexity Analysis

In the random augmentation of graph data, the time complexity is O(Kd(n + |E|)),
where K is the propagation steps, d is the feature dimension of nodes, n is the number of
nodes, and |E| is the number of edges. In this paper, we use a network structure with a
mixture of Multilayer Perceptron (MLP) and convolutional layers. The time complexity of
the MLP is O(ndh(d + C)); The time complexity of convolutional layers is O(|E|dh(d + C)),
dh represents the hidden layer dimension, and C represents the number of classes. When
calculating the loss function, we need to consider the graph regularization term. By
sparse-dense matrix multiplication or message passing framework (Glimer et al. [28]), it is
proved that the time complexity of calculating ÂZ̃(s)

ij is O(|E|C), and the time complexity of
calculating ϕ is O(nC). Finally, we come to the conclusion that the time complexity of graph
regularization term is O(|E|C + NC). In this paper, a total of S random augmentations of
graph data are made on the graph, so the total time complexity of the model is:

O(S(Kd(n + |E|) + (|E|+ n)dh(d + C) + |E|C + nC)). (17)

4. Experiment and Analysis

In order to verify the performance of the proposed model, we conduct experiments on
three general benchmark datasets and compare it with baseline models. In Section 4.1, the
benchmark datasets and the baseline models are introduced. In Section 4.2, the PMRGNN
is compared with the baseline models. In Section 4.3, we conduct the ablation experiment
to understand the contribution of each component to functionality. In Section 4.4, We
compare the weight of γk for PageRank with other cases. In Section 4.5, the generalization
performance of the model is analyzed. In Section 4.6, at low labeling rate, we analyzed
the PMRGNN model and other GNN baselines. In Section 4.7, the experiments of over-
smoothing are analyzed. In Section 4.8, We perform a visual analysis of the classification of
two GNN baselines and PMRGNN.
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4.1. Data Sets and Benchmark Algorithm(s)

In this paper, we conduct experiments on three benchmark graphs [1,29]: Cora, Cite-
Seer and PubMed. The specific information of the datasets is shown in Table 1.

Table 1. Dataset Statistics.

Dataset Nodes Features Edges Classes Labeling Rate

Cora 2708 1433 5429 7 0.052

CiteSeer 3327 3700 4732 6 0.036

PubMed 19,717 500 44,338 3 0.003

The experimental setup of Yang et al. [30] is used in the experiment. In the citation
network datasets, the nodes are documents to form the feature matrix X. The citation
links are regarded as the undirected edges and can be constructed as an adjacency matrix
A. The training set consists of 20 nodes in each class, 500 nodes verification set and
1000 nodes test set. The labeling rate is the ratio of labelled nodes to the total nodes in
the dataset. Its formula is (classes× 20)/nodes. For example, the labeling rate of Cora is
(7× 20)/2708 = 0.052.

Baseline models: eight different neural networks are selected as baseline models,
Graph convolutional networks (GCN) [1], Graph attention networks (GAT) [29], Simplify-
ing graph convolutional networks (SGC) [18], Graph neural networks meet personalized
pagerank (APPNP) [11], Towards Deep Graph Convolutional Networks on Node Classifi-
cation (DropEdge) [3], Adaptive universal generalized PageRank graph neural network
(GPRGNN) [31], Simple spectral graph convolution (SSGC) [19], Simple and deep graph
convolutional networks (GCNII) [32]. A GNN based sampling method: Inductive represen-
tation learning on large graphs (GraphSAGE) [33].

4.2. Experimental Results

The prediction accuracy of node classification is summarized in Table 2. The com-
parison experiment methods are the baseline models used in Section 4.1. The result of
PMRGNN is average value of 50 runs with random weight initialization.

Table 2. Accuracy Rate of Standard Classification.

Method Cora CiteSeer PubMed

GCN 81.5 70.3 79.0
GAT 80.3± 0.7 72.5± 0.7 79.0± 0.3
SGC 81.0± 0.0 81.9± 0.1 78.9± 0.0

DropEdge 81.8± 0.8 71.9± 0.2 79.1± 0.3
APPNP 83.7± 0.5 71.5± 0.3 79.3± 0.5

GPRGNN 82.5± 0.4 71.1± 0.6 79.4± 0.8
GraphSAGE 81.6± 0.6 70.2± 0.7 78.3± 0.3

SSGC 82.6± 0.1 73.0± 0.0 80.0± 0.1
GCNII 84.9± 0.4 72.9± 0.5 80.2± 0.4

PMRGNN 85.2± 0.2 75.3± 0.3 80.4± 0.2

In Table 2, it can be noticed that the PMRGNN proposed in this paper is superior to
the compared baseline models. Specifically, compared with GCN, our strategy performance
improves by 3.7%, 5.0% and 1.4% in Cora, CiteSeer and PubMed. Compared with GAT, it
increases by 2.2%, 2.8% and 1.4%. Compared with GCN, SSGC raises by 1.1%, 2.7% and
1.0%. Compared with GCN, GCNII is improves by 3.4%, 2.6% and 1.2%. Our strategy is
0.3%, 2.4% and 0.2% higher than GCNII.
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4.3. Ablation Experiment

We conduct an ablation experiment to understand the contributions of different com-
ponents in PMRGNN.

Unshielded feature (w/o MF): remove mask matrix, just use DropNode.
Neural network structure setting MLP (net-MLP): the combination of two feature

extractors is changed to use MLP alone.
Neural network structure setting GCN (net-GCN): the combination of the two feature

extractors is changed to use GCN alone.
No Feature extractors loss (w/o KL loss): There is no KL loss in the final loss.
No regularization term (w/o reg): remove the graph regularization term, and set the

super parameter of the graph regularization term as 0.
In Table 3, We summarize the results of the ablation experiment. After removing some

components from PMRGNN, it can be observed that the performance will be reduced
comparing with the complete model, indicating that the components designed in this
paper can help to improve the accuracy of the model. Table 3 shows that masking features
produces random data augmentation; using one feature extractor alone is not as effective
as using two feature extractors in combination; At the same time, the graph regularization
can effectively improve the performance of the model.

Table 3. Accuracy Rate of Ablation Experiment.

Method Cora CiteSeer PubMed

w/o MF 84.7± 0.2 74.7± 0.2 79.6± 0.1
net-MLP 84.8± 0.2 74.8± 0.5 79.9± 0.3
net-GCN 84.2± 0.4 74.5± 0.3 79.4± 0.6
w/o reg 84.2± 0.2 73.2± 0.5 79.7± 0.3

w/o KL loss 84.3± 0.2 74.7± 0.3 79.7± 0.2
PMRGNN 85.2± 0.2 75.3± 0.3 80.4± 0.2

4.4. PageRak Weight Comparison Experiment

In this paper, we design a multi-level domain with aggregation nodes: X = ÃX̃,Ã =

∑K
k=0 γk Âk, parameter γk is the PageRank weight. In this section, we compare the case

where γk is the learnable weight or γk = 1/(K + 1). Experimental results show that the
method of aggregating multi-order neighborhoods proposed in this paper is more effective
(as shown in Table 4).

Table 4. Comparison of Different Weights.

Method Cora CiteSeer PubMed

with learn 83.7± 0.1 74.0± 0.2 78.2± 0.2
with 1/(K + 1) 84.8± 0.4 74.9± 0.2 79.9± 0.3
with pagerank 85.2± 0.2 75.3± 0.3 80.4± 0.2

4.5. Generalization Performance Analysis

In this section, the effects of random propagation and graph regularization term on
the generalization ability of the model are studied. In order to verify their effects on the
model, the training loss and verification loss of the model on Cora dataset are analyzed.
The smaller the gap is between the two losses, the better the generalization performance of
the model is. The generalization performance of the model and its variant (w/o reg) are
shown in Figure 6. When there is no graph regularization term, an obvious gap between
the training loss and the verification loss can be observed in the Figure 6a; When the
graph regularization term is added, the verification loss is close to the training loss in the
Figure 6b. These show that the graph regularization term added in this paper can improve
the generalization performance of PMRGNN.
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4.6. Low Label Rate Experiment

In order to verify the performance of PMRGNN, we conduct experiments on datasets
with lower label rate. The result statistics are shown in Table 5. The training set contains
10 nodes of each class, the validation set contains 500 nodes, and the test set contains
1000 nodes. On the datasets with lower label rate, the performance of our strategy is still at
a higher level than other models. Specifically, the model has improved by 6.4%, 5.4% and
1.7% compareing with GCN on Cora, CiteSeer and PubMed datasets. Compared with GAT,
it increases by 2.6%, 2.3% and 1.9%. PMRGNN is 1.2%, 0.3% and 0.3% higher than the best
algorithm on each dataset.
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Table 5. Accuracy Rate of Standard Classification.

Method Cora CiteSeer PubMed

GCN 73.2± 2.6 63.2± 2.3 73.0± 2.9
GAT 77.0± 2.1 66.3± 2.2 72.8± 2.2
SGC 71.3± 3.4 66.0± 2.3 73.6± 3.2

DropEdge 73.0± 2.9 64.0± 3.1 73.5± 2.3
APPNP 77.9± 2.4 66.1± 2.4 74.4± 3.9

GPRGNN 78.4± 1.7 63.7± 3.0 74.4± 2.8
GraphSAGE 75.6± 2.2 65.4± 2.2 73.6± 4.0

SSGC 78.1± 1.8 66.0± 2.6 73.1± 3.0
GCNII 75.6± 1.2 68.3± 1.1 73.2± 2.2

PMRGNN 79.6± 1.4 68.6± 3.1 74.7± 3.1

Figure 7 shows the comparison of the accuracy of Cora dataset on different training
sets (each type of trained nodes ranges from 10 to 100). It can be observed that the algorithm
designed in this paper is generally higher than GCN and GAT in all partitions.
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4.7. Over-Smoothing Experiment

Many GNNs are faced with the problem of over-smoothing when the step size of
feature propagation is enlarged. When the propagation step size increases, the nodes
with different labels will become difficult to distinguish. In order to verify the ability of
PMRGNN to alleviate the problem of over-smoothing, we conduct an experiment on the
Cora dataset with different propagation steps.

Figure 8 shows the experimental results on the Cora dataset. The propagation step
length in PMRGNN is controlled by the super parameter k. The hyperparameter k,k ∈
{0, . . . 14} is the number of propagation steps of the adjacency matrix in augmentation
of graph data. In Section 3.2, the hyperparameter k is reflected in Ã = ∑ K

k=0γk Âk. For
GCN and GAT, they are adjusted by superimposing different hidden layers. For SGC
and SSGC, the propagation depth of data preprocessing is adjusted. The experimental
results show that with the increase of propagation step length, the indexes of GCN and
GAT decrease significantly. Due to the problem of over-smoothing, the accuracy of GCN
decreases from 81.5% to 15%, the accuracy of GAT reduces from 83% to 20%. PMRGNN,
SGC and SSGC can alleviate the problem of over-smoothing. They can be stabilized within
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a certain range. But our method performs better. Compared with other algorithms, the
accuracy of PMRGNN is always the highest, maintained at 85%.
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4.8. Classification Visualization

Figures 9 and 10 shows the visualization of the results of the standard classification of
the CiteSeer. The Figure 9a is GCN, the Figure 9b is Simple and deep graph convolutional
networks (GCNII) [32], the Figure 10a is the feature extractor of PMRGNN model using the
convolution layers without KL divergence, and the Figure 10b is the model proposed in this
paper. It can be observed that the distribution of the Figure 9a is diffused and not clear. The
Figure 9b shows that the GCNII model is more distributed than the traditional model GCN.
However, according to the illustration, the node classification of GCN and GCNII is still
not clear enough. The Figure 10 correspond to our model. Compared with GCNII, the node
aggregation in PMRGNN is more compact, and similar nodes tend to move in one direction.
In the Figure 10a, five kinds of nodes are classified obviously, and the classification of the
central nodes is relatively fuzzy. In the ablation experiment of Section 4.3, we also proved
that without KL divergence, the accuracy of the model will decline. We use two feature
extractors to make clusters more compact and node classification clearer.
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Figure 10. The t-SNE visualization of output on CiteSeer dataset. The left is PMRGNN without KL
divergence (a), the right is full PMRGNN (b).

5. Conclusions

In the research of graph semi-supervised classification, this paper proposes a new
model, Graph Mixed Random Network Based on PageRank (PMRGNN). Frist of all, we
randomly mask the dimension with zero in the node features, and then aggregate the
multi-order fields of the nodes to randomly generate new feature matrices. Secondly, we
propose a method that combines two feature extractors. It enables the key information
between features complement each other. Finally, we propose two losses of processing
feature extractors loss and graph regularization loss to improve the performance of the
model. In the experiment, we prove that our model has superior performance comparing
with other neural networks. Specifically, PMRGNN is 0.3%, 2.4%, 0.2% higher than other
best algorithms respectively on three data sets. Under the lower label rate, model still
maintains 1.2%, 0.3% and 0.3% higher than other algorithms on three data sets. Ablation
experiments show that each component of this algorithm has a corresponding role. At the
same time, the component can make the verification loss close to the training loss, and make
them more stable. About the selection of γk, PageRank weight has more advantages than
other options. In the research of over-smoothing, with the increase of the number of layers,
the accuracy of our model does not decline, and it is stable at 85%. It is proved that the
algorithm can effectively alleviate the over-smoothing problem. In terms of classification
visualization, PMRGNN is more intuitive than other classifications.

All in all, the idea of PMRGNN is feasible. In semi-supervised learning, the model may
have a profound impact on other work. In future research, we hope to expand the strength
of PMRGNN to collect effective information. At the same time, we want to improve the
sampling method and enhance the scalability of proposed strategy.

Author Contributions: Conceptualization, Q.M.; methodology, Q.M., Z.F. and C.W.; software, Z.F.
and C.W.; validation, Q.M., Z.F. and C.W.; formal analysis, Q.M.; investigation, Z.F. and C.W.; data
curation, Z.F. and C.W.; writing—original draft preparation, Z.F.; writing—review and editing, Q.M.
and H.T.; visualization, C.W; supervision, Q.M.; project administration, Q.M. and H.T.; funding
acquisition, H.T. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China under
Grant 62076155 to H. Tan. This work was supported by the Natural Science Foundation of Shanxi
Province under Grant 201901D111029 to L. Guo.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Symmetry 2022, 14, 1678 16 of 17

Data Availability Statement: All data in this paper have been presented in the manuscript. The
datasets used in this article are publicly available at https://github.com/tkipf/gcn, accessed on
1 January 2022.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. In Proceedings of the 5th International

Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017; pp. 1–14.
2. Abu-El-Haija, S.; Perozzi, B.; Kapoor, A.; Alipourfard, N.; Lerman, K.; Harutyunyan, H.; Steeg, G.V.; Galstyan, A. Mixhop:

Higher-order graph convolutional architectures via sparsified neighborhood mixing. In Proceedings of the 36th International
Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 21–29.

3. Rong, Y.; Huang, W.; Xu, T.; Huang, J. DropEdge: Towards Deep Graph Convolutional Networks on Node Classification. In
Proceedings of the 7th International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019; pp. 1–18.

4. Luo, D.; Cheng, W.; Yu, W.; Zong, B.; Ni, J.; Chen, H. Learning to Drop: Robust Graph Neural Network via Topological Denoising.
In Proceedings of the 14th ACM International Conference on Web Search and Data Mining, Online, 8–12 March 2021; pp. 779–787.

5. Chen, D.; Lin, Y.; Li, W.; Li, P.; Zhou, J.; Sun, X. Measuring and Relieving the Over-Smoothing Problem for Graph Neural
Networks from the Topological View. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, NY, USA,
7 February 2020; pp. 3438–3445.

6. Zhao, T.; Liu, Y.; Neves, L.; Woodford, O.; Jiang, M.; Shah, N. Data Augmentation for Graph Neural Networks. In Proceedings of
the 34th AAAI Conference on Artificial Intelligence, New York, NY, USA, 7 February 2020; pp. 1–9.

7. Klicpera, J.; Weienberger, S.; Günnemann, S. Diffusion Improves Graph Learning. In Proceedings of the 2019 Conference and
Workshop on Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 1–22.

8. Xu, B.; Shen, H.; Cao, Q.; Cen, K.; Cheng, X. Graph Convolutional Networks using Heat Kernel for Semi-supervised Learning. In
Proceedings of the 33th International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019; pp. 1–7.

9. Jiang, B.; Lin, D.; Tang, J.; Luo, B. Data Representation and Learning with Graph Diffusion-Embedding Networks. In Proceedings
of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16 June 2019; pp. 10414–10423.

10. Tsitsulin, A.; Mottin, D.; Karras, P.; Müller, E. VERSE: Versatile Graph Embeddings from Similarity Measures. In Proceedings of
the 2018 World Wide Web Conference, Lyon, France, 23–27 April 2018; pp. 539–548.

11. Klicpera, J.; Bojchevski, A.; Günnemann, S. Combining Neural Networks with Personalized PageRank for Classification on
Graphs. In Proceedings of the 7th International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019;
pp. 1–14.

12. Zhu, Y.; Xu, Y.; Yu, F.; Liu, Q.; Wu, S.; Wang, L. Deep Graph Contrastive Representation Learning. In Proceedings of the 2020
International Conference on Machine Learning, Dublin, Ireland, 8–11 June 2020; pp. 1–17.

13. You, Y.; Chen, T.; Sui, Y.; Chen, T.; Wang, Z.; Shen, Y. Graph Contrastive Learning with Augmentations. In Proceedings of the
2020 Conference and Workshop on Neural Information Processing Systems, Online, 6 December 2020; pp. 5812–5823.

14. Li, J.; Zhou, P.; Xiong, C.; Hoi, S.C. Prototypical Contrastive Learning of Unsupervised Representations. In Proceedings of the 9th
International Conference on Learning Representations, Online, 3–7 May 2021; pp. 1–16.

15. Kang, B.; Li, Y.; Xie, S.; Yuan, Z.; Feng, J. Exploring balanced feature spaces for representation learning. In Proceedings of the 9th
International Conference on Learning Representations, Online, 3–7 May 2021; pp. 1–15.

16. Xie, Q.; Dai, Z.; Hovy, E.; Luong, T.; Le, Q. Unsupervised data augmentation for consistency training. In Proceedings of the 2020
Conference and Workshop on Neural Information Processing Systems, Online, 6 December 2020; pp. 6256–6268.

17. Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; Kawarabayashi, K.; Jegelka, S. Representation Learning on Graphs with Jumping Knowledge
Networks. In Proceedings of the 6th International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3
May 2018; pp. 5453–5462.

18. Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; Weinberger, K. Simplifying graph convolutional networks. In Proceedings of the
2019 International Conference on Machine Learning, Long Beach, CA, USA, 12 June 2019; pp. 6861–6871.

19. Zhu, H.; Koniusz, P. Simple spectral graph convolution. In Proceedings of the 9th International Conference on Learning
Representations, Online, 3–7 May 2021; pp. 1–15.

20. Page, L.; Brin, S.; Motwani, R.; Winograd, T. The pagErank Citation Ranking: Bringing Order to the Web; Stanford Digital Libraries
Working Paper; Stanford InfoLab: Stanford, CA, USA, 1999; pp. 1–17. Available online: http://ilpubs.stanford.edu:8090/422/1/1
999-66.pdf (accessed on 1 January 2022).

21. Kondor, R.; Lafferty, J. Diffusion Kernels on Graphs and Other Discrete Structures. In Proceedings of the 2002 International
Conference on Machine Learning, Sydney, Australia, 13 June 2002; pp. 315–322.

22. McPherson, M.; Smith-Lovin, L.; Cook, J. Birds of a feather: Homophily in social networks. Annu. Rev. Sociol. 2001, 27, 415–444.
[CrossRef]

23. Verma, V.; Qu, M.; Kawaguchi, K.; Lemb, A.; Bengio, Y.; Kannala, J.; Tang, J. GraphMix: Improved Training of GNNs for
Semi-Supervised Learning. In Proceedings of the 35th AAAI Conference on Artificial Intelligence, Online, 2 February 2021;
pp. 1–21.

https://github.com/tkipf/gcn
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
http://doi.org/10.1146/annurev.soc.27.1.415


Symmetry 2022, 14, 1678 17 of 17

24. Weston, J.; Ratle, F.; Mobahi, H.; Collobert, R. Deep learning via semi-supervised embedding. Neural Netw. Tricks Trade 2012,
7700, 639–655.

25. Zhu, X.; Ghahramani, Z.; Lafferty, J.D. Semi-supervised learning using gaussian fields and harmonic functions. In Proceedings of
the 20th International Conference on Machine Learning, Washington, DC, USA, 1–24 August 2003; pp. 912–919.

26. Zhu, M.; Wang, X.; Shi, C.; Ji, H.; Cui, P. Interpreting and unifying graph neural networks with an optimization framework. In
Proceedings of the 30th Web Conference, Ljubljana, Slovenia, 12–23 April 2021; pp. 1215–1226.

27. Yang, H.; Ma, K.; Cheng, J. Rethinking Graph Regularization for Graph Neural Networks. In Proceedings of the 35th AAAI
Conference on Artificial Intelligence, Online, 2 February 2021; pp. 4573–4581.

28. Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural message passing for quantum chemistry. In Proceedings of
the the 34th International Conference on Machine Learning, Sydney, NSW, Australia, 6–11 August 2017; pp. 1263–1272.
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