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Introduction 

The design of computer-to-computer communications 
protocols for networks of computers is one of the 
ch a I I en g i n g pr ob I ems fa c i n g the comp u t er s c i en t i s t . I n the 
last few years, a number of large scale computer networks 
have been discussed and several of these are in various 
phases of implementation. It is clear that the design of 
the communications protocols for these networks is a 
difficult problem (though the evidence for this is mainly in 
int er na I memoranda, see [CARR70J , CCROC72] , [FARB73J , 
[FRAN72l, and [HEAR70J ). Many of the problems in designing 
these communications protocols, which involve asynchronous 
para I lel processes, are due to the difficulty in recognizing 
al I of the possible orderings in which the signi f leant 
events can occur and the possible execution sequences which 
arise from these orderings. 

This paper draws from experience with the 
development of a computer network sponsored by the Advanced 
Research Projects Agency (ARPA) cal led the ARPANET [ROBE70J, 
and the development of the UCLA Graph Model of Computation 
(ESTR83J, especially the advances made by Gostelow [GOST71l 
and Cerf (CERF72cJ t.Jh i ch gave this mode I of para I I e I 

processing additional analytical power. One especially 
attractive aspect of this modeling technique is the 
existence of a computer ~rogram for testing for the property 
of proper termination. Proper termination indicates that 
the process modeled by the graph is in a certain sense wel I 
behaved; for ex amp I e it has no dead I ocks. These 
developments suggest that communications protocols can be 
modeled by the UCLA Graph Model in a useful and revealing 
way. 

SECTION 1 -- A Communications Protocol 

A communications protocol must deal with several 
sometimes contradictory issues. Among these are error 
control, flow control, multiplexing, and synchronization. 
The approaches taken to the issues have imp I ications 
affecting retransmission frequency, buffering requirements, 
throughput, and de I ay. In con temp I at i ng a 11 of these 
issues, two "zero level 11 issues must be kept in mind: 
deadlocks, and critical race conditions. 

Deadlocks are situations in which two or more 
parties {processes, hosts) are waiting for a resource 
(command, signal) before proceeding {with their tasks} and 
that resource can only become avai I able by one or more of 
those same parties proceeding. Critical race conditions are 
those s i tua ti ons 1-1here the outcome of a sequence ·of 
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(supposedly independent) operations is dependent upon the 

order in which the operations occur. 

In the fo I I Ql..J i ng section, the error con tro I aspect 
of an examp I e protoco I is deve I oped, then in Section 3 the 

example protocol is modeled. 

A basic requirement at any level in a communications 
system is error contra I. Genera I I y in the type of networks 
being considered the communications subsystems are designed 
to be very reliable. However, there may be interface 
hardware and some short transmission paths that are 
unchecked by the communications subsystem, also there may be 
temporary outages in the communications subsystem or 
messages lost due to congestion (and even errors which occur 
with very I ow probab i I i ty can be cost I y); thus error 
checking is sti I I required. A simple scheme for error 
control ls to use a checksum attached to the message which 
the sender calculates and attaches to the message and the 
receiver calculate£ and compares with the checksum 
transmitted with the message. If there ls a discrepancy, 
then an error has occurred. It is possible to use error 
correcting codes, but their discussion is beyond the scope 

of this presentation. 

The sender must have some way of knowing that the 
message arrived at its destination correctly or incorrectly. 
A simple way to provide this knowledge is to have the 
receiver acknowledge each correctly received message. The 
sender can then assume that if no acknowledgement is 
received by the end of a timeout period then either the 
message was afflicted with errors or was undelivered. In 
this case the sender retransmits the message. Note that the 
acknowledgement must also be checksummed since it is 
transml tted via the same media as the message, and therefore 

subject to errors in the same way. 

The protocol proposed thus far ls not sufficient. 
It fails when the finite time for message delivery and the 
variabi I ity of that time is considered. If the delivery 
time in one instance is approximately equal to the timeout 
period, then the sender can dee i de to retransmit just as the 
rec e i v er de c i des to send the a ck n mi I edge men t ( o f the f i r s t 
copy}. These then pass each other in the communications 
network. The result is that the receiver accepts two copies 
of the same message and the sender gets an extra 
acknowledgement. Further one or the other of the 
acknowledgements could be aff I icted with errors and then the 
sender would not detect the problem either. There must be 
added to the protocol some means of identifying a message; 

'for convenience, humbers wi I I be used. Thus, if the sender 
attaches a sequence number to each message the receiver can 

2 
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check to be sure it has not previously accepted a copy of 
that message. Because there must be some maximum sequence 
number, M, the sequence numbers wi I I be used cycl icly, that 
is after sequence number M is used the sequence is restarted 
at zero. Another way to view this is to say that messages 
are counted indefinitely and that the sequence number is the 
message count modulo M+l. This protocol is 1 I lustrated in 
Figure 1. 

In the program- Ii ke ciescr i pt ion be I 01-1, if an "if 
clause 11 is false then fal I through to the next statement 
(usually an jf) at that same level (of indentation). If a 
"go to" directs the reexecution of a statement such as "if 
Ack rece i ved 11 then it is intended that a new instance of an 
Ack be received before the statement can be reexecuted. 

The drawing is a state machine. In the notation 
accompanying an arc the statement above the bar indicates 
the input required to activate the arc, and the statement 
below the bar indicates the action taken while transiting 
the arc. A lambda indicates either' no input or no action. 

The sender starts in "initialization" state A, and 
moves to "send message" state 8 bhJ setting N to zero (step 
50). From state 8 the sender moves to "wait for Ack" state 
C by sending message N and starting a ti mer (51, 52). In 
state C the arrival of an acknowledgement with a bad 
checksum (53, 54, SS} results in continuing in state C. In 
state C the arrival of an acknowledgement with a good 
checksum (53, 58) results in moving to "decision" state 0. 
If the timer expires (Sl2, 513) the sender moves from state 
C to state 8. If the sequence number of the received good 
acknowledgement is the same as the sequence number of the 
message sent then the sequence number is incremented and the 
sender moves from state 0 to state B (57, 58, SS). If the 
received sequence number is not the same as the sent 
sequence number the sender moves from state D to state C 
(510, 511}. 

The receiver begins in "initialization" state E, and 
moves to "wait for message" state F bhJ setting M to zero 
(step R0). If the messages is received with a bad checksum 
the receiver remains in state F (Rl, R2, R3). If the 
message is received with a good checksum the receiver moves 
to "send Ack" state G (Rl, R4). The receiver moves from 
state G to "decision'' state H by sending an acknowledgement 
CR5). If the sequence number received is not the expected 
one <R8, R7) the receiver moves to state F. If the sequence 
number is the expected one the receiver increments the 
sequence number and moves to state F (R8 1 RS, R10). 

3 
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Sender 

50: N=0 
Sl: Send Msg(N} 
52: Start Timer 
83: i f Ack (I ) received 
84: if checksum = bad 
SS: then go to S3 
56: if checksum good 
S7: i f I ;,;; N 

S8: then N=N+l 
SS: and go to Sl 
Sl 0: i f I not equa I N 
511: then go to S3 
S12: if Ti mer runout 
S13: then go to Sl 

Receiver 

R0: M=0 
Rl: Rev Msg (J) 

R2: if checksum bad 

R3: then go to Rl 
R4: i f check sum = good 
RS: Send Ack(J) 
RG: if J not equal M 
R7: then go to Rl 
R8: if J = t1 
R9: then M=M+l 
R10: and go to Rl 

A Communications Protocol 

A parameter to be considered in this mechanism is 
the nutnber of different unacknow I edged messages a I I owed. It 
has been shown that if this number is one, the sequence 
number need be only one bit [8ART68J. However, when only 
one message is al lot-Jed to be outstanding the bandwidth of 
the communications network may be lneff iciently used 
[METC73l. 

This example protocol while addressing only the 
issue of error contra I is sufficient I y deve I oped to I ead to 
an interesting graph model and analysis. 

SECTION 2 -- The UCLA Graph Model 

The UCLA Graph Model has developed from the acyclic 
bi logic directed graph model introduced by Estrin [ESTR53J. 
The current mode I consists of arcs and vertices where 
generally speaking the vertices represent computations and 
the arcs represent the flow of control between computations. 
At each vertex there is either "exclusive or" (EOR) or 11 and 11 

CANO) logic between the input arcs, and siml larly EOR or AND 
logic between the output arcs. EOR input logic means that 
if any one of the input arcs is enabled (carries a token) 
the vertex can execute. AND input logic requires al I input 
arcs to be enabled before the vertex can execute. EOR 
output logic indicates that when the vertex completes 
execution it w i I I enab I e (p I ace a token on) one of the 
output arcs. ANO output logic indicates that when the 
vertex comp I et es execution it i,.J i I I enab I e a 11 the output 
arcs. A vertex executes by removing token{s) from its 
enabling input arc(s) and placing token{s} on its output 

4 



Graph Modeling of Computer Communlcations Protocols 

arc(s) as indicated by the output logic. If more than one 
of a set of EOR input arcs is enabled the vertex chooses 
randomly between the enabled arcs as to which token to 
remove. On EOR output logic, the vertex may decide ~Jhich 

arc to enable based on an interpretatlon assoclated with the 
graph; in an uninterpreted graph the choice is random. The 
UCLA Graph Model also al lows complex arcs, 1.e. arcs with 
multiple tal Is or heads. 

A UCLA Graph Model representatlon of a simple 
exchange of a message and reply is shown in Flgure 2, where 
the vertices have the meanings: 

1 
2 

begin exchange 
send message 

3 = receive message 
4 send reply 
5 receive reply 
G end exchange 

and the arcs have the meanings: 

S ready for exchange 
A ready to send message 
B ready to receive message 
M message avai I able 
C read to receive reply 
0 read to send reply 
R reply avai I able 
E reply received 
F reply sent 
X exchange completed 

A number of useful constructs and concepts have been 
associated with the UCLA Graph Model, the current 
development of which is cal led the Graph Model of 
Computation (GMC). Tokens are used in the UCLA Graph Model 
to analyze the flow of control through the graph as the 
vertices execute. A mechanism for testing GMC's for certain 
properties is ca I I eel the Token Machine CTM). One of these 
constructs is the Computation Flow Graph (CFG) which is a 
state transition diagram where the states are named 
corresponding to the token placement in the GMC. The CFG 
for the GMC of Figure 2 is shown in Figure 3. A GMC whose 
associated CFG is such that the state X is the only terminal 
state and state X is reachable from every other state by 
some pa th is ca I I ed proper I y terminating {PT) [GOST71 J • 
Another related construction is the set of transformation 
expressions (TE's) of a GMC. Each TE describes a local 

5 
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transformation in the token state due to the execution of a 
vertex. The TE's corresponding to Figure 2 are: 

s -> A, 8; 

A -> C, M; 
8, M -> O; 
0 -> F, R; 
c, R -> E; 
E, F -> X; 

One way of determining if a GMC is properly 
terminating is by operating on the TE's with a reduction 
procedure [CERF72cJ. The reduction procedure performs 
substitutions in the right hand side of the TE's aDci 
eliminates other TE's from the set of TE's. When the 
reduction procedure can operate no further, and if the only 
TE left in the set is 11 S -> X; 11 then the TE's and the GMC 
are cal led completely reducible (CR), and CR imp I ies PT 
(CERF72cl. Figure 4 shows the reduction of the TE's given 
above. A good reference for more detai I on the UCLA Graph 
Mode I is [GOST72] . 

SECTION 3 -- A Graph Model of A Communications Protocol 

The protocol described in Section 2 is shown as a 
bigraph in Figure 5. Compare Figure 1 with Figure 5 and 
notice that the states in the former are arcs in the latter. 
Generally in a state machine a state represents 11 wai t for 
something". In bigraphs this waiting condition is best 
represented by arcs. The meanings of the states in Figure 1 
apply equally to the arcs in Figure 5. 

A Initialize Sender 
8 Ready to send Message 
C Wait for Acknowledgement or Time Out 
0 Good Acknot-1 I ecigemen t Received 
E Initialize Receiver 
F Wait for Message 
G Ready to Send Acknowledgement 
H Check for Duplicate Message 

The transformation expressions are derived from a 
bigraph by examining each vertex in turn. For example at 
the initial vertex the input arc is Sand the output arcs 
are A and E, so the TE is'S ->A, E. The set of TE's for 
this bigraph is: 

8 
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{ 1) S -> A, E; 

(2} A -> B; 
(3) B -> C, MSG; 

( 5} C ~ ACK - > 0; 
(5) C, ACK -> C; 

(G} 0 -> C; 

(G) 0 -> B; 

{4} C -> B; 

(7) E -> F; 
( 8} F, MSG -> G; 

(8) F, MSG -> F; 

(8) G -> H, ACK; 

<10} H -> F; 
{10) H -> F; 
(11} 8, F -> X; 

A portion of the corresponding computation flow 
graph is shown in Figure 8. This CFG is infinite due to the 
poss i bi Ii ty of retransmission of the message an infinite 
number of times. This protocols must be modified to include 
a I imitation on the number of retransmissions to some upper 
bound N. 

A solution is presented in Figure 7. Note that arc 
L is initially issued N tokens. Each time a message is sent 
arc L loses one token but arc K gains one token so that the 
sum of the number of tokens on arcs L and K is always N, 
unti I an acknowledgement arrives. When the acknowledgement 
arrives it disables the loop and initiates collection of the 
tokens from arcs L and K. A bigraph cannot be properly 
terminating if there are tokens left in the graph which 
cannot be used. The segment in Figure 7 is ca I I ed a 
counter-I imited loop and collector. 

1t is important to note here the difficulty pointed 
out in Section 2, namely, that if the timing of 
retransmissions and acknowledgements is phased in a 
particular way a second copy of a message could be accepted 
as a new message. This di ff i cu I ty w i 11 not be detected here 
as it arises from the lack of duplicate detection 
information, not from flaws in the control structure. 

For simpl lcity in analysis the case is restricted to 
the situation where the range of sequence numbers is zero 
and one, used cycl icly and with the constraint that the 
commun i cat 1 ans s!::Js tem de I i ver messages in order. Th 1 s 
second proviso al lows modeling the communications system as 
a wire, or rather a pair of wires, one in each direction. 

7 
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The implementation of dupl lcate detection by 

sequence numbers must be something I ike the fol lowing. For 
the sender of messages: in state N send message with 
sequence number equal to N and retransmit as necessary; when 
an acknow I edgement arrives (correct I y) if it carries 
sequence number N then go to state N + 1, if it carries some 
other sequence number discard it and remain in the same 
state. For the receiver of 1messages: in state M expect to 
receive a message; when a message arrives {correctly) send 
an acknowledgement carrying the same sequence number as ln 
the message, if the sequence number in the message is M then 
go to state M + 1, if it is some other number remain in the 
same state. When limited to two states the arithmetic in 
the above is modu Io two, thus the resu It i ng va I ues for M and 

N are zero and one. 

In Figure 8 a portion of this mechanism is drawn. 
Arcs 550, 551, RS0, and RSl represent the "states" of the 
sender and receiver; SS0 indicates that the sender is 
prepared to send a message with sequence number zero and to 
receive an ack~owledgement with sequence number zero. Note 

.that Figure 8 does not provide for discarding duplicate 
acknowledgements. In Section 2 it was noted that if the 
sequence number range was too close to the number of 
outstanding messages al lowed and the communications network 
could deliver message out of order then errors could result. 
Here the assurnpt ion is made ,that messages arrive in the 
order sent, but this assumption must be included in the 

mode I • 

Thus message sending and acknowledgement sending 
must be coordinated, this can be done by treating the 
communications faci I ity as a resource and including arcs in 
the model to carry resource tokens representing the 
avai labi Ii ty of that resource. In Figure 8 is a portion of 
such a construction. There are two arcs Wl and W2 
representing the communications faci I ity from sender to 
receiver CMSG path) and from receiver to sender {ACK path) 
respectively. Thus the communications network is modeled as 
two simplex paths each of which can hold exactly one message 
(acknowledgement). 

Another aspect of this protocol that has not yet 
been discussed is the proper recovery when the 
retransmission loop is executed N times and no 
acknowledgement is received. The approach taken here is to 
move to a "quit" state and then reini ti al ize the procedure. 
A partial graph of this is shown in Figure 10. 

To mode I correct I y the communications protoco I (of 
Figure ll these ideas mu~t be merged together In one graph. 
This results in the graph shown in Figure 11. 

8 
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The protoco I function of the various vertex groups 
in Figure 11 is described. Vertex 1 is the initiation 
vertex which starts the protocol in action.· The group of 
vertices 3 through 13 is a counter-I imlted loop and 
collector. Of these vertices 8 and 7 are the basic loop, 
which transmits a message with sequence number zero up to N 
times. Vertex 8 leads to a quit state if the loop count is 

exhausted. Vertex 10 acts as a trigger when a good 
acknowledgement is received to start the collector. This 
whole group performs the protocol function of sending a 
message with sequence number zero up to N times, and upon 
receipt of a good acknowledgement stopping the transmission 

and changing the sender's state. 

If a good acknowledgement is not received after N 
transmissions a quit state is activated. The vertex group 
14, 15, and 15 receives messages with sequence number zero, 
sends acknowledgements, and when appropriate changes the 
receiver's state. Vertex 17 releases the transmission 
resource and enables the sending of messages with sequence 
number one. The vertices 18 through 26, 43, 44, and 45 
collect either bad messages, bad acknowledgements, or good 
acknowledgements with the wrong sequence number and free the 
transm i ss l on resource i..1h i I e the sender or receiver remains 
in the same state. The vertex group 27 through 37 is 
structurally identical to, and performs the same function 
as, the group 3 through 13, except that this group sends 
messages with sequence number one. The vertex group 38, 39, 
and 40 is structura I I y i dent i ca I to, and performs the same 
function as, the group 14, 15 and 15, except that this group 
receives messages with sequence number one. 

Vertices 41 and 42 release the transmission resource 
and enable the sending of messages with sequence number 
zero. Vertices 45, 47, 48, and 49 gather together the 
various resources with the quit states and reinitialize the 
graph. This corresponds to a complete reinitialization of 
the pro taco I. Vertices 52 and 53 gather the resources in 
preparation for termination of the protocol. Vertices 50 
and 51 represent a decision by the sender to stop. Vertices 
54 and 55 represent a decision by the receiver to stop. 
Vertex 56 ls the termination vertex of the graph and the 

protoco I. 

This is a very simple protocol yet to model it takes 
a fairly complex graph. This graph is properly terminating. 
The number of states in the computation flow graph with 
various values of N is shown in the fol lowing table. The 
CFG's were generated from the TE's by a computer program 
CCERF72a, CERF72bJ. In addition to the increase in the 
number of states with the number of retransmissions {N), the 

9 
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generation of CFG's becomes rapidly more difficult as the 
number of vertices and arcs increase. 

N STATES 

1 75 
2 385 
3 555 
4 723 

Conclusion 

These results further the belief that there is 
indeed some bene f i t in app I y i ng graph mode I techniques to 
protocol problems. The UCLA Graph Model propert!J of proper 
termination can be determined in a mechanical and automatic 
way, and that this property indicates that a protocol is in 
a c er ta i n sense "' e I I b ch ave cl • Ho 1.-1 ever , i t i s c I ear th a t the 
practical protocols lead to fairly complex graphs. This 
motivates a search for 1.1a1Js of reducing the over a I I size and 
complexity of these graphs. This problem is attacked in 
CPOST74J . 

As a result of this research it is strongl!J 
recommended that t.1hen dove I oping protoco Is designers shou Id 
at every step check their designs with graph modeling 
techniques. 

When using the graph modeling technique to 
investigate a protocol, errors may arise at four levels. 
First, there may be a error in deriving the transformation 
expressions from the graph. Second, there may be an error 
in the mapping from the protoco I to the graph. Thi rd, there 
may be an error in interpreting the protocol. Fourth, there 
may be an error in the protoco I i tse If. 

A minor note is that the counter- I i mi ted loop and 
collector used in Section 4 does not appear to have been 
known before, and is a very useful construction t.Jhen 
mode Ii ng any process 1.Jh i ch contains a computation step (in a 
I oop) Ii mi ted to a finite number of execut i ans. 

10 



Graph Modeling of 
Computer Communications Protocols 

Jonathan B. Postel 

and 

David J. Farber 

Technical Report #85 

May 1976 

Notice: This Material 
may be protected 
by Copyright Law 
(Title 17 U.S.C.) 

Jonathan B. Postel 
* Computer Science Department 

University of California 
Los Angeles, California 

David J. Farber 
Department of Information and Computer Science 

University of California 

~urrent Address: 

Augmentation Research Center 

Stanford Research Institute 
Menlo Park, California 94025 

Irvine, California 



Introduction 

The design of computer-to-computer communications 
protocols for networks of computers is one of the 
cha I Ieng i ng prob I ems facing the computer scientist. In the 
last few years, a number of large scale computer networks 
have been discussed and several of these are in various 
phases of implementation. It is clear that the design of 
the communications protocols for these networks is a 
difficult problem (though the evidence for this is mainly in 
i nterna I memoranda, see [CARR70], [CROC72J, [FARB73J, 
[FRAN72l, and [HEAR70J ). Many of the problems in designing 
these communications protocols, which involve asynchronous 
para I lei processes, are due to the difficulty in recognizing 
al I of the possible orderings in which the significant 
events can occur and the possible execution sequences which 
arise from these orderings. 

This paper draws from experience with the 
development of a computer network sponsored by the Advanced 
Research Projects Agency (ARPA) cal led the ARPANET [ROBE70J, 
and the development of the UCLA Graph Model of Computation 
(ESTR63J , espec i a I I y the advances made by Gos te I ow [GOST71J 

and Cerf [CERF72cJ t.Jh i ch gave this mode I of para I I e I 
processing additional analytical power. One especially 
attractlve aspect of this model lng technique is the 
existence of a computer ~rogram for testing for the property 
of proper termination. Proper termination indicates that 
the process modeled by the graph is in a certain sense wel I 

behaved; for ex amp I e it has no dead I ocks. These 
developments suggest that communications protocols can be 
modeled by the UCLA Graph Model in a useful and revealing 
way. 

SECTION 1 -- A Communications Protocol 

A communications protocol must deal with several 
sometimes contradictory issues. Among these are error 
control, flow control, multiplexing, and synchronization. 
The approaches taken to the issues have implications 
affecting retransmission frequency, buffering requirements. 
throughput, and de I ay. In con temp I at i ng a I I of these 
issues, two "zero level" issues must be kept in mind: 
deadlocks, and critical race conditions. 

Deadlocks are situations in which two or more 
parties {processes, hosts} are waiting for a resource 
(command, s i gna I) be fore proceeding {with their tasks} and 
that resource can only become avai I able by one or more of 
those same parties proceeding. Critical race conditions are 
those s i tua ti ons i.1here the outcome of a sequence ,of 
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(supposedly independent) operations is dependent upon the 

order in which the operations occur. 

I n the f o I I o L-J i n g sec t i on , the error con tr o I asp e c t 
of an examp I e protoco I is deve I oped, then in Section 3 the 
example protocol is modeled. 

A basic requirement at any level in a communications 
system is error control. Generally in the type of networks 
being considered the communications subsystems are designed 
to be very reliable. However, there may be interface 
hardware and some short transmission paths that are 
unchecked by the communications subsystem, also there may be 
temporary outages in the communications subsystem or 
messages lost due to congestion (and even errors which occur 
with very I ow probab i Ii ty can be cost I y}; thus error 
checking is sti I I required. A simple scheme for error 
control ls to use a checksum attached to the message which 
the sender calculates and attaches to the message and the 
receiver calculates and compares with the checksum 
transmitted with the message. If there is a discrepancy, 
then an error has occurred. It is possible to use error 
correcting codes, but their discussion is beyond the scope 

of this presentation. 

The sender must have some way of knowing that the 
message arrived at its destination correctly or incorrectly. 
A s i mp I e way to prov i de th i s kn o 1.J I edge i s to have the 
receiver acknowledge each correctly received message. The 
sender can then assume that if no acknowledgement is 
received by the end of a timeout period then either the 
message was aff I ictecl i..ii th errors or was undelivered. In 
this case the sender retransmits the message. Note that the 
acknowledgement must also be checksummed since it is 
transmitted vi a the same media as the message, and therefore 

subject to errors in the same way. 

The protocol proposed thus far is not sufficient. 
It fails when the finite time for message delivery and the 
variabi I ity of that time is considered. If the delivery 
time in one instance is approximately equal to the timeout 
per i ad, then the sender can dee i de to re transm i t just as the 
rec e i v er de c i des to send the a ck n m1 I edge men t ( o f the f i r s t 
copy). These then pass each other in the communications 
network. The result is that the receiver accepts two copies 
of the same message and the sender gets an extra 
acknowledgement. Further one or the other of the 
acknowledgements could be aff I icted with errors and then the 
sender would not detect the problem either. There must be 
added to the protocol some means of identifying a message; 

'for convenience, numbers wi I I be used. Thus, if the sender 
attaches a sequence number to each message the receiver can 

2 
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check to be sure it has not previously accepted a copy of 
that message. Because there must be some maximum sequence 
number, M, the sequence numbers wi I I be used cycl icly, that 
is after sequence number M is used the sequence is restarted 
at zero. Another way to view this is to say that messages 
are counted indefinitely and that the sequence number is the 
message count modulo M+l. This protocol ls 1 I lustrated in 
Figure 1. 

In the program- Ii ke ciescr i pt ion be I 01--1, if an 11 if 
c I ause" is fa I se then fa 11 through to the next statement 
(usua I I y an if) at that same I eve I {of indentation). If a 
"go to" directs the reexecution of a statement such as "if 
Ack rece i ved 11 then it is intended that a new instance of an 
Ack be received before the statement can be reexecuted. 

The drawing is a state machine. In the notation 
accompanying an arc the statement above the bar indicates 
the input required to activate the arc, and the statement 
below the bar indicates the action taken while transiting 
the arc. A lambda indicates either' no input or no action. 

The sender star ts in "in it la Ii zat ion" state A, and 
moves to "send message" state B by setting N to zero {step 
50}. From state B the sender moves to "wait for Ack" state 
C by sending message N and starting a timer {51, 52). In 
state C the arr i va I of an acknoL-1 I edgement with a bad 
checksum (83, 54, SS) results in continuing in state C. In 
state C the arrival of an acknowledgement with a good 
checksum (83, 58) results in moving to "decision" state 0. 
If the timer expires (512, 513) the sender moves from state 
C to state 8. If the sequence number of the received good 
acknowledgement is the same as the sequence number of the 
message sent then the sequence number is incremented and the 
sender moves from state 0 to state B {87, 88, 59). If the 
received sequence number is not the same as the sent 
sequence number the sender moves from state D to state C 
(510, 511}. 

The receiver begins in "initialization" state E, and 
moves to "wait for message" state F by setting M to zero 
(step R0}. If the messages is received with a bad checksum 
the receiver remains in state F (Rl, R2, R3}. If the 
message is received with a good checksum the receiver moves 
to "send Ack" state G {Rl, R4). The receiver moves from 
state G to "decision" state H by sending an acknowledgement 
<RS). If the sequence number received is not the expected 
one <R8, R7) the receiver moves to state F. If the sequence 
number is the expected one the receiver increments the 
sequence number and moves to state F (R8 1 R8t Rl0). 
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Sender 

50: N=0 
Sl: Send Msg(N} 
S2: Start Timer 
83: if Ack(!) received 
84: i f check sum = bad 
SS: then go to 53 
S6: i f check sum good 
S7: if I : N 
S8: then N=N+l 
S9: and go to Sl 
Sl 0: i f I not equa I N 
811: then go to 53 
Sl2: if Ti mer run out 
Sl3: then go to Sl 

Receiver 

R0: M=0 
Rl: Rev Msg (J) 

R2: if checksum bad 
R3: then go to Rl 
R4: if checksum = good 
RS: Send Ack (J) 

RG: i f J not equa I M 
R7: then go to Rl 
R8: if J = 11 
R3: then M=M+l 
R10: and go to Rl 

A Communications Protocol 

A parameter to be considered in this mechanism is 
the number of different unacknowledged messages al lowed. It 
has been shown that if this number is one, the sequence 
number need be only one bit [8ART88J. However, when only 
one message is al lot-Jed to be outstanding the bandwidth of 
the communications network may be inefficiently used 
[METC73J • 

This example protocol while addressing only the 
issue of error contra I is sufficient I y deve I oped to I ead to 
an interesting graph model and analysis. 

SECTION 2 -- The UCLA Graph Model 

The UCLA Graph Model has developed from the acycl le 
bi logic directed graph model introduced by Estrin [ESTR53J. 
The current model consists of arcs and vertices where 
generally speaking the vertices represent computations and 
the arcs represent the flow of control between computations. 
At each vertex there is either 11 exclusive or 11 (EOR} or 

11
and

11 

CANO} logic between the input arcs, and similarly EOR or AND 
logic between the output arcs. EOR input logic means that 
if any one of the input arcs is enabled (carries a token} 
the vertex can execute. AND input logic requires al I input 
arcs to be enabled before the vertex can execute. EOR 
output logic indicates that when the vertex completes 
execution it w i I I enab I e (p I ace a token on) one of the 
output arcs. ANO output logic indicates that when the 
vertex comp I et es execution it i,J i I I enab I e a I I the output 
arcs. A vertex executes by removing token(s) from its 
enabling input arc(s} and placing token(s} on its output 
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arc(s} as indicated by the output logic. If more than one 
of a set of EOR input arcs ls enabled the vertex chooses 
randomly between the enabled arcs as to which token to 
remove. On EOR output logic, the vertex may decide t-Jhich 
arc to enable based on an interpretation associated with the 
graph; in an uninterpreted graph the choice ls random. The 
UCLA Graph Model also al lows complex arcs, i.e. arcs with 
multiple tal Is or heads. 

A UCLA Graph Model representation of a simple 
exchange of a message and reply is shown in Figure 2, where 
the vertices have the meanings: 

1 
2 

begin exchange 
send message 

3 = receive message 
4 send reply 
5 receive reply 
G end exchange 

and the arcs have the meanings: 

S ready for exchange 
A ready to send message 
B ready to receive message 
M message aval I able 
C read to receive reply 
0 read to send reply 
R reply aval I able 
E reply received 
F reply sent 
X exchange completed 

A number of useful constructs and concepts have been 
associated with --the UCLA Graph Model, the current 
development of which is cal led the Graph Model of 
Computation CGMC). Tokens are used ln the UCLA Graph Model 
to analyze the flow of control through the graph as the 
vertices execute. A mechanism for testing GMC's for certain 
properties is ca I I eel the Token Machine (TM}. One of these 
constructs is the Computation Flow Graph (CFG) which is a 
state transition diagram where the states are named 
corresponding to the token placement in the GMC. The CFG 
for the GMC of Figure 2 is shown in Figure 3. A GMC whose 
associated CFG is such that the state X is the only terminal 
state and state X is reachable from every other state by 

some pa th is ca I I ed proper I y terminating (PT} [GOST71 J • 
Another related construction is the set of. transformation 
expressions CTE's} of a GMC. Each TE describes a local 
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transformation ln the token state due to the execution of a 
vertex. The TE' s car-responding to Figure 2 are: 

s -> A, B; 
A -> C, M· I 
B, M -> O; 
0 -> F, R· 

' c, R -> E; 
E, F -> X· 

' 

One way of determining if a GMC is properly 
terminating is by operating on the TE's with a reduction 
procedure [CERF72cJ. The reduction procedure performs 
substitutions in the right hand side of the TE's aDci 

eliminates other TE's from the set of TE's. When the 
reduction procedure can operate no further, and lf the only 
TE left in the set ls "S -> X;" then the TE's and the GMC 
are cal led completely reducible (CRJ, and CR imp I ies PT 

[CERF72c] • Figure 4 shot.JS the reduct l on of the TE' s given 
above. A good reference for more detai I on the UCLA Graph 
Mode I i s [GQST72J • 

SECTION 3 -- A Graph Model of A Communications Protocol 

The protocol described in Section 2 is shown as a 

bigraph in Figure 5. Compare Figure 1 with Figure 5 and 
notice that the states in the former are arcs in the latter. 
Generally in a state machine a state represents "wait for 
something". In bigraphs this waiting condition is best 
represented by arcs. The meanings of the states in Figure 1 
apply equally to the arcs in Figure 5. 

A Initialize Sender 
8 Ready to send Message 
C Wait for Acknowledgement or Time Out 
D Good Acknm.J I edgemen t Received 
E In i ti a I i ze Receiver 
F Wait for Message 
G Ready to Send Acknowledgement 
H Check for Oupl icate M~ssage 

The transformation expressions are derived from a 
bigraph by examining each vertex in turn. For example at 
the initial vertex the input arc is Sand the output arcs 
are A and E. so the TE is'S ->A, E. The set of TE's for 
this bigraph is: 
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{1} s -> A I E; 
(2) A -> B; 
{3) B -> C, MSG; 

(5) C, ACK -> O; 

(5) C, ACK -> C; 

(8) 0 -> C; 

(8) 0 -> B; 

(4) C -> B; 

(7) E -> F; 
{8) F, MSG - > G; 

(8) F, MSG -> F; 

(9) G -> H, ACK; 

{10) H -> F; 
(10) H -> F; 

{11) 8, F -> X; 

A portion of the corresponding computation flow 
graph is shown in Figure G. This ·CFG is infinite due to the 
poss i bi I i ty of retransmission of the message an infinite 
number of times. This protocols must be modified to include 
a I imitation on the number of retransmissions to some upper 
bound N. 

A solution is presented in Figure 7. Note that arc 
L is initially issued N tokens. Each time a message is sent 
arc L loses one token but arc K gains one token so that the 
sum of the number of tokens on arcs Land K is always N, 
unti I an acknowledgement arrives. When the acknowledgement 
arrives it disables the loop and initiates collection of the 
tokens from arcs L and K. A bigraph cannot be properly 
terminating if there are tokens left in the graph which 
cannot be used. The segment in Figure 7 is cal led a 
counter-I imited loop and collector. 

1t is important to note here the difficulty pointed 
out in Section 2, namely, that if the timing of 
retransmissions and acknowledgements ls phased in a 
particular way a second copy of a message could be accepted 
as a new message. This difficulty wl I I not be detected here 
as it arises from the I ack of dup Ii cate detection 
information, not from flaws in the control structure. 

For simplicity in analysis the case is restricted to 
the situation where the range of sequence numbers is zero 
and one, used cycl icly and with the constraint that the 
communications system deliver messages in 6rder. Th ls 
second proviso al lows modeling the communications system as 
a wire, or rather a pair of wires, one in each direction. 
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The implementation of dupl lcate detection by 

sequence numbers must be something I ike the fol lowing. For 
the sender of messages: in state N send message with 
sequence number equal to N and retransmit as necessary; when 
an acknoi..1 I edgement arrives {correct I y) if it carries 
sequence number N then go to state N + 1, if it carries some 
other sequence number discard it and remain in the same 
state. For the receiver of, messages: in state M expect to 
receive a message; when a message arrives {correctly) send 
an acknowledgement carrying the same sequence number as 1n 
the message, if the sequence number in the message is M then 
go to state M + 1, if it is some other number remain in the 
same state. When limited to two states the arithmetic in 
the above is modu Io two, thus the resu It i ng va I ues for M and 
N are zero and one. 

In Figure 8 a portion of this mechanism is drawn. 
Arcs SS0, SSl, RS0, and RSl represent the 11 states 11 of the 
sender and receiver; SS0 indicates that the sender is 
prepared to send a message with sequence number zero and to 
receive an ack~owledgement with sequence number zero. Note 

.that Figure 8 does not provide for discarding duplicate 
acknowledgements. In Section 2 it was noted that if the 
sequence number range was too close to the number of 
outstanding messages al lowed and the communications network 
cou Id de I i ver message out of order then errors cou Id resu It. 
Here the assumption is made ,that messages arrive in the 
order sent, but this assumption must be included in the 

mode I. 

Thus message sending and acknowledgement sending 
must be coordinated, this can be done by treating the 
communications faci I ity as a resource and including arcs in 
the model to carry resource tokens representing the 
availability of that resource. In Figure 8 is a portion of 
such a construction. There are two arcs Wl and W2 
rep r es en t i n g the com n1 u n i ca t i on s fa c i I i t y from sender t o 
receiver {MSG path) and from receiver to sender (ACK path) 
respectively. Thus the communications network is modeled as 
two simplex paths each of which can hold exactly one message 
(acknowledgement). 

Another aspect of this protocol that has not yet 
beeri discussed is the proper recovery when the 
retransmission loop is executed N times and no 
acknowledgement is received. The approach taken here is to 
move to a "quit" state and then reinitialize the procedure. 
A partial graph of this is shown in Figure 10. 

To mode I correct I y the comtnun i cations protoco I (of 
Figure 1) these ideas mu~t be merged together in one graph. 
This results in the graph shown in Figure 11. 
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The pro to co I f unct ·,on of the various vertex groups 
in Figure 11 is described. Vertex 1 is the initiation 
vertex which star ts the protoco I in action.· The group of 
vertices 3 through 13 is a counter-I imited loop and 
collector. Of these vertices 8 and 7 are the basic loop, 
which transmits a message with sequence number zero up to N 
times. Vertex 8 leads to a quit state if the loop count is 
exhausted. Vertex 10 acts as a trigger when a good 
acknowledgement is received to start the collector. This 
whole group performs the protocol function of sending a 
message with sequence number zero up to N times, and upon 
receipt of a good acknowledgement stopping the transmission 
and changing the sender's state. 

I f a goo cJ a ck n m.1 I edge men t i s no t rec e i v e d a f t er N 
transmissions a quit state is activated. The vertex group 
14, 15, and 16 receives messages with sequence number zero, 
sends acknowledgements, and when appropriate changes the 
receiver's state .. Vertex 17 releases the transmission 
resource and enables the sending of messages with sequence 
number one. The vertices 18 through 26, 43, 44, and 45 
collect either bad messages, bad acknowledgements, or good 
acknowledgements with the wrong sequence number and free the 
transmission resource ~ihi le the sender or receiver remains 
in the same state. The vertex group 27 through 37 is 
structura 11 y i dent i ca I to, and performs the same function 
as, the group 3 through 13, except that this group sends 
messages with sequence number one. The vertex group 38, 38, 
and 40 is structurally identical to, and performs the same 
function as, the group 14, 15 and lG, except that this group 
receives messages with sequence number one. 

Vertices 41 and 42 release the transmission resource 
and enable the sending of messages with sequence number 
zero. Vertices 46, 47, 48, and 48 gather together the 
various resources with the quit states and reinitialize the 
graph. This corresponds to a complete reinltial ization of 
the protoco I. Vertices 52 and 53 gather the resources in 
preparation for termination of the protocol. Vertices 50 
and 51 represent a decision by the sender to stop. Vertices 
54 and 55 represent a decision by the receiver to stop. 
Vertex SG is the termination vertex of the graph and the 

pro taco I. 

This is a very simple protocol yet to model it takes 
a fairly complex graph. This graph is properly terminating. 

·The number of states in the computation flow graph with 
various values of N is shown in the fol lowing table. The 
CFG's were generated from the TE's by a computer program 
[CERF72a, CERF72bJ. In addition to the increase in the 
number of states with the number of retransmissions {N), the 
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generation of CFG's becomes rapidly more difficult as the 
number of vertices and arcs increase. 

Conclusion 

N STATES 

1 75 
2 385 
3 555 
4 723 

These results further the belief that there is 
indeed some bene f i t in app I y i ng graph mode I techn ·1 ques to 
protocol problems. The UCLA Graph Model property of proper 
termination can be determined in a mechanical and automatic 
way, and that this property indicates that a protocol is in 
a c er t a i n sense (...I e I I b oh ave d. Ho 1.-1 ever , i t i s c I ear th a t the 
practical protocols lead to fairly complex graphs. This 
motivates a search for 1-iays of reducing the over a I I size and 
complexity of these graphs. This problem is attacked in 
[POST74J . 

As a result of this research it is strongly 
recommended that when developing protocols designers should 
at every step check their designs with graph modeling 
techniques. 

When using the graph modeling technique to 
investigate a protocol. errors may arise at four levels. 
First, there may be a error in deriving the transformation 
expressions from the graph. Second, there may be an error 
in the mapping from the protoco I to the graph. Thi rd, there 
may be an error in interpreting the protocol. Fourth, there 
may be an error in the protoco I i tse If. 

A minor note is that the counter-I imited loop and 
col l ec tor used in Section 4 does not appear to have been 
known before, and is a very useful construction when 
mode I i n g any pr o c e s s t,J h i ch con ta i n s a comp u ta t i on s t e p ( i n a 
loop) I i mi ted to a finite number of executions. 
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