
UC Irvine
ICS Technical Reports

Title
Graph Modeling of computer communications protocols

Permalink
https://escholarship.org/uc/item/2p87f03x

Authors
Postel, Jonathan B.
Farber, David J.

Publication Date
1976

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2p87f03x
https://escholarship.org
http://www.cdlib.org/

~~aph Modeling of
Computer Communications Protocols

Jonathan B. Postel
I'~·~

and

David J. Farber

Technical Report #85

May 1976

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Jonathan B. Postel
* Computer Science Department

University of California
Los Angeles, California

David J. Farber
Department of Information and Computer Science

University of California

~urrent Address:

Augmentation Research Center
Stanford Research Institute
Menlo Park, California 94025

Irvine, California

Introduction

The design of computer-to-computer communications
protocols for networks of computers is one of the
ch a I I en g i n g pr ob I ems fa c i n g the comp u t er s c i en t i s t . I n the
last few years, a number of large scale computer networks
have been discussed and several of these are in various
phases of implementation. It is clear that the design of
the communications protocols for these networks is a
difficult problem (though the evidence for this is mainly in
int er na I memoranda, see [CARR70J , CCROC72] , [FARB73J ,
[FRAN72l, and [HEAR70J). Many of the problems in designing
these communications protocols, which involve asynchronous
para I lel processes, are due to the difficulty in recognizing
al I of the possible orderings in which the signi f leant
events can occur and the possible execution sequences which
arise from these orderings.

This paper draws from experience with the
development of a computer network sponsored by the Advanced
Research Projects Agency (ARPA) cal led the ARPANET [ROBE70J,
and the development of the UCLA Graph Model of Computation
(ESTR83J, especially the advances made by Gostelow [GOST71l
and Cerf (CERF72cJ t.Jh i ch gave this mode I of para I I e I

processing additional analytical power. One especially
attractive aspect of this modeling technique is the
existence of a computer ~rogram for testing for the property
of proper termination. Proper termination indicates that
the process modeled by the graph is in a certain sense wel I
behaved; for ex amp I e it has no dead I ocks. These
developments suggest that communications protocols can be
modeled by the UCLA Graph Model in a useful and revealing
way.

SECTION 1 -- A Communications Protocol

A communications protocol must deal with several
sometimes contradictory issues. Among these are error
control, flow control, multiplexing, and synchronization.
The approaches taken to the issues have imp I ications
affecting retransmission frequency, buffering requirements,
throughput, and de I ay. In con temp I at i ng a 11 of these
issues, two "zero level 11 issues must be kept in mind:
deadlocks, and critical race conditions.

Deadlocks are situations in which two or more
parties {processes, hosts) are waiting for a resource
(command, signal) before proceeding {with their tasks} and
that resource can only become avai I able by one or more of
those same parties proceeding. Critical race conditions are
those s i tua ti ons 1-1here the outcome of a sequence ·of

Graph Modeling of Computer Communications Protocols

(supposedly independent) operations is dependent upon the

order in which the operations occur.

In the fo I I Ql..J i ng section, the error con tro I aspect
of an examp I e protoco I is deve I oped, then in Section 3 the

example protocol is modeled.

A basic requirement at any level in a communications
system is error contra I. Genera I I y in the type of networks
being considered the communications subsystems are designed
to be very reliable. However, there may be interface
hardware and some short transmission paths that are
unchecked by the communications subsystem, also there may be
temporary outages in the communications subsystem or
messages lost due to congestion (and even errors which occur
with very I ow probab i I i ty can be cost I y); thus error
checking is sti I I required. A simple scheme for error
control ls to use a checksum attached to the message which
the sender calculates and attaches to the message and the
receiver calculate£ and compares with the checksum
transmitted with the message. If there ls a discrepancy,
then an error has occurred. It is possible to use error
correcting codes, but their discussion is beyond the scope

of this presentation.

The sender must have some way of knowing that the
message arrived at its destination correctly or incorrectly.
A simple way to provide this knowledge is to have the
receiver acknowledge each correctly received message. The
sender can then assume that if no acknowledgement is
received by the end of a timeout period then either the
message was afflicted with errors or was undelivered. In
this case the sender retransmits the message. Note that the
acknowledgement must also be checksummed since it is
transml tted via the same media as the message, and therefore

subject to errors in the same way.

The protocol proposed thus far ls not sufficient.
It fails when the finite time for message delivery and the
variabi I ity of that time is considered. If the delivery
time in one instance is approximately equal to the timeout
period, then the sender can dee i de to retransmit just as the
rec e i v er de c i des to send the a ck n mi I edge men t (o f the f i r s t
copy}. These then pass each other in the communications
network. The result is that the receiver accepts two copies
of the same message and the sender gets an extra
acknowledgement. Further one or the other of the
acknowledgements could be aff I icted with errors and then the
sender would not detect the problem either. There must be
added to the protocol some means of identifying a message;

'for convenience, humbers wi I I be used. Thus, if the sender
attaches a sequence number to each message the receiver can

2

Graph Modeling of Computer Communications Protocols

check to be sure it has not previously accepted a copy of
that message. Because there must be some maximum sequence
number, M, the sequence numbers wi I I be used cycl icly, that
is after sequence number M is used the sequence is restarted
at zero. Another way to view this is to say that messages
are counted indefinitely and that the sequence number is the
message count modulo M+l. This protocol is 1 I lustrated in
Figure 1.

In the program- Ii ke ciescr i pt ion be I 01-1, if an "if
clause 11 is false then fal I through to the next statement
(usually an jf) at that same level (of indentation). If a
"go to" directs the reexecution of a statement such as "if
Ack rece i ved 11 then it is intended that a new instance of an
Ack be received before the statement can be reexecuted.

The drawing is a state machine. In the notation
accompanying an arc the statement above the bar indicates
the input required to activate the arc, and the statement
below the bar indicates the action taken while transiting
the arc. A lambda indicates either' no input or no action.

The sender starts in "initialization" state A, and
moves to "send message" state 8 bhJ setting N to zero (step
50). From state 8 the sender moves to "wait for Ack" state
C by sending message N and starting a ti mer (51, 52). In
state C the arrival of an acknowledgement with a bad
checksum (53, 54, SS} results in continuing in state C. In
state C the arrival of an acknowledgement with a good
checksum (53, 58) results in moving to "decision" state 0.
If the timer expires (Sl2, 513) the sender moves from state
C to state 8. If the sequence number of the received good
acknowledgement is the same as the sequence number of the
message sent then the sequence number is incremented and the
sender moves from state 0 to state B (57, 58, SS). If the
received sequence number is not the same as the sent
sequence number the sender moves from state D to state C
(510, 511}.

The receiver begins in "initialization" state E, and
moves to "wait for message" state F bhJ setting M to zero
(step R0). If the messages is received with a bad checksum
the receiver remains in state F (Rl, R2, R3). If the
message is received with a good checksum the receiver moves
to "send Ack" state G (Rl, R4). The receiver moves from
state G to "decision'' state H by sending an acknowledgement
CR5). If the sequence number received is not the expected
one <R8, R7) the receiver moves to state F. If the sequence
number is the expected one the receiver increments the
sequence number and moves to state F (R8 1 RS, R10).

3

Graph Modeling of Computer Communications Protocols

Sender

50: N=0
Sl: Send Msg(N}
52: Start Timer
83: i f Ack (I) received
84: if checksum = bad
SS: then go to S3
56: if checksum good
S7: i f I ;,;; N

S8: then N=N+l
SS: and go to Sl
Sl 0: i f I not equa I N
511: then go to S3
S12: if Ti mer runout
S13: then go to Sl

Receiver

R0: M=0
Rl: Rev Msg (J)

R2: if checksum bad

R3: then go to Rl
R4: i f check sum = good
RS: Send Ack(J)
RG: if J not equal M
R7: then go to Rl
R8: if J = t1
R9: then M=M+l
R10: and go to Rl

A Communications Protocol

A parameter to be considered in this mechanism is
the nutnber of different unacknow I edged messages a I I owed. It
has been shown that if this number is one, the sequence
number need be only one bit [8ART68J. However, when only
one message is al lot-Jed to be outstanding the bandwidth of
the communications network may be lneff iciently used
[METC73l.

This example protocol while addressing only the
issue of error contra I is sufficient I y deve I oped to I ead to
an interesting graph model and analysis.

SECTION 2 -- The UCLA Graph Model

The UCLA Graph Model has developed from the acyclic
bi logic directed graph model introduced by Estrin [ESTR53J.
The current mode I consists of arcs and vertices where
generally speaking the vertices represent computations and
the arcs represent the flow of control between computations.
At each vertex there is either "exclusive or" (EOR) or 11 and 11

CANO) logic between the input arcs, and siml larly EOR or AND
logic between the output arcs. EOR input logic means that
if any one of the input arcs is enabled (carries a token)
the vertex can execute. AND input logic requires al I input
arcs to be enabled before the vertex can execute. EOR
output logic indicates that when the vertex completes
execution it w i I I enab I e (p I ace a token on) one of the
output arcs. ANO output logic indicates that when the
vertex comp I et es execution it i,.J i I I enab I e a 11 the output
arcs. A vertex executes by removing token{s) from its
enabling input arc(s) and placing token{s} on its output

4

Graph Modeling of Computer Communlcations Protocols

arc(s) as indicated by the output logic. If more than one
of a set of EOR input arcs is enabled the vertex chooses
randomly between the enabled arcs as to which token to
remove. On EOR output logic, the vertex may decide ~Jhich

arc to enable based on an interpretatlon assoclated with the
graph; in an uninterpreted graph the choice is random. The
UCLA Graph Model also al lows complex arcs, 1.e. arcs with
multiple tal Is or heads.

A UCLA Graph Model representatlon of a simple
exchange of a message and reply is shown in Flgure 2, where
the vertices have the meanings:

1
2

begin exchange
send message

3 = receive message
4 send reply
5 receive reply
G end exchange

and the arcs have the meanings:

S ready for exchange
A ready to send message
B ready to receive message
M message avai I able
C read to receive reply
0 read to send reply
R reply avai I able
E reply received
F reply sent
X exchange completed

A number of useful constructs and concepts have been
associated with the UCLA Graph Model, the current
development of which is cal led the Graph Model of
Computation (GMC). Tokens are used in the UCLA Graph Model
to analyze the flow of control through the graph as the
vertices execute. A mechanism for testing GMC's for certain
properties is ca I I eel the Token Machine CTM). One of these
constructs is the Computation Flow Graph (CFG) which is a
state transition diagram where the states are named
corresponding to the token placement in the GMC. The CFG
for the GMC of Figure 2 is shown in Figure 3. A GMC whose
associated CFG is such that the state X is the only terminal
state and state X is reachable from every other state by
some pa th is ca I I ed proper I y terminating {PT) [GOST71 J •
Another related construction is the set of transformation
expressions (TE's) of a GMC. Each TE describes a local

5

Graph Modeling of Computer Communications Protocols

transformation in the token state due to the execution of a
vertex. The TE's corresponding to Figure 2 are:

s -> A, 8;

A -> C, M;
8, M -> O;
0 -> F, R;
c, R -> E;
E, F -> X;

One way of determining if a GMC is properly
terminating is by operating on the TE's with a reduction
procedure [CERF72cJ. The reduction procedure performs
substitutions in the right hand side of the TE's aDci
eliminates other TE's from the set of TE's. When the
reduction procedure can operate no further, and if the only
TE left in the set is 11 S -> X; 11 then the TE's and the GMC
are cal led completely reducible (CR), and CR imp I ies PT
(CERF72cl. Figure 4 shows the reduction of the TE's given
above. A good reference for more detai I on the UCLA Graph
Mode I is [GOST72] .

SECTION 3 -- A Graph Model of A Communications Protocol

The protocol described in Section 2 is shown as a
bigraph in Figure 5. Compare Figure 1 with Figure 5 and
notice that the states in the former are arcs in the latter.
Generally in a state machine a state represents 11 wai t for
something". In bigraphs this waiting condition is best
represented by arcs. The meanings of the states in Figure 1
apply equally to the arcs in Figure 5.

A Initialize Sender
8 Ready to send Message
C Wait for Acknowledgement or Time Out
0 Good Acknot-1 I ecigemen t Received
E Initialize Receiver
F Wait for Message
G Ready to Send Acknowledgement
H Check for Duplicate Message

The transformation expressions are derived from a
bigraph by examining each vertex in turn. For example at
the initial vertex the input arc is Sand the output arcs
are A and E, so the TE is'S ->A, E. The set of TE's for
this bigraph is:

8

Graph Modeling of-Computer Communications Protocols

{ 1) S -> A, E;

(2} A -> B;
(3) B -> C, MSG;

(5} C ~ ACK - > 0;
(5) C, ACK -> C;

(G} 0 -> C;

(G) 0 -> B;

{4} C -> B;

(7) E -> F;
(8} F, MSG -> G;

(8) F, MSG -> F;

(8) G -> H, ACK;

<10} H -> F;
{10) H -> F;
(11} 8, F -> X;

A portion of the corresponding computation flow
graph is shown in Figure 8. This CFG is infinite due to the
poss i bi Ii ty of retransmission of the message an infinite
number of times. This protocols must be modified to include
a I imitation on the number of retransmissions to some upper
bound N.

A solution is presented in Figure 7. Note that arc
L is initially issued N tokens. Each time a message is sent
arc L loses one token but arc K gains one token so that the
sum of the number of tokens on arcs L and K is always N,
unti I an acknowledgement arrives. When the acknowledgement
arrives it disables the loop and initiates collection of the
tokens from arcs L and K. A bigraph cannot be properly
terminating if there are tokens left in the graph which
cannot be used. The segment in Figure 7 is ca I I ed a
counter-I imited loop and collector.

1t is important to note here the difficulty pointed
out in Section 2, namely, that if the timing of
retransmissions and acknowledgements is phased in a
particular way a second copy of a message could be accepted
as a new message. This di ff i cu I ty w i 11 not be detected here
as it arises from the lack of duplicate detection
information, not from flaws in the control structure.

For simpl lcity in analysis the case is restricted to
the situation where the range of sequence numbers is zero
and one, used cycl icly and with the constraint that the
commun i cat 1 ans s!::Js tem de I i ver messages in order. Th 1 s
second proviso al lows modeling the communications system as
a wire, or rather a pair of wires, one in each direction.

7

Graph Modeling of Computer Communications Protocols

The implementation of dupl lcate detection by

sequence numbers must be something I ike the fol lowing. For
the sender of messages: in state N send message with
sequence number equal to N and retransmit as necessary; when
an acknow I edgement arrives (correct I y) if it carries
sequence number N then go to state N + 1, if it carries some
other sequence number discard it and remain in the same
state. For the receiver of 1messages: in state M expect to
receive a message; when a message arrives {correctly) send
an acknowledgement carrying the same sequence number as ln
the message, if the sequence number in the message is M then
go to state M + 1, if it is some other number remain in the
same state. When limited to two states the arithmetic in
the above is modu Io two, thus the resu It i ng va I ues for M and

N are zero and one.

In Figure 8 a portion of this mechanism is drawn.
Arcs 550, 551, RS0, and RSl represent the "states" of the
sender and receiver; SS0 indicates that the sender is
prepared to send a message with sequence number zero and to
receive an ack~owledgement with sequence number zero. Note

.that Figure 8 does not provide for discarding duplicate
acknowledgements. In Section 2 it was noted that if the
sequence number range was too close to the number of
outstanding messages al lowed and the communications network
could deliver message out of order then errors could result.
Here the assurnpt ion is made ,that messages arrive in the
order sent, but this assumption must be included in the

mode I •

Thus message sending and acknowledgement sending
must be coordinated, this can be done by treating the
communications faci I ity as a resource and including arcs in
the model to carry resource tokens representing the
avai labi Ii ty of that resource. In Figure 8 is a portion of
such a construction. There are two arcs Wl and W2
representing the communications faci I ity from sender to
receiver CMSG path) and from receiver to sender {ACK path)
respectively. Thus the communications network is modeled as
two simplex paths each of which can hold exactly one message
(acknowledgement).

Another aspect of this protocol that has not yet
been discussed is the proper recovery when the
retransmission loop is executed N times and no
acknowledgement is received. The approach taken here is to
move to a "quit" state and then reini ti al ize the procedure.
A partial graph of this is shown in Figure 10.

To mode I correct I y the communications protoco I (of
Figure ll these ideas mu~t be merged together In one graph.
This results in the graph shown in Figure 11.

8

Graph Modeling of Computer Communications Protocols

The protoco I function of the various vertex groups
in Figure 11 is described. Vertex 1 is the initiation
vertex which starts the protocol in action.· The group of
vertices 3 through 13 is a counter-I imlted loop and
collector. Of these vertices 8 and 7 are the basic loop,
which transmits a message with sequence number zero up to N
times. Vertex 8 leads to a quit state if the loop count is

exhausted. Vertex 10 acts as a trigger when a good
acknowledgement is received to start the collector. This
whole group performs the protocol function of sending a
message with sequence number zero up to N times, and upon
receipt of a good acknowledgement stopping the transmission

and changing the sender's state.

If a good acknowledgement is not received after N
transmissions a quit state is activated. The vertex group
14, 15, and 15 receives messages with sequence number zero,
sends acknowledgements, and when appropriate changes the
receiver's state. Vertex 17 releases the transmission
resource and enables the sending of messages with sequence
number one. The vertices 18 through 26, 43, 44, and 45
collect either bad messages, bad acknowledgements, or good
acknowledgements with the wrong sequence number and free the
transm i ss l on resource i..1h i I e the sender or receiver remains
in the same state. The vertex group 27 through 37 is
structurally identical to, and performs the same function
as, the group 3 through 13, except that this group sends
messages with sequence number one. The vertex group 38, 39,
and 40 is structura I I y i dent i ca I to, and performs the same
function as, the group 14, 15 and 15, except that this group
receives messages with sequence number one.

Vertices 41 and 42 release the transmission resource
and enable the sending of messages with sequence number
zero. Vertices 45, 47, 48, and 49 gather together the
various resources with the quit states and reinitialize the
graph. This corresponds to a complete reinitialization of
the pro taco I. Vertices 52 and 53 gather the resources in
preparation for termination of the protocol. Vertices 50
and 51 represent a decision by the sender to stop. Vertices
54 and 55 represent a decision by the receiver to stop.
Vertex 56 ls the termination vertex of the graph and the

protoco I.

This is a very simple protocol yet to model it takes
a fairly complex graph. This graph is properly terminating.
The number of states in the computation flow graph with
various values of N is shown in the fol lowing table. The
CFG's were generated from the TE's by a computer program
CCERF72a, CERF72bJ. In addition to the increase in the
number of states with the number of retransmissions {N), the

9

Graph Modeling of Computer Communications Protocols

generation of CFG's becomes rapidly more difficult as the
number of vertices and arcs increase.

N STATES

1 75
2 385
3 555
4 723

Conclusion

These results further the belief that there is
indeed some bene f i t in app I y i ng graph mode I techniques to
protocol problems. The UCLA Graph Model propert!J of proper
termination can be determined in a mechanical and automatic
way, and that this property indicates that a protocol is in
a c er ta i n sense "' e I I b ch ave cl • Ho 1.-1 ever , i t i s c I ear th a t the
practical protocols lead to fairly complex graphs. This
motivates a search for 1.1a1Js of reducing the over a I I size and
complexity of these graphs. This problem is attacked in
CPOST74J .

As a result of this research it is strongl!J
recommended that t.1hen dove I oping protoco Is designers shou Id
at every step check their designs with graph modeling
techniques.

When using the graph modeling technique to
investigate a protocol, errors may arise at four levels.
First, there may be a error in deriving the transformation
expressions from the graph. Second, there may be an error
in the mapping from the protoco I to the graph. Thi rd, there
may be an error in interpreting the protocol. Fourth, there
may be an error in the protoco I i tse If.

A minor note is that the counter- I i mi ted loop and
collector used in Section 4 does not appear to have been
known before, and is a very useful construction t.Jhen
mode Ii ng any process 1.Jh i ch contains a computation step (in a
I oop) Ii mi ted to a finite number of execut i ans.

10

Graph Modeling of
Computer Communications Protocols

Jonathan B. Postel

and

David J. Farber

Technical Report #85

May 1976

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Jonathan B. Postel
* Computer Science Department

University of California
Los Angeles, California

David J. Farber
Department of Information and Computer Science

University of California

~urrent Address:

Augmentation Research Center

Stanford Research Institute
Menlo Park, California 94025

Irvine, California

Introduction

The design of computer-to-computer communications
protocols for networks of computers is one of the
cha I Ieng i ng prob I ems facing the computer scientist. In the
last few years, a number of large scale computer networks
have been discussed and several of these are in various
phases of implementation. It is clear that the design of
the communications protocols for these networks is a
difficult problem (though the evidence for this is mainly in
i nterna I memoranda, see [CARR70], [CROC72J, [FARB73J,
[FRAN72l, and [HEAR70J). Many of the problems in designing
these communications protocols, which involve asynchronous
para I lei processes, are due to the difficulty in recognizing
al I of the possible orderings in which the significant
events can occur and the possible execution sequences which
arise from these orderings.

This paper draws from experience with the
development of a computer network sponsored by the Advanced
Research Projects Agency (ARPA) cal led the ARPANET [ROBE70J,
and the development of the UCLA Graph Model of Computation
(ESTR63J , espec i a I I y the advances made by Gos te I ow [GOST71J

and Cerf [CERF72cJ t.Jh i ch gave this mode I of para I I e I
processing additional analytical power. One especially
attractlve aspect of this model lng technique is the
existence of a computer ~rogram for testing for the property
of proper termination. Proper termination indicates that
the process modeled by the graph is in a certain sense wel I

behaved; for ex amp I e it has no dead I ocks. These
developments suggest that communications protocols can be
modeled by the UCLA Graph Model in a useful and revealing
way.

SECTION 1 -- A Communications Protocol

A communications protocol must deal with several
sometimes contradictory issues. Among these are error
control, flow control, multiplexing, and synchronization.
The approaches taken to the issues have implications
affecting retransmission frequency, buffering requirements.
throughput, and de I ay. In con temp I at i ng a I I of these
issues, two "zero level" issues must be kept in mind:
deadlocks, and critical race conditions.

Deadlocks are situations in which two or more
parties {processes, hosts} are waiting for a resource
(command, s i gna I) be fore proceeding {with their tasks} and
that resource can only become avai I able by one or more of
those same parties proceeding. Critical race conditions are
those s i tua ti ons i.1here the outcome of a sequence ,of

Graph Modeling of Computer Communications Protocols

(supposedly independent) operations is dependent upon the

order in which the operations occur.

I n the f o I I o L-J i n g sec t i on , the error con tr o I asp e c t
of an examp I e protoco I is deve I oped, then in Section 3 the
example protocol is modeled.

A basic requirement at any level in a communications
system is error control. Generally in the type of networks
being considered the communications subsystems are designed
to be very reliable. However, there may be interface
hardware and some short transmission paths that are
unchecked by the communications subsystem, also there may be
temporary outages in the communications subsystem or
messages lost due to congestion (and even errors which occur
with very I ow probab i Ii ty can be cost I y}; thus error
checking is sti I I required. A simple scheme for error
control ls to use a checksum attached to the message which
the sender calculates and attaches to the message and the
receiver calculates and compares with the checksum
transmitted with the message. If there is a discrepancy,
then an error has occurred. It is possible to use error
correcting codes, but their discussion is beyond the scope

of this presentation.

The sender must have some way of knowing that the
message arrived at its destination correctly or incorrectly.
A s i mp I e way to prov i de th i s kn o 1.J I edge i s to have the
receiver acknowledge each correctly received message. The
sender can then assume that if no acknowledgement is
received by the end of a timeout period then either the
message was aff I ictecl i..ii th errors or was undelivered. In
this case the sender retransmits the message. Note that the
acknowledgement must also be checksummed since it is
transmitted vi a the same media as the message, and therefore

subject to errors in the same way.

The protocol proposed thus far is not sufficient.
It fails when the finite time for message delivery and the
variabi I ity of that time is considered. If the delivery
time in one instance is approximately equal to the timeout
per i ad, then the sender can dee i de to re transm i t just as the
rec e i v er de c i des to send the a ck n m1 I edge men t (o f the f i r s t
copy). These then pass each other in the communications
network. The result is that the receiver accepts two copies
of the same message and the sender gets an extra
acknowledgement. Further one or the other of the
acknowledgements could be aff I icted with errors and then the
sender would not detect the problem either. There must be
added to the protocol some means of identifying a message;

'for convenience, numbers wi I I be used. Thus, if the sender
attaches a sequence number to each message the receiver can

2

Graph Modeling of Computer Communications Protocols

check to be sure it has not previously accepted a copy of
that message. Because there must be some maximum sequence
number, M, the sequence numbers wi I I be used cycl icly, that
is after sequence number M is used the sequence is restarted
at zero. Another way to view this is to say that messages
are counted indefinitely and that the sequence number is the
message count modulo M+l. This protocol ls 1 I lustrated in
Figure 1.

In the program- Ii ke ciescr i pt ion be I 01--1, if an 11 if
c I ause" is fa I se then fa 11 through to the next statement
(usua I I y an if) at that same I eve I {of indentation). If a
"go to" directs the reexecution of a statement such as "if
Ack rece i ved 11 then it is intended that a new instance of an
Ack be received before the statement can be reexecuted.

The drawing is a state machine. In the notation
accompanying an arc the statement above the bar indicates
the input required to activate the arc, and the statement
below the bar indicates the action taken while transiting
the arc. A lambda indicates either' no input or no action.

The sender star ts in "in it la Ii zat ion" state A, and
moves to "send message" state B by setting N to zero {step
50}. From state B the sender moves to "wait for Ack" state
C by sending message N and starting a timer {51, 52). In
state C the arr i va I of an acknoL-1 I edgement with a bad
checksum (83, 54, SS) results in continuing in state C. In
state C the arrival of an acknowledgement with a good
checksum (83, 58) results in moving to "decision" state 0.
If the timer expires (512, 513) the sender moves from state
C to state 8. If the sequence number of the received good
acknowledgement is the same as the sequence number of the
message sent then the sequence number is incremented and the
sender moves from state 0 to state B {87, 88, 59). If the
received sequence number is not the same as the sent
sequence number the sender moves from state D to state C
(510, 511}.

The receiver begins in "initialization" state E, and
moves to "wait for message" state F by setting M to zero
(step R0}. If the messages is received with a bad checksum
the receiver remains in state F (Rl, R2, R3}. If the
message is received with a good checksum the receiver moves
to "send Ack" state G {Rl, R4). The receiver moves from
state G to "decision" state H by sending an acknowledgement
<RS). If the sequence number received is not the expected
one <R8, R7) the receiver moves to state F. If the sequence
number is the expected one the receiver increments the
sequence number and moves to state F (R8 1 R8t Rl0).

3

Graph Modeling of Computer C6mmunicat1ons Protocols

Sender

50: N=0
Sl: Send Msg(N}
S2: Start Timer
83: if Ack(!) received
84: i f check sum = bad
SS: then go to 53
S6: i f check sum good
S7: if I : N
S8: then N=N+l
S9: and go to Sl
Sl 0: i f I not equa I N
811: then go to 53
Sl2: if Ti mer run out
Sl3: then go to Sl

Receiver

R0: M=0
Rl: Rev Msg (J)

R2: if checksum bad
R3: then go to Rl
R4: if checksum = good
RS: Send Ack (J)

RG: i f J not equa I M
R7: then go to Rl
R8: if J = 11
R3: then M=M+l
R10: and go to Rl

A Communications Protocol

A parameter to be considered in this mechanism is
the number of different unacknowledged messages al lowed. It
has been shown that if this number is one, the sequence
number need be only one bit [8ART88J. However, when only
one message is al lot-Jed to be outstanding the bandwidth of
the communications network may be inefficiently used
[METC73J •

This example protocol while addressing only the
issue of error contra I is sufficient I y deve I oped to I ead to
an interesting graph model and analysis.

SECTION 2 -- The UCLA Graph Model

The UCLA Graph Model has developed from the acycl le
bi logic directed graph model introduced by Estrin [ESTR53J.
The current model consists of arcs and vertices where
generally speaking the vertices represent computations and
the arcs represent the flow of control between computations.
At each vertex there is either 11 exclusive or 11 (EOR} or

11
and

11

CANO} logic between the input arcs, and similarly EOR or AND
logic between the output arcs. EOR input logic means that
if any one of the input arcs is enabled (carries a token}
the vertex can execute. AND input logic requires al I input
arcs to be enabled before the vertex can execute. EOR
output logic indicates that when the vertex completes
execution it w i I I enab I e (p I ace a token on) one of the
output arcs. ANO output logic indicates that when the
vertex comp I et es execution it i,J i I I enab I e a I I the output
arcs. A vertex executes by removing token(s) from its
enabling input arc(s} and placing token(s} on its output

4

Graph Model lng of Computer Communications Protocols

arc(s} as indicated by the output logic. If more than one
of a set of EOR input arcs ls enabled the vertex chooses
randomly between the enabled arcs as to which token to
remove. On EOR output logic, the vertex may decide t-Jhich
arc to enable based on an interpretation associated with the
graph; in an uninterpreted graph the choice ls random. The
UCLA Graph Model also al lows complex arcs, i.e. arcs with
multiple tal Is or heads.

A UCLA Graph Model representation of a simple
exchange of a message and reply is shown in Figure 2, where
the vertices have the meanings:

1
2

begin exchange
send message

3 = receive message
4 send reply
5 receive reply
G end exchange

and the arcs have the meanings:

S ready for exchange
A ready to send message
B ready to receive message
M message aval I able
C read to receive reply
0 read to send reply
R reply aval I able
E reply received
F reply sent
X exchange completed

A number of useful constructs and concepts have been
associated with --the UCLA Graph Model, the current
development of which is cal led the Graph Model of
Computation CGMC). Tokens are used ln the UCLA Graph Model
to analyze the flow of control through the graph as the
vertices execute. A mechanism for testing GMC's for certain
properties is ca I I eel the Token Machine (TM}. One of these
constructs is the Computation Flow Graph (CFG) which is a
state transition diagram where the states are named
corresponding to the token placement in the GMC. The CFG
for the GMC of Figure 2 is shown in Figure 3. A GMC whose
associated CFG is such that the state X is the only terminal
state and state X is reachable from every other state by

some pa th is ca I I ed proper I y terminating (PT} [GOST71 J •
Another related construction is the set of. transformation
expressions CTE's} of a GMC. Each TE describes a local

5

Graph Modeling of Computer Communications Protocols

transformation ln the token state due to the execution of a
vertex. The TE' s car-responding to Figure 2 are:

s -> A, B;
A -> C, M· I
B, M -> O;
0 -> F, R·

' c, R -> E;
E, F -> X·

'

One way of determining if a GMC is properly
terminating is by operating on the TE's with a reduction
procedure [CERF72cJ. The reduction procedure performs
substitutions in the right hand side of the TE's aDci

eliminates other TE's from the set of TE's. When the
reduction procedure can operate no further, and lf the only
TE left in the set ls "S -> X;" then the TE's and the GMC
are cal led completely reducible (CRJ, and CR imp I ies PT

[CERF72c] • Figure 4 shot.JS the reduct l on of the TE' s given
above. A good reference for more detai I on the UCLA Graph
Mode I i s [GQST72J •

SECTION 3 -- A Graph Model of A Communications Protocol

The protocol described in Section 2 is shown as a

bigraph in Figure 5. Compare Figure 1 with Figure 5 and
notice that the states in the former are arcs in the latter.
Generally in a state machine a state represents "wait for
something". In bigraphs this waiting condition is best
represented by arcs. The meanings of the states in Figure 1
apply equally to the arcs in Figure 5.

A Initialize Sender
8 Ready to send Message
C Wait for Acknowledgement or Time Out
D Good Acknm.J I edgemen t Received
E In i ti a I i ze Receiver
F Wait for Message
G Ready to Send Acknowledgement
H Check for Oupl icate M~ssage

The transformation expressions are derived from a
bigraph by examining each vertex in turn. For example at
the initial vertex the input arc is Sand the output arcs
are A and E. so the TE is'S ->A, E. The set of TE's for
this bigraph is:

8

Graph Modeling of-Computer Communications Protocols

{1} s -> A I E;
(2) A -> B;
{3) B -> C, MSG;

(5) C, ACK -> O;

(5) C, ACK -> C;

(8) 0 -> C;

(8) 0 -> B;

(4) C -> B;

(7) E -> F;
{8) F, MSG - > G;

(8) F, MSG -> F;

(9) G -> H, ACK;

{10) H -> F;
(10) H -> F;

{11) 8, F -> X;

A portion of the corresponding computation flow
graph is shown in Figure G. This ·CFG is infinite due to the
poss i bi I i ty of retransmission of the message an infinite
number of times. This protocols must be modified to include
a I imitation on the number of retransmissions to some upper
bound N.

A solution is presented in Figure 7. Note that arc
L is initially issued N tokens. Each time a message is sent
arc L loses one token but arc K gains one token so that the
sum of the number of tokens on arcs Land K is always N,
unti I an acknowledgement arrives. When the acknowledgement
arrives it disables the loop and initiates collection of the
tokens from arcs L and K. A bigraph cannot be properly
terminating if there are tokens left in the graph which
cannot be used. The segment in Figure 7 is cal led a
counter-I imited loop and collector.

1t is important to note here the difficulty pointed
out in Section 2, namely, that if the timing of
retransmissions and acknowledgements ls phased in a
particular way a second copy of a message could be accepted
as a new message. This difficulty wl I I not be detected here
as it arises from the I ack of dup Ii cate detection
information, not from flaws in the control structure.

For simplicity in analysis the case is restricted to
the situation where the range of sequence numbers is zero
and one, used cycl icly and with the constraint that the
communications system deliver messages in 6rder. Th ls
second proviso al lows modeling the communications system as
a wire, or rather a pair of wires, one in each direction.

7

Graph Modeling of Computer Communications Protocols

The implementation of dupl lcate detection by

sequence numbers must be something I ike the fol lowing. For
the sender of messages: in state N send message with
sequence number equal to N and retransmit as necessary; when
an acknoi..1 I edgement arrives {correct I y) if it carries
sequence number N then go to state N + 1, if it carries some
other sequence number discard it and remain in the same
state. For the receiver of, messages: in state M expect to
receive a message; when a message arrives {correctly) send
an acknowledgement carrying the same sequence number as 1n
the message, if the sequence number in the message is M then
go to state M + 1, if it is some other number remain in the
same state. When limited to two states the arithmetic in
the above is modu Io two, thus the resu It i ng va I ues for M and
N are zero and one.

In Figure 8 a portion of this mechanism is drawn.
Arcs SS0, SSl, RS0, and RSl represent the 11 states 11 of the
sender and receiver; SS0 indicates that the sender is
prepared to send a message with sequence number zero and to
receive an ack~owledgement with sequence number zero. Note

.that Figure 8 does not provide for discarding duplicate
acknowledgements. In Section 2 it was noted that if the
sequence number range was too close to the number of
outstanding messages al lowed and the communications network
cou Id de I i ver message out of order then errors cou Id resu It.
Here the assumption is made ,that messages arrive in the
order sent, but this assumption must be included in the

mode I.

Thus message sending and acknowledgement sending
must be coordinated, this can be done by treating the
communications faci I ity as a resource and including arcs in
the model to carry resource tokens representing the
availability of that resource. In Figure 8 is a portion of
such a construction. There are two arcs Wl and W2
rep r es en t i n g the com n1 u n i ca t i on s fa c i I i t y from sender t o
receiver {MSG path) and from receiver to sender (ACK path)
respectively. Thus the communications network is modeled as
two simplex paths each of which can hold exactly one message
(acknowledgement).

Another aspect of this protocol that has not yet
beeri discussed is the proper recovery when the
retransmission loop is executed N times and no
acknowledgement is received. The approach taken here is to
move to a "quit" state and then reinitialize the procedure.
A partial graph of this is shown in Figure 10.

To mode I correct I y the comtnun i cations protoco I (of
Figure 1) these ideas mu~t be merged together in one graph.
This results in the graph shown in Figure 11.

8

Graph Modeling of Computer Communications Protocols

The pro to co I f unct ·,on of the various vertex groups
in Figure 11 is described. Vertex 1 is the initiation
vertex which star ts the protoco I in action.· The group of
vertices 3 through 13 is a counter-I imited loop and
collector. Of these vertices 8 and 7 are the basic loop,
which transmits a message with sequence number zero up to N
times. Vertex 8 leads to a quit state if the loop count is
exhausted. Vertex 10 acts as a trigger when a good
acknowledgement is received to start the collector. This
whole group performs the protocol function of sending a
message with sequence number zero up to N times, and upon
receipt of a good acknowledgement stopping the transmission
and changing the sender's state.

I f a goo cJ a ck n m.1 I edge men t i s no t rec e i v e d a f t er N
transmissions a quit state is activated. The vertex group
14, 15, and 16 receives messages with sequence number zero,
sends acknowledgements, and when appropriate changes the
receiver's state .. Vertex 17 releases the transmission
resource and enables the sending of messages with sequence
number one. The vertices 18 through 26, 43, 44, and 45
collect either bad messages, bad acknowledgements, or good
acknowledgements with the wrong sequence number and free the
transmission resource ~ihi le the sender or receiver remains
in the same state. The vertex group 27 through 37 is
structura 11 y i dent i ca I to, and performs the same function
as, the group 3 through 13, except that this group sends
messages with sequence number one. The vertex group 38, 38,
and 40 is structurally identical to, and performs the same
function as, the group 14, 15 and lG, except that this group
receives messages with sequence number one.

Vertices 41 and 42 release the transmission resource
and enable the sending of messages with sequence number
zero. Vertices 46, 47, 48, and 48 gather together the
various resources with the quit states and reinitialize the
graph. This corresponds to a complete reinltial ization of
the protoco I. Vertices 52 and 53 gather the resources in
preparation for termination of the protocol. Vertices 50
and 51 represent a decision by the sender to stop. Vertices
54 and 55 represent a decision by the receiver to stop.
Vertex SG is the termination vertex of the graph and the

pro taco I.

This is a very simple protocol yet to model it takes
a fairly complex graph. This graph is properly terminating.

·The number of states in the computation flow graph with
various values of N is shown in the fol lowing table. The
CFG's were generated from the TE's by a computer program
[CERF72a, CERF72bJ. In addition to the increase in the
number of states with the number of retransmissions {N), the

8

Graph Modeling of Computer Communications Protocols

generation of CFG's becomes rapidly more difficult as the
number of vertices and arcs increase.

Conclusion

N STATES

1 75
2 385
3 555
4 723

These results further the belief that there is
indeed some bene f i t in app I y i ng graph mode I techn ·1 ques to
protocol problems. The UCLA Graph Model property of proper
termination can be determined in a mechanical and automatic
way, and that this property indicates that a protocol is in
a c er t a i n sense (...I e I I b oh ave d. Ho 1.-1 ever , i t i s c I ear th a t the
practical protocols lead to fairly complex graphs. This
motivates a search for 1-iays of reducing the over a I I size and
complexity of these graphs. This problem is attacked in
[POST74J .

As a result of this research it is strongly
recommended that when developing protocols designers should
at every step check their designs with graph modeling
techniques.

When using the graph modeling technique to
investigate a protocol. errors may arise at four levels.
First, there may be a error in deriving the transformation
expressions from the graph. Second, there may be an error
in the mapping from the protoco I to the graph. Thi rd, there
may be an error in interpreting the protocol. Fourth, there
may be an error in the protoco I i tse If.

A minor note is that the counter-I imited loop and
col l ec tor used in Section 4 does not appear to have been
known before, and is a very useful construction when
mode I i n g any pr o c e s s t,J h i ch con ta i n s a comp u ta t i on s t e p (i n a
loop) I i mi ted to a finite number of executions.

10

Graph Modeling of Computer Communications Protocols

Bib I i ography

BART58 Bartlet, K.A., R.A. Scantlebury, and P. T. Wilkinson.
"A ifote on Re Ii ab I e Fu I 1-Dup I ex Transmission over
Hal f-Dulex Links," Communications of the ACM,
12(5) :250-251, May 1859.

CARR70 Carr, C.S., S.O. Crocker and V.G. Cerf. "Host-Host
Communications Pro toco I in the ARPA Ne hwrk, " AF I PS
Conference Proceedings. 36:589-597, SJCC, 1870.

CERF 71 Ce r f , V • , E • 8 • Fernandez , K • P . Gos t e I o 1-1 , and S . A •
Volansk1d· "Formal Control-Flow Properties of a Graph
Model of Computation," Computer Science Department,
ENG-7178, University of California, Los Angeles,
December 1971 (LJCLA-10P14-105).

CERF72a Cerf, V. and C. Maxwe 11. "An Automaton Generation
Algorithm, 11 Internal Memorandum 99, Oigi tal Technolog!:J
Research Group, Computer Science Department,
University of California, Los Angeles, January 1972.

CERF72b Cerf, V. and C. Maxwe I I. 11 A Reduction Procedure,
11

Internal Memorandum 108, Digital Technology Research
Croup, Computer Science Department, University of
California, Los Angeles, Februar!:J 1972.

CERF72c Cerf, V.G. Multiprocessors, Semaphores, and a Graph
Model of Computation, Ph.D. Dissertation, ENG-7223,
Computer Science Department, University of California,
Los Ange I es, Apr i I 1972 {LJCLA-10P14-110).

CROC72 Crocker, S.O., J.F. Heafner, R.M. Metcalfe, and J.B.
Postel. "Function-Oriented Protocols for the ARPA
Computer Ne hiork, 11 AF I PS Conference Proceedings,
40:271-279, SJCC, 1872.

ESTR83 Estrin, G. and R. Turn. 11 Automatic Assignment of
Computations in a Variable Structure Computer System,

11

IEEE Transactions on Computers, EC-12:758-773,
December 1953.

FARB73 Far·ber, O.J. et. al. "The Distributed Computing
S~c,tem, 11 Seventh Annual IEEE Computer Society
International Conference, pp. 31-34, February 1973,
{COl1PCON 73) .

FRAN72 Fr~mk, H., R.E. Kahn, and L. Kleinrock. "Computer
Co111111un i C·'.3 ti ons Ne hiork Desi gn--Exper i ence with Theory
ancJ Pr·actice, 11 AFIPS Conference Proceedings,
40:225-270, SJCC, 1872.

11

Graph Modeling of Computer Communications Protocols

GOST71

GOST72

HEAR70

METC73

POST74

ROBE70

Costelo1-1, K.P. Flm1 of Control, Resource Allocation,
ancl the Proper Termination of Programs, Ph.D.
Dissertation, ENG-7179, Computer Science Department,
University of California, Los Angeles, December 1871
(LJCLA-10P14-105). .

Gostelow, K., V.G. Cerf, G. Estrin, and S. Volansky.
11 Pr·oper Termination of FI ow-of-Contra I in Programs
I nvo Iv i ng Concurrent Processes, 11 Proceedings of the
ACl1, 25th Anniversary Conference., pp. 742-754, Boston,
AUfjUSt 1372.

Heart, F.E., R.E. Kahn, S.M. Ornstein, W.R. Crowther,
ancl O.C. Walden. 11 The Interface Message Processor of
th~ ARPA Computer~ Network, 11 AFIPS Conference
Proceeclings, 35:551-557, SJCC, 1970.

Metcalfe, R.M. Packet Communications, Ph.D. Thesis,
Harv~rci University, Cambridge, Massachusetts, May
1873. Also avai I able as Technical Report Number 114,
Project MAC, Massachusetts Institute of Technology,
Cambridge Massachusetts, August 1973.

Postel, J.B. A Graph Model Analysis of Computer
Communications Protocols, Ph.D. Dissertation, Computer
Science Oepatrment, University of California, Los
Angeles, March 1374.

Roberts, L.G. and 8.0. Wessler. 11 Cornputer Nehrnrk
Development to Achieve Resource Sharing, 11 AFIPS
Conference Proceedings, 36:543-588, SJCC, 1870.

12

SENDER RECEIVER

TIME OUT

X

RC\/ ACt< (I)
CK= Of(

A

RCV MSG (J)

CK=BAD -----

SEND
MSG(N)

; START
. TIMER

N· -N+ I

X·

RCV MSG (J)

Ci<= OK

SEND ACK (J)

Figure 1 A Communications Protocol

·M 0

·/

J= M

M--- fvH·I

s

. -

. /

Figure 2 Send-Receive UCLA Graph Model

'

\

Figure 3 Send-Receive CFG

'

* S-+ A, B; ~ * S-+ C, M, B; \ -* S 4 C, D; ~

)

* A -+C, M; * B, M-;. D; * D-+ f, R;

S, M -+.D; D-+ f, R; R-+E;

0-+ R· , C, R-+ E; f-+X;

C, R-+ E; E, F-+ X;

f_-+ X;

0 1 ·2

/

* S-+C,f,R; * S-+E,F; S-+ X;

* C, R-+ E; * E, F-+ X;

E, F-+ X;
.... -;;,

4 5 6

* Indicates TE's used in reduction step.

Figure 4 Send-Receive TE Reduction

\

s

Figure 5 First Model of a Communications Protocol

'

Figure 6 Partial CFG

8

MSG

ACK

Figure 7 Counter Limited Loop and Collector

SSO SS I RSO ·. RSf

MSG{O)

ACK(O)

\

/

MSG(I)

ACK(I)
.:-'-., .

Figure 8 Duplicate Detection Transmission and States

W2 RSI

MSG(O)

ACK(O}

.:;

. ~
•1:,.•

.Figure 9 Transmission Resource Represented

\

o·

MSG

QUIT

Figure 10 Bounded Retransmission with Quit State

'

- /

' 't .

SSO QO SSI

MSGO

ACKO

\
\',

RSO

W2'

BB AOG AB A WI W2

'

M~

Figure 11 (Part 1) Graph Model of a Communications Protocol

~-

RSI RSO

WI W2 RSO SS·O 00 SSI

I

,/

----·----•~.-. --~

~~·~ ~ I

SSO QO SSI QI AB A 8 WI W2 MB RSO

Figure 11 (Part 2) Garph Model of a Communications Protocol

/

SSO QO SSI Of

1 ·~1

!:
. I

I.

I

-·-·---
SSO 00 SSI QI

AB A B. WI W2 MB

-·-·-1-1-

\
\\

~
At;= AIG A 8 WI W2 ·

Figure 11 (Part 3) Graph Model of a Communications Protocol

RSO

RSI RSO

SSO 00 SSI QI AA AiG A B W2 I RSO

I I I I

-1

"'__
~-

.....

fi1

Figure 11 (Part 4) Graph Model of a Communications Protocol

