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Abstract

Graph neural networks (GNNs) emerged recently
as a powerful tool for analyzing non-Euclidean data
such as social network data. Despite their suc-
cess, the design of graph neural networks requires
heavy manual work and domain knowledge. In
this paper, we present a graph neural architecture
search method (GraphNAS) that enables automatic
design of the best graph neural architecture based
on reinforcement learning. Specifically, GraphNAS
uses a recurrent network to generate variable-length
strings that describe the architectures of graph neu-
ral networks, and trains the recurrent network with
policy gradient to maximize the expected accuracy
of the generated architectures on a validation data
set. Furthermore, to improve the search efficiency
of GraphNAS on big networks, GraphNAS restricts
the search space from an entire architecture space
to a sequential concatenation of the best search re-
sults built on each single architecture layer. Ex-
periments on real-world datasets demonstrate that
GraphNAS can design a novel network architecture
that rivals the best human-invented architecture in
terms of validation set accuracy. Moreover, in a
transfer learning task we observe that graph neural
architectures designed by GraphNAS, when trans-
ferred to new datasets, still gain improvement in
terms of prediction accuracy.

1 Introduction

Graph neural networks (GNNs) emerged recently as a power-
ful tool for analyzing non-Euclidean data such as social net-
work data. The applications of GNNs span over online rec-
ommendation [Wu et al., 2019b], traffic forecasting [Yu et
al., 2018] and action recognition [Yan et al., 2018]. The ba-
sic idea of GNNs is to propagate feature information between
neighboring nodes so that nodes can learn feature representa-
tions by using the locally connected graph architecture infor-
mation. Popular GNNs include but not limited to GCN [Kipf
and Welling, 2017], GraphSAGE [Hamilton et al., 2017],
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GAT [Velickovic et al., 2017] and APPNP [Klicpera et al.,
2019].

Despite the success of GNNs, the design of graph neural
architectures requires both heavy manual work and domain
knowledge. Similar to CNNs that contain many manual pa-
rameters such as the size of filters and the type of pooling lay-
ers, the results of GNNs heavily rely on the graph neural ar-
chitectures including the receptive fields, message functions
and aggregation functions.

Reinforcement learning has been successfully used to au-
tomatically design neural architectures for CNNs and RNNs.
The pioneer model NAS [Zoph and Le, 2016] uses a recurrent
network as the controller to generate network descriptions of
CNNs and RNNs which are referred to as child networks, and
then uses validation results of the child networks as reward of
the controller to maximize the expected accuracy of the gen-
erated architectures of the CNNs and RNNs. According to
their experiment results, the NAS search algorithm can im-
prove CNNs and RNNs by a percentage of 0.09 on CIFAR-10
and 3.6 perplexity on the Penn Treebank dataset. Several new
neural architecture search algorithms are proposed to improve
the efficiency and accuracy of NAS, such as ENAS [Pham et
al., 2018] and ProxylessNAS [Cai et al., 2019]. The promis-
ing results of using NAS to find the best neural architectures
for CNNs and RNNs motivate to use reinforcement learning
to find the best graph neural architectures for GNNs.

In this paper, we present a new graph neural architecture
search method (GraphNAS) which can automatically design
the best graph neural architecture using reinforcement learn-
ing. Specifically, we design a new search space for reinforce-
ment learning that covers the operators from the state-of-the-
art GNNs, such as GCN, GraphSAGE and GAT. Based on the
search space, we use a RNN model as the controller to gen-
erate variable-length strings that describe the architectures of
graph neural networks, and trains the recurrent network with
policy gradient to maximize the expected accuracy of the
generated architectures on a validation data set. To analyze
big networks, we assume the layers of network architectures
are independent and restrict the search space to each single
layer. Then, the best results found from each single layer
are sequentially concatenated to describe the entire architec-
ture. Experiment results show that GraphNAS always obtains
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better results than the state-of-the-art methods. Experiment
results also show that GraphNAS obtains performance im-
provement in a transfer learning task.

The contributions of the paper are summarized as follows:

• This is the first effort to study the challenging problem
of using reinforcement learning to design the best graph
neural architecture.

• We present a new model GraphNAS to enable the auto-
matic search of the best graph neural architecture, where
a new search space is designed that covers the operators
from the state-of-the-art GNNs, and a policy gradient al-
gorithm is used to iteratively solve the problem.

• We test GraphNAS on real-world datasets. The results
show that our method is capable of designing graph
neural architectures that outperform the best human-
invented architectures in terms of validate set accuracy.
We have released the python codes on Github1 for com-
parison.

2 Related Work

2.1 Neural Architecture Search (NAS)

NAS has been popularly used to design convolutional archi-
tectures [Zoph and Le, 2016; Pham et al., 2018; Xie et al.,
2019; Bello et al., 2017; Liu et al., 2018a; Cai et al., 2019].
The basic idea of NAS is to use reinforcement learning to find
the best neural architectures. Specifically, NAS uses a recur-
rent network to generate architecture descriptions of CNNs
and RNNs. Based on NAS, evolution-based NAS [Real et
al., 2018] is proposed to use evolution algorithms to simulta-
neously optimize topology alongside with parameters. ENAS
[Pham et al., 2018] allows the sharing of parameters among
child models, which enables the search speed 1000 times
faster than the standard NAS and obtains a new convolution
architecture in 0.45 GPU days. DARTS [Liu et al., 2018a]

formulates the task in a differentiable manner which short-
ens the search of high-performance convolution architectures
within four GPU days. Following DARTS [Liu et al., 2018a],
GDAS [Dong and Yang, 2019] enables the search speed in
four GPU hours, and Proxyless NAS [Cai et al., 2019] claims
that the search process can directly operate on the large-scale
target tasks and the target hardware platforms. Due to NAS-
based search algorithms achieve promising results for design-
ing new architectures for CNNs and RNNs, we extend NAS
to design graph neural architectures for GNNs in this paper.

2.2 Graph Neural Networks (GNNs)

GNNs are firstly discussed in the work [Gori et al., 2005].
Convolutions of GNNs can be categorized into two groups,
spectral-based [Kipf and Welling, 2017; Defferrard et al.,
2016; Bianchi et al., 2019] and spatial-based [Velickovic
et al., 2017; Hamilton et al., 2017; Niepert et al., 2016;
You et al., 2019]. Spectral-based convolutions usually handle
an entire graph, which is difficult to parallel and hardly scale
to big graphs. In contrast, spatial-based convolutions aggre-
gate feature information between neighboring nodes. Spatial-
based graph neural architectures mainly consist of three types

1https://github.com/GraphNAS/GraphNAS
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Figure 1: An illustration of GraphNAS. A recurrent network (Con-
troller RNN) generates descriptions of graph neural architectures
(child model GNNs). Once an architecture m is generated by the
controller, GraphNAS trains m on a given graph G and test m on a
validate set D. The validation result RD(m) is taken as the reward
of the recurrent network.

of operators, i.e., neighbor sampling, message computation
and information aggregation. Each layer of the architecture
includes the combination of these operators. In this paper,
we use reinforcement learning to search the best combination
of the operators, instead of manually setting them as in the
existing work.

3 Methods

In this section, we first formulate the problem of graph neural
architecture search with reinforcement learning. Then, we
introduce a new search space that covers the operators of the
state-of-the-art GNNs. Next, we discuss the search algorithm
based on policy gradient. At the last part, we discuss how to
extend the search algorithm to big networks.

3.1 Problem Formulation

Given a search space of a graph neural architectureM, and
a validation set D, we aim to find the best architecture m∗ ∈
M that maximizes the expected accuracy E[RD(m)] on the
validate set D, i.e.,

m∗ = arg max
m∈M

E[RD(m)]. (1)

Figure 1 shows the reinforcement learning framework used
to solve Eq.(1) by continuously sampling architectures m ∈
M and evaluating the accuracy (reward) R on the validation
set D. First, the recurrent network generates a network de-
scription m ∈ M that corresponds to a GNN model. Then,
the generated model m is trained on a given graph G and
tested on the validate set D. The test result is taken as a re-
ward signal R to update the reinforcement learning.

3.2 Search Space

As shown in Figure 1, we use a controller to generate the
descriptions (architectures) of GNNs. The controller is a re-
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current neural network with a search space. Similar to the
search space of CNNs, each layer of GNNs associates with a
search space of the following operators:

1. Neighbor sampling operator Smpl [Hamilton et al.,
2017]. This operator selects the receptive field N(v) for
a target node v. For example, GraphSAGE [Hamilton et
al., 2017] uses sampling to obtain a fixed size of neigh-
bors to handle large graphs.

2. Message computation operator Func [You et al., 2019].
This operator computes the feature information for
each node u in the receptive field N(v). Specifically,
Func(hu, hv) can be calculated by euvMerg(hu, hv),
where hu and hv are the features of nodes u and v re-
spectively, and euv , as shown in Table 2, is the cor-
relation coefficient [Velickovic et al., 2017; Liu et al.,
2018b; Kipf and Welling, 2017; You et al., 2019] be-
tween nodes u and v. The Merg operator merges in-
formation of nodes u and v, such as the CONCAT used
in [You et al., 2019; Hamilton et al., 2017].

3. Message aggregation operator Aggr [Hamilton et al.,
2017]. This operator aggregates information from the
receptive field N(v), which is similar to the pooling op-
erators in CNNs. Any permutation invariant operators,
such as mean, max, sum and mlp [Xu et al., 2018] can be
used, and non-linear transformations are applied before
and/or after the aggregation to achieve accurate expres-
sive power [Zaheer et al., 2017].

4. Multi-head and readout operator Read [Velickovic et
al., 2017]. This operator is often used to stabilize
the learning process of message computation operators.
Similar to the attention mechanism in the work [Vaswani
et al., 2017], the multi-head mechanism repeats message
computation operator Func for k times with different
initializations of Func. Readout operator Read usually
includes concatenation and averaging.

Table 1 summarizes the possible values of the above oper-
ators. Note that the values are collected from the state-of-the-
art GNNs, such as GCN, GAT and GraphSAGE. Besides the
above operators, we also add extra three operators that are
popularly used in CNNs, i.e., the activation function σ, the
number of multi-head k and the output dimension d.

We introduce an example of a simple graph neural archi-
tecture constructed with the operators given in Table 1. Con-
sider a single layer of GAT with eight heads, 16 hidden units,
and an activation function of elu, we describe the architecture
by the operators as follows,

[first order, gat, sum, concat, 8, 16, elu],

where the first element first order is an instance of the
neighbor sampling operator Smpl, the second element gat is
the message computation operator Func = egatuv hu, the third
element sum is the message aggregation operator Aggr, the
fourth element denotes that the architecture has eight heads,
the fifth element denotes that the architecture has 16 hidden
units, and the last element denotes σ = elu.

For an architecture with L layers, we concatenate the lists
of operators built from each layer and generate an architecture

Operators Values

Smpl first order
Func euvhu

Aggr sum, mean, max, mlp
Read avg, for the last layer

concat, otherwise

activate function σ sigmoid, tanh, relu, identity,
softplus, leaky relu, relu6, elu

multi-head k 1, 2, 4, 6, 8, 16

output dimension d 8, 16, 32, 64, 128, 256, 512

Table 1: Operators of search space M

euv Values

const econuv = 1
gcn egcnuv = 1/

√
dudv

gat egatuv = leaky relu((Wl ∗ hu +Wr ∗ hv))
sym-gat esymuv = egatvu + egatuv

cos ecosuv =< Wl ∗ hu,Wr ∗ hv >
linear elinuv = tanh(sum(Wl ∗ hu))
gene-linear eganuv = Wa ∗ tanh(Wl ∗ hu +Wr ∗ hv)

Table 2: Correlation coefficients

of the entire L layers. For example, consider a GNN with two
layers. The first layer consists of GCN with 16 hidden units
and an activation function relu. The second layer consists of
GAT with eight heads, 16 hidden units and an activation func-
tion elu. Then, the architecture is described by concatenating
the operators of the two layers, which formulates a longer list
of operators as follows:

[ first order, gcn, sum, concat, 1, 16, relu,

first order, gat, sum, avg, 8, 16, elu ].

Because all the operators in the search space M given in
Table 1 are independent, there will be 9408L combinations in
M, where L is the number of layers. As the search space is
too large, we set L to be only two layers in the experiments,
which reduces the space to 8.8 × 107. If the architecture is
deeper than two layers, a possible solution is to set a time-
sensitive parameter to control the total search time over the
search space.

3.3 Search Algorithm

A neural architecture that a controller predicts is a list of op-
erators with length T , denoted by m1:T , where each operator
mi (1 ≤ i ≤ T ) is sampled from the search spaceM. We use
an RNN model parameterized by θ to generate the operators,
as shown at lines 3 to 8 in Algorithm 1.

In order to maximize the objective function given in Eq.(1),
we use a policy gradient algorithm to update parameters θ,
so that the controller generates better architectures over time.
After the controller generates a list of operators m1:T , we
build a model m which returns an accuracy of RD(m) on D.
We use the accuracy as a reward signal to train the controller.
Since the reward signal R is non-differentiable, we iteratively
update θ using REINFORCE [Williams, 1992] as follows,
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Algorithm 1 GraphNAS search algorithm

Require: search space M; controller RNN parameterized
by θ; graph G; validation set D; # of operators T ; # of
models K; # of repeats N ; # of samples S

Ensure: the best architecture m∗

// policy gradient
1: while the number of samples S is not met do
2: h0 = 0 // initial hidden state of RNN

// sample operators m1:T

3: for i = 1, ..., T do
4: xi ← hi−1 // input of RNN
5: hi ← RNNθ(xi, hi−1);
6: Pi ← Softmax(hi−1);
7: Sample mi fromM under Pi

8: end for
9: Design architecture m using operators m1:T

10: Train m on a given graph G
11: Calcuate reward RD(m) on validation set D
12: Update parameter θ w.r.t. RD(m)
13: end while

// model selection
14: Select top K models w.r.t. validation accuracy
15: Re-train the K models for N times, select the best m∗

16: return m∗

∇θEP (m1:T ;θ)[R] (2)

· =

T∑

t=1

EP (m1:T ;θ)[∇θlogP (mt|mt−1:1; θ)(R− b)],

where b is an exponential moving average of the previous
architecture rewards. The training of a child model m is in-
dependent of the training of the controller. We choose cross-
entropy loss function when training m. Considering the devi-
ation of the validation accuracy, we select the top K models
as candidates and repeatedly train them for N times to reduce
variance. The algorithm is summarized in Algorithm 1.

3.4 Discussions

What will happen when an architecture goes deeper? Intu-
itively, the search space of GraphNAS grows exponentially
with the number of layers. When the architecture goes deeper,
constructing architectures by concatenating the operators will
lead to an explosion of the search space. To solve the prob-
lem, we enforce three constraints to avoid exponential growth
of the search space. First, we assume the layers are indepen-
dent and design each layer independently. Second, we use
domain knowledge of existing GNN architectures and reduce
the number of combinations of the operators given in Table 1.
Third, We allow the multi-head mechanism using different
message computation operators.

In a deeper architecture, how to construct each layer effi-
ciently? Figure 2 gives an example of constructing a single
layer by GraphNAS. The layer can be represented as a DAG
consisting of two input states O1 and O2, two intermediate
states O3 and O4, and one output state O5. Each state is a
node in the DAG. Specifically, the intermediate states O3 and

𝐼1 𝐺𝐹1 𝑅𝑒𝑎𝑑𝐼2 𝐺𝐹2 𝜎
𝐼1 𝐺𝐹1 𝑅𝑒𝑎𝑑𝐼2 𝐺𝐹20

1 𝑮𝑪𝑵 𝟐 𝑮𝑪𝑵 𝑨𝑫𝑫 𝒓𝒆𝒍𝒖
𝑂1 𝑂2
𝐴𝐷𝐷𝑂3 𝑂4𝐺𝐶𝑁
𝑂5

𝐺𝐴𝑇

Node 3 Node 4 Global Layer Structure

Figure 2: An illustration of GraphNAS constructing a single GNN
layer at the right-hand side. The layer has two input states O1 and
O2, two intermediate states O3 and O4, and an output state O5. The
controller at the left-hand side samples O2 from {O1, O2, O3} and
take O2 as the input of O4, and then samples GAT for processing
O2. The output state O5 = relu(O3 + O4) collects information
from O3 and O4, and the controller assigns a readout operator add
and an activation operator relu for O5. As a result, this layer can be
described as a list of operators: [1,gcn, 2, gat, add, relu].

O4 are processed by a message computation operator Func,
a sample operator Smpl, and an aggregation operator Aggr
from its previous state. This procedure of O4 can be formu-
lated as O4 = GAT (O2) , where GAT is used to represent
the combination of Smpl, Func and Aggr used in GAT. The
output state O5 is processed by a Read operator from all the
intermediate states O3 and O4.

Based on the example, we can generalize the procedure of
constructing each layer as follows,

Oout = σ(Read(Oi|3 6 i 6 B + 2)), (3)

where B is the number of computation nodes. A controller
needs to assign a previous state Oj ∈ {Oj |j < i}, a process

operator for all the intermediate states {Oi|3 6 i 6 B+2}, a
read-out operator Read, and an activation function σ for the
output state, as shown at the left-hand side of Figure 2. We
restrict operator Read to be only add, multiply and concat.
The operators will cover the following 12 choices:

• identity

• zeroize

• 8 head GAT

• 6 head GAT

• 4 head GAT

• 2 head GAT

• 1 head GAT

• GCN

• Chebnet

• Mean Sage

• ARMA

• SGC

where GAT stands for the combination of Smpl, Func and
Aggr used in [Velickovic et al., 2017], GCN for [Kipf and
Welling, 2017], Chebnet for [Defferrard et al., 2016], Mean
Sage for GraphSage[Hamilton et al., 2017] with the mean
aggregator, ARMA for [Bianchi et al., 2019], and SGC for
[Wu et al., 2019a].

4 Experiments

Datasets. We use three popular citation networks, i.e.,
Cora, Citeseer and Pubmed, as the testbed. To test the ca-
pability of transferring the architectures designed by Graph-
NAS, we use the co-author datasets of MS-CS and MS-
Physics, and the product networks of Amazon Computers and
Amazon Photos [Shchur et al., 2018].
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Cora Citeseer Pubmed
semi sup rand semi sup rand semi sup rand

GCN 81.4±0.5 90.2±0.0 88.3±1.3 70.9±0.5 80.0±0.3 77.2±1.7 79.0±0.4 87.8±0.2 88.1±1.4
GAT 83.0±0.7 89.5±0.3 87.2±1.1 72.5±0.7 78.6±0.3 77.1±1.3 79.0±0.3 86.5±0.6 87.8±1.4
ARMA 82.8±0.6 89.8±0.1 88.2±1.0 72.3±1.1 79.9±0.6 76.7±1.5 78.8±0.3 88.1±0.2 88.7±1.0
APPNP 83.3±0.1 90.4±0.2 87.5±1.4 71.8±0.4 79.2±0.4 77.3±1.6 80.2±0.2 87.4±0.3 88.2±1.1
HGCN 79.8±1.2 89.7±0.4 87.7±1.1 70.0±1.3 79.2±0.5 76.9±1.3 78.4±0.6 88.0±0.5 88.0±1.6

GraphNAS-R 83.3±0.4 90.0±0.3 88.5±1.0 73.4±0.4 81.1±0.3 76.5±1.3 79.0±0.4 90.7±0.6 90.3±0.8
GraphNAS-S 81.4±0.6 90.1±0.3 88.5±1.0 71.7±0.6 79.6±0.5 77.5±2.3 79.5±0.5 88.5±0.2 88.5±1.1
GraphNAS 83.7±0.4 90.6±0.3 88.9±1.2 73.5±0.3 81.2±0.5 77.6±1.5 80.5±0.3 91.2±0.3 91.1±1.0

Table 3: Node classification results w.r.t. accuracy, where ”semi” stands for semi-supervised learning experiments, ”sup” for supervised
learning experiments and ”rand” for supervised learning experiments with randomly split data.
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Figure 3: Comparisons w.r.t. the size of training data. When the
training size exceeds 3,000, the model designed by GraphNAS al-
ways outperforms ARMA and APPNP.

Measures. We compare architectures designed by Graph-
NAS with the state-of-the-art GNNs, such as GCN, GAT,
ARMA, APPNP [Klicpera et al., 2019] and HGCN [Hu et
al., 2019], on node classification tasks. We use accuracy as
the measure for comparison. All the results are the average
scores for 100 runs with different random seeds.

4.1 Parameter Settings

The GNN architectures used in GraphNAS are implemented
by PYG [Fey and Lenssen, 2019].
Hyper-parameters of the controller: The controller is a one-
layer LSTM with 100 hidden units. It is trained with the
ADAM optimizer with a learning rate of 0.00035. The
weights of the controller are initialized uniformly between
-0.1 and 0.1. To prevent premature convergence, we also use
a tanh of 2.5 and a temperature of 5.0 for the sampling logits
[Bello et al., 2017], and add the controller’s sample entropy
to the reward, weighted by 0.0001. After GraphNAS searches
S = 2000 architectures, we collect the top K = 5 architec-
tures that achieve the best validation accuracy. Then we train
those model for N = 20 times to choose the best models.
Each GNN designed by GraphNAS contains L = 2 layers for
fair comparisons.
Hyper-parameters of GNNs: Once the controller samples an
architecture, a child model is constructed and trained for 300
epochs. We apply the L2 regularization with λ = 0.0005,
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Figure 4: Comparisons w.r.t. the number of search epochs on
Pubmed. The expected accuracy of the architecture designed by
GraphNAS raises with the search epochs. GraphNAS outperforms
Simple-NAS after 500 epochs.

dropout probability p = 0.6, and learning rate lr = 0.005
as the default parameters. To achieve the best results, the
hyper-parameters of the GNN models are searched over the
following search space:

• Hidden size: [8, 16, 32, 64, 128, 256, 512]

• Learning rate: [1e-2, 1e-3, 1e-4, 5e-3, 5e-4]

• Dropout: [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

• L2 regularization strength: [0, 1e-3, 1e-4, 1e-5, 5e-5, 5e-4]

For GraphNAS, the hyper-parameters are predicted by the
controller. While for the other models, the hyper-parameters
is optimized by hyperopt2.

4.2 Results of Node Classification

To validate the performance of node classification, we com-
pare the models designed by GraphNAS with the benchmark
GNNs in semi-supervised task and supervised task. The per-
formance in terms of accuracy is shown in Table 3. The best
performance of each column is highlighted with boldface.

In the semi-supervised learning task, the datasets follow
the settings of [Kipf and Welling, 2017]. During training,
only 20 labels per class are used for each citation network,
500 nodes in total for validation and 1,000 nodes for testing.

2https://github.com/hyperopt/hyperopt
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Model CS Physics Computers Photo

GCN 95.5±0.3 98.3±0.2 88.0±0.6 95.4±0.3
GAT 95.5±0.3 98.1±0.2 89.1±0.6 95.6±0.3

ARMA 95.4±0.2 98.5±0.1 86.1±1.0 94.8±0.8
APPNP 95.6±0.2 98.5±0.1 89.8±0.4 95.8±0.3

GraphNAS 97.1±0.2 98.5±0.2 92.0±0.4 96.5±0.4

Table 4: Transferring architectures designed by GraphNAS on the
citation networks to the other four datasets

In the supervised learning task, 500 nodes in each dataset
are selected as the validation set and 500 nodes are selected as
the test set. The rest of nodes are selected from the graph as
training data. The architectures designed by GraphNAS are
showed in Figure 5.

The work [Shchur et al., 2018] claims that data split has
an impact on the performance. Thus, we randomly split the
datasets for 100 times to verify the models designed in the
supervised learning task. Each split contains 500 nodes for
evaluation, 500 nodes for test, and the rest for training.

From Table 3, we observe that the models designed by
GraphNAS rival the best human-invented architectures. The
model designed by GraphNAS always outperforms the state-
of-the-art. The average improvement of GraphNAS is rea-
sonable when the training data is small, such as on Cora and
Citeseer. Moreover, GraphNAS performs significantly better
than others when the number of training data is large, such as
on Pubmed. Overall, the improvement of the model designed
by GraphNAS on Pubmed is 3.1% in terms of accuracy.

The size of training data. In this part, we test the per-
formance with respect to the number of training data. We
split the training data ranging from 1,000 to 18,000. The re-
sults are shown in Figure 3. From the results, we observe
that the model designed by GraphNAS always outperforms
ARMA and APPNP when the number of training nodes ex-
ceeds 3,000.

4.3 Results of Transfer Learning

In this part, we apply the architectures discovered by Graph-
NAS on the citation networks to supervised node classifi-
cation on different data sets, such as the coauthor networks
MS-CS and MS-Physics, and the product networks of Ama-
zon Computers and Amazon Photo. As shown in Table 4,
the models designed by GraphNAS can obtain competitive
results when transferred to new datasets.

4.4 Variants of GraphNAS

Based on the original GraphNAS, we construct two variants:
GraphNAS-R that randomly selects graph neural network ar-
chitectures from a given search space, and GraphNAS-S that
simply searches for an entire graph neural architecture where
each layer containing only one computational node and take
the last layer as input.

Tables 3 presents the results of the architectures designed
by the two variants. We observe that the combination of exist-
ing graph neural operators may achieve better results on big-
ger networks. The comparisons between GraphNAS-R and
GraphNAS show that the search space we defined is reason-
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Figure 5: An example of the graph neural architectures de-
signed by GraphNAS on the supervised learning task. The
architecture G-Cora designed by GraphNAS on Cora is
[1, gat 6, 1, gcn, 1, gcn, 3, arma, tanh, concat], the ar-
chitecture G-Citeseer designed by GraphNAS on Citeseer
is [1, identity, 1, gat 6, identity, concat], and the archi-
tecture G-Pubmed designed by GraphNAS on Pubmed is
[2, gat 8, 1, arma, tanh, concat].

able, and the search algorithm converges to the optimal solu-
tion.

In order to verify the effectiveness of the search algorithm
with reinforcement learning, we compare the expected vali-
dation accuracy over time during the architecture search, as
shown in Figure 4.

In terms of computation time, for supervised learning the
search time on Pubmed is 12 GPU hours, Cora and Citeseer
6 GPU hours. For semi-supervised learning, the search time
on Pubmed is 9 GPU hours, Cora and Citeseer 2 GPU hours.
The experiments are tested on a single NVIDIA 1080Ti.

5 Conclusions

In this paper, we study the challenging problem of graph
neural architecture search using reinforcement learning. We
present a new model GraphNAS which can automatically de-
sign the best graph neural architectures. A new search space
is designed to include the operators from the state-of-the-art
GNNs, and a policy gradient algorithm is used to iteratively
solve the learning. Experiment results on real-world datasets
show that GraphNAS can design a novel network architec-
ture that rivals the best human-invented architecture in terms
of validation set accuracy. Moreover, We release the python
codes on Github for comparison.
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