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ABSTRACT This review provides a comprehensive overview of the state-of-the-art methods of graph-

based networks from a deep learning perspective. Graph networks provide a generalized form to exploit

non-euclidean space data. A graph can be visualized as an aggregation of nodes and edges without having

any order. Data-driven architecture tends to follow a fixed neural network trying to find the pattern in feature

space. These strategies have successfully been applied to many applications for euclidean space data. Since

graph data in a non-euclidean space does not follow any kind of order, these solutions can be applied to exploit

the node relationships. Graph Neural Networks (GNNs) solve this problem by exploiting the relationships

among graph data. Recent developments in computational hardware and optimization allow graph networks

possible to learn the complex graph relationships. Graph networks are therefore being actively used to

solve many problems including protein interface, classification, and learning representations of fingerprints.

To encapsulate the importance of graph models, in this paper, we formulate a systematic categorization of

GNN models according to their applications from theory to real-life problems and provide a direction of

the future scope for the applications of graph models as well as highlight the limitations of existing graph

networks.

INDEX TERMS Graph neural network, geometric deep learning, graph-structured network, non-euclidean

space.

I. INTRODUCTION

The graph is a variant of data structure that learns the relation-

ship between nodes and explores the relationship among these

nodes. Graph nets have gained researchers’ attention due to

the recent progress in computational devices. A wide range of

applications using Graph Neural Networks (GNNs) demon-

strates the potential of graph reasoning nets in order to explore

modern problems [1]–[7]. Several biological structures can be

represented as graphs including the brain, vascular system,

and nervous system. Additionally, the inter-molecular rela-

tionships among chemical systems can also be visualized as

graphs. Link prediction is one of the most significant topics in

graph networks which allows data to be visualized as graphs

The associate editor coordinating the review of this manuscript and
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in which there are edges and nodes. Due to having a non-

euclidean structure, graph reasoning models are generally

applied to node classification and link prediction [8]. Sim-

ply stated, GNN follows deep learning strategies to exploit

relational information via the graph. Additionally, GNN also

picks up the important edges and nodes to perform a given

task using filtering algorithms.

Graph nets also utilize shared weighted local connections

in order to exploit relations among graph elements. Fig. 1

shows a general architecture of a graph neural network where

the input graph is fed into the hidden nodes to learn the rep-

resentations of graph-structured data, and the output graph is

generated from the learned graph-structured representations.

From the observation on convolution operation and graphs,

it can be concluded that Convolution models have a large

impact on designing graph reasoning models as the shared
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FIGURE 1. Illustration of graph neural network.

weights feature dramatically reduces the computational cost

compared with traditional spectral graph theory [9]. Inter-

connected layers develop a bridge in order to extract variant

patterns of various sizes. As CNN can extract useful features

from 2D grid images or 1D text sequences, this strategy is also

used in graph exploitation as instances. To exploit the neces-

sity of sub-graphs, graph embedding is utilized to express

the relations among nodes, edges, and sub-graphs. Graph

embeddings can define nodes and edges in low-dimensional

vectors for further classification or regression.

A directed graph can be represented as the graph direction

from one node to another node. Directed graph and focuses

on a particular node direction containing useful information

for graph representation learning. On the other hand, an undi-

rected graph can be defined as two directed edges presenting

the relationship between two nodes. It is to be noted that

a graph will be undirected only if the adjacency matrix is

symmetric. It is worth noting that the directed graph contains

more valuable information than the undirected graph. This

phenomenon can be observable in knowledge graph feature

learning [10]. On the other hand, the heterogeneous graph

resembles a collection of various nodes. This graph variation

can be processed by simply converting them into one-hot

feature vector added to the original vector representation. The

heterogeneous graph information can work better with meta

path information propagation. With the meta path, the neigh-

bour nodes can be categorized as the distances among nodes

and types. For example, the Graph Inception model uses

this meta path information propagation system for a better

understanding of graph structure data [11]. This network

handles the heterogeneous graph converting it into sub-graph

for the information propagation and finally adds the results

from different sub-graphs for node feature learning process.

To exploit graph-structured data, graph filtering is usually

applied to harvest features or remove irrelevant node rela-

tions. Graph filtering is a filtering process that operates on

graph data as input and gives an output graph signal. The

filtering process can be done on the spatial domain or spectral

domain. The graph filtering process can be divided into sub-

filtering methods – frequency filtering and vertex filtering.

Generally, the graph filtering operation can be expressed as

a convolution filter on graph-structured data in either the

spatial or time domain. However as graph data does not

have any fixed pattern, graph convolution is quite different

to traditional signal processing. It is should be noted that

the time-domain dependent convolution filter is the inverse

process of Fourier multiplication between spectral featured

data. The graph filtering process can be expressed as linear

combinations of signal components in the vertex field. Math-

ematically, it can be defined as:

xout(i) = wi,ix(i) +
∑

j∈R(i,K )

wi,jx(j) (1)

The neighbourhood nodes in equation 1 can be expressed as

R(i,K ) and the combination of the weights can be represented

as {wi,j}.Using of K-polynomial filter, the frequency filters

can be presented as vertex filters.

The graph Fourier transform (GFT) is an important element

of graph nets often used for frequency analysis. GFT can be

presented as 1D signal g measured by ĝ(ξ ) = 〈g, e2π iξ t 〉.
The ξ can be denoted as the frequency of f̂ . It can also be

defined as the complex exponential of an eigen function of

the Laplace operator. The eigenvector ofM containing a fixed

value is the complex exponential of a fixed frequency. The

random-walk transition matrix can be presented as a graph

Laplace operator. The eigen decomposition of M̃ = U3UT

contains the corresponding eigenvalue. Now, the Fourier

transform on graph y can be presented as

ŷ(λl) = 〈y, ul〉 =
n

∑

j=1

y(j)u∗
l (j) (2)

Which defines the spectral graph. The vertex graph can be

expressed as

y(j) =
n

∑

l=1

ŷ(λl)ul(j) (3)

These filtering processes and preprocessing techniques are

commonly used in the data-driven graph exploitation meth-

ods. The success of DL methods to learn representations of

euclidean data motivated researchers to use the strength of

data-driven methods for non-euclidean data. The application

of GNN includes e-commerce where a graph-based technique

can be applied in order to explore the interactions among

users rating, number of items bought, and products [12].

Aside from this application, GNNs can also be applicable

to social science problems. Fig. 2 shows the exploitation of

molecular structure in the form of a graph net. GNNs have

also been used in text classification providing solutions for

one of themost complicated problems in NLP. Peng et al. [13]

proposed a graph-CNNmethods transforming text into graph

embeddings for the further classification process. Traditional

convolutional and recurrent networks exploit the features in

a predefined order. On the other hand, graph models do not

contain a natural order for nodes and edges. This makes those

traditional models fail to explore the possible representation

of graphs. To express the relationship among all possible
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FIGURE 2. Graph molecule embedding structure for graph network.

orders of the graph, the input sequence of these models

cannot handle properly. To solve this issue, GNN utilizes the

propagation method on all nodes overlooking the order of the

nodes. GNNs update the weights of aggregated neighborhood

nodes, so the information propagation system of GNN is sup-

ported by a graphical structure instead of features of nodes.

InGNNs, relation extraction is one of the primary tasks that

learns the relationship between entities. In some literature,

this setting can also be defined as entity recognition. In [14],

a tree-structured LSTM-RNNs have been developed for com-

plete node feature learning. To explore the relationships

among entities, a GCN has been introduced with a pruning

technique for the input items. The cross-sentence N-array

entity recognition technique utilizes graph algorithms to learn

the relationships among multiple sentences. For this setting,

LSTM networks are generally used to establish the best rela-

tionship among various sentences. The application of GNNs

can also be noticed at event extraction that recognizes event

types that exist in data. Liu et al. [15] proposed a joint

event extraction system that increases information flow using

attention-guided GCNs.

To explore these applications of graph-based networks

multiple reviews have been observed. Lee et al. [16] pro-

vided a detailed review of the graph-based attention networks.

Three different categorizations have been introduced and

some methods related to the categorizations are explained.

The author focuses on the superiority of the attention module

and describes the taxonomy according to the attention mech-

anism. Despite having an excellent categorization, the review

only focuses on the attention units. This makes the literature

limited to the special domain of graph-based models.

In [17], A GCN-based categorization has been proposed

in the literature where the GCN-oriented methods have been

divided into the spatial and spectral category and from the

application perspective, GCN has been divided into three sec-

tions : 1) Computer Vision, 2) Natural Language Processing,

and 3) Science. It is to be noted that this survey does not

focus on the analysis of spatial and spectral-based methods

rather than rely on the categorization. Moreover, from the

application point of view, only three types of applications

have been introduced.

Bronstein et al. [18] introduced a review on GCN focusing

non-euclidean space. This review divides the GCN methods

into two sections — spatial and spectral-based methods. The

classification of spectral and spatial based methods depends

on the types of the convolution operation. As it only focuses

on convolution filters, other types of network structures for

graph models are overlooked. This makes the review limited

to only GCN models.

To overcome the limitation of the existing graph-based

reviews, we introduce a new taxonomy accommodating both

the theoretical and application perspectives. For a solution to

the scarcity of graph-based networks to individual problems,

we provide abundant resources of graph-based models along

with their applications and core-algorithms.

The main contribution of this survey is four fold:

• In contrast to the spatial and spectral-based graph net-

works, an application-oriented graph-based taxonomy

has been proposed focusing on both theoretical and real-

life processes.

• We demonstrate a detailed algorithmic overview of the

SOTA methods focusing on both theoretical and appli-

cation perspective including graph classification and

generation.

• Useful resources of graph-based networks have been

provided along with their core algorithm from both the-

oretical and application perspectives.

• We provide a future direction for application-oriented

graph-based networks as well as discuss the limitations

of existing solutions.

The residue of the manuscript is organized as follows.

Section II provides the preliminary definitions and section II

presents the background studies. In section IV, we provide

an algorithmic overview of SOTA methods according to

categorization. Section V shows a clear application-oriented

taxonomy. In sectionVI, we provide some directions focusing

on the application of graph-based models. Section V presents

the concluding remark.

II. BACKGROUND STUDIES

This section explains the commonly studied neural

architecture used for graph exploitation. We discuss both

discriminative and generative models along with the atten-

tion module and sequential model for better perception of

different graph-based architectures.

A. CONVOLUTIONAL NEURAL NETWORKS

CNN has become the backbone of data-driven models for

computer vision tasks [19]. Many applications of standard

CNN are being used in many sectors [20]. Modern machine

vision architectures utilize CNN or convolution operation for

learning complicated features from image patches [21]. The

usage of CNN is also noticeable in exploiting graph networks.

Fully convolutional architecture uses convolution operation

for representation learning and standard CNN utilizes fully

connected layers by flattening into a single dimension. For

CNN, every pixel is given as input for the input layer which

is why the input layer size is showed as n1×1 where n1 is the

number of input channels. The n1 × 1 input vector through

t kernels with the size of k1 × 1 is filtered by the hidden

60590 VOLUME 9, 2021



N. A. Asif et al.: GNN: Comprehensive Review on Non-Euclidean Space

FIGURE 3. Illustration of GAN. G defines the generator that samples fake
data to the D. D denotes the discriminator that computers the probability
whether the sample is real or fake.

convolution layer. The Convolution layer nodes number can

be represented as t × n2 × 1, and n2 = n1 − k1. The

convolutional layer activation map can be obtained as:

yi(p) = max
(

0, bj(p) +
∑

j

k ij(p) ∗ x i(p)
)

(4)

where, x ip and yjp are defined as the ith input and the jth

output activation map respectively. bj(r) is the bias of the jth

output map and * represents convolution. k ij(p) is represented

as the convolution kernel between the ith input map and the

jth output map.

B. GENERATIVE MODELS

In the domain of machine learning, two approaches are

highly appreciated — discriminating learning and gen-

erative learning. Many network architectures have been

proposed including auto-regressive networks, Markov mod-

els, variational autoencoder, generative adversarial network.

These methods are highly appreciated in many real-life

applications [22]–[26]. Recently, generativemodels are being

exploited to understand the graph structure and achieved

excelled performance on graph data [27]. Among generative

models, GAN has gained popularity due to its adversarial

training process. Fig. 3 depicts the vanilla generative adver-

sarial network architecture. At first, Goodfellow et al. [28]

proposed FC layers for both generator G and discriminator

PD. This approach was utilized on several datasets including

MNIST [29], CIFAR-10 [30] and Toronto face dataset. The

generator develops a mapping from noise distribution pz to a

data point G(z). The generator tries to fool the discriminator

by generating fake samples and maps a distribution pg over

real data X .G generates synthetic data through an adversarial

training process appearing as realistic as real data distribu-

tion. So, the objective function of G is:

min
G
EZ∼Pz[log(1 − Pd (G(z)) )] (5)

Pd (∗) defines the probability that the possible data distribu-

tion is from real data rather than generated data. Equation (5)

is minimized if Pd is wrong and is maximized if Pd is

right. The goal of Pd is to improve its classification accuracy

to distinguish between real data and fake data. Therefore,

the objective function of Pd becomes:

max
D

EX∼Pdata
[

logPd (x)
]

+EZ∼Pz
[

log (1 − Pd (G(z)))
]

(6)

FIGURE 4. Multi-head attention representation of graphs.

The total objection function of the generative model follows

a min-max game that can be expressed as:

min
G

max
Pd

EX∼Pdata
[

logPd (x)
]

+EZ∼Pz
[

log (1−Pd (G(z)))
]

(7)

C. ATTENTION MECHANISM

Attention mechanism was first introduced as self-attention

mechanism in [31] in order to perform computer vision

tasks inspired by the way that retinas fixate on necessary

parts of the optic array. However, for NLP this idea has

been utilized to do machine translation tasks. Then the term

‘visual attention’ has become popular boosting the classifica-

tion performance of spatial images. Aside from boosting the

results, the attention module can effectively interpret aspects

of neural architecture that are quite difficult to understand.

This mechanism can also adaptively focuses on important

parts of the image or text and can simply ignore the irrel-

evant parts. A robust attention mechanism can fabricate a

relationship between the data-driven neural structure and

intuitive representation learning. Computed weights by the

attention module can accurately harvest effective structural

image patches and provide an excellent explanation of the

neural system. Attention mechanism has been widely used in

many tasks [32]–[35]. With significant performance in NLP,

attention mechanism has also gained popularity due to its

robust feature learning process in computer vision. Several

types of application of attention mechanism are noticeable

in different sectors of computer vision including [36]–[39].

To learn long-term contextual details, self-attention module

has been adopted in these methods. This module enables

parallelizability leveraging modern computational devices

developing long-distance interactions. The Self-attention unit

can also be used as a standalone-unit for neural compu-

tation [40]. To learn spatial dependencies, spatial-attention

is also utilized in those methods. It can be mathematically

expressed as:

yij =
∑

a,b∈Nk (i,j)
softmaxab(q

T
ij kab + qTij ra−i,b−j)vab (8)

In equation (8), ra−i,b−j is the concatenation representa-

tions of row and column vectors. The measured probability
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between the query and elements are parameterized with the

element position Nk (i, j) and distance.

D. LONG SHORT-TERM MEMORY MODELS

Hochreiter and Schmidhuber et al. [41] proposed the long

short-term memory (LSTM) model that reduces the gradient

vanishing problem of RNN. The LSTM model consists of

recurrent networks where every node of hidden layers is

exchanged by memory cells. Each memory cell of LSTM is

composed of self-connected recurrent edge that has a fixed

weight. This allows the gradient to flow throughout the net-

work without vanishing. The memory cells in LSTM can

be denoted as c. LSTM is developed on the idea of holding

long term information for a certain time period. The LSTM

model leverages memory storage in the form of short-term

activations.

The input node receives the input activation from the input

sequence x(t) at the present time step and the current time

step is processed from the previous time step h(t−1) which

can be defined as hidden states. Generally, the weighted sum

is calculated using the tanh activation function, but the main

paper [41] utilizes the sigmoid activation function. Individ-

ual memory cell is connected via linear activation that can

be denoted as s(t). As already mentioned, there exist self-

connected recurrent cells that hold the internal state. This

edge flows according to time steps with fixed weighted value

without causing gradient exploding. The vectorized expres-

sion of internal state is as s(t) = g(t) · i(t) + s(t−1), where · is
element-wise multiplication.

In [42], the forget gate was introduced demonstrating a

technique to delete the contents of the internal state. It helps

the gradient to flow throughout the network smoothly. Now,

the internal state with forget gate can be described as:

s(t) = g(t) ⊙ i(t) + f (t) ⊙ s(t−1) (9)

The output value vc processed by the internal state is multi-

plied by output gate value oc. Usually, in the output gate, for

a non-linear function, the rectified linear unit is utilized that

has a greater range than other activation functions.

In the forward gradient propagation, the internal state

controls the gradient through activation. When the internal

cell and output cell are closed, the activation is trapped

inside the memory cell without any change to the inter-

mediate time steps. In backward gradient propagation, the

constant error carousel makes the model backpropagate

following the time steps. Multiple memory cells improve

the LSTM network to learn more dependencies from the

input sequence. This model successfully removes the exist-

ing problem of recurrent networks and proves itself as

a robust sequential model. LSTM model as a sequential

model is being used in many sectors including hyperspectral

imagery [43] and medical imaging [44]. In modern deep

learning architecture, LSTM is usually used to capture long-

term dependencies or spatio-temporal information. Thus,

LSTM has provided a better solution leveraging long-term

information for post-processing.

III. APPLICATION OF VARIOUS GRAPH MODELS

To shed light on the applications of various graph-based

methods, we provide a novel categorization that explores the

graph-based models from both theoretical and application

perspectives. Table 1 presents an useful resource of these

methods covering the real-world applications, which covers

the applications of both theoretical and application-oriented

methods. It is to be noted that the table 1 not only provides

a collection of GNN-based methods but also show the core

algorithms for proper understanding of these state-of-the-art

methods. In Fig. 5, we have shown our featured taxonomy

for graph-based strategies. From Fig. 5, it can be noticed that

the proposed taxonomy divides all graph-based methods into

three branches – 1) Graph theory as the data-driven graph

strategies, 2) Methods focusing on real-world problems, and

3) General application-oriented methods. A brief description

of these three sections are described as below:

• Data-driven graph exploitation methods. This branch

provides a theoretical perspective of different solutions

for graph exploitation such as pooling-based, attention-

based strategies. The graph theory-based branch focuses

on exploiting different algorithms for variant graph-

oriented tasks including classification, clustering and

generation. Pooling-based methods provide different

pooling operations for graph exploitation.

• Real-world application-orientedmethods. In this part,

we focus on the methods that prioritize real-world

applications including knowledge-based solutions and

computer vision strategies. As graph-based networks

have been highly appreciated among computer vision

researchers, they are also well known for the variety of

their applications solving many real-world problems.

• General application-oriented methods. Despite hav-

ing various applications on real-world problems, graph-

based models have also been used to exploit different

branches of theoretical problems. This branch explains

the adaptation of graph networks in other sectors includ-

ing reinforcement learning, graph generation and graph

clustering, etc.

IV. OVERVIEW OF THE THEORETICAL AND

APPLICATION-ORIENTED METHODS

This section provides a number of methods related to the

three branches from graph network categorization. This

section divides these branches into two sub-section for better

understanding.

A. DATA-DRIVEN METHODS FOR GRAPH EXPLOITATION
In this sub-section, we provide a number of graph-data

exploitation methods for non-euclidean space data explo-

ration. These data-driven methods include different types of

graph-based methods as well as some of their limitations.

a: GRAPH NEURAL NETWORK

Scarselli et al. [45] first introduced the graph network lever-

aging neural network for data exploration in the graph
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TABLE 1. Various graph structured networks and their applications.
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TABLE 1. (Continued.) Various graph structured networks and their applications..
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FIGURE 5. Overview of our proposed categorization of graph networks.

domain. GNN model tends to learn a featured embedding

that is composed of nodes’ neighbourhood information. For a

node classification problem, the individual node v is defined

by its feature and a ground truth label G. The GNN targets to

predict the labels of unlabeled data. Mathematically, it can be

represented as:

hv = f (yv, yco[v], hne[v], yne[v]) (10)

yco[v] defines the representations of the edges attached with

v and hne[v] and yne[v] define the embedding and features of

the neighbourhood nodes of v respectively. The f function

defines the transition function that transforms the input vec-

tor into a d dimensional space. In order to get a particu-

lar solution for hv, the Banach fixed point theorem can be

applied [46], then equation (10) goes through an iterative

update process that can be expressed as:

H t+1 = F(H t ,Y ) (11)

This process is known as message passing or neighborhood

aggregation. Now, the output function of GNN becomes:

ov = G(hv, yv) (12)

F() and G() functions are feed-forward fully connected net-

work. l1 loss function is minimized via gradient descent that

can be defined as:

loss =
p

∑

j=1

(tj − oj) (13)

GNN has shown significant performance utilizing the

data-driven strategy for graph-structured data. Despite the

outstanding performance, this method does not learn long-

term information and focuses on all nodes equally. Thus,

many irrelevant node are also considered for the desired task.

Moreover, GNNhas an arbitrary inductive bias, that can cause

poor generalization while applying GNN on other kinds of

data e.g. images, videos.

b: GRAPH CONVOLUTIONAL NETWORK

GCN makes an effort by combining graph nets and CNN

together in order to exploit the power of CNN and applying

to graph reasoning models [47]. The Graph Convolution Net-

work is based on the layer-wise propagation rule. Spectral

convolutions on graphs defined as the multiplication of a

signal in the Fourier domain:

hθ ∗ x = QhθQx (14)

In equation 14, Q is the eigenvector matrix of the normal-

ized graph laplacian L = IN − D−1/2AD−12 = QQ,
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with a diagonal matrix of its eigenvalues being the graph

Fourier transform. GCN as the first approach utilizes convo-

lution operation for exploiting graph-structured data. As this

approach relies only on a convolution operation, it focuses

on fixed receptive regions learning from fixed feature space.

As GCN focuses on the arbitrary inductive bias, more local

descriptors along with GCN will improve the overall classi-

fication performance.

c: GRAPH ATTENTION NETWORK

In [48], an attention network has been proposed to exploit

graph-structured data with an attention mechanism. Graph

Attention Network (GAN) works on both inductive and trans-

ductive problems leveraging the power of the attention unit

to learn from different regions of feature space. In GAN,

the input node features can be defined as i = Ei1, Ei2, . . . EiN , Eij ∈
RF . Here, F and N are denoted as the number and features of

nodes respectively. To perform the self-attention mechanism,

the initial input features need to have a weighted shared

transformation. After the transformation, we get a new set of

features defined as F
′
, i′ = Ei′1, Ei′2, . . . , Ei′N , Ei′j ∈ RF ′, as output

and the weight matrix can be denoted asW ∈ R
EF×F .

Now, the self-attention transformation becomes a : REF ×
R

EF ′ → R and the co-coefficients can be expressed as:

ejk = a(W Eij,W Eik ) (15)

This mechanism learns the relative positional vector among

i and j suppressing minor structural details. The computed

attention neighborhood learns across various nodes all using

softmax function.

αjk = softmaxk (ejk) = exp(ejk)
∑

l∈Nj
exp(ejl)

(16)

As the self-attention mechanism is computationally costly,

thismethodwill perform better in large scale graph data rather

than all sorts of non-euclidean data.

d: GATED PROPAGATION NETWORK

Liu et al. [49] proposed a gated propagation network (GPN)

that resolves the problem of graph exploitation using the

meta-learning approach. This meta-learning solution aggre-

gates messages among classes to generate new classes for

classification. Usually, a multi-head attention module is uti-

lized to get the weighted vectors of similar messages looking

around the neighborhood. A gate mechanism is implemented

to checkwhether the aggregatedmessages are from the neigh-

borhood or itself. This mechanism is applied to all classes and

for multiple time steps. The attention module learns identi-

cal messages and avoids multiple messages from the same

classes. Fig. 4 denotes the multi-head attention mechanism

learning aggregated messages. Now, for a task T holding a

subset of classes yT and an N-way-K-shot training set DT .

The initial message prototype for each class y ∈ YT can be

calculated by measuring the average of all K-shot examples

that belong to the y class [50]. Mathematically,

P0y ,
1

∣

∣

{

(xi, yi) ∈ DT : yi = y
}∣

∣

∑

(xi,yi)∈DT ,yi=y
f (xi) (17)

Through each iteration, for each class y ∈ YT this prop-

agation system is updated with a new prototype Pyt . Now,

the multi-head attention measuring the neighborhood aggre-

gated messages Ny and itself can be calculated as:

P t+1
Nv →y

,
∑

z∈Nv

a
(

P ty,P
t
z

)

× P tz,

a(p, q) = 〈h1(p), h2(q)〉
‖h1(p)‖ × ‖h2(q)‖

(18)

In equation (18), the elements 2prop of the meta-learning

parameters 2 are the learning transformations h1(·) and their
parameters h2(·). To overcome the problem of identical pro-

totype message passing, each class y is sent to its own end-

step prototype Pty to itself, i.e., P
t+1
y→y , Pty. Then the gated

mechanism decides whether to accept the message or not

Pt+1
N from its neighbors or message Pt+1

y→y.

P t+1
y , gP t+1

y→y + (1 − g)P t+1
Ny→y′ ,

g =
exp

[

γ cos
(

P0
y,P

t+1
y→y

)]

exp
[

γ cos
(

P0
y,P

t+1
y

)]

+exp
[

γ cos
(

P0
y,P

t+1
Ny→y

)]

(19)

In the equation, the similarity index between two vector

matrix p and q, and γ is denoted as cos(p, q) giving a smooth

probability distribution using the softmax activation. To grab

various types of relations for joint propagation, k modules of

the attentive and gatedmechanism have been usedwith untied

parameters for h1(·) and h2(·) [51].

P t+1
y = 1

k

k
∑

i=1

P t+1
y [i] (20)

where the i-th head’s output is Pt+1
y [i] following the same

procedure of Pt+1
y . The Same procedure has been repeated for

T steps to get the final prototype for y class. Mathematically,

Py , λ × P0
y + (1 − λ) × PTy (21)

The GPN is designed to work in life-long settings that can

learn relative tasks at various time steps using a memory

of prototypes. These prototypes contain information on pre-

vious prototypes. This propagation helps to learn complex

architecture and real-world graph problems for many classes.

But when the dot-product attention unit cannot learn rele-

vant neighborhood information, GPN cannot be well trained.

Moreover, if the initial set of GPN is incorrect, it will suf-

fer from poor results. Aside from these, GPN is capable of

learning robust graph data structure building relation among

classes and generating classes when possible.
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B. DISCUSSION ON DATA-DRIVEN

GRAPH-BASED METHODS

The data-driven graph exploitation strategies have entirely

removed the traditional hand-crafted graph theory models.

But there exist some limitations of graph network-based

methods. The intuitive graph representations of GNN do

not rely on local information. GNN models usually rely on

message passing protocols exploiting graph-structured data.

Thus, a very strong permutation invariant function is required

in order to exploit variance graph data. Moreover, these data-

driven graph-based methods do not consider the potential

of hidden states of the nodes for neighborhood informa-

tion. Existing solutions rely on different hyper-parameter for

different information layers. More general settings can be

introduced for the stability of node representation learning.

C. APPLICATION-ORIENTED METHODS

This subsection explains some solutions focusing on the

general applications and real-world applications of graph

networks including deep reinforcement learning (DRL) and

NLP.

a: GRAPH ATTENTION CONVOLUTION

In [52], a graph attention convolution (GAC) has been intro-

duced leveraging the robustness of graph attentional convolu-

tion for point-cloud segmentation. GAC is fabricated to learn

the features from a weighted function t : Pc → P
d that maps

the input features H to a unseen set of vertex representations

S = {s1, s2, . . . , sN } and si ∈ P
D. It also maintains the struc-

tural connection among output features. Traditional graph

models learn fixed neighbor relations among features but

GAC learns dynamic neighbor features containing weighted

sharing property. The sharing property is calculated using

attention unit β : P
3+C → P

D relying on the important

parts of neighbors. The dynamic features of each neighboring

vertex are measured as:

b̃ij = β
(

1rij, 1lij
)

, j ∈ N (i) (22)

The attention weighted vectors are expressed as b̃ij =
[

b̃ij,1, b̃ij,2, . . . , b̃ij,K

]

∈ P
D from the vertex j to i. The

representations for the mapping function is denoted as Mg :
P
C → P

D for the multilayer perceptrons 1rij = rj − ri
and 1lij = Mg

(

lj
)

− Mg (li). The expression β defines

the spatial nature of neighborhood vertices. It accelerates to

learn useful representations of nodes for graph exploitation.

The differentiable attention unit α is composed of multiple

multilayer perceptrons expressed as :

α
(

1pij, 1lij
)

= Mα

([

1pij‖1lij
])

(23)

where the concatenation operation is denoted as ‖ and Mα

defines the multilayer perceptron.

In order to handle different sizes neighbors across var-

ious scales and vertices, the attention-aware weights are

normalized around all neighbors.

bij,d =
exp

(

b̃ij,d

)

∑

l∈N (i) exp
(

b̃il,d

) (24)

where b̃ij,k is theweighted attention vectors from j to i vertices

at d-channel. Thus, the final output of GAC becomes:

si =
∑

j∈N (i)

bij ⊙Mg

(

lj
)

+ ai (25)

where ai ∈ P
D is the learnable bias and ⊙ defines the

Hadamard product, that gives the output of the element-wise

multiplication of two vectors. GAT creates a new direction

using graph-based convolution strategies for point-cloud seg-

mentation but consumes a lot of memory. A light-weight

approach towards segmentation using graph networks will be

useful in many terms.

b: GRAPH CONVOLUTION TRANSFORMER

The success of transformer in NLP has led researchers

to use the potential of the transformer in graph-structured

data. Transformer searches all meaningful representations in

the attention spaces. GCT establishes weighted connections

among all possible nodes creating a bridge between treatment

codes and diagnosis codes. It uses conditional probabilities

for fabricating weighted connections. The conditional prob-

abilities can be defined as P ∈ [0.0, 1.0]|c|×|c| and the

normalized softmax can be explained as
(

R(i)L0 i√
d

)

). It should

be noted that the mask M and conditional probabilities P

have the same sizes. Taking into account bothM and P, GCT

tries to build connections by learning useful representations.

Therefore, GCT can be formulated as:

Â(j) := softmax

(

R(i)L(i)⊤
√
d

+ M

)

(26)

The self-attention measurement can be defined as:

E(i) = FE(j)
(

PE(i−1)W
(j)
V

)

when i = 1

E(i) = FE(i)
(

B̂(i)E(i−1)W
(i)
V

)

when i > 1 (27)

Now calculating the loss function:

L(j)reg = DKL

(

P‖B̂(i)
)

when i = 1

L(j)reg = DKL

(

B̂(i−1)‖B̂(i)
)

when i > 1

Ltotal = Lprediction + λ
∑

i

L(i)reg (28)

In general terms, attention modules are used in the first

unit of transformer. These settings enable the transformer

to learn sophisticated connections. But GCT utilizes con-

ditional probabilities followed by masked attention units.

Therefore, GCT does not need any previously learned dis-

tribution for further processing. GCT combines the NLP and

non-euclidean space in a supervised setting but a more robust

technique is needed for better performance.
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c: DEEP ATTENTIONAL EMBEDDED GRAPH CLUSTERING

The Deep Attentional Embedded Graph Clustering method

utilizes a graph attentional encoder-decoder architecture for

efficient integration of structure and contextual details to

gather information about latent vectors [53]. The major prob-

lem of graph clustering is the non-existence of label guidance.

As the whole process is unsupervised, it becomes a difficult

task to learn optimized embedding. To solve this problem,

considering these latent vectors, a self-training module is

introduced for performance improvement. The total objective

loss function is defined in two terms.

Loverall = Lreconstruction + Lclustering (29)

From the equation (29), it can be observed that the overall loss

function is the total sum of the reconstruction and clustering

loss. This method explores the graph data in an unsupervised

fashion. Using embedding graph clustering, this method has

several advantages in exploiting non-euclidean space data

but needs more clarification for harvesting robust graph data

details.

d: ADAPTIVE GRAPH CONVOLUTION

Li et al. [54] proposed a k-order graph convolution opera-

tion for solving the attributed graph clustering problem. This

method uses high-order graph convolution to collect global

contextual information and adaptively finds out the most

appropriate order for different graph structures.

X̄ =
(

J − 1

2
Ms

)k
X (30)

In equation (30), k is the corresponding integer,Ms represents

sate update, J is the initial node data and the corresponding

graph filter is:

G =
(

J − 1

2
Ms

)k =
(

J − 1

2
Ms

)k
U−1 (31)

The frequency response is calculated as:

P(λq) = (1 − 1

2
λq)

k (32)

This method proves to provide a better solution in an unsuper-

vised setting boosting the performance in multiple metrics.

It uses high-order convolution operation for global details

pooling. Despite the performance, it learns from static fea-

ture space which makes the network limited to constrained

receptive regions.

e: VARIATIONAL GRAPH AUTOENCODERS

Graph VAE is composed of a neural encoder and a neural

decoder. The encoder works as an inference layer and the

decoder acts as a generative layer. Fig. 6 depicts the struc-

ture of the graph VAE model. The adjacency and identity

matrix is given as input to the inference layer and a generated

adjacency matrix is given as output from the decoder that

processes a generated graph. Let denotes an undirected and

unweighted graph as ς = (ν, ε) with N = |ν| nodes. Now,

FIGURE 6. Illustration of graph variational autoencoder.

the stochastic latent variables zi are aggregated byN×F . The

parameterized inference becomes:

q(Z |Y ,A) =
N

∏

i=1

q(zi|Y ,A),

withq(zi|Y ,A) = N (zi|µi, diag(σ
2
i )) (33)

µ = GCNµ(Y ,B) can be defined as the mean of vector

representations µi.Now, the generative VAE becomes:

p(B|Z ) =
N

∏

i=1

N
∏

j=1

p(Bij|zi, zj),

with p(Bij = 1|zi, zj) = σ (zTi zj) (34)

Bij are the components of σ (·) and A (adjacency matrix)

followed by a sigmoid activation function. Now, the optimiza-

tion process can be written as:

L = Eq(Z |Y ,B)[log p(A|Z )] − KL[q(Z |Y ,B)‖p(Z )] (35)

Now for real-valued label function lu : E → IR on G, which

is constrained to take a specific value lu(v) = yuv at node

v ∈ V ⊆ E . In our context, lu(v) = 1 if user finds the item

relevant and has engaged with it, otherwise lu(v) = 0. Now

let’s assume that the adjacency matrix in the KG is similar to

the relevant label. So the energy function E becomes:

E(lu,Bu) = 1

2

∑

ei∈E,ej∈E
Biju(lu(ei) − lu(ej))

2 (36)

This method aims to solve the graph representation learn-

ing problem with a generative model but lacks high-quality

reconstruction result.

f: CONTEXTUAL GRAPH MARKOV MODEL

Bacciu et al. [27] introduced a generative markov model

learning cyclic structures in an unsupervised manner. To prior

our knowledge, this is the first attempt to use a generative

model for variable-length graphs. The generative encoders

gather important representations from the data that boosts the

classification accuracy leveraging unlabeled examples in a
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semi-supervised manner. Themodel uses an automatic recon-

struction of the network in supervised tasks. Locally con-

nected layers have been used without any iteration process.

For each layer of this model, let denote L−1l as a set of layers

and the present layer as l. q̂LNe(u) defines the neighborhood

nodes of the network for the set of layers l ′ ∈ L−1(l). Now,

the likelihood L(θ |H ) of the network can be measured as:

L(θ |H ) =
∏

h∈H

Vh
∏

u=1

C
∑

i=1

P(yu|Ru = i)P(Ru = i|q̂L−1(l)
Ne(u) ) (37)

This method uses Markov models for learning graph repre-

sentation as a generative model. The optimization process

showed minimum time complexity but the result can be

improved with weighted attention units.

g: GRAPH CONVOLUTIONAL REINFORCEMENT LEARNING

Jiang et al. [170] exploited graph convolution in a multi-

agent environment. This approach utilizes the relation ker-

nel in order to capture the simulation between agents using

relational kernels. To measure the interaction between agents

this method adopts a multi-head attention module. This can

be explained as:

αmij = exp(τ · XmR hi · (XmL hj)T )
∑

k∈B+i exp(τ · XmR hi · (XmL hL)T )
(38)

In equation 38, T is denoted as scaling factor. To measure

weighted attention, the value of all input features are calcu-

lated and joined together for agent i and j. Later, the output

of all multi-head attention M are processed through Fc and

ReLU activation function to the final output h′
i.

h′
i = σ (concatenate[

∑

j∈B+i

αmij X
m
V hj, ∀m ∈ M ]) (39)

At the final phase, this output is fed into temporal regulariza-

tion and KL divergence is calculated. This method combines

the reinforcement learning and graph convolution operation.

As the multi-head attention module works as relation kernel,

a more light-weight approach can be considered to explore

the simulation process between agents.

h: ADVERSARIAL TRAINING ON GRAPH

GAN is a kind of generative model based on min-max the-

ory. The generator tries to generate random samples and the

discriminator tries to differentiate whether the data sample

is from G(fake) or real data. GAN has proved to generate

high-resolution photo-realistic images and removed blurry

artifacts. Wang et al. [171] introduced GraphGAN fusing

generative models with graphs. In GraphGAN, the genera-

tor tries to calculate the true connectivity distribution and

generates important vertices. The discriminator tries to clas-

sify the connectivity for the vertex pair. The discriminator

gives an output vector calculating the probability of an edge

existing. Lt denotes a graph as G = (L,Q)), the nodes

as L = {L1 . . . , lL} and the edges as E = {qij}Li,j=1. The

probability distribution for nodes can be defined as ptrue(l|lc).

Now, forN (lc) samples G(l|lc; θG) tries to learn the underly-

ing distribution of the real samples and D(l, lc; θD) aims to

discriminate whether it is real or not. Mathematically, it can

be presented as:

minθC maxθD l(G,D) =
l

∑

c=1

(Ql∼ptrue(·|lq)[logD(l, lc; θD)]

+El∼G(·|lq;θG)[log(1−D(l, lc; θD))])

(40)

Training a GANmodel is not an easy task due its convergence

failure and mode collapse problem [172]. A more stable

adversarial training process for the graph is yet to be explored.

D. DISCUSSION ON APPLICATION-ORIENTED METHODS

Application-oriented methods demonstrated excellent perfor-

mance in terms of various performance metrics on the graph

data analysis. These strategies create a new direction by

combining different sections, including generative models,

reinforcement learning with graph-structured data as well

as also focusing on real-world applications. But these solu-

tions are still in the preliminary stage as they only provided

a new way of exploring graph-based networks. Generative

models on graphs such as variational autoencoder, Markov

models, adversarial networks and sp forth tend to focus on

the reconstruction quality of graphs rather than learning the

representations of nodes and neighbors.

V. LIMITATIONS & FUTURE DIRECTIONS

In this section, we show the limitations of existing GNN

methods and provide a future direction towards the applica-

tion of GNNs from a theoretical and application perspective.

A. THEORETICAL PERSPECTIVE

In this subsection, we discuss the limitations and future

scopes of graph-basedmethods from a theoretical perspective.

a: ATTENTION MODULES

The potential of the attention network has been previously

discussed. But the usage of attention units in GNN is still lim-

ited to traditional attention architecture such as self-attention.

Despite the superiority of self-attention, it is computationally

costly for CPU usage. Moreover, for larger graph inputs

self-attention unit becomes very computationally resourceful.

Lightweight attention modules should be focused to develop

computationally effective graph-based models.

b: MULTISCALE NETWORKS

Multiscale networks learn from various receptive areas in

order to perform specific tasks [173]. The multiscale prop-

erties harvest intuitive representation from different loca-

tions of feature spaces [174]. This makes the network more

effective to learn robust node features. Despite the success

of multiscale networks in spectral imagery, this feature has

been overlooked in graph networks. The usage of multiscale
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FIGURE 7. Link prediction with graph networks.

networks can be used to produce structural features such as

small-world entities as well as sociological interactions.

c: DYNAMIC CONVOLUTION

Existing graph-based models rely on fixed receptive regions

for the feature extraction process. This makes the model

limited to explore fixed receptive areas (RFs). Dynamic con-

volution can explore various Rfs harvesting features from

various nodes providing better performance. Despite the use

of dynamic Rfs in many computer vision applications, it is

still being unused in graph exploitation.

d: TRANSFER LEARNING

Inductive learning (IL) in GNN can discover unseen data

more effectively than transductive learning. IL can handle

graph-based models dynamically that creates this strategy to

solve real-world problems [175]. This setting also enables the

use of transfer learning (TL) [176]. Transfer learning is an

approach that uses a pre-trained model trained on a dataset to

use on a different dataset. Despite the success in the euclidean

domain, it is still not popular in the non-euclidean domain.

The attention-weighted transfer learning approach to graphs

will be an interesting concept for non-euclidean space data

exploitation.

e: REINFORCEMENT LEARNING

Deep Reinforcement Learning (DRL) is a sub-set of data-

driven learning focused on agent interactions in an environ-

ment. The power of reinforcement learning creates a new

direction for autonomous driving. Fig. 8 shows the basic

structure of the RL processing system. In RL, the agent per-

forms direct interaction with the ambiance and increases its

efficiency through trial and error. It is worth to be mentioned

that while performing this task, there is no need for labeled

data. Value function approximation is one of the vital ele-

ments of RL that measures the possible return output in order

to find the optimal policy. Despite the success of RL in solv-

ing various real-life problems the combination of attention

unit, multiscale networks, reinforcement learning with graph

models is still yet to discover. The representation learning

capability of RL methods is not much capable of long-term

aggregation. The potential of graph models with aggregated

learning with RL can be a sophisticated approach towards

GNNs.

B. APPLICATION PERSPECTIVE

This subsection focuses on the application perspective of

graph-based models not only pointing to the limitations

of these but also providing a future direction for graph

researches.

a: LINK PREDICTION

Link prediction is one of the most popular applications of

graph-based networks. Fig. 7 shows a general structure of link

prediction using a graph neural network. This network con-

verts the data into sub-graphs learning different transformed

features from the data. In order to learn the relation between

entities, this approach is quite naive to learn long-distance

relationships among entities. A Transformer model can be

used to alleviate that problem.

b: EEG SIGNAL ANALYSIS

Brain signal decoding has brought much attention and is

being used in many applications including brain-computer

interface (BCI) and creating connections with peripheral

devices. For BCI, the EEG signal is being used by a data-

driven strategy for classification purposes. Multiple solutions

have been proposed using deep learning techniques for EEG

signal classification. But a very few graph-based works are

being explored for this task. Robust graph-based generative

models can be utilized to learn valuable EEG features for

classification purposes.
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FIGURE 8. Overview of the reinforcement learning process. The state,
action and reward of the trial-and-error process in the environment are
denoted as St , At and Rt respectively.

VI. CONCLUDING REMARKS

Recent progress on graph networks has shown superior per-

formance on multiple performance metrics. Motivated by

the great success of graph-based models, we provided an

application-oriented general categorization of graph-based

methods. In this paper, we depict a clear algorithmic review of

state-of-the-art methods of graph models presenting various

tasks including graph classification, generation, and opti-

mization. Though this paper presents a sophisticated catego-

rization of graph networks, in future works, we will focus on

spectral and spatial-based taxonomy of graph-based models.
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