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Abstract—Multiuser massive multiple-input multiple-output
(MU-MIMO) systems can be used to meet high throughput
requirements of 5G and beyond networks. In an uplink MU-
MIMO system, a base station is serving a large number of users,
leading to a strong multi-user interference (MUI). Designing
a high performance detector in the presence of a strong MUI
is a challenging problem. This work proposes a novel detector
based on the concepts of expectation propagation (EP) and graph
neural network, referred to as the GEPNet detector, addressing
the limitation of the independent Gaussian approximation in
EP. The simulation results show that the proposed GEPNet
detector significantly outperforms the state-of-the-art MU-MIMO
detectors in strong MUI scenarios with equal number of transmit
and receive antennas.

Index Terms—MU-MIMO detector, graph neural network,
expectation propagation, beyond 5G

I. INTRODUCTION

Multiuser massive multiple-input multiple-output (MU-

MIMO) technique is one of the key technologies to enable a

high throughput in 5G and beyond networks [1]. The usage of

multiple transmit and receive antennas ensures a high spectral

efficiency [2], and therefore a high throughput. One of the

challenging problems in uplink MU-MIMO systems is to

design a practical base station detector that can achieve a

high reliability performance in the presence of a strong multi-

user interference (MUI). The MUI is caused by multiple user

antennas simultaneously sending information to multiple base

station antennas. The state-of-the-art practical MU-MIMO

detectors can be classified as classical and neural network

(NN)-based detectors.

The classical detectors [3]–[6] use Gaussian distributions

to approximate the posterior probability of the transmitted

symbol estimates conditioned on the received signal. They

were shown to achieve a near maximum likelihood (ML)

performance [7] only when the number of receive antennas is

much higher than the number of transmit antennas (users). The

approximate message passing (AMP) detector [3] performs

poorly in the case of ill-conditioned channel matrices. The

problem of ill-conditioned channel matrices has been partially

resolved by the orthogonal AMP (OAMP) detector [5] by

integrating the linear minimum mean square error (MMSE)

filtering. The expectation propagation (EP) detectors [4], [6]

outperform the OAMP detector by introducing regularization

parameters in the MMSE filter that are adjusted iteratively

according to the channel matrix and MUI level. However, there

is still a significant performance gap between the EP and ML

detectors when the number of base station receive antennas is

equal to the number of user transmit antennas, referred to as

a high MUI scenario.

The NN-based detectors have been proposed in [8]–[12] to

address the performance limitation of the mentioned classical

detectors in the case of ill-conditioned channel matrices and/or

high MUI. This is done by unfolding their iterations into NN

layers and optimizing their parameters. The OAMPNet detec-

tor [11] combines the OAMP and NN that has a small number

of trainable parameters to deal with the ill-conditioned channel

matrices. This results in a significant performance improve-

ment compared to the conventional OAMP detector. A high

performance recurrent equivariant (RE)-MIMO detector was

proposed in [12]. The RE-MIMO detector unfolds the AMP

detector and integrates it with a transformer self-attention

network to cancel the high MUI and ensure equivariance under

permutations of the user transmit antennas. The addition of

the transformer based MUI canceller results in a significant

performance improvement compared to the conventional AMP

detector. Nevertheless, a significant performance gap remains

when comparing the performance of the NN-based and ML

detectors in a high MUI scenario [11], [12]. Our analysis

shows that the reason is the inaccuracy of the Gaussian

approximation. To the best of the authors’ knowledge, none

of the state-of-the-art detectors address this issue.

In this paper, we propose a novel unfolded NN-based detec-

tor for high MUI scenarios, referred to as graph EP network

(GEPNet) detector. The proposed detector integrates the EP

[6] and graph neural network (GNN) [10] as follows. The EP

can be divided into three modules: (1) an observation module,

calculating the likelihood function of the transmitted symbols

based on the received signal; (2) a Gaussian approximation

module, approximating the posterior probability distribution of

each transmitted symbol estimate using a Gaussian distribu-

tion; and (3) an estimation module, calculating the transmitted

symbol estimates. The second module assumes that the joint

posterior probability distribution of the transmitted symbol
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Fig. 1: The MU-MIMO system

estimates is approximated by the product of K independent

Gaussian distributions, where K is the number of users. As

a consequence, the EP loses some MUI information. In MU-

MIMO systems with high MUI, this approximation is therefore

inaccurate and induces a severe performance degradation.

Instead of using this approximation, the proposed detector

uses the GNN to produce the posterior probability distribution

parameterized according to a Markov random field (MRF).

Specifically, we adopt a factor graph representation [13]. The

MUI between each pair of users is characterized by a pair

potential. Thus, the GNN captures the MUI information using

the MRF. The main contributions of this paper are unfolding

EP into NN layers and integrating it with the GNN to address

the limitation of the independent Gaussian approximation in

EP. This contribution results in the first offline NN-based

detector. In contrast to all existing classical [3]–[6] and NN-

based [9]–[12] detectors, the proposed GEPNet detector can

achieve a high detection performance in a high MUI scenario

and significantly improves the EP performance. To the best

of the authors’ knowledge, the GEPNet is the first detector

outperforming the EP by replacing the independent Gaussian

approximation. The simulation results show that the GEPNet

detector outperforms the EP, OAMPNet, and RE-MIMO de-

tectors by more than 4 dB at the SER of 10−4 for 64 × 64
MU-MIMO configuration.

Notations: In denotes an identity matrix of size n. For

any matrix A, the notations AT and A† stand for trans-

pose and pseudo-inverse of A, respectively. ‖q‖ denotes

the Frobenius norm of vector q. q∗ denotes the complex

conjugate of a complex number q. Let x = [x1, · · · , xK ]T

and c = [c1, · · · , cK ]T . E[x] is the mean of random vector x,

and Var[x] = E
[
(x− E[x])

2 ]
is its variance. N (xk : ck, vk)

represents a single variate Gaussian distribution for a random

variable xk with mean ck and variance vk.

II. SYSTEM MODEL

We consider an uncoded MU-MIMO system used to trans-

mit information streams generated by Nt single-antenna users.

The streams are received by a base station, which is equipped

with Nr ≥ Nt antennas to simultaneously serve the users.

The system is depicted in Fig. 1. User k maps log2(M̃) bits

of its information stream bk to a symbol x̃k ∈ Ω̃ using

a quadrature amplitude modulation (QAM) technique, where

Ω̃ = {s1, . . . , sM̃} is a constellation set of M̃ -QAM and sm
is one of the constellation points. The transmitted symbols are

uniformly distributed, and the corresponding received signal

is given by

ỹ = H̃x̃+ ñ, (1)

where x̃ = [x̃1, · · · , x̃Nt
]T , ỹ = [ỹ1, . . . , ỹNr

]T , H̃ =
[h̃1, . . . , h̃k, . . . , h̃Nt

] ∈ CNr×Nt is the coefficient matrix of

complex memoryless Rayleigh fading channels between Nt

transmit and Nr receive antennas, h̃k is the k-th column

vector of matrix H̃ that denotes wireless channel coefficients

between the receive antennas and the k-th transmit antenna,

where each coefficient follows a Gaussian distribution with

zero mean and unity variance, and ñ ∈ CNr denotes the

additive white Gaussian noise (AWGN) with a zero mean

and covariance matrix σ̃2INr
. The SNR of the system is

defined as SNR = 10log10

(
NtẼs

σ̃2

)

dB, where Ẽs is the

energy per transmit antenna. We normalize the total transmit

energy so that NtẼs = 1. For convenience, the complex-

valued variables are transformed into real-valued variables.

Accordingly, we define x = [R(x̃)T I(x̃)T ]T ∈ RK , y =
[R(ỹ)T I(ỹ)T ]T ∈ RN , n = [R(ñ)T I(ñ)T ]T ∈ RN ,

and H =

[
R(H̃) −I(H̃)

I(H̃) R(H̃)

]

∈ R
N×K , where K = 2Nt,

N = 2Nr, R(·) and I(·) are the real and imaginary parts,

respectively. Therefore, we can rewrite (1) as

y = Hx+ n. (2)

Note that the covariance matrix of n is σ2IN , (σ̃2/2)IN , the

energy per transmit antenna in the real-valued system is Es ,

Ẽs/2, and the real-valued constellation is Ω = {R(sm)|sm ∈

Ω̃} with |Ω| =M ,
√

M̃ . We consider the system model (2)

for the rest of the paper.

III. THE GRAPH EXPECTATION PROPAGATION NETWORK

In this section, we propose the GEPNet detector integrating

the EP [6] and GNN [10] schemes. As shown in Fig. 2,

the GEPNet detector consists of the observation, GNN and

estimation modules, which iteratively exchange the outputs

(see Fig. 2a).

A. The Observation Module

The posterior probability distribution of the transmitted

symbols conditioned on the received signal in (2) can be

expressed as

p(x|y) =
p(y|x)

p(y)
· p(x) ∝ N

(
y : Hx, σ2INr

)

︸ ︷︷ ︸

p(y|x)

K∏

k=1

p(xk)

︸ ︷︷ ︸

p(x)

,

(3)

where p(xk) = 1
M

∑

x∈Ω δ(xk − x) is a priori probability

density function of xk, δ is the Dirac delta function, and p(y)
is omitted as it is not related to random variable xk . A direct

calculation of (3) results in an exponential complexity, which



(a) The iterations in the GEPNet detector (b) The MPs in the t-th iteration

Fig. 2: The GEPNet detector model

is prohibitive. Therefore, the EP scheme is used to approximate

p(x|y) at the t-th iteration by a Gaussian posterior function

p(t)(x|y) ∝p(y|x) · χ(t)(x)

∝N
(

x : H†y, σ2
(
HTH

)−1
)

· N
(

x : (λ(t−1))−1γ(t−1), (λ(t−1))−1
)

∝N
(

x : µ(t),Σ(t)
)

, (4)

where χ(t)(x) is an approximation of p(x) obtained from the

exponential family [6], λ(t) is a K ×K diagonal matrix with

diagonal elements λ
(t)
k > 0 and γ(t) = [γ

(t)
1 , . . . , γ

(t)
K ]T . Both

λ
(t)
k and γ

(t)
k are real numbers with λ

(0)
k = 1/Es and γ

(0)
k = 0.

Note that p(y|x) in (4) is approximated by treating x as a

random real-valued vector. The product of two Gaussians in

(4) is computed by using the Gaussian product property1, given

in Appendix A.1 of [14]. Accordingly, we obtain the variance

and mean of p(t)(x|y) as

Σ(t) =
(

σ−2HTH+ λ(t−1)
)−1

, (5a)

µ(t) = Σ(t)
(

σ−2HTy + γ(t−1)
)

. (5b)

We then compute the likelihood function p(t)(y|x) based on

the Gaussian posterior function p(t)(x|y),

p(t)(y|x) ,
p(t)(x|y)

χ(t)(x)

∝
N
(

x : µ(t),Σ(t)
)

N
(

x : (λ(t−1))−1γ(t−1), (λ(t−1))−1
)

∝ N
(

x : x
(t)
obs,V

(t)
obs

)

, (6)

where x
(t)
obs = [x

(t)
obs,1, . . . , x

(t)
obs,K ] and V

(t)
obs is a K × K

diagonal matrix with v
(t)
obs,k as the k-th diagonal element,

1The product of two Gaussians results in another Gaussian, N (x : a,A) ·
N (x : b,B) ∝ N (x : (A−1 + B

−1)−1(A−1
a + B

−1
b), (A−1 +

B−1)−1.

which can be expressed as

v
(t)
obs,k =

Σ
(t)
k

1− Σ
(t)
k λ

(t−1)
k

, (7a)

x
(t)
obs,k = v

(t)
obs,k

(

µ
(t)
k

Σ
(t)
k

− γ
(t−1)
k

)

. (7b)

Here, µ
(t)
k is the k-th element of vector µ(t) and Σ

(t)
k is

the k-th diagonal element of matrix Σ(t). We treat the pair(

x
(t)
obs,V

(t)
obs

)

from (7) as a prior information for the variable

nodes x1, . . . , xK in the GNN module, as shown in Fig 2b.

B. The GNN Module

The GNN module employs the message passing (MP)

scheme of the pair-wise MRF model [10], as described in

the Fig. 2b. The variable and factor nodes of the GNN are

displayed as circles and rectangles, respectively. As in a pair-

wise MRF, the k-th variable node is characterized by a self

potential φ(xk), and the (k, j)-th pair of variable nodes is

characterized by a pair potential ψ(xk, xj), where

φ(xk) = exp

(
1

σ2
yThkxk −

1

2
hT
k hkx

2
k

)

p(xk), (8a)

ψ(xk, xj) = exp

(

−
1

σ2
hT
k hjxkxj

)

. (8b)

The GNN is used to infer the posterior probability of the

transmitted symbols by using the mean x
(t)
obs,k and variance

v
(t)
obs,k for the Gaussian approximation of xk obtained from the

observation module, k = 1, . . . ,K . The mean and variance are

concatenated as

a
(t)
k =

[

x
(t)
obs,k, v

(t)
obs,k

]

, (9)

and then a
(t)
k is added as an attribute to the corresponding

variable node xk. The posterior probability corresponding to

the pair-wise MRF can be written as [10]

pGNN(x|y) =
1

Z

K∏

k=1

φ(xk)

K∏

j=1
j 6=k

ψ(xk, xj), (10)



where Z is a normalization constant. To compute pGNN(x|y)
in (10), we use variable and factor feature vectors correspond-

ing to self and pair potentials in (8a) and (8b), respectively. The

variable feature vector is denoted as u
(ℓ)
k . Its initial value is

obtained from encoding the information of the received signal,

corresponding channel vector, and noise variance according to

(8a) using a single layer NN as

u
(0)
k = W1 · [y

Thk,h
T
k hk, σ

2]T + b1, (11)

where W1 ∈ RNu×3 is a learnable matrix, b1 ∈ RNu is a

learnable vector, and Nu is the size of the feature vector. We

consider Nu = 8. The factor feature vector fjk ,
[
hT
k hj , σ

2
]

is obtained by extracting the pair potential information from

(8b). The factor feature vector is used in the MPs of the GNN.

As described in Fig. 2b, the initialized feature vectors are

sent to the corresponding factor nodes. The factor nodes then

commence the following iterative MP between the factor and

variable nodes:

1) Factor to variable: Each factor node has a multi-layer

perceptron (MLP) with two hidden layers of sizes Nh1 and

Nh2 and an output layer of size Nu. In this work, we set

Nh1 = 64 and Nh2 = 32. The rectifier linear unit (ReLU)

activation function is used at the output of each hidden layer.

For any pair of variable nodes xk and xj , there is a factor

node connecting them. This factor node first concatenates

the received feature vectors u
(ℓ−1)
k and u

(ℓ−1)
j with its own

feature vector fjk . The factor node then uses the concatenated

features as inputs for its MLP, denoted as D, and saves the

corresponding output, expressed as

m
(ℓ)
jk = D

(

u
(ℓ−1)
k ,u

(ℓ−1)
j , fjk

)

. (12)

Finally, the outputs are fed back to the variable nodes as

illustrated in Fig. 2b.

2) Variable to factor: The k-th variable node then sums

all the incoming messages from its neighbouring factor nodes

m
(ℓ)
jk and concatenates their sum with the node attribute a

(t)
k as

m
(ℓ)
k =

[
∑K

j=1
j 6=k

m
(ℓ)
jk , a

(t)
k

]

. The concatenated vector is used

to compute the node feature vector u
(ℓ)
k as

g
(ℓ)
k = U

(

g
(ℓ−1)
k ,m

(ℓ)
k

)

(13a)

u
(ℓ)
k = W2 · g

(ℓ)
k + b2, (13b)

where function U is specified by the gated recurrent unit

(GRU) network [15], whose current and previous hidden

states are g
(ℓ)
k ∈ RNh1 and g

(ℓ−1)
k ∈ RNh1 , respectively,

W2 ∈ R
Nu×Nh1 is a learnable matrix, and b2 ∈ RNu is a

learnable vector. The updated feature vector (13b) is then sent

to the neighbouring factor nodes to continue the MP iterations.

After L rounds of the MP, a readout process yields

p̃GNN(xk = a|y) = R
(

u
(L)
k

)

, a ∈ Ω, (14a)

p
(t)
GNN(xk = a|y) =

exp (p̃GNN(xk = a|y))
∑

b∈Ω exp (p̃GNN(xk = b|y))
, a ∈ Ω.

(14b)

In this work, we set L = 2. The readout function R is given

by an MLP with two hidden layers of sizes Nh1 and Nh2 ,

and ReLU activation at the output of each hidden layer. The

output size of R is the cardinality of real-valued constellation

set, i.e., M . We then assign

g
(0)
k ← g

(L)
k and u

(0)
k ← u

(L)
k , k = 1, . . . ,K (15)

in order to use the GRU hidden state and variable feature

vector as the starting point for the next GEPNet iteration.

Remark 1: In the EP detector, the posterior probability

distribution of the transmitted symbol estimates is calculated

as p(x|y) ∝
∏K

k=1 f[x(t)
obs,k,v

(t)
obs,k]

(xk), where f
[x

(t)
obs,k,v

(t)
obs,k]

(·)

is a Gaussian function parameterized by mean x
(t)
obs,k and

variance v
(t)
obs,k. In our proposed detector, we replace the

Gaussian function with a GNN function parameterized not

only by x
(t)
obs,k, v

(t)
obs,k, but also by yThk,h

T
k hk,h

T
k hj , σ

2,

where j = 1, . . . ,K , j 6= k. The GNN function gives more

diversity when calculating the posterior probability distribution

of the transmitted symbol estimates and enables the proposed

detector to capture the MUI information characterized by the

pair potential feature hT
k hj .

C. The Estimation Module

The soft symbol estimate and its variance are computed as

[16]

x̂
(t)
k =

∑

a∈Ω

a× p
(t)
GNN(xk = a|y), (16a)

v
(t)
k = E

[∣
∣
∣xk − x̂

(t)
k

∣
∣
∣

2
]

, (16b)

for each 1 ≤ k ≤ K . We define a vector x̂(t) = [x̂
(t)
1 , . . . , x̂

(t)
K ]

and a K×K diagonal matrix V(t) with v
(t)
k in the k-th diago-

nal element, k = 1, . . . ,K . The work of the GEPNet detector

is finished once the maximum number of iterations T has been

reached. Hard estimates of the transmitted symbols are then

made from x̂(T ) by comparing their Euclidean distance from

the symbol set Ω.

In the case of t 6= T , the Gaussian posterior function

p(t)(x|y) is re-evaluated by updating χ(t)(x) as [6]

χ(t+1)(x) ∝
N
(
x : x̂(t),V(t)

)

N
(

x : x
(t)
obs,V

(t)
obs

)

= N
(

x : (λ(t))−1γ(t), (λ(t))−1
)

, (17)

where the parameters

λ
(t) = (V(t))−1 − (V

(t)
obs)

−1, (18a)

γ(t) = (V(t))−1x̂(t) − (V
(t)
obs)

−1x
(t)
obs. (18b)

Note that λ(t) in (18a) may yield a negative value, which

should not be the case as it is inverse variance term [6].

Therefore, when λ
(t)
k < 0, we assign λ

(t)
k = λ

(t−1)
k and



Detector Complexity

AMP [3] O(NKT )
GNN [10] O((N + SuNh1 +Nh1Nh2 +Nh2Su)KT )
MMSE [17] O(K3 +NK

2)
RE-MIMO [12] O((N2

K +NK
2)T )

OAMP-Net [11] O((N3 +K
3 +NK

2 +N
2
K)T )

EP [6] O((K3 +NK
2 +MK)T )

GEPNet
O

(

(

K
3 + NK

2 + MK + (N + SuNh1 +

Nh1Nh2 +Nh2Su)KL
)

T

)

ML [7] O(MK)

Table I: The computational complexity comparison

γ
(t)
k = γ

(t−1)
k . Finally, we smoothen the update of (λ(t),γ(t))

by using a convex combination with the former values,

λ(t) = (1 − η)λ(t) + ηλ(t−1), (19a)

γ(t) = (1 − η)γ(t) + ηγ(t−1), (19b)

where η ∈ [0, 1] is a weighting coefficient. The estimation

module sends the parameters (γ(t),λ(t)) to the observation

module, as illustrated in Fig. 2a. The complete pseudo-code

is shown in Alg. 1.

Algorithm 1 GEPNet detector

1: Input: H,y, σ2,Es, L, T

2: Initialization: γ(0) = 0,λ(0) = 1
Es

I, η = 0.7,g
(0)
k = 0

3: for t = 1, . . . , T do

The Observation Module:

4: Compute Σ(t) and µ(t) in (5)

5: Compute v
(t)
obs,k and x

(t)
obs,k, k = 1, . . . ,K in (7)

The GNN Module:

6: Compute (9)

7: if t = 1 then

8: Compute u
(0)
k , k = 1, . . . ,K, in (11)

9: end if

10: for l = 1, . . . , L do

11: Compute m
(ℓ)
jk in (12), j, k = 1, . . . ,K, j 6= k

12: Compute g
(ℓ)
k and u

(ℓ)
k in (13), k = 1, . . . ,K

13: end for

14: Compute p
(t)
GNN(xk|y) in (14), k = 1, . . . ,K

The Estimation Module:

15: Compute v
(t)
k and x̂

(t)
k in (16), k = 1, . . . ,K

16: Compute (15)

17: Compute λ(t) and γ(t) in (18)

18: if λ
(t)
k < 0 then

19: λ
(t)
k = λ

(t−1)
k and γ

(t)
k = γ

(t−1)
k , k = 1, . . . ,K

20: end if

21: Smoothen λ
(t)

and γ(t) using (19)

22: end for

23: Return: Hard symbol estimates from
[

x̂
(T )
1 , . . . , x̂

(T )
K

]

IV. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we analyse the computational complexity

of the proposed GEPNet detector depicted in Alg. 1. Note

that we provide complexity for the real-valued system (2).

The corresponding complexity for the complex-valued system

(1) can be easily obtained by substituting K = 2Nt and

N = 2Nr. The dominant complexity of the GEPNet detector

per iteration is O(NK2 + K3), which comes from (5a).

Expressions (5b), (16), (18), and (19) are all related to matrix-

vector multiplications and the cost is O(K2 +NK +MK).
The rest of the operations belong to the GNN computations,

whose complexity is O((N+SuNh1+Nh1Nh2+Nh2Su)KL).
As (5)-(19) are performed T times, the total computational

complexity of the GEPNet detector is O
((
NK2 + K3 +

MK + (N + SuNh1 + Nh1Nh2 + Nh2Su)KL
)
T
)

. Table I

shows the computational complexity of the proposed detector

in comparison with the state-of-the-art detectors.

V. SIMULATION RESULTS

In this section, we explain the training and testing of the

NN-based detectors and compare the performance of our

proposed detector with the other MU-MIMO detectors.

A. Implementation Details

We implemented the NN-based detectors OAMPNet, RE-

MIMO, GNN, and GEPNet in PyTorch [18]. The hyper-

parameters for the existing NN-based detectors were set as in

their respective papers. The number of realizations/samples in

the training dataset was 80000 for all the NN-based detectors.

The samples were obtained by using QAM modulation with

varying SNR values. We applied Adam optimizer with learning

rate 0.0001 to train the proposed detector, and used the total

cross-entropy loss function expressed as

Loss = −
1

Q

Q
∑

q=1

K∑

k=1

∑

a∈Ω

I
x
(q)
k

=a
log
(

p
(T )
GNN

(

xk = a|y(q)
))

,

(20)

where Q is the number of training samples in each batch,

I
x
(q)
k

=a
is the indicator function that takes value one if x

(q)
k =

a and zero otherwise, x(q) ∈ ΩK is the transmitted vector,

y(q) is the received signal, and p
(T )
GNN

(
xk = a|y(q)

)
is the

corresponding probability estimate obtained by the GEPNet

detector for the q-th training sample and k-th user. Note that

I
x
(q)
k

=a
is used as a training label. The GEPNet was trained

by using mini-batches of 64 samples and validated by using

20000 samples in every epoch. The total number of epochs was

700. In the testing phase, we first created a testing dataset by

randomly generating 1000000 samples for the same system

configurations (K,N,M ) that were used in the training phase

for each SNR point. Finally, we tested all the trained detectors

using the testing dataset.

B. SER Comparisons

We investigate the SER performance of our proposed detec-

tor by comparing it with those of the MMSE [17], AMP [3]
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Fig. 3: The SER performance comparison

and EP [6], unfolded NN-based OAMPNet [11], RE-MIMO

[12] detectors. We use 16-QAM modulation scheme. In Fig.

3, we employ N = K = 32 and N = K = 64. The

AMP, MMSE, and GNN detectors perform poorly under this

system configuration, as well as under other configurations

with high ratios of transmit-to-receive antennas. The classiscal

EP detector is able to achieve a better SER performance

than the advanced NN-based OAMPNet detector. This is

because the EP detector has a significantly better performance

compared to the classical AMP based detector. It can be seen

from Fig. 3 that the proposed detector achieves at least 4 dB

performance gain compared to the EP detector at SER of 10−4.

We observe that the curves in Figs. 3a-b behave in a similar

way. From these facts, we conclude that the GEPNet detector

has a significant performance improvement over the state-of-

the-art MU-MIMO detectors.

VI. CONCLUSION

We proposed a high performance MU-MIMO detector,

referred to as the GEPNet detector. Simulation results showed

that the SER performance of the GEPNet detector was signif-

icantly better than that of the other MU-MIMO detectors.
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