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Abstract: Traffic forecasting has been regarded as the basis for many intelligent transportation system
(ITS) applications, including but not limited to trip planning, road traffic control, and vehicle routing.
Various forecasting methods have been proposed in the literature, including statistical models,
shallow machine learning models, and deep learning models. Recently, graph neural networks
(GNNs) have emerged as state-of-the-art traffic forecasting solutions because they are well suited for
traffic systems with graph structures. This survey aims to introduce the research progress on graph
neural networks for traffic forecasting and the research trends observed from the most recent studies.
Furthermore, this survey summarizes the latest open-source datasets and code resources for sharing
with the research community. Finally, research challenges and opportunities are proposed to inspire
follow-up research.

Keywords: traffic forecasting; graph neural network; graph convolutional network; graph attention
network

1. Introduction

Traffic forecasting is the foundation of modern transportation infrastructures and in-
telligent transportation systems (ITSs). It has a wide range of applications in trip planning,
road traffic control, and vehicle routing [1–6]. Traffic forecasting has drawn a great amount
of attention from both academia and industry in recent decades [7–14]. However, the traffic
forecasting problem has not been fully resolved due to the complex spatiotemporal de-
pendencies of traffic activities. Furthermore, developments in the Internet of things (IoT),
the Internet of vehicles (IoV) and artificial intelligence (AI) techniques [15] have helped
to measure and model more diverse traffic-related characteristics, allowing the design
of autonomous and efficient data-driven traffic forecasting methods [16–18]. To gain a
comprehensive understanding of the opportunities and challenges in traffic forecasting, we
summarize here the recent research progress in this vibrant field to facilitate future research.

Depending on the data format used, traffic forecasting problems can be classified into
different types, including time series data, grid data, and graph data. Among them, the ear-
liest and most common problem formulation is time series forecasting, where historical
data points are used as model input to predict future conditions [19–21]. Furthermore,
time series forecasting problems can be divided into univariate problems and multivariate
problems. For univariate time series problems, only one traffic variable is considered,
such as traffic flow or traffic speed. For multivariate time series problems, multiple traffic
variables are considered simultaneously. In addition to univariate and multivariate settings,
time series forecasting can also be formulated as single-step forecasting and multiple-step
forecasting. In single-step forecasting problems, only one data point needs to be predicted

ISPRS Int. J. Geo-Inf. 2023, 12, 100. https://doi.org/10.3390/ijgi12030100 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi12030100
https://doi.org/10.3390/ijgi12030100
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0003-0953-5047
https://orcid.org/0000-0002-4151-6682
https://doi.org/10.3390/ijgi12030100
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi12030100?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2023, 12, 100 2 of 35

in the next step. In multiple-step forecasting problems, there is more than one value
to predict.

Some typical time series forecasting models include simple linear regression, autore-
gressive integrated moving average (ARIMA), and seasonal autoregressive integrated
moving average (SARIMA). SARIMA outperforms ARIMA because it captures seasonal
patterns. In the transportation domain, both daily and weekly patterns are observed and
useful for forecasting. SARIMA was further improved using the Kalman filter in [19],
and the improved model outperformed other time series models. Empirical mode decom-
position (EMD) is often used together with time series models, where the time series is first
decomposed into different components and each component is then modeled with a time
series model. This combination has been shown to be effective for traffic forecasting [21].

Although time series data are the most commonly used data format in traffic-related
studies, they are insufficient because they do not consider the spatial dependence of traffic
activities. To overcome this problem, two data formats, grid data and graph data, are further
used. For traffic forecasting with grid data, at each time step, the traffic data are aggregated
by some regularly divided regions in the studied urban area. Each regularly divided region
can be regarded as a grid. By aggregating the corresponding traffic variables in each grid,
we obtain an intensity map that can be displayed in an image format, as shown in Figure 1.
In single-step traffic forecasting problems with the grid-data format, the historical grid data
in a predefined lookback window are formulated as image frames and used as the input
feature. The frame in the next time step is used as the prediction target.

Gridded Map Time

Figure 1. The grid-format traffic forecasting problem [22,23].

For traffic forecasting problems in graph format, traffic data are aggregated by specific
locations or stations, which are regarded as nodes in a traffic graph. Node features are
collected traffic variables such as traffic flow or speed. Edges can model road topological
connections or spatial distances between different nodes. In single-step traffic forecasting
problems with the graph format, the historical graph data in a predefined lookback window
are used as the input feature. The graph in the next time step is used as the prediction
target, as shown in Figure 2.

Road Network with Traffic Sensors Time

……

Figure 2. The graph-format traffic forecasting problem [24,25].
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Existing traffic forecasting methods can also be divided into different categories
according to the models used, including statistical models, shallow machine learning
models, and deep learning models. Each has its own scope of applicable scenarios and can
be adapted to different situations [26]. Statistical models are mainly linear models such
as ARIMA and SARIMA. These models are advantageous due to their low computational
cost and good interpretability. However, their predictive performance is inferior to that
of machine learning and deep learning models, which are better at capturing nonlinear
relationships. Shallow machine learning models are represented by tree-based models such
as decision trees and random forests [27]. They were the first choice for early research
until recently with the adoption of more intelligent and accurate deep learning models
represented by modern neural networks such as convolutional neural networks (CNNs) [28]
and recurrent neural networks (RNNs) [29].

These deep learning models have been proven effective for a variety of forecasting
problems in the finance, energy and communications sectors [30–40]. Among various deep
learning models, graph neural networks (GNNs) have become state-of-the-art solutions
to various forecasting problems. In the financial field, a comprehensive survey of deep
learning models for stock market forecasting showed that emerging GNN models received
the most attention [30]. In the economic field, deep learning models have been proven
effective for retail forecasting [37] and market demand forecasting [39], which are the basis
of supply chain management. In the energy field, it has also been confirmed that deep
learning models are becoming the main solution [31,33,34]. It is worth mentioning that
external factors such as temperature and weather information have a great impact on
the forecasting performance [32,38]. This observation is insightful for traffic forecasting
problems, as transportation systems are also highly influenced by weather information,
e.g., road traffic decreases during bad weather. For communication networks, various deep
learning models have been proven to be more effective than statistical and machine learning
models, such as the InceptionTime model adopted in [35] based on the time series data
format and the convolutional LSTM model adopted in [36] based on the grid-data format. It
is also observed that GNNs are gaining popularity in cellular traffic prediction [40]. GNNs
utilize graph structures, which are common in transportation infrastructure, such as road
networks and subway systems. GNNs can effectively capture interactions between nearby
traffic sensors or stations, thereby improving prediction performance.

The research topic of this survey focuses on GNN-based solutions, and there are still
many recent publications introducing CNN-based or decision-tree-based solutions [28,41–43].
As discussed in previous relevant studies [44,45], compared to CNN-based or decision-tree-
based solutions, GNN-based solutions have a wide range of applicable scenarios and achieve
state-of-the-art performance. GNN-based solutions can be applied when there is a natural graph
structure (such as a road network) or when an artificial graph can be constructed (such as a
neighborhood graph in grid data). However, GNN-based solutions are inapplicable when the
above graphs are not available, e.g., traffic data collected in a single loop detector only. GNNs
are mainly used to forecast speeds and volumes in urban networks and freeways. However,
prediction in urban networks is far more challenging than that in freeways because of complex
spatiotemporal traffic patterns caused by various reasons, such as complex road structures,
different vehicle types, and time-varying user demands.

Although there have been some surveys of deep learning for traffic forecasting prob-
lems, most of them are not GNN-focused, with only a few exceptions [46–53]. This study
serves as an extension of existing GNN-relevant surveys [44,45], summarizes the latest re-
search progress in 2022, and aims to be the latest reference manual for researchers in related
fields. In this survey, a total of 118 journal papers and 30 conference papers published in
2022 are reviewed, all of which are selected from prestigious journals and conferences in
transportation, computer science, and multidisciplinary fields. Each paper is reviewed in a
structured manner and lessons learned are discussed to reveal research trends. Based on
the surveyed studies, the latest open datasets and code resources are also collected and
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organized in lists. Existing research challenges are identified, and corresponding research
opportunities are further suggested.

The contributions of this survey are summarized as follows:

• This survey summarizes the latest studies on the topic of traffic forecasting with graph
neural networks.

• This survey provides the research community with up-to-date lists of open datasets
and code resources.

• This survey identifies existing research challenges and suggests corresponding re-
search opportunities to inspire follow-up research.

The remainder of this paper is organized as follows. Section 2 is a literature review of
the latest relevant studies and a discussion of recent research trends. Then, the latest lists of
open datasets and code resources for the research community are presented in Section 3.
Section 4 discusses research challenges and opportunities when applying graph neural
networks for traffic forecasting to inspire follow-up research. The conclusion is drawn in
Section 5.

2. Literature Review and Research Trends

The studies covered in this survey were all selected from prestigious journals and
conferences in transportation, computer science, and multidisciplinary fields. To share
incremental knowledge and avoid repetition with existing similar surveys [44,45], this
section only selected those published in 2022 for discussion, with a total of 118 jour-
nal papers and 30 conference papers. Source journals and conferences are listed in
Tables A2 and A3, with the number of papers counted. The reviewed studies are sum-
marized in Table 1. For each study, the specific traffic problem, graph type, dataset,
model component (especially the GNN structures involved) and a summary of the main
content are discussed. More relevant studies are tracked and updated in our GitHub
repository (https://github.com/jwwthu/GNN4Traffic, accessed on 2 February 2023).

As discussed in the introduction, Section 1, we categorized traffic forecasting problems
from two perspectives, namely, based on the data format or based on the model used.
Furthermore, in Table 1, we provided another perspective based on transportation modes,
such as road traffic, taxis, bikes, and subways. As shown in Table 1, we found that the
road traffic flow and speed prediction problem was still the most popular traffic prediction
problem in different traffic-related studies. There are two possible reasons for this trend.
The first reason is that for the road traffic forecasting problem, open datasets and baseline
models are more accessible with well-processed steps and instructions, which saves the
workload of data collection and preprocessing. The second reason is that building graphs
for road-network-related problems is more intuitive, making it more natural to use GNNs
to solve road traffic flow and speed prediction problems, and thus more common in the
scope of our investigation.

As shown in Table 1, there are two types of graphs listed in the graph column, static
graphs and dynamic graphs. In the early research stages, static graphs were widely
used because of their convenience. However, researchers realized that static graphs were
insufficient to capture changes in network topology and traffic patterns. For example, traffic
flow measurements and their correlations on road segments change dynamically in space
and time, which is beyond the modeling capabilities of static graphs. Then, dynamic graphs
were introduced. As the name implies, a dynamic graph is a graph that can evolve as new
nodes or edges are added or removed. However, static graphs are still very useful when
the traffic infrastructure remains unchanged for the time period considered. Therefore,
some researchers use both dynamic and static graphs. The static graph is used to model
the static road network, and the dynamic graph is used to consider the impact of dynamic
traffic events and weather information.

Most of the collected datasets used in the surveyed studies are open datasets with
only a few exceptions. Among those open datasets, some have made great contributions
to support relevant studies, which can fairly evaluate and compare different models,

https://github.com/jwwthu/GNN4Traffic
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e.g., PeMS-BAY and METR-LA. However, it also poses problems when existing datasets are
overutilized and overfitted to GNN-based deep learning models and produce unreliable
models for other traffic scenarios and datasets. To address this potential risk, new datasets
were collected and are listed in Section 3 for further evaluation. Additionally, most of the
surveyed studies used two or more datasets, a phenomenon worthy of further study.

For the model component part, the graph convolutional network (GCN) [54] and
graph attention network (GAT) [55] are the two dominant networks used. It is difficult to
go through all the GNN model details in the surveyed papers listed in Table 1. Interested
readers are advised to read the original text of the surveyed papers.

A GCN is a pioneer in transferring the concept of convolution operations from Eu-
clidean image data to non-Euclidean image data and has achieved great success in the past
few years. The basic idea of a GCN is to aggregate the features from neighbors and then
apply a linear transformation on the aggregated features. GCN layers can be stacked k
times to capture k-hop neighbor information. However, a GCN requires the entire graph
structure for training, which consumes a considerable amount of computer memory. In that
case, GAT, based on the attention mechanism [56], was introduced as an alternative to GCN.
The main difference between GAT and GCN is the introduction of importance scores for
different neighbors based on the masked self-attention mechanism. Technical details about
GCN and GAT are beyond the scope of this survey, which aims to identify research trends,
and can be found in relevant surveys [57,58]. Designing more effective GCN or GAT vari-
ants is still a major research direction. Fundamental theoretical breakthroughs in the GNN
research community will also help in the development of new traffic forecasting methods.

Both GCN and GAT are mainly used to capture spatial dependencies. To capture
temporal dependencies, there are some classic models, e.g., temporal convolutional network
(TCN), long short-term memory (LSTM), and gated recurrent unit (GRU). More recently,
an attention-based model, i.e., the Transformer, has proven effective for capturing long-term
dependency in time series [59]. Nevertheless, as indicated in Table 1, Transformer has only
been used in a few surveyed studies, and there is still much room for research.
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Table 1. Summary of the surveyed studies.

Study Problem Graph Dataset Model Component Summary

[60] Road traffic flow,
road traffic speed Dynamic graph

PeMS03, PeMS04,
PeMS07, PeMS08,
PeMS-BAY, METR-LA

GCN, TCN
Dual dynamic spatial–temporal graph convolution network (DDSTGCN) is featured
with a dual graph structure of traffic flow graph and its dual hypergraph to reveal more
complicated latent relations.

[61] Road traffic flow Dynamic graph,
static graph PeMS04, PeMS08 TCN, GCN

Spatiotemporal adaptive graph convolutional network (STAGCN) is featured with an
adaptive graph generation block to capture both the learnable long-time static road
graph and the learnable short-time dynamic graph.

[62] Road traffic speed, re-
gional bike flow Dynamic graph PeMS-BAY, METR-LA,

BikeNYC GAT, TCN JointGraph is featured with a network reconstructor to reconstruct the traffic graph and
the ability to handle a multidataset joint training task.

[63] Metro traffic flow Dynamic graph,
static graph BJMF15 GCN, TCN Knowledge graph representation learning and spatiotemporal graph neural network

(KGR-STGNN) is featured which better captures the influence of external factors.

[64] Regional traffic flow Static graph HaikouTaxi, Chengdu-
Taxi GCN, TCN

Multiattribute graph convolutional network (MAGCN) is featured with the considera-
tion for area attributes and a novel matrix whose values are the functional area-based
origin–destination pairs.

[65] Ride-hailing demand Static graph
Ride-hailing datasets
in Beijing and Shang-
hai

GCN The proposed multilinear relationship GCN is characterized by multimodal coordinated
representation learning and spatial feature extraction from different modalities.

[66] Road traffic flow Static graph PeMS08, METR-LA GCN, LSTM
A multiview Bayesian spatiotemporal graph neural network (MVB-STNet) is featured
with a Bayesian neural network layer for handling data uncertainty with sparse and
noisy data.

[67] Road traffic flow Static graph PeMSD4, PeMSD7,
PeMSD8 GraphSAGE, GRU

A transferable federated inductive spatial–temporal graph neural network (T-ISTGNN)
is featured with the capability of cross-area traffic state forecasting when preserving the
privacy of source areas.

[68] Regional taxi usage Static graph TaxiNYC GAT, GRU

A spatiotemporal heterogeneous graph attention network (STHAN) is featured with
a spatiotemporal heterogeneous graph in which multiple spatial relationships and
temporal relationships are modeled and metapaths are used to depict compound spa-
tial relationships.

[69] Road traffic flow Dynamic graph,
static graph METR-LA, PEMS-BAY GCN, GRU

A spatiotemporal prediction framework using high-order graph convolutional network
(STHGCN) is featured with a dynamic adaptive spatial graph learning module to learn
the high-order dependence.
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Table 1. Cont.

Study Problem Graph Dataset Model Component Summary

[70] Road traffic flow Dynamic graph PeMS04, PeMS08 GCN The proposed CTVI+ framework uses a temporal self-attention mechanism and a
multiview graph neural network for learning temporal and spatial traffic patterns.

[71] Origin–destination
demand Dynamic graph TaxiNYC, BikeNYC,

BikeDC GAT, LSTM
A temporal graph autoencoder (TGAE) is featured with a temporal network embedding
framework that utilizes node representations in latent space to capture the temporal
evolution of traffic networks.

[72] Regional ride-hailing
demand Dynamic graph UberNYC, TaxiNYC GAT, 1D-CNN,

Transformer
A deep multiview spatiotemporal virtual graph neural network (DMVST-VGNN) is
featured with an integrated structure of GAT, 1D-CNN, and Transformer networks.

[73] Road traffic flow Static graph Private data GCN, LSTM, GAN A graph convolution and generative adversarial neural network [73] is featured with a
GAN structure and parallel prediction ability for multiple steps.

[74] Road traffic flow,
road traffic speed Dynamic graph PeMS-Bay GAT, GCN

A hierarchical mapping and interactive attention network (HMIAN) is featured with
a hierarchical mapping structure for capturing functional zone relevance and long-
distance dependence.

[75] Road traffic flow Static graph PeMSD3, PeMSD4,
PeMSD7, PeMSD8 GCN The proposed forecasting framework uses an outlier detection strategy for a real-world

IoV environment.

[76] Metro passenger flow Static graph CDmetro2018 GCN, GRU A spatial–temporal multigraph convolutional wavelet network (ST-MGCWN) is fea-
tured with a graph wavelet convolution with multigraph fusion.

[77] Road traffic flow Static graph PeMSD4, PeMSD8 GCN, ConvLSTM A multidimensional attention-based spatial–temporal network (MA-STN) is featured
with a multidimensional attention mechanism to capture spatial and temporal patterns.

[78] Road traffic speed Static graph METR-LA, PeMS-BAY GCN, TCN The proposed approach features a multimode spatial–temporal convolution of a mixed
hop diffuse ordinary differential equation (MHODE).

[79] Road traffic flow Static graph PeMSD4, PeMSD8 GCN The proposed approach features a gated attention graph convolution model with multi-
ple spatiotemporal channels.

[80] Road traffic speed Static graph PeMS-BAY, METR-LA GCN, GRU The proposed approach features a combination of time classification and GCN models.

[81] Road traffic flow, bike
demand, taxi demand

Dynamic graph,
static graph

PeMSD3, PeMSD4,
PeMSD7, PeMSD8,
BikeNYC, TaxiNYC

GCN, GRU
A dual graph gated recurrent neural network (DG2RNN) is featured with a bidirectional
GRU layer for learning temporal dependency and a spatial attention mechanism for
learning spatial dependency.
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Table 1. Cont.

Study Problem Graph Dataset Model Component Summary

[82] Road traffic flow Static graph
Minnesota Depart-
ment of Transporta-
tion Traffic Data

GCN, GRU The proposed approach features an attribute feature unit to fuse external factors into a
spatiotemporal GCN.

[83] Road traffic speed Dynamic graph Seattle-Loop, METR-
LA GCN, GRU

A self-attention graph convolutional network with spatial, subspatial, and temporal
blocks (SAGCN-SST) captures the dynamic spatial dependency with a self-attention
mechanism and is robust against traffic congestion and accidents.

[84] Taxi demand, bike de-
mand Dynamic graph TaxiNYC, BikeNYC DCNN, Transformer

A dynamical spatial–temporal graph neural network (DSTGNN) is featured with an
inhomogeneous Poisson process to model the changing demand process and the spatial–
temporal embedding network to infer the intensity.

[85] Ride-hailing demand Dynamic graph TaxiNYC GCN, GRU
A dynamic multigraph convolutional network with generative adversarial network
(DMGC-GAN) is featured with a multigraph GCN module to learn from different
dynamic OD graphs and a GAN structure to overcome the demand sparsity problem.

[86] Road traffic speed Static graph Private data GCN, GRU The proposed approach features a GAN structure for robust data-driven traffic model-
ing.

[87] Road traffic flow,
road traffic speed Static graph Seattle-Loop, PeMS-

BAY GAT, GAN The proposed GAT-GAN framework features a combination of first-order and high-
order neighbors.

[88] Road traffic flow Dynamic graph PeMSD4, PeMSD8 GCN, CNN A graph and attentive multipath convolutional network (GAMCN) is featured with a
novel GCN variant with road-network graph embedding and a multipath CNN module.

[89] Road traffic accident Dynamic graph NYC Open Data,
PeMS-Bay GCN A multiattention dynamic graph convolution network (MADGCN) is featured with

multiple attention mechanisms for capturing spatial and temporal influences.

[90] Road traffic flow Static graph Private data GCN, GAT The proposed approach leverages DRL to integrate and improve GCN and GAT results.

[91] Road traffic flow Static graph PeMS (with 97 detec-
tors) GCN The proposed approach features the combination of a GCN and six complex net-

work properties.

[92] Road traffic flow Dynamic graph PeMSD7, PeMSD11 GCN The proposed approach features a GCN-based data imputation module and an adaptive
approach of leveraging DRL for the dynamic graph’s adjacency-matrix generation.

[93] Road traffic flow Dynamic graph PeMSD4, PeMSD8 GCN The proposed CRFAST-GCN features a conditional random field (CRF)-enhanced GCN
to capture the semantic similarity globally.

[94] Road traffic speed Dynamic graph PeMSD8, METR-LA TCN, GCN A universal framework is proposed to transform the existing one-step-ahead models to
multistep-ahead models.

[95] Road traffic speed Static graph METR-LA, PEMS-BAY GNN The proposed approach features a novel GNN layer with a location attention mechanism
to aggregate traffic flow information from adjacent roads.
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Table 1. Cont.

Study Problem Graph Dataset Model Component Summary

[96] Road traffic speed Dynamic graph METR-LA, PEMS-BAY DCNN, TCN Spatiotemporal sequence-to-sequence network (STSSN) is featured with an encoder-
decoder structure with the joint modeling ability of spatial and temporal correlations.

[97] Road traffic flow Dynamic graph PeMS, private data GNN, LSTM An attentive attributed recurrent graph neural network (AARGNN) is featured with
the modeling of both static and dynamic factors.

[98] Road traffic flow Static graph PeMSD4, PeMSD8 GCN
An adaptive graph learning algorithm (AdapGL) is proposed to learn the complex
dependencies, and the model parameters are optimized with the expectation maximiza-
tion algorithm.

[99] Bike demand, taxi de-
mand Static graph BikeNYC, TaxiNYC GAT

A comodal graph attention network (CMGAT) is featured with a multiple-traffic-graph-
based spatial attention mechanism and a multiple-time-period-based temporal atten-
tion mechanism.

[100] Road traffic speed Dynamic graph METR-LA, PEMS-BAY GCN, TCN An adaptive spatiotemporal graph neural network (Ada-STNet) is featured with a
dedicated spatiotemporal convolution architecture and a two-stage training strategy.

[101] Road traffic speed Static graph PeMSD7, METR-LA,
Seattle-Loop GCN, Transformer An attention-based graph convolution network and Transformer (AGCN-T) is featured

with the combination of a GCN and temporal Transformer modules.

[102] Road traffic speed Dynamic graph PeMSD4, PeMSD8 GCN, ConvGRU
An attention encoder–decoder dual graph convolution model with time-series corre-
lation (AED-DGCN-TSC) is featured with the combination of a time series correlation
analysis and deep learning modules.

[103] Road traffic flow Dynamic graph PeMSD3, PeMSD4,
PeMSD7, PeMSD8 GCN An improved dynamic Chebyshev GCN is proposed with a novel Laplacian matrix

update method, the attention mechanism, and a novel feature construction method.

[104] Road traffic flow Static graph PeMSD4, PeMSD8 GCN, GLU
A causal gated low-pass graph convolution neural network (CGLGCN) is featured with
a causal convolution gated linear unit with less computation time and a GCN with a
self-designed low-pass filter.

[105] Road traffic flow Dynamic graph PeMSD4, PeMSD8 GAT An attention-based spatiotemporal graph attention network (ASTGAT) is featured with
multiple residual convolution and a high–low feature concatenation.

[106] Road traffic speed Dynamic graph METR-LA, PeMS-BAY,
PeMS-S GCN

An attention-based dynamic spatial–temporal graph convolutional network (ADST-
GCN) is featured with the combination of a dynamic adjustment module, a gated dilated
convolution module, and a spatial convolution module.

[107] Road traffic flow Static graph PeMS-LA, PeMS-BAY GCN
An attention-based spatiotemporal graph convolutional network considering external
factors (ABSTGCN-EF) is featured with the combination of a GCN and attention encoder
network modules and the consideration of external factors.
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Table 1. Cont.

Study Problem Graph Dataset Model Component Summary

[108] Road traffic flow Static graph PeMSD4, PeMSD8 GCN, LSTM
An augmented multicomponent recurrent graph convolutional network (AM-RGCN)
is featured with an LSTM-based temporal correlation learner that incorporates a one-
dimensional convolution.

[109] Road traffic speed Static graph TaxiSZ GCN, GRU A bidirectional-graph recurrent convolutional network (Bi-GRCN) is featured with the
combination of a GCN and a bidirectional GRU.

[110] Road traffic flow Static graph Private data GraphSAGE, LSTM The proposed approach features the combination of GraphSAGE, a global temporal
block, and the self-attention mechanism.

[111] Regional traffic flow Static graph Private data GCN, CNN The proposed ConvGCN-RF features a preprocessing-encoder–decoder framework and
the combination of CNN, GCN, and random forest modules.

[112] Bus demand Static graph Private data GCN, LSTM
The proposed approach features the combination of a time-dependent geographically
weighted regression and graph deep learning and the consideration of dynamic-built-
environment influences.

[113] Regional crowd flow Static graph TaxiNYC, BikeNYC GAT, CNN, LSTM The proposed approach features a semantic GAT module for learning dynamic inter-
region correlations.

[114] Road traffic speed Static graph A new open data of
Seoul, South Korea GCN A distance, direction, and positional relationship graph convolutional network (DDP-

GCN) is featured with the consideration of three spatial dependencies.

[115] Road traffic flow Static graph PeMSD3, PeMSD7,
private data DGGP

The proposed approach features novel deep graph Gaussian processes (DGGPs), which
consist of the aggregation of a Gaussian process, temporal convolutional Gaussian
process, and Gaussian process with a linear kernel.

[116] Road traffic flow,
road traffic speed Dynamic graph

PeMSD3, PeMSD4,
PeMSD7, PeMSD8,
METR-LA, PeMS-BAY

GCN
A dynamic spatial–temporal adjacent graph convolutional network (DSTAGCN) is
featured with the construction of a spatial–temporal graph and the integration of fuzzy
systems and neural networks for uncertain relationship representation.

[117] Road traffic flow,
road traffic speed Dynamic graph PeMS-BAY, TaxiBJ,

PeMSD4, PeMSD8 GCN, GRU
A dynamic spatial–temporal graph convolutional network (DSTGCN) is featured with
a dynamic graph generation module with geographical proximity and spatial hetero-
geneity.

[118] Road traffic flow Dynamic graph
PeMSD3, PeMSD4,
PeMSD7, PeMSD8,
PeMS-SAN

GCN The proposed approach features a new temporal vector CNN module and a new
dynamic correlation graph construction method.

[119] Regional travel de-
mand Static graph TaxiNYC GCN, GRU The proposed approach features a geographic similarity graph, functional similarity

graph, and road similarity graph.
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Table 1. Cont.

Study Problem Graph Dataset Model Component Summary

[120] Road traffic speed Dynamic graph PeMS-BAY, METR-LA GCN, LSTM The proposed EnGS-DGR model features the ensemble learning of GCN, Seq2Seq, and
dynamic graph reconfiguration algorithms.

[121] Road traffic speed Dynamic graph PeMS-BAY, METR-LA GCN, CNN, GRU The embedded spatial–temporal network (ESTNet) combines multirange GCN and
3D-CNN modules for modeling spatial–temporal dependencies.

[122] Passenger OD flow Static graph Private data GCN, TCN The proposed approach features a novel sharing-stop network to model relationships
between bus passengers and various mobility patterns.

[123] Road traffic speed Static graph Private data GCN, GRU The proposed approach features the incorporation of a wavelet transform and usage of
the electronic toll collection (ETC) gantry transaction data.

[124] Road traffic flow Dynamic graph PeMSD4, PeMSD8 GAT
A fully dynamic self-attention spatiotemporal graph network (Fdsa-STG) is featured
with a spatial GAT, a temporal GAT, and fusion layers to extract recent, daily, and
weekly periodicity patterns.

[125] Regional traffic flow Dynamic graph TaxiNYC, TaxiBJ GAT, GCN, LSTM

A federated deep learning based on the spatial–temporal long and short-term network
(FedSTN) is featured with a recurrent long-term capture network module, attentive
mechanism federated network module, and semantic capture network module to cap-
ture both spatial–temporal and semantic features.

[126] Intersection turning
traffic flow Static graph A new open data of

Wuhan, China GCN, GRU The proposed approach features the modeling of turning traffic flow with a GCN and a
GRU.

[127] Metro ridership Static graph Private data GCN, LSTM
An attention-weighted multiview graph to sequence learning approach (AW-MV-G2S) is
featured that learns spatial correlations from geographic distance, functional similarity,
and demand pattern views.

[128] Regional traffic flow Dynamic graph TaxiNYC, TaxiBJ,
BikeNYC GAT The proposed approach features the multiresolution transformer network, GAT,

and channel-aware recalibration residual network modules.

[129] Road traffic flow Dynamic graph PeMSD3, METRA-LA GAT The proposed GDFormer features a novel graph diffusing attention module to model
the dynamically changing traffic flow.

[130] Road traffic speed Dynamic graph
PeMS-BAY, NavInfo
Beijing, NavInfo
Shanghai

GAT The proposed approach features a novel data-driven graph construction method.

[131] Road traffic flow Dynamic graph Metro Interstate Traf-
fic Volume Data Set GAT, LSTM A graph correlated attention recurrent neural network (GCAR) is featured with a

combination of GAT, multilevel attention, and parallel LSTM modules.
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[132] Road traffic speed Dynamic graph Q-Traffic GAT A graph sequence neural network with an attention mechanism (GSeqAtt) is featured
with two attention mechanisms to capture temporal correlations and graph structures.

[133] Intersection traffic
flow Static graph Qingdao Traffic Data GCN

A spatial–temporal graph convolutional network (ST-GCN) is featured with an adjacent-
similar algorithm and the ability to model both spatial and temporal dependencies of
intersection traffic.

[134] Regional traffic speed Static graph Private data GCN, ConvLSTM The proposed HDL4STP model features the combination of GCN, ConvLSTM, and
fusion layers.

[135] Road traffic flow Dynamic graph,
static graph PeMSD4, PeMSD8 GCN, LSTM

An improved graph convolution res-recurrent network (IGCRRN) is featured with a
combination of an origin graph matrix and a data-generated embedding node matrix
for spatial dependency.

[136] Bike flow Static graph Private data Relation graph net-
work

The proposed approach features a generalized attention mechanism to extract block
features and make cross-city predictions.

[137] Subway demand,
ride-hailing demand Static graph SubwayNYC,

TaxiNYC GCN A multirelational spatiotemporal graph neural network (ST-MRGNN) is featured with
the multimodal demand prediction ability with multirelational GNNs.

[138] Road traffic flow Static graph
PeMSD3, PeMSD4,
PeMSD7, PeMSD8,
PeMS-BAY

GAT, TCN
A multirelational synchronous graph attention network (MS-GAT) considers mul-
tiaspect traffic data couplings and learns channel, temporal, and spatial relations
with GATs.

[139] Road traffic speed Dynamic graph Private data GAT, CNN
The proposed HA-STGN model considers spatial–temporal heterogeneous features
and contains a dynamic graph module, a time-sensitive attention mechanism, and an
adaptive fusion module.

[140] Road traffic flow Static flow PeMSD3, PeMSD4,
PeMSD7, PeMSD8 GCN

An adaptive graph cross-strided convolution network (AGCSCN) is featured with
temporal feature extraction with a cross-strided convolution network and spatial feature
extraction with an adaptive GCN.

[141] Road traffic flow Static graph PeMSD4, PeMSD8 GCN, LSTM A long-short-term-memory-embedded graph convolution network (LST-GCN) is fea-
tured with an LSTM embedding into GCNs.

[142] Road traffic speed Dynamic graph DidiChengdu, METR-
LA GCN, TCN

A spatiotemporal adaptive gated graph convolution network (STAG-GCN) is featured
with the combination of a self-attention TCN, mix-hop adaptive gated GCN, and fu-
sion layers.

[143] Road traffic flow Static graph PEMS03, PEMS04,
PEMS07, PEMS08 GCN, LSTM

A memory-attention-enhanced graph convolution long short-term memory network
(MAEGCLSTM) is featured with the combination of a memory attention mechanism
and LSTM.
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[144] Road traffic speed Dynamic graph,
static graph PeMS-BAY GCN, TCN A multistage spatiotemporal fusion diffusion graph convolutional network (MFDGCN)

is featured with multiple static and dynamic spatiotemporal association graphs.

[145] Road traffic flow Static graph PeMSD4, PeMSD8 GCN, TCN
A multihead self-attention spatiotemporal graph convolutional network (MSASGCN) is
featured with the combination of a GCN, a TCN, and the multihead self-attention mech-
anism.

[146] Metro passenger flow Static graph HZMF2019 GCN, GAT, CNN A multitime multigraph neural network (MTMGNN) is featured with the combination
of gated CNN, GCN, and GAT modules with multiple graphs.

[147] Road traffic speed Static graph METR-LA GCN, TCN A gated temporal graph convolution network (GT-GCN) is featured with a multistep-
ahead prediction ability with GCN and gated TCN modules.

[148] Regional ride-hailing
demand Static graph Private data GCN, LSTM Multigraph aggregation spatiotemporal graph convolutional network (MAST-GCN) is

featured with a novel graph aggregation method.

[149] Road traffic flow Static graph PeMSD4, PeMSD7,
PeMSD8 GCN The proposed approach features a multiscale traffic prediction ability with a cross-scale

GCN and temporal networks.

[150] Metro passenger flow Dynamic graph Private data GCN, GRU The proposed approach proposes multifeature spatial–temporal dynamic multigraph
convolutional networks for spatial and temporal connections.

[151] Road traffic speed Static graph Q-Traffic, private data GCN, LSTM The proposed approach features a multifold correlation attention network to model
dynamic correlations.

[152] Regional traffic flow Dynamic graph TaxiNYC, BikeNYC GCN, GRU
A multimode dynamic residual graph convolution network (MDRGCN) is featured
with multimode dynamic GCN, GRU, and residual modules for learning cross-mode re-
lationships.

[153] Metro passenger flow Static graph Private data GCN, GAT, LSTM A temporal graph attention convolutional neural network model (TGACN) is featured
with a multigraph generation method and a new spatiotemporal feature fusion method.

[154] Road traffic speed Static graph METR-LA, PeMS-BAY GCN, Transformer A multiview spatial–temporal graph neural network (MVST-GNN) is featured with
multiview Transformer and GCN modules.

[155] Metro flow, bus flow Static graph Private data GCN A multitask hypergraph convolutional neural network (MT-HGCN) models the correla-
tion between different tasks with a feature-compressing unit.

[156] Regional traffic flow Static graph TaxiSZ GCN, GRU The proposed TmS-GCN model features the combination of GCN and GRU modules.
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[157] Road traffic flow,
road traffic speed Static graph Private data GCN, LSTM The proposed method features a Seq2seq GCN-LSTM framework and the usage of

connected probe vehicle data.

[158] Bus passenger flow Static graph Private data GCN, LSTM The proposed method features a bus network graph construction method and the
combination of GCN and LSTM modules.

[159] Road traffic flow Static graph PeMSD4, PeMSD8 GCN The proposed approach features the combination of graph deep learning and feder-
ated learning.

[160] Road traffic flow Static graph PeMSD4, PeMSD7 GCN, GRU
A spatial–temporal attention graph convolution network on edge cloud (STAGCN-EC)
is featured with the edge training approach and deep learning modules designed for
low-computational-power devices.

[161] Road traffic flow Static graph PEMSD3, PEMSD4,
PEMSD7, PEMSD8 GCN, TCN The proposed approach features two semantic adjacency matrices and a dynamic

aggregation method.

[162] Road traffic speed Static graph METR-LA, PeMS-BAY GCN, GRU
A spatial–temporal upsampling graph convolutional network (STUGCN) is featured
with a novel upsampling method with virtual nodes to model the global spatial–
temporal correlations.

[163] Regional passenger
demand Static graph DidiCD, TaxiNYC GAT, ConvGRU The proposed approach features the combination of GAT and ConvGRU modules.

[164] Road traffic flow Static graph PeMSD4, PeMSD8 GCN, CNN The proposed STGMN model features the combination of a 1D CNN with channel
attention and interpretable multigraph GCN modules.

[165] Metro passenger flow Dynamic graph Private data GCN, TrellisNet The proposed STP-TrellisNets+ incorporates TrellisNet with graph convolution in mul-
tistep traffic prediction for the first time.

[166] Road traffic flow Static graph PeMSD4, PeMSD8 GCN, TCN
A spatial–temporal global semantic graph attention convolution network (STSGAN) is
featured with the usage of global geographic contextual information for urban flow pre-
diction.

[167] Road traffic flow Static graph PeMSD4 GAT, GLU A spatiotemporal multihead graph attention network (ST-MGAT) is featured with the
combination of GAT and GLU structures.

[168] Taxi demand Static graph Private data MPNN The proposed approach features multimodal message passing and attention mecha-
nisms.

[169] Road traffic conges-
tion Static graph PeMSD4 GAT The proposed TCP-BAST features bilateral alternation modules with GAT, a multihead

masked attention network, and temporal and spatial embedding.
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[170]
Road traffic flow,
road traffic speed,
road travel time

Static graph
TaxiBJ, META-LA,
PeMS-BAY, PeMSD4,
PeMSD8

GCN, GAN, GRU The proposed approach features the combination of multigraph GCN and GAN struc-
tures.

[171] Road traffic flow Dynamic graph PeMSD4, PeMSD7 TCN, GCN The proposed framework features the combination of dilated TCN, multiview GCN,
and masked multihead attention modules.

[172] Road traffic speed Dynamic graph,
static graph METR-LA, PeMS-BAY GCN, GRU A time-evolving graph convolutional recurrent network (TEGCRN) is featured with the

combination of time-evolving and predefined graphs.

[173] Road traffic speed Static graph Seattle-Loop, TaxiSZ GCN, GRU, GAN The proposed approach features the combination of a GCN and a GAN with output
distribution constraints.

[173] Road traffic speed Static graph TaxiSZ, METR-LA,
PeMS-BAY MPNN, GRU The proposed approach features a combination of bidirectional message passing, GRU,

and self-attention mechanisms.

[174] Road traffic speed Dynamic graph METR-LA, PeMS-BAY GAT, TCN The proposed TransGAT model features an attention-based node-embedding algorithm
and a gated TCN module.

[175] Regional ride-hailing
demand Static graph DidiHaikou, Taxi-

Wuhan GCN, LSTM A multiview deep spatiotemporal network (MVDSTN) is featured with the combination
of both traffic and semantic views.

[176] Road traffic flow,
road traffic speed Dynamic graph METR-LA, PeMS-BAY,

PeMSD4, PeMSD7 Transformer An adaptive graph spatial–temporal Transformer network (ASTTN) is featured with
adaptive spatial–temporal graph modeling and local multihead self-attention.

[177] Road traffic flow,
road traffic speed Dynamic graph

METR-LA, PeMS-BAY,
PeMSD3, PeMSD4,
PeMSD7, PeMSD8

GCN, TCN The proposed approach features the neural architecture search framework for GNN
and CNN modules.

[178] Road traffic speed Static graph METR-LA, PeMSD4 GCN, TCN A spatial–temporal channel-attention-based graph convolutional network (STCAGCN)
is featured with stacked dilated convolution for long-sequence modeling.

[179] Road traffic flow Dynamic graph,
static graph

PeMSD3, PeMSD4,
PeMSD7, PeMSD8 GCN The proposed approach features a cascading structure to enhance interaction and

capture heterogeneity.

[180] Road traffic speed Static graph
METR-LA, PeMS-BAY,
PeMS-M, PeMSD4,
PeMSD8

GAT A spatiotemporal graph attention network (ST-GAT) is featured with an individual
spatiotemporal graph for modeling individual dependencies.

[181] Road traffic speed Static graph METR-LA, PeMS-BAY GCN, TCN The proposed approach features a novel residual estimation module.

[182] Bike demand Dynamic graph BikeChicago, BikeLA GNN The approach features a novel graph generator and GNN with flow-based and attention-
based aggregators.
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[183] Road traffic speed Dynamic graph METR-LA, PeMS-Bay,
TaxiSZ GCN The proposed approach features the decomposition of seasonal static and acyclic dy-

namic components for traffic prediction.

[184] Road traffic flow Dynamic graph PeMSD3, PeMSD4,
PeMSD7 GCN, GRU An AdaBoost spatiotemporal network (Ada-STNet) is featured with the boosting ap-

proach of stacking base models.

[185] Road traffic flow,
road traffic speed Dynamic graph METR-LA, PeMS-BAY,

PeMSD4, PeMSD8 GCN, GRU A decoupled dynamic spatial–temporal graph neural network (D2STGNN) is featured
with a decoupled spatial–temporal framework and a dynamic graph learning module.

[186] Road traffic flow Dynamic graph PeMSD3, PeMSD4,
PeMSD7, PeMSD8 GCN, GTU A dynamic spatial–temporal-aware graph neural network (DSTAGNN) is featured with

a new dynamic spatial–temporal-aware graph and a novel GNN structure.

[187] Road traffic flow Static graph PeMSD3, PeMSD4,
PeMSD7, PeMSD8 GNN The proposed approach features a first-order gradient supervision (FOGS) which uses

first-order gradients for training the prediction model.

[188] Road traffic flow Dynamic graph PeMSD3, PeMSD4,
PeMSD7, PeMSD8 GCN

A spatiotemporal graph neural controlled differential equation (STG-NCDE) is featured
with the incorporation of neural controlled differential equations in traffic forecasting
for the first time.

[189] Road traffic flow Static graph PeMSD4, PeMSD7 GNN This study proposes a communication-efficient federated learning approach for graph-
based traffic forecasting.

[190] Road traffic flow, traf-
fic demand Static graph PeMSD3, PeMSD8,

BikeNYC, TaxiNYC GCN, MSDR The proposed approach is based on a graph-based multistep dependency relation
(MSDR) model with the ability to learn from multiple historical time steps.

[191] Road traffic speed Static graph
DidiShenzhen,
DidiChengdu, PeMS-
BAY, METR-LA

GCN The proposed ST-GFSL framework features the combination of spatiotemporal traffic
prediction with few-shot learning and cross-city knowledge transfer.

[192] Road traffic speed Dynamic graph METR-LA, PeMS-BAY GAT, TCN The proposed approach features the semantic closeness relationship and traffic dynam-
ics.

[193] Road traffic flow,
road traffic speed Dynamic graph METR-LA, PeMS-BAY,

PeMSD4 GNN The proposed approach enhances the performance of spatiotemporal GNNs with a
pretraining model trained with very long term history data.

[194] Road traffic flow Dynamic graph,
static graph PeMSD4, PeMSD8 GCN, GRU

Regularized graph structure learning (RGSL) is featured with an embedding-based
implicit dense similarity matrix, a regularized graph generation method, and a Laplacian
matrix mixed-up module to fuse the graphs.

[195] Road traffic flow,
road traffic speed Dynamic graph PeMSD8, METR-LA GCN, TCN

Spatiotemporal latent graph structure learning network (ST-LGSL) is featured with a
MLP-kNN-based graph generator and the combination of diffusion graph convolutions
and gated TCN modules.
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[196] Road traffic flow Static graph Private data GCN, GRU A spatiotemporal differential equation network (STDEN) is featured with the com-
bination of data-driven and physics-driven approaches and the differential equation
network model for modeling the spatiotemporal dynamic process.

[197] Road traffic flow Dynamic graph PeMSD3, PeMSD4,
PeMSD8

GCN, CNN, GRU Time-aware multipersistence spatio-supragraph convolutional network (TAMP-
S2GCNets) is featured with the introduction of a time-aware multipersistence Euler-
Poincaré surface and a supragraph convolution model for intra- and interdependencies.

[198] Road traffic flow Static graph PeMSD8 GCN, GRU, GLU A two-stage stacked graph convolution network (ED2GCN) is featured by the stacking
of a GCN, a GLU, and the attention mechanism.

[199] OD travel demand Static graph TaxiChicago, TaxiNYC DCNN, TCN A spatial–temporal zero-inflated negative binomial graph neural network (STZIN-
BGNN) is featured with the uncertainty quantification of the sparse travel demand with
diffusion and temporal convolution networks.

[200] Road traffic speed Static graph NAVER-Seoul, METR-
LA

GCN A pattern-matching memory network (PM-MemNet) is featured with a novel key–value
memory structure and a pattern-matching framework.

[201] Regional traffic flow Static graph NeurIPS Traffic4Cast
Challenge Data

GNN The proposed approach features the combination of U-Net with graph learning.

[202] Road traffic speed Static graph PeMS-BAY, METR-LA GCN, CNN The proposed approach features a mix-hop GCN and stacked temporal attention mech-
anism.

[203] Road traffic flow Dynamic graph PeMSD3, PeMSD4,
PeMSD7, PeMSD8

GCN The proposed approach features a graph construction method for cross-time and cross-
space correlations.

[204] Road traffic speed Static graph METR-LA, PeMS-BAY GCN, GRU The proposed approach features a novel local context-aware spatial attention mecha-
nism.

[205] Road traffic speed Dynamic graph PeMS-BAY, private
data

GCN The proposed approach features the combination of a GCN and attention mechanism
for multidimensional information aggregation.
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The problems considered in Table 1 were grouped into different transportation modes,
e.g., road traffic, taxis, bikes, and subways. Previous studies have also shown that joint
forecasting of multimode data is beneficial [206]. GNN-based solutions are applicable and
have already been used for multimode forecasting cases. In [152], a multimode dynamic
residual graph convolution network (MDRGCN) model was proposed for regional taxi
and bike flow forecasting, in which cross-mode relationships were learned by multimode
dynamic GCN, GRU, and residual modules. In [99], a comodal graph attention network
(CMGAT) was proposed for bike and taxi demand forecasting, which was based on a
multiple-traffic-graph-based spatial attention mechanism and a multiple-time-period-based
temporal attention mechanism. In these studies, it was demonstrated that the GNN-based
joint forecasting of multimode traffic data was more effective than individual forecasts.

We also noticed that the traffic occupancy prediction problem was not seen in the
studies reviewed in this paper. Some possible reasons are discussed below. Traffic occu-
pancy is often modeled as a decision variable rather than using continuous variables such
as traffic speed or volume. While GNN-based solutions have been shown to be effective in
predicting continuous variables, as described in this survey, decision-tree-based models are
still powerful for making binary decisions, e.g., XGBoost and LightGBM [207–209]. Another
possible reason is that traffic occupancy can be detected more efficiently with computer
vision methods based on images or videos, in which case convolutional neural networks
and Transformers still dominate [210]. A similar problem is lane-occupancy-rate predic-
tion, which is also rare in the literature due to the high cost of collecting real-world lane-
occupancy data, e.g., deploying loop detectors for each lane in large-scale road segments.
For example, only simulated traffic data can be used for lane-occupancy measurement and
prediction in [211].

For model evaluation and comparison, different evaluation metrics are used, e.g., root
mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage
error (MAPE). Forecast horizons also differ per study, such as 5, 10, 30, or 60 min, and it was
found that the larger the horizon, the harder the forecasting problem, and the greater the
error observed with larger horizons. Due to the different evaluation metrics and forecast
horizons, it is nearly impossible to fairly compare all surveyed studies and quantify the
difficulty of the available datasets. It was also found that for some common baselines,
e.g., DCRNN [212], STGCN [213], and Graph WaveNet [214], their reported performance
in different studies could vary when the training variables were different.

3. New Dataset and Code Resources

This section provides up-to-date lists of open datasets and code resources for the
research community.

3.1. New Datasets

Open datasets are the basis for evaluating and comparing different forecasting mod-
els [215]. As discussed in Section 2, several open datasets have been widely used in the
surveyed studies, such as METR-LA, PeMS, and NYC Open Data. Despite the availability
of these datasets, developing new datasets is still beneficial for the following two reasons.
The first reason is the risk of overfitting of deep learning models on existing datasets,
especially those that are relatively small compared to datasets in other domains, such
as large collections of images and natural language corpora. The second reason is that
models trained using datasets collected many years ago may suffer from data drift as traffic
facilities change. The data-shift problem means that the traffic patterns in the historical
training data could be totally different from those in the newly collected test data, and the
performance of trained deep learning models can degrade significantly in unseen cases.
Therefore, here, we update the community with new, publicly available traffic datasets
in Table 2 to facilitate future research and encourage constant updates of high-quality
traffic datasets.
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Table 2. The list of new open traffic datasets.

Study Traffic Attributes Spatial Range Temporal Range Download Link (Accessed on 2 Febru-
ary 2023)

[114] Aggregated taxi
speed

Seoul, South Ko-
rea 1–30 April 2018 https://github.com/SNU-DRL/ddpgcn-

dataset

[126] Aggregated taxi
flow Wuhan, China 1–28 July 2015

http://ggssc.whu.edu.cn/ggsscAssets/
download/AttentionModel/code_and_data.
zip

HZMF2019 [146] Aggregated metro
passenger flow Hangzhou, China 1–25 January 2019 https://github.com/lixus7/MTMGNN

TaxiBJ21 [23] Aggregated taxi
flow Beijing, China

November 2012,
November 2014,
and November 2015

https://github.com/jwwthu/DL4Traffic/
tree/main/TaxiBJ21

[216] Aggregated traffic
flow Beijing, China 1 June–15 July 2009 https://github.com/gao0628/Dataset

[217] Aggregated traffic
flow

Six intersections
in an urban area 56 days https://zenodo.org/record/3653880#.Y2

0cPHZBzT6

XiAn Road
Traffic [218]

Aggregated traf-
fic flow, weather
data

Xi’an, China 1 August–30 Septem-
ber 2019

https://github.com/FIGHTINGithub/Xi-
an-Road-Traffic-Data

[219] Aggregated traffic
flow Aveiro, Portugal 2019, 2020, and 2021 https://figshare.com/s/d324f5be912e7f7a0

d21

[220] Aggregated taxi
and bike trips

New York City,
USA 2019, 2020 https://github.com/Evens1sen/Deep-NYC-

Taxi-Bike

[221] Aggregated taxi
and bike trips Chicago, USA 2013 to 2020 https://github.com/iipr/mobility-demand

[222] Citywide crowd
flow Tokyo and Osaka 1 April–9 July 2017 https://github.com/deepkashiwa20/

DeepCrowd

3.2. New Code Resources

Open-code resources facilitate the replication of published results and migration of
proposed models to new problems. We summarize here the new publicly available code
resources in Table 3 and list the implementation frameworks, including TensorFlow (https:
//www.tensorflow.org, accessed on 2 February 2023) and PyTorch (https://pytorch.org/,
accessed on 2 February 2023). It is observed from Table 3 that PyTorch is more popular than
TensorFlow for developing new graph neural network models in traffic forecasting research.

There are also many off-the-shelf libraries available for implementing GNNs using
PyTorch or TensorFlow, e.g., PyTorch Geometric (https://pytorch-geometric.readthedocs.
io/, accessed on 2 February 2023), Deep Graph Library (https://www.dgl.ai/, accessed on
2 February 2023), TensorFlow Graph Neural Networks (https://blog.tensorflow.org/2021
/11/introducing-tensorflow-gnn.html, accessed on 2 February 2023), and Spektral (https:
//graphneural.network/, accessed on 2 February 2023). These libraries have implemented
some well-known GNN variants, such as GCN and GAT, and provide the ability to define
new GNN models. However, they are not designed for traffic forecasting problems. It
would be more convenient to replicate those existing GNN-based traffic forecasting models
with the open-code resources listed in Table 3.

https://github.com/SNU-DRL/ddpgcn-dataset
https://github.com/SNU-DRL/ddpgcn-dataset
http://ggssc.whu.edu.cn/ggsscAssets/download/AttentionModel/code_and_data.zip
http://ggssc.whu.edu.cn/ggsscAssets/download/AttentionModel/code_and_data.zip
http://ggssc.whu.edu.cn/ggsscAssets/download/AttentionModel/code_and_data.zip
https://github.com/lixus7/MTMGNN
https://github.com/jwwthu/DL4Traffic/tree/main/TaxiBJ21
https://github.com/jwwthu/DL4Traffic/tree/main/TaxiBJ21
https://github.com/gao0628/Dataset
https://zenodo.org/record/3653880#.Y20cPHZBzT6
https://zenodo.org/record/3653880#.Y20cPHZBzT6
https://github.com/FIGHTINGithub/Xi-an-Road-Traffic-Data
https://github.com/FIGHTINGithub/Xi-an-Road-Traffic-Data
https://figshare.com/s/d324f5be912e7f7a0d21
https://figshare.com/s/d324f5be912e7f7a0d21
https://github.com/Evens1sen/Deep-NYC-Taxi-Bike
https://github.com/Evens1sen/Deep-NYC-Taxi-Bike
https://github.com/iipr/mobility-demand
https://github.com/deepkashiwa20/DeepCrowd
https://github.com/deepkashiwa20/DeepCrowd
https://www.tensorflow.org
https://www.tensorflow.org
https://pytorch.org/
https://pytorch-geometric.readthedocs.io/
https://pytorch-geometric.readthedocs.io/
https://www.dgl.ai/
https://blog.tensorflow.org/2021/11/introducing-tensorflow-gnn.html
https://blog.tensorflow.org/2021/11/introducing-tensorflow-gnn.html
https://graphneural.network/
https://graphneural.network/
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Table 3. The list of new open-code resources.

Study Framework Link (accessed on 2 February 2023)

DDSTGCN [60] PyTorch https://github.com/j1o2h3n/DDSTGCN

STAGCN [61] PyTorch https://github.com/QiweiMa-LL/STAGCN

CTVI+ [70] PyTorch https://github.com/dsj96/TKDD

TGAE [71] PyTorch https://github.com/wangqiang-codes/TGAE

GAMCN [88] TensorFlow https://github.com/alvinzhaowei/GAMCN

MADGCN [89] TensorFlow, PyTorch https://github.com/wumingyao/MADGCN

AdapGL [98] PyTorch https://github.com/goaheand/AdapGL-pytorch

Ada-STNet [100] PyTorch https://github.com/LiuZH-19/Ada-STNet

AM-RGCN [108] PyTorch https://github.com/ILoveStudying/AM-RGCN

DDP-GCN [114] TensorFlow https://github.com/SNU-DRL/DDP-GCN

GDFormer [129] PyTorch https://github.com/dublinsky/GDFormer

ST-GCN [133] TensorFlow https://github.com/Wautumn/ST-GCN

MTMGNN [146] PyTorch https://github.com/lixus7/MTMGNN2

TmS-GCN [156] PyTorch https://github.com/Joker-L0912/Tms-GCN-Py

STUGCN [161] PyTorch https://github.com/zsongsong/stugcn

D2STGNN [185] PyTorch https://github.com/zezhishao/D2STGNN

DSTAGNN [186] PyTorch https://github.com/SYLan2019/DSTAGNN

FOGS [187] PyTorch https://github.com/kevin-xuan/FOGS

STG-NCDE [188] PyTorch https://github.com/jeongwhanchoi/STG-NCDE

ST-GFSL [191] PyTorch https://github.com/RobinLu1209/ST-GFSL

STEP [193] PyTorch https://github.com/zezhishao/STEP

RGSL [194] PyTorch https://github.com/alipay/RGSL

STDEN [196] PyTorch https://github.com/Echo-Ji/STDEN

TAMP-S2GCNets [197] PyTorch https://github.com/tamps2gcnets/TAMP_S2GCNets

PM-MemNet [200] PyTorch https://github.com/HyunWookL/PM-MemNet

[201] TensorFlow https://github.com/LucaHermes/graph-UNet-traffic-prediction

TraverseNet [223] PyTorch https://github.com/nnzhan/TraverseNet

4. Research Challenges and Opportunities

This section discusses research challenges and opportunities when applying GNNs to
traffic forecasting problems in order to inspire follow-up research.

4.1. Research Challenges

Several challenges can be observed from the surveyed studies, which can be cate-
gorized into data, model, and system perspectives. From a data perspective, challenges
include data quality and cold-start issues. From a model perspective, challenges include
complex graph structure and model robustness concerns. From a system perspective,
the real-world deployment of GNNs in transportation systems is a challenge that cannot
be ignored.

The first challenge is the training data quality. When utilizing graph neural networks,
some issues related to data quality may arise. On the one hand, high-quality datasets
are expensive to build, as the data collection process can be time-consuming and costly.
As extreme or urgent traffic events such as traffic jams and accidents are rare, collecting
comprehensive datasets is more difficult. On the other hand, data privacy is also non-
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negligible if we want to create more comprehensive datasets, since most existing traffic
datasets are collected from public transportation modes (e.g., taxis and shared bikes) or
road sensors, rather than from private vehicles [224].

The second challenge is the cold-start problem [136] when initializing GNNs for traffic
prediction. Deep learning models, including GNNs, usually require a large quantity of
training data to efficiently train the model and obtain satisfactory predictions. However,
data collection in the traffic field is often time-consuming and labor-intensive, for example,
by installing loop detectors for traffic flow and speed information collection. The cold-start
problem arises when the developed GNN models are to be used in a new area or station,
especially for a growing urban network.

The third challenge is the diverse and complicated graph structures that exist in
the real-world traffic infrastructure. Most surveyed studies consider only dense graphs,
e.g., in downtown areas or on closely connected highways, when traffic activities are active.
However, the complete traffic graph of a city may be sparse, with some nodes having
no or few connections to other nodes. This real-world condition has received insufficient
attention in the surveyed studies. Another limitation of the surveyed studies is that the
graphs considered are relatively small, e.g., less than 1,000 nodes. For example, the most
popular PeMS datasets are a collection of subsets from a large dataset collected from more
than 40,000 individual detectors spread over a wider geographic area, since the size of the
original dataset exceeds the computing abilities for some research groups.

The fourth challenge is the robustness of GNN models. Deep learning models have
long been criticized for their black-box nature with little or no interpretation paired with
predicted outcomes. This black-box problem exists for graph neural networks as well,
and there are few systematic methods for interpreting GNNs in traffic forecasting settings.
Many anomalies or outliers in the data are removed during processing steps or do not
appear in the training dataset. When these anomalies are encountered during the testing or
deployment phase, the performance of the trained GNN model degrades, leading to large
deviations in model predictions. Given such risks, it is important to enhance the robustness
and interpretability of GNN models to increase user confidence in the models.

The fifth challenge is the real-world deployment of GNNs in transportation systems.
The real-world implementation of the surveyed GNN solutions requires substantial com-
puting, communication, and storage resources. However, most of the surveyed studies
only consider empirical evaluations based on offline datasets without testing their models
on real-world transportation systems. Several obstacles arise in the real-world deployment
of GNNs. To effectively utilize graph-based structures, a centralized deployment mode
is required to collect global information and compute predictions in a single server. Al-
though deep learning models, including GNNs, can be trained offline, the online inference
process still requires considerable computing and storage resources when the considered
traffic graph is very large. When the considered graph becomes larger, the communica-
tion overhead also increases. To achieve more efficient and safe transportation systems,
complex GNN architectures may not be necessary for traffic-related tasks if their marginal
performance improvement fails to cover the increased computational, communication, and
storage costs.

4.2. Research Opportunities

Some promising research opportunities are discussed to address the above challenges
and inspire future research.

The first research opportunity is the introduction of traffic simulation tools for creating
unseen complex situations as training data. Two specific approaches, model-driven and
data-driven approaches, can be further investigated. Model-driven approaches are based
on macroscopic or microscopic traffic simulators, where macroscopic tools focus on the
high-level deterministic relationships of flow, speed, and the density of traffic flows, while
microscopic tools focus on individual details. On the other hand, data-driven methods do
not rely on traffic domain knowledge but create more data samples from existing methods,
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e.g., generative adversarial network (GAN)-based studies [85–87,170,225]. Regarding
the black-box nature of neural networks, the use of physics-informed neural network
approaches is gaining popularity in research. These approaches combine both model-
driven and data-driven methods and have been successfully applied in the transportation
domain [226,227].

The second research opportunity is to introduce new learning schemes to traffic
forecasting problems, e.g., transfer learning, meta learning, and federated learning. Transfer
learning has been proven effective for transferring cross-city knowledge, which will help
address the cold-start problem in new cities [191]. Furthermore, meta learning has been
shown to be useful for building new graph structures through efficient structure-aware
learning during cross-city knowledge transfer. Privacy-preserving schemes are further
proposed to be combined with transfer learning, protecting the sensitive information from
the source domain [67]. Federated learning is another effective learning approach for
maintaining data privacy while training effective deep learning models [159,189].

The third research opportunity is the combination of knowledge graphs under dif-
ferent road conditions or transportation modes to establish connections among them [63].
More external data can be used when constructing traffic knowledge graphs, e.g., the
activity calendar from social media for potential traffic demands. Additionally, the knowl-
edge between different transportation modes, e.g., interchange hubs, would be useful for
multimodal prediction [137,152,155].

The fourth research opportunity is a distributed learning approach for training large-
scale graph neural networks for traffic forecasting [228,229]. When the application of GNNs
for traffic prediction scales to larger graphs, a distributed training of graph neural networks
is necessary. In those cases, improvements in training and runtime efficiency is even more
beneficial and important. Another similar idea is to leverage cloud computing for model
training and edge computing for runtime inference [160,230] to accelerate the distributed
training and inference process.

The fifth research opportunity is the Bayesian learning approach for uncertainty
quantification. Uncertainty in traffic forecasting may not be as critical as uncertainty in
other domains, e.g., wireless communication problems. However, it is still important to
account for uncertainty in the transportation domain when noisy or missing data could
impair predictive capabilities and lead to unusual forecasts. Bayesian neural networks have
been shown to be effective in dealing with data uncertainty caused by noisy or missing
data in road traffic flow forecasting [66]. Another similar idea is to incorporate the physical
mechanism of traffic flow dynamics as constraints, such as neural controlled differential
equations [188] and Poisson processes [84], to avoid unreasonable predicted values [196]
and help to improve the model interpretability.

The sixth research opportunity is the combination of graph neural networks and
reinforcement learning, which is rarely considered in the surveyed studies, with only one
exception [90]. The ensemble of these two models can sometimes produce brilliant sparks.
For example, some relevant studies leverage reinforcement learning techniques for a more
efficient graph neural network structure search [231]. On the other hand, reinforcement
learning itself is useful for making optimal decisions in the traffic domain with properly
designed rewards, e.g., traffic light control and autonomous driving. There is still a large
research gap in applying reinforcement learning to graph data structures [232,233].

The last but not the least research opportunity is the deployment of GNNs based on
cloud computing and B5G/6G communication techniques. Cloud computing can provide
the required computing and storage resources. GNN models can be trained, deployed, and
updated in the cloud with a scalable infrastructure. The B5G/6G communication technique
is designed to have the ability to support massive machine-type communication scenarios
and can be used for reliable and massive traffic data collection and transmission.

In summary, the first and second research opportunities are proposed to address
the first and second research challenges. The third and fourth research opportunities are
proposed to address the third research challenge. The fifth research opportunity is proposed
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to address the fourth research challenge. The last research opportunity is proposed to
address the fifth research challenge.

5. Conclusions

In 2022, the number of studies on the topic of applying graph neural networks for
traffic forecasting grew rapidly. In this survey, we summarized the progress made by
these studies and listed their targeted problem, graph types, datasets, and neural networks
used. We observed that the road traffic flow and speed prediction problem was still the
most popular traffic forecasting problem. The GNN family, GCN and GAT, was one
of the promising solutions to these problems. To further motivate follow-up research,
new collections of datasets and code resources were presented. Research challenges and
opportunities were further discussed in this study.
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Appendix A. Abbreviation List

The abbreviations used in this manuscript are listed in Table A1 with their full names.

Table A1. Abbreviations used in this manuscript.

Abbreviation Full Name

AARGNN [97] Attentive attributed recurrent graph neural network

ABSTGCN-EF [107] Attention-based spatiotemporal graph convolutional network considering
external factors

ADSTGCN [106] Attention-based dynamic spatial–temporal graph convolutional network
AED-DGCN-
TSC [102]

Attention encoder–decoder dual-graph convolutional network with time
series correlation

AGCN-T [101] Attention-based graph convolution network and transformer
AGCSCN [140] Adaptive graph cross-strided convolution network
AM-RGCN [108] Augmented multicomponent recurrent graph convolutional network
ARIMA Autoregressive integrated moving average
ASTGAT [105] Attention-based spatiotemporal graph attention network
ASTTN [176] Adaptive graph spatial–temporal transformer network
AW-MV-G2S [127] Attention-weighted multiview graph-to-sequence learning
Ada-STNet [184] AdaBoost spatiotemporal network
Ada-STNet [100] Adaptive spatiotemporal graph neural network
AdapGL [98] Adaptive graph learning
Bi-GRCN [109] Bidirectional-graph recurrent convolutional network

https://github.com/jwwthu/GNN4Traffic
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Table A1. Cont.

Abbreviation Full Name

CGLGCN [104] Causal gated low-pass graph convolution neural network
CMGAT [99] Comodal graph attention network
CNN Convolutional neural network
CRF Conditional random field
ConvGRU Convolutional GRU
ConvLSTM Convolutional LSTM
D2STGNN [185] Decoupled dynamic spatial–temporal graph neural network
DCNN [234] Diffusion convolutional neural network

DDP-GCN [114] Distance, direction, and positional relationship graph convolutional net-
work

DDSTGCN [60] Dual dynamic spatial–temporal graph convolution network
DG2RNN [81] Dual-graph gated recurrent neural network
DGGP [115] Deep graph Gaussian process

DMGC-GAN [85] Dynamic multigraph convolutional network with generative adversar-
ial network

DMVST-VGNN [72] Deep multiview spatiotemporal virtual graph neural network
DRL Deep reinforcement learning
DSTAGCN [116] Dynamic spatial–temporal adjacent graph convolutional network
DSTAGNN [186] Dynamic spatial–temporal aware graph neural network
DSTGCN [117] Dynamic spatial–temporal graph convolutional network
DSTGNN [84] Dynamical spatial–temporal graph neural network
ED2GCN [198] Two-stage stacked graph convolution network
EMD Empirical mode decomposition
ESTNet [121] Embedded spatial-temporal network
ETC Electronic toll collection
FOGS [187] First-order gradient supervision
Fdsa-STG [124] Fully dynamic self-attention spatiotemporal graph network

FedSTN [125] Federated-deep-learning-based on the spatial–temporal long and short-
term network

GAMCN [88] Graph and attentive multipath convolutional network
GAN Generative adversarial network
GAT Graph attention network
GCAR [131] Graph correlated attention recurrent neural network
GCN Graph Convolutional Network
GCN-GAN [73] Graph convolution and generative adversarial neural network
GDFormer [129] Graph diffusing Transformer
GLU Gated linear unit
GRU Gated recurrent unit
GSeqAtt [132] Graph sequence neural network with an attention mechanism
GT-GCN [147] Gated temporal graph convolution network
GTU Gated tanh unit
HMIAN [74] Hierarchical mapping and interactive attention network
IGCRRN [135] Improved graph convolution res-recurrent network
ITS Intelligent transportation systems
IoT Internet of things
IoV Internet of vehicles

KGR-STGNN [63] Knowledge graph representation learning and spatiotemporal graph neu-
ral network

kNN K-Nearest Neighbor
LST-GCN [141] Long-short-term-memory-embedded graph convolution network
LSTM Long short-term memory
MA-STN [77] Multidimensional attention-based spatial-temporal network
MADGCN [89] Multiattention dynamic graph convolution network

MAEGCLSTM [143] Memory attention enhanced graph convolution long short-term mem-
ory network

MAGCN [64] Multiattribute graph convolutional network
MAST-GCN [148] Multigraph aggregation spatiotemporal graph convolutional network
MDRGCN [152] Multimode dynamic residual graph convolution network
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Table A1. Cont.

Abbreviation Full Name

MFDGCN [144] Multistage spatiotemporal fusion diffusion graph convolutional network
MG-GAN [225] Multiple-graph-based generative adversarial network
MHODE [78] Mixed hop diffuse ordinary differential equation
MLP Multilayer perceptron
MPNN Message-passing neural network
MS-GAT [138] Multirelational synchronous graph attention network
MSASGCN [145] Multihead self-attention spatiotemporal graph convolutional network
MSDR [190] Multistep dependency relation network
MT-HGCN [155] Multitask hypergraph convolutional neural network
MTMGNN [146] Multitime multigraph neural network
MVB-STNet [66] Multiview Bayesian spatiotemporal graph neural network
MVDSTN [175] Multiview deep spatiotemporal network
MVST-GNN [154] Multiview spatial–temporal graph neural network
PM-MemNet [200] Pattern-matching memory network
RGSL [194] Regularized graph structure learning

SAGCN-SST [83] Self-attention graph convolutional network with spatial, subspatial, and
temporal blocks

SARIMA Seasonal autoregressive integrated moving average
ST-GAT [180] Spatiotemporal graph attention network
ST-GCN [133] Spatial–temporal graph convolutional network
ST-LGSL [195] Spatiotemporal latent graph structure learning
ST-MGAT [167] Spatiotemporal multi-head graph attention network
ST-MRGNN [137] Multirelational spatiotemporal graph neural network
STAG-GCN [142] Spatiotemporal adaptive gated graph convolution network
STAGCN-EC [160] Spatial–temporal attention graph convolution network on edge cloud
STAGCN [61] Spatiotemporal adaptive graph convolutional network
STCAGCN [178] Spatial–temporal channel-attention-based graph convolutional network
STDEN [196] Spatiotemporal differential equation network
STG-NCDE [188] Spatiotemporal graph neural controlled differential equation
STHAN [68] Spatiotemporal heterogeneous graph attention network

STHGCN [69] Spatiotemporal prediction framework using high-order graph convolu-
tional network

STSGAN [166] Spatial–temporal global semantic graph attention convolution network
STSSN [96] Spatiotemporal sequence-to-sequence network
STUGCN [161] Spatial–temporal upsampling graph convolutional network
STZINBGNN [199] Spatial–temporal zero-inflated negative binomial graph neural network
Seq2Seq Sequence to sequence
T-ISTGNN [67] Transferable federated inductive spatial-temporal graph neural network
TAMP-
S2GCNets [197] Time-aware multipersistence spatio-supragraph convolutional network

TCN Temporal convolutional network
TEGCRN [172] Time-evolving graph convolutional recurrent network
TGACN [64] Temporal graph attention convolutional neural network
TGAE [71] Temporal graph autoencoder

Appendix B. The Source Journal list

The source of the journals for the surveyed studies are listed in Table A2 with the
number of papers counted.
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Table A2. Source journals for the surveyed papers.

Journal Name Number of Surveyed
Papers

IEEE Transactions on Intelligent Transportation Systems 23
Information Sciences 7
Applied Intelligence 6
Journal of Advanced Transportation 6
Electronics 5
Physica A: Statistical Mechanics and its Applications 5
ACM Transactions on Intelligent Systems and Technology 4
Applied Sciences 4
Knowledge-Based Systems 4
Transportation Research Part C: Emerging Technologies 4
Expert Systems with Applications 3
ACM Transactions on Knowledge Discovery from Data 2
GeoInformatica 2
IEEE Internet of Things Journal 2
IEEE Transactions on Knowledge and Data Engineering 2
IET Intelligent Transport Systems 2
ISPRS International Journal of Geo-Information 2
Neural Computing and Applications 2
Wireless Communications and Mobile Computing 2
World Wide Web 1
Applied Soft Computing 1
Big Data 1
Computer Communications 1
Computers, Environment and Urban Systems 1
Connection Science 1
Digital Communications and Networks 1
Digital Signal Processing 1
Engineering Applications of Artificial Intelligence 1
Environment, Development and Sustainability 1
Future Generation Computer Systems 1
IEEE Access 1
IEEE Sensors Journal 1
IEEE Transactions on Big Data 1
IEEE Transactions on Neural Networks and Learning Systems 1
IEEE Transactions on Vehicular Technology 1
International Journal of Intelligent Systems 1
International Journal of Machine Learning and Cybernetics 1
Journal of King Saud University-Computer and Information
Sciences 1

Journal of Rail Transport Planning & Management 1
Mathematics 1
Neural Processing Letters 1
Neurocomputing 1
Pattern Recognition Letters 1
Remote Sensing 1
Sustainability 1
Sustainable Computing: Informatics and Systems 1
The Computer Journal 1
Transportation Research Record 1
Transportmetrica B: Transport Dynamics 1
Transportmetrica B: transport dynamics 1

Appendix C. The Source Conference List

The source conferences for the surveyed papers are listed in Table A3 with the number
of papers counted.
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Table A3. The source conferences for the surveyed papers.

Conference Name Number of Surveyed
Papers

International Joint Conference on Neural Networks (IJCNN) 6
ACM International Conference on Information and Knowledge
Management (CIKM) 4

ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD) 4

International Joint Conference on Artificial Intelligence (IJCAI) 2
AAAI Conference on Artificial Intelligence (AAAI) 2
International Conference on Learning Representations (ICLR) 2
IEEE Symposium on Computers and Communications (ISCC) 1
International Conference on Artificial Neural Networks (ICANN) 1
IEEE International Conference on Data Engineering (ICDE) 1
Pacific-Asia Conference on Knowledge Discovery and Data
Mining (PAKDD) 1

IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) 1

International Conference on Very Large Databases (VLDB) 1
International Conference on Machine Learning (ICML) 1
IEEE Wireless Communications and Networking Conference
(WCNC) 1

International Conference on Database Systems for Advanced
Applications (DASFAA) 1

IEEE International Conference on Computer Supported
Cooperative Work in Design (CSCWD) 1
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