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Despite the increasing number of pharmaceutical companies, university laboratories and
funding, less than one percent of initially researched drugs enter the commercial market. In
this context, virtual screening (VS) has gained much attention due to several advantages,
including timesaving, reduced reagent and consumable costs and the performance of
selective analyses regarding the affinity between test molecules and pharmacological
targets. Currently, VS is based mainly on algorithms that apply physical and chemistry
principles and quantum mechanics to estimate molecule affinities and conformations,
among others. Nevertheless, VS has not reached the expected results concerning the
improvement of market-approved drugs, comprising less than twenty drugs that have
reached this goal to date. In this context, graph neural networks (GNN), a recent deep-
learning subtype, may comprise a powerful tool to improve VS results concerning natural
products that may be used both simultaneously with standard algorithms or isolated. This
review discusses the pros and cons of GNN applied to VS and the future perspectives of
this learnable algorithm, which may revolutionize drug discovery if certain obstacles
concerning spatial coordinates and adequate datasets, among others, can be overcome.
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INTRODUCTION

Mathematic modeling comprises a valuable important tool in the development of the pharmacology
and chemistry fields since their beginning as formal disciplines (Gaddum, 1953; Atkinson and
Lalonde, 2007; Finlay et al., 2020). Thus, most traditional pharmacologists and chemistries are very
accustomed in employing math modeling to solve or aid current issues regarding the development of
new drugs.

Computation power has increased enormously since the transistor invention, amplifying the use of
diverse algorithms to aid in molecular modeling assessments. In the last decade, graphics processing unit
(GPU) in parallel with math operations and tensor processing unit (TPU) applied to tensors comprise a
very simplified definition of “multidimensional vectors” or for computer work “multidimensional arrays”
(Figure 1), consolidating computational power. In addition, several free cloud computing platforms and
web servers are now available to perform virtual screening (Gorgulla et al., 2020; Sigh, 2021). These
developments have allowed for the development of the chemoinformatic field, that applies the knowledge
of different disciplines, such chemistry, computation, math, physics, and biology to decipher chemical
problems (Gasteiger, 2016, Chen et al., 2020). The first chemoinformatic assessment was reported by Ray
and coworkers (1957), who employed a new algorithm to detect molecular substructures.
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Recently, a new paradigm consisted in the use of artificial
intelligence (AI), also named computational intelligence, as a
chemoinformatic tool. No standard AI definition is noted in the
literature (Dobrev, 2005; Kok et al., 2009), although one can
assume characteristics linked human intelligence, as established
in the Turing test (Kok et al., 2009). AI implementation is
performed through of the application of machine learning
(ML) algorithms. Several algorithms have now been applied to
drug discovery, such as Random Forest, Support Vector Machine,
K-Nearest Neighbors, Naïve Bayesian, Decision Trees, and Deep
Learning, among others, and Publications from 2006 to 2016
indicate an increasing application of deep learning and other ML
algorithms in drug discovery (Lavecchia, 2015; Jing et al., 2018;
Maltarollo et al., 2019).

This review focus on a subtype of deep learning algorithm
named graph neural network (GNN), currently one of the most
applied. Despite being recent, the use of deep learning algorithms
employing GNN may revolutionize the VS field, considered by
some authors as the state of the art due to its high accuracy rates
(Gaudelet et al., 2021). This article is mainly directed towards

scientists, teachers and students that work with drug discovery or
enthusiasts concerning this topic. Thus, a more didactic language
and clear figures will be employed to clarify this theme and,
perhaps, “recruit” new users of this technology.

Virtual Screening
The concept of virtual screening first appeared in 1995 as a tool to
test virtual libraries employing computers (Burns, 1995; Horvath,
1997). However, these ideas had begun in previous studies carried
out in 1970s, such as Beddel and coworkers (1973), who worked
on the spatial coordinates of hemoglobinmodulators. At the time,
several pharmaceutical companies were developing and applying
screening projects to discover new antibiotics and drugs.
Concurrently, cyclosporine, an immunosuppressive drug, was
discovered through manual screening processes (Stahelin,
1996), later becoming the main drug used in organ
transplants, saving millions of lives (Linden, 2009). In 1984,
natural product automation was established, allowing for
10,000 assays a week (Pereira and Williams, 2007). Thus,
began the high-throughput screening (HTS) age, that allows

FIGURE 1 | Representations of tensors in different orders (dimension, rank). Column 1 lists the elements that compose the sets corresponding to each dimension.
The number of sets is in agreement with the number of dimensions except for the dimension 0, where one set is used as in dimension 1, but comprises a unitary set, as
one element only is used to represent a scalar. More elements could have been used in each set for dimension 1 and above, but only two elements were used to reduce
the complexity of the figure, comprising the same two elements in all dimensions. Column 2 contains elements “boxed” and spatially arranged in correspondence
with the respective data structure. These comprise a row vector of “boxes” for dimension 1, a matrix with rows and columns of “boxes” for dimension 2, a block with
rows, columns and pages for dimension 3, a row of blocks for dimension 4 and so on. Column 3 exhibits an equivalent arrangement as in the preceding column, except
that each element is represented with “one-hot” encoding instead of numeric encoding. The “one-hot” representation is usual in neural networks to input information
representing a set of features. Each feature is represented by a finite set of possible values of a specific feature attribute, with values ordered as positions in a sequence of
values “0” and “1.” As an example, if a specific feature has an attribute summarized as having N possible values, it is represented by a sequence where one numeric value
“1” is located in correspondence with the observed value of the attribute and N-1 values “0” are located in the positions corresponding to the other values. The input
vector for a neural network is, thus, composed by a longer sequence chaining the “one-hot” representation of all features. Column 4 of the table presents examples of
tensor representations as they are usually coded in computational language (Python coding, for example). At the beginning and ending of the data representation, the
number of square brackets must conform to the tensor dimension. Columns 5 and 6 are the nomenclature of each kind of tensors up to rank 4 and its respective
dimensions.
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for the quick and efficient analysis of in vitro samples through
bioassays that monitor the behavior of enzymes, secondary
messengers, ion channels or biological effects associated with
the investigated molecular target. These processes, however, are
expensive and time consuming. In this context, virtual high-
throughput screening (VHTS) is cheaper, employing
computational facilities and diverse algorithms to detect the
best ligands for a certain target that generally comprises
proteins or nucleic acids. VHTS can be categorized into at
least three types, namely ligand-based drug design (LBDD),
structure-based drug design (SBDD), and hybrid methods
[discussed in detail by Leelananda and Lindert (2016)].

Basically, LBDD methods are generally applied when the
properties and ligand structure aspects are known, whereas the
target structure (protein, receptor, ion channel and enzyme) is
still unknown. LBDD may employ other methodologies, such as
quantitative structure activity relationship (QSAR), and
pharmacophore characteristics (or features) (Leelananda and
Lindert, 2016). Techniques related to LBDD may also be used
to perform toxicity studies by organic compounds named
quantitative structure toxicity relationship (QSTR) (Jana et al.,
2020). Structure-based drug design is mainly employed when the
structure of target is known through the application of structural
methodologies, such as X-ray diffraction, nuclear magnetic
resonance and cryo-electron microscopy, or through
computational methods, like homology modeling.

However, despite VS advances, less than twenty molecules are
currently marketed in this regard (Kar and Roy, 2013; Leelananda
and Lindert, 2016; Maia et al., 2020). In this context, the use of
GNN may improve the numbers available drugs. In terms of
natural products, at least 26 different types of virtual libraries are
now available, in which thousands of molecules derived from
natural products are registered. Some contain molecules from
plants used in Traditional Chinese or African Medicine, such as
the TCMID (The Traditional Chinese Medicine Integrated
Database) and AfroDb (African Medicinal Plants Database),
besides the Brazilian biodiversity database NUBBE (Nuclei of
Bioassays, Ecophysiology and Biosynthesis of Natural Products
Database) (Chen et al., 2017; Pilon et al., 2017).

Deep Learning: Interdisciplinary
Architecture
Several definitions for deep learning have been well discussed by
Zhang et al., and all indicate an increase in feature hierarchy
knowledge (Zhang et al., 2018). As Paulo Freire, the famous
Brazilian Educator, said to state a new knowledge must be part of
the learner’s life. In this context, deep learning is now a part of our
lives in the form of the recommendation systems of several
companies, social media (Facebook, Instagram, and Twitter,
among others), the personal assistants of different operational
systems, virtual bank assistants and self-driving cars, just to name
a few. Currently, several deep learning implementations are noted
in speech and image recognition systems and natural language
processing (LeCun et al., 2015). The term “deep” in deep learning
indicates a hidden layer or “hidden neurons,” as this network is
initially based on neural functioning, and it is important to

compare “math neurons” to biological neurons to
better understand deep learning impacts in any modern
world area.

An interesting example comprises finger heat stimuli. When
any hot object touches a human finger, it opens up the finger’s
thermosensitive transient receptor potential (TRP) at the
molecular level, non-selective cation channel (Lamas et al.,
2019; Nadezhdin et al., 2021). This allows for cation entry,
leading to membrane depolarization, i.e., receptor potential, an
analogic response proportional to the thermal stimulus. If this
stimulus reaches a threshold potential, it triggers an action
potential (AP) comprising an all-or-none response (Adrian,
1914; Häusser, 2000) in the axon implantation cone, as
depicted in Figure 2. The receptor potential, a type of an
analogic signal, triggers an action potential that varies only in
frequency, comprising a digital signal (Figure 3). A strong heat
stimulus is differentiated from a weak one because, it increases
action potential frequency, i.e., if the weak stimulus results in two
AP per second, the strong one results in 10 per second. Thus, the
signal presents a frequency code in most of animals studied to
date. In the spinal cord, this signal releases an excitatory
neurotransmitter in the synaptic cleft that will generate AP
firing from an alpha motoneuron that innervates agonist
muscles, thus, generating a withdrawal reflex (Figure 2). In
addition, a synapse between the sensitive neuron with an
interneuron that synapses onto, releasing an inhibitory
neurotransmitter, an alpha motoneuron that, in turn,
innervates antagonistic muscles, thus facilitating the
withdrawal reflex, due to antagonistic muscle relaxation.

It is important to point out that the discovery of the action
potential mechanism comprised a fantastic association of bench
work and modeling performed by Huxley and Hodgkin with
seminal papers published after the Second World War
comprising a cornerstone of computational neuroscience
(Schuetze, 1983; Hausser, 2020). In same period, McCulloch and
Pitts (1943) were the first tomathematicallymodel a neural network.
Macculloch had an undergraduate degree in psychology and a
graduate degree in medicine, unlike Huxley and Hodgkin, both
engineers that worked on the Second World War radar defense
system. Rosenblatt (1958), who held a PhD in psychology, and his
team at the Cornell Aeronautical Laboratory developed the
perceptron algorithm implemented in an IBM 704, consisting of
the first “perceptron computer” to detect visual stimuli.

Several groups began studying neural network and learning
employing perceptron techniques in the 1960s (Fradkov, 2020).
This research, however, declined due to a book published in the
1970s, that demonstrated that this algorithm could only solve
linearly separable problems, that kind of problems in which a
graphical representation of the input stimuli would indicate
two sets of stimuli, one associated with a “positive answer” and
the other with a “negative” one (or none at all), allowing for the
complete separation of these two sets by a straight line. Deep
learning returned with a new framework introduced by
Hilton’s team reintroducing the backpropagation algorithm
(previously created by Bryson in 1963), findings lower cost
functions through gradient descendent techniques (LeCun
et al., 2015).
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FIGURE 2 |Heat stimulus transmission. (A) Schematic representation of a hand touching a hot pan and receiving a temperature sensory receptor stimulus. (B) The
stimulus provokes a signal that will travel through a sensory neuron into the spinal cord, releasing excitatory neurotransmissions when it synapses with an alpha
motoneuron that innervates the biceps. The sensory neuron will also synapse with an interneuron, that synapses with an alpha motoneuron that innervates the triceps,
although in this case inhibitory neurotransmitters are released, causing the triceps to relax, thus, facilitating the withdraw reflex. (C) Channels from the TRP family
expressed in sensory neurons will open following the thermal stimulus, leading to an entrance of cations such as sodium, resulting in membrane depolarization that could
trigger an action potential. (D) Reflex of removing the hand from the heat after touching the pan. It is important to note this movement is performed through the
association of inhibitory and excitatory synapses that work as positive and negative weights in artificial neural networks.

FIGURE 3 | Comparative model of perceptron and real neuron. A neuron receives both excitatory and inhibitory signals through the release of different
neurotransmitters from different biological neural networks that generates postsynaptic excitatory or inhibitory potentials. These potentials can add up with space or time
in a continuous manner, thus classified as analogic signals. If this voltage reaches the potential threshold, it will trigger an AP in the axon implantation cone (hillock), which
will lead to the passage of the signal through the axon and the axon terminals until it synapses with other neurons. This type of signal can be classified as digital,
because it occurs (binary 1) or not occurs (binary 0), depending on the signal reaching the action potential threshold.
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FIGURE4 | Activation functions. (A)Unity step function, binary step function or heaviside function–This function was used in the early perceptron era. It is unsuitable
for gradient descent learning methods, since its derivative is 0 along almost the entire domain. (B) Logistic or sigmoid function—This is perhaps the most extensively
applied activation function. Its answer may become steep, depending on the value of parameter δ. (C)Hyperbolic tangent (TanH)—This function is used as an alternative
to the sigmoid function when a range of output from −1 to 1 is needed, instead of the range from 0 to 1 given by the sigmoid function. (D) Softplus function or rectifier
(as the shape of the function resembles the behavior of a rectifier diode)—It is differentiable along the entire domain as the two previous functions, but displays an
advantage, since its derivative exhibits non-zero values along the entire positive domain while sigmoid and hyperbolic tangent present derivatives approaching zero
asymptotically for large argument values. A non-zero derivative along a broader range may contribute to speed up the learning process. The derivative of the softplus
function is the sigmoid function. (E) Rectified linear unity function (ReLU)—This function is used as a simple linear alternative to the softplus, maintaining the same
advantage of a non-zero derivative along the entire positive domain but suffering the problem of a discontinuity in the derivative for argument equal to 0. (F) Leaky
ReLU—This function is a “leaky” form of ReLU. The answer of this function in the negative domain comprises an attenuated version of the linear response in positive
domain, instead of 0. Depending on the attenuation parameter being a constant or an adjustable value, the function may be also named Parametric ReLU. The non-zero
negative domain provides some decrease in the occurrence of dead neurons, the region of ReLU curve where any signal corresponds to zero as a response, in the
network.
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As depicted in Figure 3, a significant perceptron innovation
comprised weights that act as excitatory and inhibitory
neurotransmitters chemical synapses in neurons. The nervous
system transduces external and internal signal as explained above
through receptor potentials, excitatory postsynaptic potentials
(EPSP), inhibitory postsynaptic potentials (IPSP), and action
potential. The receptor potential and postsynaptic potentials
can be added temporally and spatially, i.e., act as an
aggregation function in perceptron and deep learning
methods. These potentials can trigger an action potential in
areas displaying a high number of voltage-gated sodium
channels when the potential reaches a certain threshold. Thus,
the analogic signal become a digital signal, comprising the action
potential and, depending on the signal intensity, generates
different frequencies to “pass along the message.”

In neural networks, all data must be transduced to numbers
and transformed into a binary system to computer language. As
depicted in Figure 1, representations of the external world or any
phenomenon must be coded as a vector (1D tensor) or a tensor of
any dimension. As described previously, this information is
aggregated through a “summation” (S) function, as in the
synaptic and receptor functions. The basic function is denoted
as S � ∑ wxn + b, with another representation (S � weight * input
signal + bias), where w represents adaptable weights, x are the
numbers or number vector and b represents the bias, a term that
avoids a zero signal and dislocates the curve in the y axes when
working with only one variable. This S function containing one
variable comprises a first degree equation well studied in
elementary school. The next function is an activation function,
a mathematical representation of a “set of sodium gated voltage
channels.” This function (herein named T) triggers a response,
through different functions, similar to the action potential that
occurs in the hillock, a region that connects the cellular neuron
body to the axon, in reach of the sodium voltage-dependent
channels (Figure 3).

The first applied T function was a step function where, if the
signal were more than or equal to zero, the response would be 1
otherwise and, if not, the response would be zero (Figure 4A).
The binary step function can identify only two classes and work
well as a first proof of concept in MacCulloch and Pitts´s
Perceptron. Thus, several other activation functions were
introduced to deal, with no linear events such as sigmoid,
hyperbolic tangent (TanH), rectified linear unit (ReLU),
Softplus, among others (Figures 4B–F). They are used as non-
linear modulating elements in neuron output generation,
resembling a decision-making process. Since the beginning of
neural network sciences, with the perceptron, neural networks are
used as a means to obtain a binary answer from linear data inputs.
Learning techniques in neural networks are mostly based on
gradient descent techniques, so, being differentiated along the
entire range is a desirable quality for an activation function. Some
examples of most used activation functions are displayed in
Figure 4. Perceptron comprised the first “mathematical”
neuron model created by researchers in the psychology field
based on a real neuron. Deep neural networks and their
consequent AI have evolved in a different direction that is not
necessarily equal to a mammalian brain. Currently, computer

neuroscience is dealing with “real” brain modeling processes,
although cross talking is now implemented to understand the
brain function (Fan and Markram, 2019; Savage, 2019).

Graph Neural Networks
Graph theory has been part of mathematics curriculum since
1736, due to Euler’s seminal work and has been incorporated in
computer science in the modern age, but there is evidence of
rudiments of graph theory before Euler’s study (Euler, 1736,
Alexanderson, 2006). In the two-dimensional plane, the graph is
constituted by set of vertices (V), also named nodes, and edges (E)
that link the vertices. The general mathematical representation of
this graph is G � (V, E). Graphs are a quite general kind of data
representation that can model relationships of almost everything,
from galaxies to subatomic particles. Social networks, roads
linking cities, brain connections, protein and DNA
interactions, among others, are examples of relationships that
can be modeled as graph structures. Several subtypes of graph
neural networks have been developed, as depicted in Table 1.
Despite several a particularity, all have a similar workflow, as
displayed in Figure 6, where an illustrative example of a
prediction using message passing neural network (MPNN) is
provided. In general, a molecule can have many representations,
including graphical (such as 3D structures), textual
(i.e., molecular formula), and others. One way of representing
a molecule is to use graphs that work as a kind of an abstract
version of a molecular modeling kit. The instructions to mount a
given molecule model with N atoms labeled by sequential
numbering (formally known as nodes) can be given by a table
with N rows and N columns, where the existence of a bond
(named edge) between each pair of atoms i and j is represented by
a value 1 in row i and column j in the given table (named
adjacency matrix), and with every other position in the table
presenting value 0.

It is possible to extrapolate a molecule representation in the
same graph-like structure of a social network, where atoms
comprise the people and bonds are equivalent to relationships.
It is also possible to convert a textual representation into a graph
representation. Figure 6 provides an example of this conversion
with ammonia, represented as its molecular formula and SMILES
(simplified molecular-input line-entry system). The latter
presents some conventions that make molecule interpretation
easier by computer programs. The sequence is converted into a
graph displaying the aforementioned edge and bond relationship.
Interestingly, graphs allow for not only modeling relationships,
but also for adding node and edge information. In the parallel of a
social network, it is possible not only to store how friends are
related, but the name of each friend (which would be node-added
information) or when the friendship began (edge-added
information). In a molecular context, this allows for
information on atoms (i.e., hybridization) and bonds
(i.e., bond type) to be stored alongside the bonds and atoms
that represent the molecule itself.

Usually, information coding concerning atomic features
corresponding to one value choice among a set (for example,
the kind of the atom in a node being chosen from a list of M
possible atoms) may be performed by “one-hot” coding, where
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the position in the list that corresponds to the specific feature
of the atom occupying the node being set to 1 and the remaining
M-1 positions, to 0. For example, considering a short list of
possible atoms as (H, C, N, O, F, S, Cl, Other), the nitrogen in the
ammonia molecule would be represented by (0,0,1,0,0,0,0,0) and
each of the hydrogen atoms by (1,0,0,0,0,0,0,0). Features that can
be expressed by integer values may be coded by the integer value
itself or also by “one-hot” coding considering a list of all possible
values attributable to the investigated feature. For each atom,
considering an entire set of atomic features is obtained by
concatenating the codes attributed to all these features in the
form of a vector in a defined order.

Depending on the set of features, it is usual for these vectors to
present a dimension around one hundred or more. The features
of the entire molecule are thus, represented by a matrix whose
rows corresponds to the feature vectors of the atoms according to

the sequential order in which they are labeled. As result, even
small molecules may be represented bymatrices with hundreds to
thousands of values. A neural network layer with a matrix of
features like these as input and a number of neurons about the
same order as outputs would easily surpass millions of parameters
to be adjusted by training.

In this context, convolution techniques have been proven
useful to enhance molecular features while, at the same time,
significantly reduce the dimension of the feature matrix, as
depicted in Figure 7. Convolution has been extensively
employed in image or language processing and consists in
multiplying a small matrix, known as “filter” or “kernel,” by
the data matrix (the feature matrix, for example). The dimension
of the filter usually comprises few rows and columns and the
multiplication takes the same number of elements as the filter
from the data matrix, considering the element in the first row and

TABLE 1 | Summary of main graph neural network architectures.

GNN Main characteristics Examples Applications References

Graph Convolutional
Networks (GCN)

GPU optimization is possible Diffusion Convolution Neural
Networks

Protein interface prediction Zhou et al. (2020)

Avoid vanishing gradients GraphWaveNet Image classification Wu et al. (2021)
Allow neighborhood-level aggregations Social networks

Graph Attention Networks (GAN) Quadratic complexity Graph Attention Network Molecular feature prediction Velicković et al.
(2018)

Useful to model positional-dependent data
in nodes

Traffic modelling Zhou et al. (2020)
Image classification

Graph Recurrent Networks (GRN) May not be GPU-optimizable Gated Graph Recurrent
Networks

Epidemic progression
modelling

Ruiz et al. (2020)

Allow for modelling the graph structure over
time

Graph Recurrent Network Time series Wu et al. (2021)

Can approximate any Borel function
Message Passing Neural Networks
(MPNN)

Locally derived embeddings Chemprop Drug repurposing Zhou et al. (2020)
Allow for edge and nodes feature inputs Directional Message Passing

Networks
Molecular modeling Wu et al. (2021)

Universal approximators are not good Bayesian Graph Neural
Networks

Graph Autoencoder (GAE) Allow for graph generative networks MolGAN Drug discovery Wu et al. (2021)
Latent space projections NetGAN 3D modelling

Dimensionality Reduction

FIGURE 5 | Representation of a deep neural network. It is widely applied in computing systems, employing schematic neurons to demonstrate the signal passage
through different layers. The predicted value named ŷ is obtained in the final layer. This value will be decreased from the real y value, and the result will comprise the error,
of what was lost along the neural network. The process is repeated until the smallest possible error is reached through a backpropagation algorithm.
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the filter column being aligned with one element in the data
matrix in a variable position. Thus, for each element in the filter a
corresponding element is noted in the data matrix with an
equivalent offset of rows and columns regarding the first filter
element. The data matrix and filter elements are multiplied
position by position and summed (an operation equivalent to
the scalar product). To cover the entire data matrix, the scalar
product is obtained for each alignment position by moving the
filter from the first row and first column of the data matrix, step
by step, and the amplitude of the step, known as “stride,”
corresponds to a value in the range from 1 to the
corresponding filter dimension.

Comparing the dimension of the original data matrix, of N0

rows by D0 columns, with to the corresponding dimension of the
convoluted matrix, with N1 rows by D1 columns, and convolution
filter displaying a dimension J rows by K columns and a stride
value of Sr and Sc for rows and columns, respectively, the
following relationship arise:

N1 � (N0 − J)/Sr + 1; D1 � (D0 − K)/Sc + 1;

Sometimes, when dimensionality reduction is not a desired
convolution result, a convenient filling with all zero to rows

and columns around the data matrix may be performed
previously to convolution, known as “padding.” Considering
the addition of Pr rows with zeros above and below the data
matrix and Pc columns with zeros on the left and right of the data
matrix, the relationship above becomes:

N1 � (N0+2*Pr − J)/Sr + 1; D1 � (D0+2*Pc − K)/Sc + 1;

Additionally, techniques combining the features matrix with the
adjacency matrix forming a multidimensional array followed by
use of convolution techniques to obtain smaller arrays or even
vectors as a result, a general process usually known as
“embedding,” provides a more compact representation joining
atomic and bond features. This representation is much more
convenient to be used as input in a final fully connected feed
forward neural network to obtain the final value of the molecular
property of interest being modeled, such as binding energy,
affinity score or similar.

Chaining groups of graph representation layers and graph
convolution layers in a network structure to predict molecular
properties has been reported as achieving superior
performance in some molecular property predictions (Wang
et al., 2019).

FIGURE 6 | An intuition of a Graph Neural Network. A molecular prediction process scheme employing a message passing neural network (MPNN) as molecule
embedder. (A) Ammonia was chosen as a candidate for prediction. (B) Text representation of ammonia as a simplified molecular-input line-entry system (SMILES)
sequence and molecular formula. (C) The SMILES sequences are converted to a graph with three edges representing a molecular bond between hydrogen (green) and
nitrogen (yellow). (D) h0 is the feature space for a specific atom, where each feature, herein represented as a geometric form, is didactically associated with the
corresponding atom number. (E) These features comprise the atom features, which are averaged with the message function, herein as a sum, in each step of the MPNN
training. (F) An example of how the first step of the MPNN is computed for nitrogen (n4) is provided. (G) The final step of MPNN is a feature embedding for each atom,
which can be summed to be then used by a feed-forward network for final predictions. (H)M is the feature embedding for each atom, consisting in a shape of (N Atoms x
E Embedding space). This (NxE) tensor can be feeded into a more simplistic network architechture, i.e.: Feed Forward to train task-specific models.
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Storing information on each atom and bond provides a
convenient and generalized way of passing information
forward in a local perspective. For example, analyzing the Fab
region of an immunoglobulin may be much more informative
than analyzing its Fc region when designing a vaccine. However,
the data representation is not significant without a model that
leverages its advantages. In this example, MPNN is used. MPNNs
are interesting in contrast to other kinds of GNNs, as they can
model how node and edge information relate in a local context
(Figure 6). For example, when a hydrogen is added to ammonia,
it becomes ammonium. Despite having the same single bond to
the new hydrogen as it had to the previous hydrogen atom,
ammonium displays many different properties compared to
ammonia. The addition of a new hydrogen affects the other
atoms in the molecule, altering its shape from triangular
pyramidal to tetrahedral. This can be construed as the
message propagating from one atom and bond (from the
nitrogen to the new hydrogen) to the others atoms
(the remaining hydrogens). This message function is one of
the learned functions within the MPNN. In the end, the
purpose of the MPNN is to convert the unstructured data of a

graph (which previously comprised a simple text) into a semantic
embedding which essentially comprises a tensor assumed to be
the best molecule summarization. This summarization in the
form of a tensor can be applied to any subsequent task, such as
predicting blood-brain barrier permeability. The base assumption
is that learning how to best summarize the molecule should
simplify any following prediction that employs this
summarization, allowing for less data to be used (i.e., few-shot
learning).

GNN Applications to VS
Recently, Wieder et al. performed a literature survey accounting
for about 80 different GNN models in 63 publications, which
were applied to different fields such as quantum chemistry,
physicochemical property predictions, biophysics,
biological effects, and synthetic accessibility (Wieder et al.,
2020). This section discussed some recent GNN applications
to VS field.

Currently, an increasing number of articles describing new
frameworks to predict interactions between ligands and proteins
is noted (Jin et al., 2021). Interestingly, these graph-based neural

FIGURE 7 | Molecular property representation. (A) Example of an atomic feature matrix and an adjacency matrix for ammonia. The elements i, j in the adjacency
matrix are representations of the connection between atoms i and j. A combination of the feature and adjacency matrix is performed by column wise multiplication,
resulting in a 3D array. Each atomic bond corresponds to a “page” in the array. A filter (kernel) corresponding to a 3D matrix with the same number of pages as the
combined data set feature-adjacency is applied to the matrix through a scalar product. The filter elements, when inserted in a neural network comprise weight
parameters for the connections and its values are adjusted by training, defining the filter characteristics in an optimized manner. The offset of the filter with respect to the
data set is swept to cover the entire indices range. The result of the convolution operation in this example is a 2D array with four rows and N-2 columns, where N is the
number of columns in the feature matrix. (B) Example of a hypothetical neural network used to calculate the value of a property of a given molecule. Several convolution
layers are chained to perform the embedding of the data representing the atomic features and the atomic bonding, the result being a 1D vector which is further submitted
to a fully connected neural network. The output of this network is the desired parameter. The training algorithm adjusts the parameters of all kernel filters and the weights
of the output neural network, until the error of the predictions compared to the training set are minimized.
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networks are gaining new adaptations and, because of this,
constantly exhibit better performance than conventional
molecular docking programs, such as Autodock Vina.

In this regard, Torng and Altman implemented a framework
using graph convolutional neural networks (GCNN) to predict
protein-ligand interactions among 102 protein targets. This
model demonstrated better performance of 0.886 area under
curve (AUC) when compared to other programs, such as
3DCNN (0.868), Autodock Vina (0.716), RF-score (0.622), and
NNScore (0.584) (Torng and Altman, 2019). Lim et al. also
proposed a novel approach to perform structure-based VS
using GNN based on the 3D protein-ligand binding pose. This
model was superior to the Torng model (0.968 vs. 0.886) and both
CNN and docking (0.968 vs. 0.868 and 0.689, respectively),
besides having presented a balanced accuracy of 90.9%.
However, when the ChEMBL database was employed, the
values of area under curve-receiver operating characteristic
(AUROC), sensitivity, specificity, and balanced accuracy
significantly decreased (Lim et al., 2019).

Jiang et al. created an accurate model (<96%) to predict drug-
target interactions, based on the construction of two graphs: one
for the molecule according to its SMILES sequence, and one
protein graph built from a contact map of the protein sequence.
Subsequently, two GNN extracted the information and were able
to predict the affinity of the ligand and the target protein (Jiang
et al., 2020).

Furthermore, GNN algorithms can be used to predict EC50,
solubility, andmolecular properties. They are also able to perform
molecular dynamics simulations (Duvenaud et al., 2015; Klicpera
et al., 2020).

Although GNN show better results in terms of accuracy than
molecular docking methodologies, for example, their applications
to VS are still scarce and studies are still recent. This demonstrates
that VS is still not able to keep up with the growth rate of the
improved GNN models currently being produced. However, this
will probably change soon. VS results obtained by GNN are
summarized in Table 2.

A promising GNN application in VS concerns drug
repurposing. Wang et al., for example, proposed a bipartite
graph convolution network model for drug repurposing that
outperformed conventional GCN (0.857 vs. 0.792). In
addition, among the top five rank-predicted list for breast

carcinoma, four molecules were validated by the literature,
namely clofarabine, cimetidine, thiamine, and arsenic trioxide,
which present approximately 80% success rate. For Parkinson’s
disease, five drugs among the top ten predicted drugs presented
literature validation. They are dextromethorphan, solifenacin,
atomoxetine, venlafaxine, and tapentadol (Wang et al., 2020).

In another study, Hsieh et al. used GNN methodology to
discover repurposable drugs to treat COVID-19. Their model was
constructed based on the SARS-CoV-2 knowledge graph map,
which considers several virus interactions such as baits, host
genes, pathways, phenotypes, and drugs. Their work highlighted
22 potential drugs (Hsieh et al., 2020).

Recently, Zhi et al. performed an interesting screening work to
discover new dihydroorotate dehydrogenase protein inhibitors,
considered an important molecular target for the treatment of
small cell lung cancer. After gathering information from
molecular docking, GNN and ML algorithms, the authors
found three molecules with the desired activity: folic acid
(ZINC8577218), thioguanosine 5′-triphosphate
(ZINC95618747), and ATP (ZINC4261765). They also
performed molecular dynamics simulations to confirm the
interaction between these molecules and the aforementioned
protein (Zhi et al., 2021).

Stokes et al. used a directed-message passing neural network
(D-MPNN) to screen molecules displaying antibiotic activity. They
reported that halicin, a c-Jun N-terminal kinase inhibitor,
significantly reduced bacterial growth both in vitro and in vivo
through dissipation of bacterial transmembrane ΔpH potential.
Halicin also demonstrated activity against several bacterial strains,
including Escherichia coli, Mycobacterium tuberculosis,
Acinetobacter baumannii, and Clostridium difficile. Moreover,
another two molecules (ZINC000225434673 and
ZINC000100032716) significantly inhibited E. coli growth
in vitro, and similarly to halicin, displayed a
distinct structure from conventional antibiotics (Stokes et al., 2020).

Liu et al. performed a VS to discover novel anti-osteoporosis
drugs from natural products using a pre-trained self-attentive
message passing neural network (P-SAMPNN). Among the five
hits selected for in vitro tests, a laudanosine derivative and a
codamine derivative exhibited activity at the nanomolar range
(i.e., 32 and 68 nM, respectively), suppressing osteoclastogenesis-
related genes (Liu et al., 2021).

TABLE 2 | Recent GNN applications in VS.

Model Application Number
of molecules

tested

Libraries References

Graph convolution network (GCN) Drug
repurposing

>3,000 RepoDB Wang et al. (2020)

Graph neural network (GNN) Drug
repurposing

3,635 CTDbase’s COVID-19 curated list Hsieh et al. (2020)

Graph neural network (GNN) Drug discovery >10,000 ChEMBL and ZINC Zhi et al. (2021)
Directed message passing neural network (D-MPNN) Drug discovery >107 million Drug Repurposing Hub and

ZINC15
Stokes et al. (2020)

Pre-trained self-attentive message passing neural network
(P-SAMPNN)

Drug discovery 792 SPECS natural products Liu et al. (2021)
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Graph Neural Networks Performance
Evaluations
Depending on the problem, both graph-based networks and
traditional descriptor-based networks may be used for
regression or classification tasks. Results quality
assessments depend on the definition of a suitable metric
parameter. In case of regression tasks, root mean square
error (RMSE) or determination coefficient (R2) are the
most employed metric parameters. Classification tasks,
accuracy, logarithmic loss, area under receiver operating
curve (AU-ROC), area under precision recall curve (AU-
PRC), among others, are the most frequent metrics. For a
description of these and others, detailed descriptions are
available elsewhere (Liu et al., 2014).

Model comparisons also depend on the choice of suitable
metrics that may be calculated for these models. The set of models
is tested by making predictions for each one when applied to
processing data from a common set of databases. Several public
and proprietary databases are available. Among public databases,
the most frequently employed are: ESOL, a water solubility
database for organic small molecules; FreeSolv, a database for
hydration free energy database for small molecules in water;
Lipop, a logarithmic octanol/water distribution coefficient
database at pH � 7.4; MUV, a subset of PubChem BioAssay
by applying a refined nearest neighbor analysis, designed for the
validation of VS techniques; HIV, containing data concerning
HIV replication inhibition; BACE, containing data on the
inhibition of human β-secretase; BBBP, containing binary
blood–brain barrier penetration; labels Tox21, ToxCast,
SIDER, and ClinTox, containing data related to toxicity
measurements or qualitative evaluations for many biological
subjects and including data about on drug toxicity and side
effects in clinical trials; and CheMBL, a chemical database for
bioactive molecules with drug-like properties, among others. All
these datasets are availabe in the MoleculeNet benchmark
framework (Wu et al., 2018).

Extensive literature reports concerning the benchmarks of
algorithm models using the aforementioned databases applied
to VS related tasks are available, such as molecular property
predictions, fingerprint generation or the evaluation of structural
protein-ligand docking parameters. These include the following:
Support Vector Machine (SVM), Extreme Gradient Boost
(XGBoost), Random Forest (RF), and Deep Neural Networks
(DNN) (Jiang et al., 2021) as representatives of descriptor-based
models and many graph-based algorithm variants, such as
MPNN—Message Passing Neural Networks (Yang et al., 2019;
Deng et al., 2021; Jiang et al., 2021) and networks implementing
algorithm model variants involving spatial graph convolution,
like GCN—Graph Convolution Network (Li et al., 2017; Xiong
et al., 2020; Menke and Koch, 2020; Deng et al., 2021; Hsieh et al.,
2020) or GC—Graph Convolution (Wu et al., 2018) and spectral
graph convolution, such as AGCN–Adaptive Graph Convolution
(Li et al., 2018), graph based networks including attention
mechanisms of interaction between near nodes or edges,
i.e., AFP—Attentive Fingerprint (Xiong et al., 2020; Jiang
et al., 2021), PAGTN—Path-Augmented Graph Transformer

Network (Chen et al., 2019), EAGCN—Edge Attention GCN
(Shang et al., 2018), among others (Wu et al., 2018; Lim et al.,
2019).

Best performance values are mostly associated with graph-
based models, with few exceptions comprising non-graph models
performing better than graph models when applied to specific
databases and properties (Jiang et al., 2021), with SVM, RF and
XGBoost providing the best AUC-ROC values.

There may be enough room to find synergism in combinations
of graph based on descriptor based models to achieve improved
results.

Direct Message Passage Neural Network, D-MPNN—a graph
based model combined with Extreme Gradient Boost,
XGBoost—a descriptor-based network as the output layer,
achieved the best results for several of the presented dataset
(Deng et al., 2021). Furthermore, the concatenation of molecular
fingerprint vectors generated by conventional models with
descriptors generated using graph models have been reported
as providing the best prediction results when submitted to the
final parameter generation layers (Wang et al., 2019).

Graph Neural Network Limitations
Despite being applicable to a handful of fields that could benefit
fromML techniques, GNNs also have drawbacks and limitations.
First, while conventional ML techniques such as Logistic
Regressions usually display a limitation regarding the ability to
leverage the information gain with increasing dataset sizes, DL
techniques display the increased benefit of employing huge
datasets. However, DL methods also tend to underperform
under small data environments (Thompson et al., 2020).
Secondly, GNNs are also more prone to suffer from small data
perturbations (Zügner and Günnemann, 2019), becoming
vulnerable to adversarial attacks. Moreover, some types of
GNNs are not injective. Exemplifying, Graph Convolutional
Networks (GCNs) use mean pooling to aggregate node
multisets, being not injective due to this mean aggregation,
GCNs are not able to distinguish nodes that receive messages
from N nodes and nodes that receive messages from M > N
nodes. The limitation regarding being non-injective is also shared
with other GNN architectures, such as GraphSAGE, yet this is
solved inMPNNs. Furthermore, many types of GNNs (i.e.,: GCN,
GraphSAGE, GIN and GAT) that rely on local information are
not able to compute important graph properties in simple graphs,
such as clique information, longest or shortest cycle and diameter
(Garg et al., 2020).

Graph-based models tend, however, to demand much
higher computing time than descriptor-based models
(Jiang et al., 2021). Descriptor-based models may
therefore still be, in some cases, a compromise
between acceptable performance results and shorter
computing times. In general, graph-based methods
tend to present higher computational costs and yield
less promising predictions than descriptor-based
methods (Jiang et al., 2021). Yet, when evaluated on
127 ChemBL diverse targets, GNNs present high
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predictability (Sakai et al., 2021). Dwivedi et al. (2020)
provide a comprehensive benchmark between GNNs
and other ML methods, stating that GNNs outperform
other ML methods such as Multilayer Perceptrons for
chemical predictions. Yet, regarding SMILES sequences
being similar to Natural Language Processing (NLP)
sequences, further assessments on evaluating GNNs
against Transformer-based DL methods, that could
simplify inputs and are better described in NLP
applications, are required.

CONCLUSION AND FUTURE
PERSPECTIVES

The studies pointed out in this paper indicate that the use of GNN
in VS may guide the drug discovery process. However, the
application of this model in the field of natural products is
still underexplored. Nevertheless, several already interesting
tools produced with deep learning algorithms have been
developed that can aid in the drug discovery process
involving natural products. The NPClassifier developed by
Kim et al., for example, can aid in the recognition of the
structural diversity of organisms such as fungi and bacteria,
in addition to discovering which organism produces a
particular chemical class that has displayed VS activity in VS
campaign (Kim et al., 2020). In another assessment, Roberts
et al. employed a deep convolutional Siamese network to map
2D Nuclear Magnetic Resonance (NMR), which helps
determine the structure of novel compounds (Roberts et al.,
2019). Recently, Yoo et al. developed a deep learning approach
able to extract the molecular and chemical properties from
natural products and predict their medicinal use for the

treatment of several diseases, including hypertension, pain,
diabetes mellitus type 2 and rheumatoid arthritis, among
others. This approach was also developed to accelerate SV
campaigns, as it allows for a preliminary screening to
identify molecules with potential activity from a vast
database (Yoo et al., 2020). Reher et al. also developed a
novel NMR-based ML approach named SMART 2.0
(Small Molecule Accurate Recognition Technology), that
identifies major constituents from crude extracts and was
responsible for the identification of several compounds from
cyanobacterial extracts, including symplocolide A, swinholide
A, and samholides A-I (Reher et al., 2020). In sum, these
findings indicate that the use of deep learning tools can aid
in overcome the long-standing challenges surrounding natural
product research, as well as accelerate the drug discovery
process.
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